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Summary: Conventional distance sampling (CDS) methods assume that animals are uniformly distributed in the 

vicinity of lines or points. But when animals move in response to observers before detection, or when lines or points 

are not located randomly, this assumption may fail. By formulating distance sampling models as survival models, we 

show that using time to first detection in addition to perpendicular distance (line transect surveys) or radial distance 

(point transect surveys) allows estimation of detection probability, and hence density, when animal distribution in the 

vicinity of lines or points is not uniform and is unknown. We also show that times to detection can provide information 

about failure of the CDS assumption that detection probability is 1 at distance zero. We obtain a maximum likelihood 

estimator of line transect survey detection probability and effective strip half-width using times to detection, and we 

investigate its properties by simulation in situations where animals are nonuniformly distributed and their distribution 

is unknown. The estimator is found to perform well when detection probability at distance zero is 1. It allows unbiased 

estimates of density to be obtained in this case from surveys in which there has been responsive movement prior to 

animals coming within detectable range. When responsive movement continues within detectable range, estimates 

may be biased but are likely less biased than estimates from methods that assuming no responsive movement. We 

illustrate by estimating primate density from a line transect survey in which animals are known to avoid the transect 

line, and a shipboard survey of dolphins that are attracted to it.
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1. Introduction

There are two main distance sampling methods: line transects and point transects. On line

transect surveys observers traverse lines and record the perpendicular distances from the line

to detected individuals, while on point transect surveys observers survey from points and

record the radial distances to detected individuals. Observers may also record the locations

in the plane of detected individuals, and other covariates. See Marques et al. (2010) and

Buckland et al. (2001) for an overview of distance sampling methods.

Two key assumptions of distance sampling are (i) that the distribution of distances from

samplers (lines or points) to individuals in the vicinity of the samplers is known (usually

assumed uniform for line transects and triangular for point transects) and (ii) that detection

of individuals at distance zero is certain (Buckland et al., 2001). Assumption (ii) is referred

to as the “g(0) = 1” assumption in distance sampling literature, where g(x) is the probability

of detecting an individual that is at perpendicular distance x in the case of line transects,

and radial distance x in the case of point transects. In this paper we use p(x) rather than

g(x) for the detection probability function.

We are interested in developing methods that do not require assumption (i) in particular,

because on some surveys it may not be possible to meet this assumption. There are two main

circumstances in which this is the case. The first is when samplers (lines or points) cannot

be placed randomly, as may be the case in a jungle where observers are restricted to moving

along paths, and we consider a visual line transect survey of primates where this was the

case. The second is where animals move in response to an observer prior to being detected,

and we consider a shipboard dolphin survey in which this was the case.

We show below that distance sampling methods that use times to detection do not require

assumption (i) and that these methods are kinds of removal methods (see Seber, 1982;

Borchers et al., 2002, , Chapters 7 and 5, respectively, for an overview of removal methods).
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And since removal methods require neither assumption (i) nor assumption (ii), we investigate

the extent to which use of times to detection allows assumption (ii) to be relaxed as well.

While times to detection are not used by current distance sampling methods, something

akin to them were used in some old line transect survey models and we briefly review the

reasons that their use was abandoned. But first we consider removal methods as these provide

some insights for distance sampling surveys with time to detection.

1.1 Removal models as survival models

Removal methods involve repeated sampling and removing animals from a population when

they are detected or captured. (We refer to detection, capture and removal as “detection”

henceforth.) In the simplest model, all animals are assumed to be equally detectable and

sampling effort is assumed to be the same on each occasion.

We can formulate a removal method with occasions 1, . . . , T as a discrete time survival

process with constant detection probability p and an unknown number of right-censored indi-

viduals. In this case the“survivor function”(the probability of not being detected by occasion

(t−1) ∈ {1, . . . , (T−1)}) is S(t−1) = (1−p)t−1 and the probability of being detected at time

(occasion) t ∈ {1, . . . , T} is f(t) = S(t− 1)p (i.e. t has a geometric distribution). The likeli-

hood for the abundanceN and detection probability p, given that nt individuals were detected

at time t (t = 1, . . . , T ) is multinomial: L(N, p) =
(

N !

(N−n)!
∏T
t=1 nt!

)
S(T )N−n

∏n
i=1 S(ti − 1)p,

where n =
∑

t nt and N − n is the unknown number of censored survival times. The focus

of inference is the number of censored times. Although it is not usually formulated as a

discrete survival model, the simple removal method likelihood (see Equation 5.4 on page 76

of Borchers et al., 2002, for example) is identical to the equation above.

The link between removal methods and distance sampling methods becomes apparent

when we consider the continuous-time analogue of the discrete-time removal model – which

we now do. We start by considering a survey of duration T with fixed hazard per unit time
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of detection, h. In this case the survivor function at time t is S(t;h) = exp{−
∫ t
0
h du} =

exp{−th} and the probability density function (pdf) of the n detection times, given detection,

is f(t|t 6 T ) =
∏n

i=1
S(ti;h)h
1−S(T ;h) , where t 6 T indicates that t1, . . . , tn are all less than or equal

to T . Note that 1 − S(T ;h) is the probability of detection by time T , which we denote p.

The corresponding likelihood function for the survey is L(N, h) = B (n;N, p)
∏n

i=1
S(ti)h
p

,

where B (n;N, p) is a binomial probability mass function (pmf) with index N and “success”

probability p, evaluated at n.

Suppose now that in addition to the time that an individual has been at risk of detection

(t), the detection hazard depends on a continuous individual random effect x with pdf

π(x;φ) and parameter vector φ. We assume that individuals’ xs are independent draws

from this distribution. The detection hazard is now h(t, x;β), where β is a vector of unknown

parameters, the survivor function is S(t, x;β), and detection probability, conditional on x is

p(x;β) = 1 − S(T, x;β) = 1 − exp{−
∫ T
0
h(u, x;β)du}. The mean detection probability in

the population is p·(β,φ) = Ex[p(x;β,φ)] =
∫
π(u;φ)p(u;β)du, where integration is over

the survey region. The likelihood function can now be written as

L(N,β) = B (n;N, p·(β,φ))
n∏
i=1

π(xi|ti 6 T )f(ti|xi, ti 6 T )

= B (n;N, p·(β,φ))
n∏
i=1

π(xi;φ)p(xi;β)∫
π(u;φ)p(u;β)du

S(ti, xi;β)h(ti, xi;β)

p(xi;β)
(1)

=

(
N

n

)
[1− p·(β,φ)]N−n

n∏
i=1

π(xi;φ)S(ti, xi;β)h(ti, xi;β) (2)

The term [1− p·(β,φ)]N−n is for the unknown number (N − n) of censored survival times.

1.2 Distance sampling models as survival models

Although they are traditionally treated as instantaneous surveys, distance sampling surveys

seldom really are. An individual at (perpendicular or radial) distance x is in view for some

period (of length T say), and at time 0 6 t 6 T it has some hazard h(t, x;β) of being

detected. Detected individuals are effectively removed if the usual distance sampling protocol
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of recording only the locations of individuals when first detected, is used. In this case, one can

consider a distance sampling survey to be a removal survey of the sort described immediately

above, and hence also as a kind of survival model survey.

Indeed, the conventional distance sampling full likelihood is identical to Equation (1) with

the random effect x being perpendicular distance (in the case of line transects) or radial

distance (in the case of point transects), except that with distance sampling (a) the random

effect distribution π(xi;φ) is treated as known, and (b) the term with detection times

(f(ti|xi, ti 6 T ) = S(ti, xi;β)h(ti, xi;β)/p(xi;β)) is omitted - see Buckland et al. (2004),

Equation (2.33) or Borchers et al. (2002), Equation (7.10). We are concerned in this paper

with situations in which it is not reasonable to treat π(xi;φ) as known, and we show below

that f(ti|xi, ti 6 T ) is useful for estimating it.

Omitting f(ti|xi, t 6 T ) from distance sampling likelihoods reduces the data from two

dimensions (x and t) to one dimension (x) and as a result π(xi;φ) and p(xi;β) are con-

founded: without f(ti|xi, t 6 T ) they appear only as a product in Equation (1). This begs

the question“Why are conventional distance sampling detection functions one dimensional?”.

In the case of line transect surveys, the answer can be found in a landmark paper by Hayes

and Buckland (1983).

They considered line transect detection function models that included forward distances.

(Using forward distance, y, is equivalent to using times to detection if observers move at

constant speed, v, since y = ymax − vt - see Figure 1.) These are two-dimensional (2D)

line transect detection function models (with forward distance y as well as perpendicular

distance, x) and the key question here is why 2D detection models were abandoned.

[Figure 1 about here.]

Hayes and Buckland (1983) considered the 2D detection models of Hayne (1949), Eberhardt

(1978), Burnham and Anderson (1976) and Burnham (1979). In their examination of these
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models, Hayes and Buckland (1983, p 33) conclude that “none of the models appears to

be founded upon realistic assumptions.” They went on to develop a survival model for the

detection process (although they did not call it a survival model), with a detection hazard

that depends on forward and perpendicular distance.

The key conclusion of Hayes and Buckland (1983) with regard to density estimators (D̂)

from 2D hazard models was (p39) “We do not believe that the estimator D̂ will be robust to

the form arbitrarily chosen for [the hazard function] when observed radial distances are used

for estimation.” (The 2D models they considered used radial and perpendicular distances,

rather than forward and perpendicular distances.) They went on to develop a new form of 1D

(perpendicular distance only) detection function (the now well-known “hazard rate” form)

based on their survival model, and showed that this form is obtained from a variety of forms

for the hazard function.

Hayes and Buckland (1983) concluded that the weakness of the 2D models they looked at

was that they were “arbitrary” and “founded on unrealistic assumptions”. But other 2D dis-

tance sampling models had been used successfully before 1983 (Schweder, 1974, for example)

and have been used successfully since. Examples include (Schweder, 1990), Schweder et al.

(1996), Schweder et al. (1997), Schweder et al. (1999), Skaug and Schweder (1999), Okamura

(2003), Skaug et al. (2004), Okamura et al. (2003), Okamura et al. (2006), Okamura et al.

(2012), Borchers et al. (2013), Langrock et al. (2013) and Borchers and Langrock (2015).

These papers used a variety of more flexible hazard function forms than the models considered

by Hayes and Buckland (1983), including models that allow p(0) < 1. However, all of them

concern individuals that become available and unavailable for detection stochastically while

within detection range. In a similar vein, Solymos et al. (2013) and Amundson et al. (2014)

developed models for point transect surveys that use times to detection, for individuals that

are stochastically available. These discretise time and have no probability mechanism for
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dealing with time intervals of different lengths, or continuous time. We develop 2D distance

sampling models without stochastic individual availability here, and apply them with one of

the hazard models proposed by Hayes and Buckland (1983) and two of the hazard models

proposed by the authors listed above. The detection hazard formulation above also provides

a mechanism for extending models like those of Solymos et al. (2013) and Amundson et al.

(2014) to deal with continuous time and/or intervals of different lengths.

1.3 Detection probability at distance zero

Conventional distance sampling methods assume that p(0) = 1. One can build this into 2D

detection function models by choosing an appropriate hazard function form - as did Hayes

and Buckland (1983), for example. Or one can use a hazard function form that does not

require the p(0) = 1 assumption, as did Langrock et al. (2013), for example.

Thinking of distance sampling data as removal (or survival) data, one would expect that it

is possible to estimate abundance without assuming that p(0) = 1 - since no such assumption

is required for estimation from removal method data. On the other hand, the simple (constant

p) removal method performs poorly unless a relatively high proportion of the population is

detected (see Seber, 1982, Table 7.3, for example), i.e., unless S(T ) is close to 1. So one

might also expect poor performance from 2D distance sampling estimators unless p(0) =

p(x = 0;β) = 1− S(t, x = 0;β) is close to 1. We consider this further below.

2. Distance sampling likelihood

Distance sampling observations arise only within some maximum searched distance w of

samplers (lines or points) and conventional distance sampling estimators of density and

abundance commonly use design-based methods for drawing inferences outside of this “cov-

ered region”, while model-based methods of inference are used within the covered region.

Model-based methods are required within the covered region because inclusion probabilities
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are unknown, are beyond the control of the surveyor, and are estimated on the basis of a

model for the detection function (with some unknown parameters) whereas the probability of

individuals being in the covered region can be determined by design. Here we are concerned

with inference within the covered region.

On a line transect survey, the location of individual i is conveniently expressed as xi, its

distance from the line, and li, its distance along the line (see Figure 1). An observer moves

along the line at constant speed v, such that her location along the line at time τ is l(τ),

with a window of half-width w and length ymax = vT moving with her. Each individual has

its own time coordinate (Ti for individual i) which is set to 0 when the observer is a distance

ymax short of li, and at time Ti = ti it is at forward distance yi(ti) ahead of the observer

(Figure 1). So for line transects, the observer-centric coordinates are (xi, yi(ti)).

As with conventional line transect models, we assume that the probability of detecting

individual i at perpendicular distance xi from the line does not depend on its distance li

along the line. (One can add covariates to the detection hazard to allow it to vary with

distance along line.) This implies that the detection hazard function depends on xi and time

in view (ti), but not on li, so that it can be written as h(xi, yi(ti)) and the survivor function

can be written as S(ti, xi). (The time that individuals at the start of the line with li < ymax

are in view is less than T and this should strictly be taken account of in the likelihood. This

“end effect” is usually negligible.) In the case of point transects, both the observer and the

animals are assumed to be stationary until detection, so that unless the detection hazard

varies with time, it can be written simply as h(xi), where in this case xi is the radial distance

of animal i from the observer.

2.1 Conditional likelihood

Inference within the covered region is conventionally based on the conditional likelihood,

given detection of n objects in the covered region, not the unconditional likelihood given
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above (which includes a binomial probability model for n). This is to avoid having to model

the distribution outside of searched strips or circles (Borchers and Burnham, 2004). The

conditional likelihood is Equation (1) without the leading binomial pdf term:

L(β|n) = fx|n(x|n)ft|x(t|x, t 6 T )

=

{
n∏
i=1

π(xi;φ)p(xi;β)∫
π(u;φ)p(u;β)du

}{
n∏
i=1

S(ti, xi;β)h(ti, xi;β)

p(xi;β)

}
(3)

where x = (x1, . . . , xn), t = (t1, . . . , tn) and t 6 T indicates that all of t1, . . . , tn are less than

or equal to T . Here fx|n(x|n) is the conditional likelihood, but allowing a more general form

for π(xi;φ) than is conventionally used. With CDS, uniform object density within w of the

observer is usually assumed, so that for line transects π(xi;φ) = C for some constant C, and

C cancels in fx|n(x|n), leaving
∏

i p(xi)/
∫
p(x)dx, which is the CDS conditional likelihood

for line transects (see Buckland et al., 2001). Similarly, with uniform object density for point

transects π(xi;φ) ∝ xi (see Buckland et al., 2001) giving the CDS point transect conditional

likelihood
∏

i

{
xip(xi)/

∫
xp(x)dx

}
. It is standard practice with distance sampling inference

not to use times to detection and so CDS likelihoods do not involve the component ft|x(t|x).

We do include times to detection and ft|x(t|x), and it is this that enables us to deal with

unknown π(xi;φ), responsive movement prior to detection, and to some extent uncertain

detection at distance zero.

2.2 CDF and PDF of detection times

The shape of the pdf of detection time t at distance zero, given t 6 T , i.e. ft|x(t|x, t 6 T ) =

S(ti,xi)h(ti,xi)
p(xi

(omitting β for brevity), turns out to be somewhat informative about p(0). If

p(0) = 1 then ft|x(t|0, t 6 T ) must approach zero as t → T , as in this case no animals

at distance x = 0 survive detection beyond T (forward distances y < 0 in the case of line

transects). As a result there will be no detections at, or very close to (x = 0, t = T ) (or to
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(x = 0, y = 0) for line transects). This in turn means that ft|x(t|0, t 6 T ) must have a mode

at t 6 T (y > 0). Conversely, if it does not then this implies that p(0) is less than 1.

The cumulative distribution function (CDF) of t is the scaled probability that an object

at x survives detection up to time t: Ft|x(t|x) = S(t, x)/
∫ T
0
S(t, x)dt. This is analogous to

the removal method CDF and as with removal methods, when Ft|x(t = T |x) is not close

to 1 (i.e. when, by the end of the period in which animals are at risk of removal/detection,

not a large fraction of the available population has been removed/detected), estimation of

the proportion of the available population that has been removed/detected (and specifically

p(0) = Ft|s(t = T |0) in the present context), can not be done reliably.

The mean pdf of t, given detection, is useful for visually assessing goodness of fit in the

t dimension. For line transects this is Ex[ft|x(t|x)] =
∫ w
x
ft|x(t|x, t 6 T ))π(x;φ)dx where

ft|x(t|x, t 6 T ) is the pdf of t given distance x and detection.

3. Detection hazards and perpendicular distance distributions

We now focus on line transect surveys. Although our models are formulated above in terms

of detection times, when observers move at constant speed it is convenient to work in terms

of forward detection distances (y) rather than times, which we do henceforth. We use one

of the hazard forms (model hHB below) proposed by Hayes and Buckland (1983) as well as

the exponential power and inverse power hazard models that were used by Langrock et al.

(2013) (hEP and hIP ). We also generalise hHB to allow p(0) < 1 (hazard hHB2) and the latter

two to allow separate scale parameters for x and y (models hEP2 and hIP2). The models are
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as follows (βj > 0 for all j):

hHB(x;β) = β1(x
2 + y2)−(β2+2)/2 hHB2(x;β) = β1(x

2 + (y + β3)
2)−(β2+2)/2

hIP (x;β) = β1

{
1 +

(
x

β2

)2

+

(
y

β2

)2
}−(β3+1)/2

hEP (x;β) = β1 exp

{(
x

β2

)β3
+

(
y

β2

)β3}

hIP2(x;β) = β1

{
1 +

(
x

β2

)2

+

(
y

β4

)2
}−(β3+1)/2

hEP2(x;β) = β1 exp

{(
x

β2

)β3
+

(
y

β4

)β3}
The hazard hHB has p(0) = 1, whereas the other hazards allow p(0) < 1. We use slightly

different forms for hEP and hIP than do Langrock et al. (2013), in that we allow β1 to be

greater than 1 (because our hazard functions are rates, not probabilities).

As is done with CDS methods, we use the absolute value of perpendicular distance so that

x > 0, and we right-truncate x at a distance w from the transect line. We consider these

forms for π(x;φ) (φ1 > 0;−∞ 6 φ2 6∞):

πU(x;φ) =
1

w
πHN(x;φ) = e

− x2

2φ21

{∫ w

0

e
− x2

2φ21 dx

}−1
πN(x;φ) = e

− (x−φ2)
2

2φ21

{∫ w

0

e
− (x−φ2)

2

2φ21 dx

}−1
πCN(x;φ) =

{
1− e

− x2

2φ21

}{
w −

∫ w

0

e
− x2

2φ21 dx

}−1
Model πU corresponds to no responsive movement, πHN allows for attraction to the transect

line, πCN for avoidance and πN for attraction or avoidance.

4. Model selection, diagnostics and interval estimation

The focus of inference is the inclusion probability in the covered region and the key quan-

tity for this in the case of line transects is the effective strip half-width, defined as w̃ =(
w
∫ w
0
p(x)π(x)dx

)
, where p(x) = 1−S(T, x) and T is the maximum time animals are within

detectable range. (The inclusion probability is
∫ L
0

2w̃dl/(2wL) = w̃/w, where integration is

along the transect and L is the total transect length.) The variance-covariance matrix of

model parameters is estimated using the inverse Hessian matrix obtained by maximising

the conditional likelihood Equation (3), and the variance of estimated w̃ is obtained using
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the Delta Method (see Oehlert, 1992, for example). Confidence intervals for w̃ are obtained

assuming log-normality of the estimator.

Models can be selected on the basis of their AIC values, and goodness of fit in the

perpendicular distance and forward distance dimensions assessed by visual inspection of

model fits in each dimension and Q-Q plots together with Kolmogarov-Smirnov (KS) and

Cramer-von Mises (CvM) goodness of fit test statistics.

5. Applications

We estimate w̃ for two surveys, both of which are believed to involve be substantial responsive

movement by animals prior to detection. The data are shown in Figure 2.

[Figure 2 about here.]

The first dataset has 127 detections of primates from a visual survey conducted by three

sets of trained observers walking previously cut line transects in primary tropical rainforest at

an elevation of 200-600m above sea level. The primates are believed to avoid the surveyors by

moving some distance away from the paths, and the distribution of perpendicular distances

of detected animals displays a mode at around 15m from the transect line (Figure 3).

[Figure 3 about here.]

The second dataset has 76 detections of dolphin groups by one set of observers (the“primary

platform”) on a shipboard visual survey. This survey used two independent observers and

data from both observers were analysed using mark-recapture distance sampling (MRDS)

methods (see Burt et al., 2015, for an overview of these methods) by Cañadas et al. (2004).

They concluded that there was substantial attraction of schools towards the transect line.

The perpendicular distance data have a mode at, or very close to distance zero (Figure 4).

[Figure 4 about here.]
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For each of these surveys, we estimate w̃ by maximising Equation (3) and also by max-

imising the CDS likelihood, obtained by dropping ft|s(t|s) from Equation (3) and setting

π(x;φ) = C to reflect the CDS assumption that objects are distributed uniformly for x 6 w.

CDS estimates were obtained using the R package Distance (Miller, 2015).

5.1 Primate survey results

The primate data were truncated at perpendicular distance w = 0.03 km, resulting in 4

detections being discarded. All models with πU had significantly bad fit in the x dimension.

Among models with non-significant goodness of fit statistics at the 5% level, model pair

(hIP , πN) was selected on the basis of AIC, with the next best model (hEP , πN) having an

AIC larger by 8.6. However, parameters β2 and β3 of model (hIP , πN) were found to be highly

correlated (estimated correlation > 0.999) and estimates from simulations using this model

did not converge properly in 40% of cases. We therefore fitted a reduced version of (hIP , πN),

which we call (hIP0, πN), in which the scale parameter β2 is fixed at 1. This resulted in a

model with lower AIC than (hIP , πN) and so we base inference on model (hIP0, πN). (The

point estimates of w̃ of these two models differ by less than 0.1%) Goodness of fit tests

give p-values of 0.72 (CvM) and 0.63 (KS) in the x dimension and 0.75 (CvM) and 0.76

(KS) in the y dimension. The fits of the chosen model in perpendicular and forward distance

dimensions are shown in Figure 3. The chosen model has p(0) = 1.

A common, if ad-hoc way of dealing with data demonstrating avoidance of the transect

lines, is to fit the hazard rate model of Hayes and Buckland (1983) (which is equivalent to the

2D model hHB in the perpendicular distance dimension). This model has a flat shoulder and

although it fits poorly to these data, the rationale for using it in the presence of avoidance

is that it ‘undoes’ the avoidance to some extent by averaging through the region from which

animals have fled close to the line and to which they have fled farther from the line. This

fitted model is shown in Figure 5. We also fitted the model hHB using the forward distance
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data (which CDS models do not use) in addition to perpendicular distance data, with πU

(which is consistent with the CDS assumption of uniform animal density). This fitted model

has an AIC that is larger by 54.9 than the preferred model (hIP , πN).

[Figure 5 about here.]

The selected model (hIP0, πN) has an estimated w̃ of 0.018 with a coefficient of variation

(CV) of 12.5% and 95% confidence interval (CI) of (0.014, 0.023). The CDS model has an

estimated w̃ 28% larger at 0.023, with a CV of 5.8%. Since estimated density is inversely

proportional to w̃ (density is estimated as D̂ = n/(2 ̂̃wL)), the CDS model gives a density

estimate that is some 22% smaller than that from the selected 2D model.

The differences between the CDS estimate, which uses only perpendicular distance data and

the estimates from our method, which uses 2D data (perpendicular and forward distances),

are consistent with the CDS estimator not accounting adequately for the apparent avoidance

of transect line by primates, and the 2D method accounting for the avoidance, albeit at the

cost of additional variance due to estimating 2D hazard parameters and φ.

5.2 Dolphin survey results

The dolphin data were truncated at perpendicular distance w = 0.15 km, resulting in two

detections being discarded. Models were fitted to these data with distance distribution models

πU and πHN . All the models with πU had significantly bad fit. Among the models that did

not have significantly bad fit, model (hHB, πHN) was selected on the basis of AIC. All models

that allow p(0) < 1 had substantially worse AICs than model (hHB, πHN). Goodness of fit

tests give p-values for the selected model of 0.79 (CvM) and 0.89 (KS) in the x dimension and

0.24 (CvM) and 0.42 (KS) in the y dimension. The fits of the chosen model in perpendicular

and forward distance dimensions is shown in Figure 3.

CDS methods were used to fit half-normal and hazard rate detection function models and

the hazard rate model chosen by AIC. This fitted model is shown in Figure 5.
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Model (hHB, πN) has an estimated w̃ of 0.107 with a CV of 8.9% and 95% CI of (0.089,

0.127). The CDS model has an estimated w̃ some 40% smaller at 0.064 with a CV of 18.8%,

generating a density estimate that is 67% larger than that from model (hHB, πN).

Cañadas et al. (2004) obtained a density estimate of 0.123 schools per square nautical

mile using MRDS methods that assume no unmodelled heterogeneity (no variables affecting

detection probability of the two sets of observers that are not accounted for in the model).

This will be a negatively biased estimate of density if there is unmodelled heterogeneity (see

Burt et al., 2015, for a summary of this and related issues), and it is frequently the case that

there is unmodelled heterogeneity on MRDS surveys. While there are “point independence”

MRDS methods that relax the assumption of no unmodelled heterogeneity, these require

uniform distribution of perpendicular distances of animals from the transect line and produce

biased estimates in the presence of responsive movement (see Burt et al., 2015). Cañadas

et al. (2004) also fitted a CDS model to the data and this produced an estimate of density

5.9 times larger than that from the MRDS method. The CDS estimate is positively biased

in the presence of attraction to the transect line. Believing there to be attraction to the line,

Cañadas et al. (2004) chose what they believed to be the lesser of two evils and assumed no

unmodelled heterogeneity (and hence a negatively biased estimate of density if unmodelled

heterogeneity exists).

The estimated density from our method is 0.21 – almost double the MRDS estimate and

less than a third as big as the CDS estimate of Cañadas et al. (2004). This is consistent with

the MRDS estimate being negatively biased (as is likely, due to unmodelled heterogeneity)

and the CDS estimate being positively biased due to responsive movement. We do not claim

that our estimator from model (hHB, πHN) is unbiased in this case, because it seems quite

likely that p(0) is less than 1 (Cañadas et al., 2004, estimated it to be 0.79) due to animals

being underwater some of the time. Although model hHB requires that p(0) = 1, there
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are detections very close to (x = 0, y = 0), as is evident from Figures 2 and detections

at (x = 0, y = 0) are consistent with p(0) < 1. But sample size is small and this may give

inadequate power to detect p(0) < 1. In addition, the 2D method developed here assumes that

x does not change while animals are in view before they are detected, and this assumption

may be violated for these data (although it is unclear how much this would bias estimates)

Nevertheless, as with the primate data analysis, the difference between the CDS estimate

and the 2D method estimate is consistent with the 2D method being able to account for

nonuniform distribution in the perpendicular distance dimension (attraction to the transect

line in this case) and the CDS estimator not being able to do so.

We investigate by simulation below, the performance of the 2D method in the presence of

unknown non-uniform animal distribution, and compare its performance to CDS estimators.

6. Simulation study

We consider two simulation scenarios: S1 treats the 2D model fitted to the primate data

as truth, S2 treats the 2D model fitted to the dolphin data as truth with simulated data

drawn from (hIP0, πN) in S1 and (hHB, πHN) in S2. For all simulation scenarios we estimate

w̃ using our 2D method and using a CDS estimator. We measure performance in terms of

estimated w̃ relative bias and 95% CI coverage probabilities. For each scenario we simulate

1,000 surveys, with each survey having a simulated sample size equal to that of the data

sets, i.e. for simulation scenario S1 n = 127, and simulation scenario S2 n = 76.

The 2D model estimator of w̃ is very nearly unbiased for S1 and unbiased for S2. In both

scenarios the 95% confidence interval estimates have coverage close to their nominal level,

while the CDS estimator has both substantial bias and very poor coverage probabilities

(Table 1).

In the case of the dolphin data, where it is likely that p(0) is less than 1, we explored the

ability of the 2D detection function models to estimate p(0). To do this we simulated (x, t)
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data from our fitted model (hHB, πHN) and then shifted the origin in the t dimension forward

(i.e reduced the time individuals are in view) until p(0) was at a given value less than 1 (see

below), and then fitted model (hHB2, πHN), which allows p(0) < 1, to each of 1,000 simulated

datasets. We did this for p(0) ∈ {0.9, 0.8, 0.7, 0.6}. In all cases we foud p̂(0) to be negatively

biased, with bias ranging from -12% to -22%. Although this is too small a simulation study

to conclude that 2D detection function models are ineffective for p(0) estimation, we would

not recommend using them for this purpose without further investigation.

[Table 1 about here.]

7. Discussion and Conclusions

We have shown that when animals are not distributed uniformly with respect to distance

from the line on line transect surveys, unbiased estimates of w̃ can be obtained from 2D

estimators that use forward distance or time to detection data as well as perpendicular

distance, and that in such cases CDS estimators may be unreliable. The 2D estimators may

be biased if there is responsive movement while within detectable range, but as the 2D model

accommodates non-uniform distribution, it is likely that 2D estimators will be less biased

than CDS estimators in this case.

We have also shown that use of forward detection distance data and 2D inference methods

provides some information on whether the key CDS assumption that p(0) = 1 has been

violated. If ft|x(t = T |x = 0; β̂) = 0, this indicates that no objects “survive” detection at

x = 0, i.e. that p(0) = 1. Conversely, if ft|x(t = T |x = 0; β̂) is greater than zero, some

animals avoid detection altogether and p(0) < 1. In principle p(0) can be estimated by

1 − S(t = 0, x; β̂), where β̂ is the MLE of β, but this should be done with care as small

sample size may compromise the reliability of p(0) estimation. The dolphin data are a case

in point: it is likely from knowledge of the species and detection process, as well as from
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the analysis of Cañadas et al. (2004), that p(0) < 1, and the histogram in Figure 2 shows

detections very close to zero forward and perpendicular distance, but the best model by AIC

is one with p(0) = 1. We consider the 2D method to be reliable when p(0) is equal to, or

close to 1, but it has limited ability to deal with p(0) < 1. Recalling that the 2D line transect

estimator can be seen as kind of removal method estimator, and that removal methods do

not work well unless a large fraction of the population is removed, we believe these methods

should be used with caution if p(0) may be substantially less than 1. With large enough

sample size, inspection of the distribution of forward distances may be informative in this

regard; if the distribution of forward distances of detections close to the line does not have

a mode at y > 0, this would suggest that p(0) is less than 1.

We have not addressed the issue of how representative density within strips is of density

overall when there in nonuniform animal distribution, and this is not something that can

be inferred reliably from within-strip data alone. If strips are located randomly and nonuni-

formity is a consequence of responsive animal movement that does not involve any animals

moving into or out of strips, then density within strips is representative of density outside

strips. Nonuniform density can also arise from nonrandom placement of transects, even in

the absence of responsive movement to observers. In some cases it may be reasonable to use

estimated density at the outer edge of strips as representative of density outside strips, but

in general, drawing inferences about density outside strips from estimates of density in strips

may be unreliable in the presence of nonuniform distribution within strips. Marques et al.

(2010a) discuss these issues further.

We have not investigated use of times to detection with point transects. Marques et al.

(2010a), Cox et al. (2011) and Arranz et al. (2014) showed how radial distance and angle

can be used to estimate density in the presence of nonuniform animal distribution. But if

the gradient in detection probability with distance from observer coincides with gradient
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in density, then change in detection probability and change in density with distance are

confounded even when detection angles are used. Time to detection data have the potential

to deal with this. However, the methods of this paper assume that animals are stationary

while within detectable distance and for most species, for any but very short survey times T ,

this is not a reasonable assumption for point transects. And with very short survey times,

times to detection data are rather uninformative

The 2D detection function estimation method developed in this paper gives conservation-

ists, managers, and others wanting to estimate animal abundance and density from line

transect surveys a new tool for situations in which there is unknown object distribution

within searched strips or circles. While it requires time to detection or (for line transects)

forward distance at detection, these data are often quite easy to gather and we recommend

that they be gathered as a matter of course where this is possible.

Finally, we return to the question posed in the title of this paper: should distance sampling

detection function models remain 1D or move to 2D? Although time to detection data are in

principle informative about p(0), our limited simulations suggest that when p(0) is not close

to 1 and sample size is not large, estimation of p(0) may not be reliable, and MRDS methods

are probably preferable. An obvious extension of the methods of this paper would be the

incorporation of time to detection data in MRDS models, but that is beyond the scope of

this paper. On the other hand, we have shown the utility of 2D distance sampling data for

line transect surveys when the CDS assumption that animals are uniformly distributed in

the vicinity of observers is violated. We believe that unless the distribution of distances to

individuals is known with confidence, distance sampling detection functions should be 2D,

not 1D, as substantial bias can result from an incorrect assumption about the distribution.

Moreover 2D detection functions can be used to investigate whether the observed data is

consistent with an assumed distribution.
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Supplementary Materials

The R code and datasets used to do the analyses in this paper can be found on github at

https://github.com/david-borchers/LT2D .
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Figure 1. Line transect notation. The grey line is a transect line that starts on the left
of the figure. The smiley face is individual i, located at perpendicular distance xi from the
line and distance li along the line. At time τ an observer (the dark circle) is a distance l(τ)
along the line, moving at speed v from left to right along the line. The dotted box is the
window in which individuals can be detected by the observer at time τ and it moves with
the observer. It extends a distance w either side of the line and a distance ymax ahead of the
observer. Stationary individuals within w of the line are in the window for a time T . In the
figure, individual i has been in view for a time ti and is at forward distance yi(ti) ahead of
the observer. When individual i enters the window, it has time ti = 0 and forward distance
yi(0) = ymax, and when it passes abeam of the observer, it has ti = T and yi(T ) = 0.

Observer
Animal

yi(ti) vti

xi

li
ymax=vT

w

w
l(τ)
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Figure 2. Locations of primate detections (left) and dolphin detections (right). All dis-
tances are kilometres. Dashed lines show perpendicular truncation distance used in analysis.
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Figure 3. Primate fits. The top row is perpendicular distance (x, in km) plots, the bottom
forward distance (y, in km); the left column shows histograms and rug plots of observed data,
with fitted PDFs (solid lines) overlaid, while the right column contains Q-Q plots. In the top
left plot, the dashed line is the perpendicular distance detection function and the dotted line
the animal distribution function π(x;φ). Circled points in the Q-Q plots show the points on
which the Cramer-von Mises statistic is based. The bottom right Q-Q plot slopes down to
reflect the fact that the CDF of forward distances is obtained by integrating time from 0 to
T , which corresponds to integrating forward distance y from right to left. The solid line in
the bottom left plot is Ex[ft|x(t|x; β̂)].
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Figure 4. Dolphin fits. The top row is perpendicular distance (x, in km) plots, the bottom
forward distance (y, in km); the left column shows histograms and rug plots of observed data,
with fitted PDFs (solid lines) overlaid, while the right column contains Q-Q plots. In the top
left plot, the dashed line is the perpendicular distance detection function and the dotted line
the animal distribution function π(x;φ). Circled points in the Q-Q plots show the points on
which the Cramer-von Mises statistic is based. The bottom right Q-Q plot slopes down to
reflect the fact that the CDF of forward distances is obtained by integrating time from 0 to
T , which corresponds to integrating forward distance y from right to left. The solid line in
the bottom left plot is Ex[ft|x(t|x; β̂)].
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Figure 5. Conventional line transect hazard rate model fits. All distances are in kilometres.
Primate data are on the left, dolphin data on the right.
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Table 1
Simulation results for 2D and conventional distance sampling (CDS) estimation of effective strip half width (w̃), for

simulations S1 (primates; avoidance) and S2 (dolphins; attraction). Coverage probability is the proportion of 95%
confidence interval estimates that contained the true w̃.

Simulation mean percentage Coverage
Scenario relative bias probability

S1 2D -2% 0.95
S1 CDS 37% 0.00
S2 2D 0% 0.94

S2 CDS -39% 0.33
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