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Excess of Loss Reinsurance Under
Joint Survival Optimality

by

Vladimir K. Kaishev and Dimitrina S. Dimitrova

Cass Business School, City University, London

Abstract

Explicit expressions for the probability of joint survival up to timef the cedent and the
reinsurer, under an excess of loss reinsurance contract with a limiting and a retention
level are obtained, under the reasonably general assumptions of any non-decreasing
premium income function, Poisson claim arrivals and continuous claim amounts, mod-
elled by any joint distribution. By stating appropriate optimality problems, we show that
these results can be used to set the limiting and the retention levels in an optimal way
with respect to the probability of joint survival. Alternatively, for fixed retention and
limiting levels, the results yield an optimal split of the total premium income between the
two parties in the excess of loss contract. This methodology is illustrated numerically on
several examples of independent and dependent claim severities. The latter are modelled
by a copula function. The effect of varying its dependence parameter and the marginals,
on the solutions of the optimality problems and the joint survival probability, has also
been explored.
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1. Introduction

Several approaches to optimal reinsurance have been attempted in the actuarial literature,
based on risk theory, economic game theory and stochastic dynamic control. Examples of
research in each of these directions are the papers by Dickson and Waters (1996, 1997),
Centeno (1991, 1997), Andersen (2000), Krvavych (2001), by Aase (2002), Suijs, Borm
and De Waegenaere (1998), and by Schmidli (2001, 2002), Hipp and Vogt (2001), Taksar
and Markussen (2003). A common feature of most of the quoted works is that optimality
is considered with respect to the interest of solely the direct insurer, minimizing his
(approximated) ruin probability, under the classical assumptions of linearity of the pre-
mium income function and independent, identically distributed claim severities.

Recently, a different reinsurance optimality model, which takes into account the interests
of both the cedent and the reinsurer, has been considered by Ignatov, Kaishev and Kra-
chunov (2004). As a joint optimality criterion they introduce the direct insurer's and the
reinsurer's probability of joint survival up to a finite time horizon. Under this model, a
volume of risks is insured by a direct insurer, who is entitled to receiving certain pre-
mium income in return for the obligation to cover individual claims. The latter are
assumed to have any discrete joint distribution and Poisson arrivals. It is further assumed
that the cedent is seeking to share claims and premium income with a reinsurer under a
simple excess of loss contract with a retention |&teltaking integer values. In their
paper, Ignatov, Kaishev and Krachunov (2004) have derived expressions for the probabil-
ity of joint survival of the cedent and the reinsurer and have demonstrated its applicability
in the context of optimal reinsurance.

Catastrophic events in recent years have caused insurance and reinsurance losses of
increasing frequency and severity. As a result, some reinsurance companies have been
downgraded with respect to their credit rating while others, such as the 6-th largest rein-
surer worldwide Gerling Global Re, even became insolvent and went out of business. The
latter developments have motivated even stronger the proposed idea of considering reinsur-
ance not solely from the point of view of the direct insurer, but taking into account the
contradicting interests of the two parties, by jointly measuring the risk they share.

Our aim in this paper is to generalize the joint survival optimality reinsurance model,
introduced by Ignatov, Kaishev and Krachunov (2004). We extend it here by considering
an excess of loss (XL) contract in which the reinsurer covers each individual claim in
excess of a retention levll, but up to a limiting leveL and individual claim severities

are not discrete but are modelled by continuous (dependent) random variables, with any
joint distribution. Under these reasonably general assumptions we give closed form
expressions for the probability of joint survival of the cedent and the reinsurer up to a
fixed future moment in time. Based on these expressions, we state two optimality prob-
lems, according to which optimal valuesMf andL or alternatively, an optimal split of
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the total premium income, maximizing the probability of joint survival, can be obtained.
These problems have been solved numerically, due to the infeasibility of their analytical
solution. The derived joint survival probability formulae, conveniently allow the use of
copula functions in modelling the dependency between claim severities. We have shown
how varying the degree of dependence through the copula parameter(s) affects the opti-
mal choice of the retention and the limiting levels, the optimal sharing of the premium
income and also the probability of joint survival.

The results presented in this paper comprise an extension of the model considered by
Ignatov, Kaishev and Krachunov (2004), to the practically more important case of continu-

ous, dependent claim severities. In addition, the more general XL contract considered

here gives a refined control over the optimal structure of this risk sharing arrangement.

For further details on XL contracts with one or more layers, see e.g. Bugmann (1997).

The paper is organized as follows. In Section 2 we introduce the XL contract and the

related joint survival probability model, considered further. Our main results are stated in

Section 3 and illustrated numerically in Section 4, where we have introduced the copula
approach to modelling dependence of consecutive claim severities under reinsurance.
The final Section 5 provides some concluding remarks and indicates questions for fur-

ther research.

2. The XL contract.

We will consider an insurance portfolio, generating claims with inter-occurrence times
71, T2, ...., @assumed identically, exponentially distributed r.v.s with paramef@enote

by T, =11, T, =11+ 72, ... the sequence of random variables representing the consecu-
tive moments of occurrence of the claims. Net #{i : T; < t}, where # is the number of
elements of the s¢t}. The claim severities are modeled by the non-negative continuous
rv.s.Wy, Wo, ..., W, ..., with joint density functiog(wy, ...,wy). It will be convenient

to introduce the random variablég = W;, Yo, =W; + W,, ... representing the partial
sums of consecutive claim severities.

The r.v.sW;, W, ..., are assumed to be independentNgf Then, the risk (surplus)
procesR; , at timet, is given byR; = h(t) — Yy,, whereh(t) is a nonnegative, non-decreas-

ing, real function, defined oR,, representing the aggregated premium income up to
timet, to be received for carrying the risk associated with the entire portfolio. The func-
tion h(t) may be continuous or not. I(t) is discontinuous we will assume that
h-(y) = inf {z: h(2) = y}. Clearly, h(t) represents a rather general class of functions and
the classical caséyt) = u+ ct, with initial reserveu and premium rate, is of course
included. We will assume that the premium has been determined in such a way that the
premium income defined by the functitiit) adequately corresponds to the aggregate
claim amount, generated by the portfolio up to tim&or the purpose, the various pre-



Excess of Loss Reinsurance Under Joint Survival Optimality 4

mium rating principles (see e.g., Gerber, 1979 and Wang, 1995) or other practical rating
techniques can be used.

Without reinsurance, explicit formulae for the probability of non-ruin (surviRél) > x)
of the direct insurer, in a finite time intervgd, x], x> 0, with the timeT of ruin,
defined as

T:=inf{t:t>0, R <0}, (1)

were derived by Ignatov and Kaishev (2004) and by Kaishev and Dimitrova (2003).

Here, we will be concerned with the case when the direct insurer wishes to reinsure his
portfolio of risks by concluding an XL contract with a retention leMeland a limiting
levelL, M = 0,L = M. In other words, the cedent reinsures the part of each claim which
hits the layemm= L — M, i.e., each individual clairdV; is shared between the two parties

so thatWi =W°+W' i=1, 2, ... whereW® andW' denote the parts covered respec-
tively by the cedent and the reinsurer. Clearly, we can write

WE = min(W,, M) + max0, W, — L)
and
W' = min(L - M, max0, W, — M)).

Denote byY; = Wr, Y5 =W+ W5, ... and byY] =W}, Y5 =W + W}, ... the consecu-

tive partial sums of claims to the cedent and to the reinsurer, respectively. Under our XL
reinsurance model, the total premium incdmi is also divided between the two parties

so thath(t) = he(t) + hi(t), wherehc(t), hi(t) are the premium incomes of the cedent and
the reinsurer, assumed also non-negative, non-decreasing functi®s és a result,

the risk processR;, can be represented as a superposition of two risk processes, that of
the cedent

R = he(t) - Y{, (2)
and of the reinsurer

R =h(-Y{, (3)
e, R=R+R.

There are two alternative optimization problems which may be stated in connection with
such an XL contract. The first is, givéh andm are fixed, how should then the premium
income h(t) be divided between the two parties, so as to optimize a certain criterion
measuring their joint risk or performance. And alternatively, if the total premium income
h(t) is divided in an agreed way between the cedent and the reinsureng(t)eand

hi(t) = h(t) — he(t) are fixed, how should the parametdtsandL of the XL contract be
optimally set so as to minimize (maximizbg chosen joint risk or performance criterion.
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3. The probability of joint survival optimality.

In this section we will introduce some risk measures, assuming both the cedent and the
reinsurer jointly survive up to time

Define the moments[® andT", of ruin of correspondingly the cedent and the reinsurer
as in (1), replacindy with R¢ andR{ respectively. Clearly, the two everf& > x) and

(T" > x), of survival of the cedent and the reinsurer are dependent since the two risk
processesx¥ and Rl are dependent through the common claim arrivals and the claim
severitiesW;, i = 1, 2, ... as seen from (2) and (3). Hence, as has been proposed in Igna-
tov, Kaishev and Krachunov (2004), it is meaningful to consider the probability of joint
survival, P(T¢> x, T" > x), as a measure of the risk the two parties share and jointly
carry. The two optimization problems we have stated can now be formulated more pre-
cisely as follows.

Problem 1. For fixedh(t), he(t), h.(t) such thah(t) = hs(t) + h.(t), find

max P(T¢> x, T" > Xx) .
L,M

Problem 2. For fixedM , L andh(t), find

r;l%x P(T¢>x T >X) .

h(t)=hc(t)+h(t)
Problems 1 and 2 may be given the following interpretation. In Problem 1, the ceding
company may wish to retain a certain fixed phgtt), of the premium incomen(t), and
then to find values foM andL, defining the corresponding optimal portion of the risk it
would need to accept, so as to have maximum chances of joint with the reinsurer survival,
up to a finite timex. Alternatively, the value andL may be fixed, according to the
ceding company's risk aversion and/or according to decisions, driven by negotiations with
the reinsurer or other market conditions, after which the optimal sgiit)pfbetween the
two parties would need to be defined, solving Problem 2. To explore Problems 1 and 2,
next we will derive closed form expressions for the probabd#iif > x, T" > x).

Theorem 1. The probability of joint survival of the cedent and the reinsurer up to a finite
time xunder an XL contract with a retention level &hd a limiting level Lis

P(T¢>x T >x) =

N = h(x)  ~h()-wy h(X)—W; —...~Wi_1 (4)
e X 1+Zx\"f f f AKX 71, ey i) YW, oeey Wi) d Wi ... dWo d Wy
o Jo 0
pa)

where
T/j = mln(zj1 X)! Z] = ma)(hgl(ﬁ)’ hl’_l(y'i))i Y? = Zijzlvvic’ yii = Zijle! J = 11 '--1k;
we = min(wi, M) + max0, w; — L), W = min(L — M, max0, w; — M)), and
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AcX; v, ..., k=1, 2, ... are the classical Appell polynomials(x) of degreek,
defined by

AX=1, A=A, Al =0.

Remark 1. Appell polynomials were introduced by P.E. Appell (1880) and up to a normal-
ization, contain many classical sequences of polynomials, among which the Bernoulli,
Hermite and Laguerre polynomials. The sequence of Appell polynomials

{Ak¥): k=0, 1, ..} are alternatively defined by a generating function

f(y)e*Y = Yizo AdX) (Y</ kD),

where f(y) = Y520 A0 (Y</K!), (f(0)#0). and the values A(0), k=0,1, ..
uniquely determingA(x): k=0, 1, ..}.

Clearly, Theorem 1 establishes a promising link of the survival probability
P(T¢>x, T" > x) to the wide and important class of Appell polynomials. This link,
worth further exploration, may give new insights into the properties of formula (4), and
in particular may lead to a substantial improvement of its numerical efficiency. For a
more detailed account on Appell polynomials we refer to Kaz'min (2002).

Proof of Theorem 1. The event of joint survivdIT® > x, T" > x} can be expressed as

PMe>X T ' >X =2k ogP(Nk=K) P(T¢> X, T" > x| Ny = k)

{Te>x T >x) = N2 M YD) < T U () < Ty U {x < T

o _ _ (5)
= 521 [maxhg (YD), hr'(YD) < T U (x < T
Noting that) = [ Jg2o{Nx = k}, applying the partition theorem we have
PTC>X T >x) =212 gP(Ny =K P(T¢ > x, T" > x| Ny = K)
®Ax* ax c r
= D o B e PTE > x, T > X[ {Tie = X M{Thea > X) (6)

In (6), we have used the fact that the eydlt= k} = {Tx < X} () {Tks1 > X}.
If we now expres$T© > x, T' > x} in (6) using its representation given by (5) we obtain

c r _ ©Ax* ax
P(T¢>x T >x)_Zk=ok—!e

PN, [maxthg (YD), hri(YD) < T U {x < T 1T = X M {Tier > X))

— ZOO Mk_ e—)tx
k=0 K
P((N52y [{maxhz2(Y9), hriYD) < THU X< T T < ) N Tk > x4 (1)
{Tk =X} N {Tkez > X
where in the last equality we have used thgh | B) = P(A() B| B). Applying some
algebraic manipulations on the event in (7) it can be shown that
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(N5 [maxhg2(YD), hrt(YD) < T U X< T N Tk < X3 N {Tier > X

= (N'_y fmaxhz (Y?), hr2YD) < Tih N {Tie < X N {Tiar > X)

Substituting (8) back in (7) leads to

P(T¢>x, T" > X

= 31 A ey [imaxthg (YD), hri(YD) < Tj (T < XN (Ther > X1 |
{Te = X} N Tz > X))

(8)

= 3 W e fmaxhgHYD), YD) < T [T X M {Tka > X)) (9)

It is known that (see Karlin and Taylor, 1981)

PTi<ty ... k=t {Te=XN{Tkz1>XN)=PT1=ty, ..., Tk =) (20)
where T < ...< Tx are the order statistics & independent, uniformly distributed
random variables in the interv@, x). From the independence of the two sequences of
random variabIeS){jC, YJ-r, ]=1,2, ... andTy, k=1, 2, ... and applying (10) we can
rewrite (9) as

PTe> X, T >x) = 34X e p( maxhgh(vp), he'(vp) < T) (11)

The random variabl€eE; < ... < T¢ have a joint density (see Karlin and Taylor, 1981)
B if O<sti=<..=st=sXx
Loves R otherwise

hence, introducing the notation
_( O=wy, ..., 0= wy )
k= Wi+ ... +Wg < hXx)/’

we can express the probability on the right-hand side of (11) as

P(N'_y maxhzX(YF), hri(YD) < T))

=fz')'k'f‘”(wl’ W ff K gt dty dwi - dwy (12)

min[max(hg1(y$),hr 1 (y))),x] <t1<x

min[maxhz1(yg),hr 1(yj)), Xl <t<x
i<..<t

where miimaxhz'(y5), he*(y)), x], j =1, 2, ...,k appear as lower limits of integration
since  math;'(y%), hr'(y}) can in general exceedx for some value
Yi=Yi+Yj=Wi+ AW W+ W =W Wy, =1, 2, L ke In this case
min[ma>(hgl(yj¢), hr‘l(y'j)), X] = X, i.e., the integral in (11) vanishes as is necessary, since
such trajectories— y; cause ruin of at least one of the parties and therefore should not
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contribute to the probability of their joint survival. To simplify notation, we let
i = min[zj, X1, zj = maxhz*(¥9), hy'(y)), j =1, 2, ...,k and use (12) to rewrite (11) as

P(T¢>x T" > Xx)

_ o AX § (AX) f flﬁ(Wl’ ---,Wk)f“'f%Cﬂtk"'dtldwk"'dwl

P1<ti<X

P<tg<X
1<..<t

(o)
_ X §
X X X
ax° f ftﬁ(wl, W) [ [ g dtdt d i dwy
1 Jmaxva, t1] max ¥, tk-1]

g X 2K Wi, ..., W X V1, .. dw - dw
Zk ; f f‘ﬁ( 1 ) A(X; V1, ey i) d W - 1 (13)

where we have set

X X X
A(X; V1, e YK) :ff f dty - dtydty.
V1 Jmaxy, t] max{ i, tk-11

It can be seen directly th&i(x; 71, ..., %) is a polynomial of degrek with a coeffi-
cient at the highest degre¢Kl!'. Moreover, applying similar reasoning as in Theorem 1
of Ignatov and Kaishev (2004) it can be shown tRdxk; 71, ..., %), k=1, 2, ... are the
classical Appell polynomials.

The asserted joint survival probability formula now follows, appropriately rewriting the
multiple integral in (13}

An alternative formula foP(T¢ > x, T" > x) is provided by the following

Theorem 2. The probability of joint survival is

h(x)  ~h(0-wy h()-wy—..~Wi_2
P(T°>xTr>x)—e‘“Zf f f f
NO)—Wy—.. ~W_1

(14)
Bi(z1, ...,Z_1, X) ¥(Wy, ...,Wk)cﬁwkcﬂwk_l...dwzdwl]

where

Bz, ... %1, x):Z:)(—)L)j bj(zs, ...,z,-)(Z'm:J g ). with Bo(-)=0, By(-)=1

0
| issuchthat; < ...<7_,<x< 127,

j L. j—i+l .
bj (Zl, e Zj) = Zi:l (—1)J+I (J-Z_Ji+l)! bi_1 (Zl, v ZiZ1) ,Wlth bO =1
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z; andy(wy, ..., W) are defined as in Theorem 1.

Proof of Theorem 2. The probability of survival of the cedent without reinsurance (see
Kaishev and Dimitrova, 2003) is given by

© h(x)  ~h(x)—-wy h(X)-W1—..~Wy_2 oo
P(T > X) = f‘f mf f
;1 0 0 0 h(})—wy—...—Wi_1

(15)
P(T > x| Wy =wq, oo, Wke1 = Wiem1; Wk = h(X) — Wy — ... — Wie_1) x
YWy, ooy W) dWik dWi—1 ... dWo dWy
where
P(T >X| Wy =wyq, oo, Wke1 = Wi, W= h(X) —wqp — ... — Wik_q) (16)

= e " *By(z1, ..., %1, X)
andz; = h™}(wy + ...+ wj), provided thab 1wy + ... + Wi_1) = x < h™t(wy + ... + W),

By analogy with the reasoning in deriving (15) we can write

© h(x)  ~h(x)—wy h(X)—Wi—..~Wk_2 o0
P(TC>x,Tr>x):Zf f f f
k=1 YO 0 0 h(X)—wy—...—W_1

17)
PTC>x T > x| Wy =Wy, ..., Wier = Wiee1; W= h(X) — Wy — ... — Wi_1)
YWy, ooy W) dWk dWi—1 ... dWo dWy
Following equality (10) of Ignatov, Kaishev and Krachunov (2004), it is possible to

show that

P(T® > x, Tr >X|Wir=wq, oo, Wt = Wieer, Wk = h(X) —wyp — .. — Wieq)
= P(ﬂ 1 {max(hz(y5), h‘l(yr)) =T N {Tk>x)
From (16) and (18) it can be concluded that

(18)

P(ﬂ ma>(h 1(yc) he 1(y')) <T}N{Tk>x) =e*Bu(zg, ..., %1, X (19)
wherez; = ma>(hcl(yj¢), he'(y)), j =1, ...k. Itis not difficult to see that there should
exist an index k| <k, such thatz; <...<7_1 <x<2z and since we consider the

events of ruin of the cedent and the reinsurer up to xiroaly, hence we can rewrite
(19) as

PN'1{zy < T N{Tk> X)) = e *By(21, ... %1, X) (20)
Formula (14) now follows from (18), (20) and (17) which completes the proof of Theo-
rem 20

The use of formulae (4) and (14) to compBté® > x, T" > x) is discussed in Section 4
where the case of independent and dependent claim severities are thoroughly explored.
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4. Computational considerations and results.

In this section we demonstrate that using the results of Theorem 1 and 2, one can success-
fully find solutions to Problems 1 and 2, stated in Section 3, and optimally determine the
parameters of an XL contract. A quick analysis of formulae (4) and (14) reveals that an
attempt to use them in solving the optimization Problems 1 and 2 analytically is con-
fronted with considerable difficulties. For example formula (4) requires the maximization

of a complex functional with respect to the functibgt), with the constraint

h(t) = he(t) + he(t), and under the additional assumption of invertibilityhgit) andh;(t).

This is a task which is hardly feasible, at least under the rather general definitigt)s of

h.(t) andh,(t) assumed here. For this reason, in what follows we will use (4) and (14) to
solve Problems 1 and 2 numerically.

Formulae (4) and (14) have been implementetMathematicain the case of any joint
distribution of the original claims and linear premium income funch@n=u+ ct,

whereu is the total initial reserve ardis the total premium rate. Thus, Problems 1 and 2
have been solved with different joint distributions for the claim amounts and different
choices for the rest of the model parameters. In the independent case, results for Exponen-
tial, Pareto and Weibull claim amount distributions are presented and the effect of their
varying tail behavior on the probability of joint survival is assessed. In order to model
dependence between claim severities, copula functions have been successfully used. The
copula approach has allowed us to study how the assumption of dependence affects the
solutions to Problems 1 and 2 and the probability of joint survival. For the purpose, a
combination of Rotated Clayton copula with Weibull marginals has been implemented.

In general, our experience has shown that expression (4) is computationally more effi-
cient than (14) since it converges faster with respekt t@., a small number of terms is
required in the summation in order to reach a desired accuracy of the result. The multiple
integration is less computationally involved and hence faster, since all limits of integra-
tion in (4) are finite whereas in (14) the inner most integral is infinite. However, it should
be noted that the derived expressionsHEF® > x, T" > x) are rather general and that in
each particular case, when the input parameters are fixed, both formulae could be simpli-
fied and of course, depending on the software used for the implementation, the computa-
tional efficiency may turn to be in favour of (14).

4.1 Independent claim severities.

Here, we have assumed that claim amounts are independent and have three alternative
distributions: lighter tailed Exponential and heavier tailed Pareto and Weibull distribu-
tions. The optimization Problems 1 and 2 have been solved in each of these cases and the
effect of the different tail behaviour of the claim distributions on the optimal solutions
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have been studied. Sensitivity results with respect to the choice of other model parame-
ters are also presented.

The solution of the optimization Problem 2 in the case of exponentially distributed claim
severities with parameter = 1, Poisson intensity = 1, finite time intervalx=2 and

h(t) = u+ ct, with total initial reservaei= 0 and premium rate = 1.55, is illustrated in

Fig 1. For fixed combinations of values of the lewglsandL, an optimal reinsurance
premium rate, ¢, is found, which maximizesP(T®>x, T' > x), given that

h(t) = he(t) + he(t) = (1.55—-¢,)t+ ¢ t. This is achieved by varying the proportion,
hi(t) = ¢, t, of the premium income, given to the reinsurer from 1% to 99%,cj.as

varied from 0.1 to 1.5 with a step 0.1. In the left panel of Fig. 1 we present results for the
case of an XL contract without a limiting level, ile= o, while the right panel refers to

a retention leveM and a limiting leveL =M + 0.5. In both cases, the optimal premium
rate ¢, decreases when the retention leMel increases. This complies well with the
market principle that a smaller reinsurance premium should be charged for a smaller
proportion of the risk, taken by the reinsurer. Comparing the two dases and

L=M +0.5, it can be seen that, in the latter case, the optimal solutiogsdoe shifted

to the left, since there is a fixed non-zero lagee L — M = 0.5, covered by the rein-
surer.

From both panels of Fig. 1 it can also be seen that each curve has a single global maxi-
mum of the joint survival probability. This suggests that the optimization Problem 2 has a
unique solution, at least for the classical linedy. The proof of this interesting conjec-

ture is hindered by the complexity of formulae (4) and (14) and in particular of the defini-
tions of7v;, z;, wf, w{, and is a subject of current investigation.

P(T¢>x,T'>X) L=co

. M M
* 0.05 * 0.05
o 8'%5 o 8'%5
* 0. + 0
4 0.75 4 0.75
* 1.25 * 1.25
% 15 * 15
G C

02 04 06 08 1 1.2 14 " 0.2 04 06 0.8 1 1.2 14 r

Fig. 1. Solutions to the optimality Problem 2: independent claim severitiegl)Ehgtrib-
uted,A = 1,x=2,h(t) = he(t) + hy(t) = (1.55-¢,) t + ¢ t.

Problem 2 has also been solved for different choices of the total initial resena the
initial reserves of the cedent, and the reinsuren),. The impact of different initial
reserves ofP(T¢ > X, T" > xX) and hence on the optimal valueopfis illustrated in the left
panel of Fig 2, for fixed levelM =0.5,L = o and parameters as in Fig 1, i.e., Exp(1)
distributed claim severitied,= 1 andx = 2. For this set of parameters, an optimal value,
¢, is found, which maximizesP(T®>x, T" >x), given that h(t)y=u+ct,



Excess of Loss Reinsurance Under Joint Survival Optimality 12

he(t) = uc + (1.55-¢) t, h((t) =u +c t, with U= U+ U and

C=C.+ ¢ = (1.55-¢) + ¢. Five curves are given in the left panel of Fig 2 which corre-
spond to five different choices of the pair of valugsu,, for which the total reserve

U= U+ Uy Is correspondingly equal to 0.0, 1.0, 0.5, 1.0, 1.0. There are two effects
which can be observed. First, with the increase of the total resenieenu; = u,, (see

curves corresponding toug, u) = {(0, 0), (0.25, 0.25, (0.5, 0.5}), the probability of

joint survival increases as can be expected. The second effect is that, for fixed value of
the total reserve = 1, the optimal reinsurance premiwmis lower if u; < uy, increases
whenue = Uy, and goes further up ii; > u,. Hence, the conclusion is that, if a direct
insurance company wants to pay less in reinsurance premium and at the same time wants
to maximize its and the reinsurer's chances of survival, the company should seek for a
reinsurer with initial reserves higher than its own reserves, which is a practically meaning-
ful business strategy. In the alternative cage; u;, the optimal reinsurance premium is
much higher, since given the direct insurance company wants a maximum probability of
joint survival, it has to pay much more in order to compensate the lower level of reserves
kept by the reinsurer. But this clearly is not in favour of the direct insurer and is not what
reinsurance is about.

In the right panel of Fig 2, we illustrate the impact of the time hornzon the probabil-
ity of joint survival andc,. As can be see?(T¢ > x, T' > X) decreases for longer time
horizons, which is natural to expect. On the other hand, increasnogn 0.5 to 3 results

in higher reinsurance premium, whereas further increagedoks not affect,. This can

be explained with the higher possibility of arrival of large claims to the reinsurer as
initially goes up.

P(T>x,T' >x) P(T®>x,T'>X)
: 0.7
) 0o U {**_% X
- Oc ’Or 0.6 | 0600 * 0.5
o 0.28, 8.28 05 b0 & 00 . 51
+ 0.50, 0.5 ‘ o .2
4 075 025 04 S 6 & UM R P
* 0.25, 0.75 SRS = * 4
0.3 )e* A% H .
02 x ™ =2 .-
2 NS Y
0.1 ¥ S
t **;
C ]
02 04 06 08 1 12 14 02 04 06 08 1 12 14 G

Fig. 2. Solutions to the optimality Problem 2: independent claim severitiegl)Ehgtrib-
uted, A=1, x=2, c=155, L=oco, M =0.5; Left panel: u>=0, Right panel:
u=u.=u=0,x=0.5,1, 2, 3, 4.

The solution of the optimization Problem 1 has been performed in the case of exponen-
tially and Pareto distributed claim severities, both with unit meaal, x=2 and

h(t) = 1.55t. Thus, in Fig. 3 two 3D plots are given, which illustrate the behaviour of the
probability of joint survival as a function d and m=L-M when the premium
income is equally shared, il (t) = h.(t) for anyt > 0. The left panel of Fig. 3 refers to

the case of exponentially distributed claim amouits, i =1, 2, ... with mean and
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varianceE(W) = V(W) = 1, whereas the plot in the right panel is for Pareto claims with
E(WW)=1 andV(W) = 3. As seen from both panels of Fig. B;T¢>x, T" > x) has a
single global maximum with respect d andm. As with Problem 2, the existence of a
unique solution of Problem 1 can be conjectured, but the proof is related with similar
difficulties.

Solutions of Problem 1 for different choicesapf i.e., for different proportions in which

the total premium income is shared, are summarized in Table 1. As can be seen, giving
higher proportion oh(t) to the reinsurer causes the optimal retention ldvelto drop

and the optimal limiting leveln, to increase. The latter is not surprising as the cedent's
retained risk should decrease when the premium income, passed on to the reinsurer,
increases.

Table 1. Optimal values & andm, maximizingP(T¢ > x, T" > x) in the case of inde-
pendent claim severities, Ep distributed, with A=1, X=2,
h(t) = he(t) + h(t) = (1.55-¢c)t + ¢ t.

maXy m P(T¢ >x, T" >x) [ ¢, =0.25| ¢, = 0.50| ¢, =0.775| ¢, = 1.00| ¢, = 1.25
M 0.4 0.3 0.3 0.2 0.001
m 0.1 0.3 0.7 1.2 >1.5

As can also be seen from Fig. 3, although the implemented Exponential and Pareto distri-
butions have different variance and imply lighter and heavier tails of the claim severities,
the two surfaces are very similar and the optimal valued aindm, which maximize

P(T¢> x, T" > X) in each case, are very close. This is explained by the similarity in the
shape of the Exponential and Pareto densities, as can be seen from the left panel of Fig. 4,
since all other model parameters are the same. We have also implemented Weibull distrib-
uted claims, which does not affect the form of the surface as well. It is interesting to note
that the probability of joint survival is higher for Pareto distributed claim amounts, com-
pared with the exponential case, given that other model parameters coincide. The probabil-
ity P(T® > x, T" > x) is even higher if the claim size follows Weibull distribution with the
same meart: (W) = 1, andV(W) = 2.2. An illustration of the latter phenomenon is given

in the right panel of Fig. 4. It can be explained by the fact that the time intgryal, is
relatively short andP(T¢ > x, T" > x) is affected most significantly by the distribution of

the smaller but more probable claims rather than by the less probable extreme claims in
the tail. This is in compliance with the order of the probabilities 0.955, 0.940, 0.917,
computed asP(W < h(2)) = P(W < 3.1) correspondingly for exponentially, Pareto and
Weibull distributed claims. The shape of the three densities, given in the left panel of Fig.
4, are also in support of this explanation. Our experience shows that for kigretail
behaviour is of more importance B(T® > x, T" > x) and the order may reverse.
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P(TC>x,T'>X) P(TC>x,T'>X)

Fig. 3. Solutions to the optimality Problem 1: independent claim sevefitie§,, x = 2,
h(t) = he(t) + he(t) = (1.55—-¢)t + ¢ t, ¢, = 0.775. Left panel - exponentially distributed,
E(W) = V(W) = 1; Right panel - Pareto distributde(W) = 1, V(W) = 3.
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Fig. 4. Left panel - assumed probability density functions for the claim amdvnts
i=1, 2, ...; Right panel P(T¢> x, T" > x) as a function of the layen, A =1, x= 2,
h(t) = he(t) + he(t) = (1.55-¢)t+ ¢ t, ¢ = 0.775.

The general conclusion based on these examples i®that- x, T" > x) is a relevant
reinsurance risk optimization criterion, which complies with some basic principles driv-
ing reinsurance risk assessment and pricing decisions.

4.2 Dependent claim severities.

In what follows, we provide some very interesting results for the probability of joint
non-ruin and the solutions of Problems 1 and 2, assuming dependence between the claim
severitiesWy, Wy, ... . We show how this dependence could be modelled, using copula
functions. The effect oR(T® > x, T" > x) of the degree of dependence, modelled by the
underlying copula parameter, and of the choice of the marginals, is also studied.

A difficulty, related to the copula approach is that, in general, a large number of consecu-
tive claims may arrive at the insurance company and modelling their joint distribution
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will require highly multivariate copulas. The curse of dimensionality is overcome here
due to the fast convergence of formula (4), for which only the first few terms in the sum-
mation with respect tk are needed, in order to comp&®@*° > x, T" > x) with a reason-

able accuracy. This allows us to use up to a five-variate copula in the numerical examples
presented here.

Let H denote thek-dimensional distribution function of the random vector of consecu-

tive claim amount$W,, ..., Wx) with continuous marginals;, ..., Fx. Then, one can use

the well-known Sklar's theorem to represdnt through ak-dimensional copula

C(ug, ...,uw), O=u;=<1, which depends on a set of parametefls as

Hwy, ...,wx) = C(F1(wyp), ..., Fk(Wk)). By changing the values @ within a specified

range, one can control the degree of dependence, in general, from extreme negative,
through independence, to extreme positive dependence. To measure the dependence in
the tails of the distributions of two consecutive claisandW,, one can use the upper

and lower tail dependence coefficients, defined as

AL = limy,o- C(u, u)/u
Ay = limg,1-(1-2u+C(u, w)/(1-u)

whereA, € (0, 1], Ay € (0, 1]. The copulaC has no upper (lower) tail dependence iff

Au =0 (AL =0). For example, in our contexty >0 would mean that extremely large
insurance losses are likely to occur jointly. For further properties of copulas and related
dependence measures we refer to Joe (1997). An extensive account on some actuarial
applications of copulas can be found in Frees and Valdez (1998).

It should be noted that dependence between the components of the random vector
(W, ..., W) implies dependence between the components of the random vector
W, ..., W) and also between the components(\M, ..., W), sinceW, = W* + W.

So, the two risk processeBf and R, which implicitly defineP(T¢>x, T" > x), also
incorporate dependent claims, nam@Wr, ..., WS) and (W, ..., W}). However, since
formulae (4) and (14) involve the joint density functigtwy, ...,wy) of the random
vector(W;, ..., W), in order to comput®(T¢ > x, T" > x) under dependence, we express

this density through the copula function as

(9k C(Fl(wl)i reny Fk(Wk))
OWy ...0W

'7”(W1' reny Wk) =
(21)

oy, . uw) T OFiW)

k
I Fw = CFLW), s Fiwo) ]_1[ fiy (W)

i=1
wherec(uy, ...,uy) is the density of the copul@d and fw, (W), i =1, ...,k are the mar-

ginal density functions. As can be seen from (21), the copula approach to modelling
dependence between claim amounts is very convenient since it separates the dependence
structure, incorporated into the copula, from the marginals. Thus, one can independently
choose the copula and its parameter(s), and the marginals, and study separately the effect
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of these two choices dX(T¢ > x, T" > x) and on the solutions of the optimality Problems
1 and 2. For the purpose, we have choSeto be thek-dimensional Rotated Clayton
copula,CR® | andF, ..., Fi to be identical Weibully, 8) marginals.

Clayton and Rotated Clayton copulas are suitable for modelling dependence between
claim severities. To see this, let us first introduce the Clayton copula, which is an
Archimedean copula, with generatfit) =t~ — 1,6 > 0, defined as

COluy, ook ) = (U0 —k+ 1)

where 0=y <1,i=1, ...,k andd € (0, «) is a parameter. Its density is given by

-1/6-k

Uy, U 0) = RS (T U (S uf —k+ 1)

As 0 -0, the Clayton copula converges to the product copula with density
c(uy, ...,Ux) =1, which, as seen from (21), corresponds to independent claim amounts.
The degree of dependence increase$ ascreases. Further properties of the Clayton
copula and its application in finance can be found in Cherubini et al. (2004).

In the general insurance context, it is of interest to consider the case in which the occur-
rence of large claims is highly correlated with the emergence of further large claims.
Hence, it is meaningful to use a copula with upper tail dependence. However, the Clayton
copula has lower tail dependence with coefficiant 2~ which makes it convenient

for modeling dependence in the left tails of the marginal distributions, i.e. between very
small claims. A typical example would be the joint occurrence of a large number of small
motor insurance claims caused by a common (catastrophic) event, e.g. hail or bad driving
conditions.

Based on the Clayton copula, one can model upper tail dependence using the multivariate
Rotated Clayton copula, defined as

CRYUy, ot @) = XX U —k+1+ (S A-uw)—k+1) 7, (22)
with density cR%uy, ...,u; 0 =c®@d-uy, ..., 1-u; 6 and 6e (0, ). The value
6 =0 corresponds to independence as@6t. A two dimensional version of (22) has
been considered by Patton (2004). The Rotated Clayton copula has upper tail dependence
with coefficientdy = 27%¢ and is suitable for modeling dependence between extreme
insurance losses. The dependence structure, defined by a Rotated Clayton copula with
parameted) = 5, is illustrated in the left panel of Fig. 5 through a random sample of 500
simulated pairguy, W). In the right panel, we give the corresponding simulated claim
amounts with joint distribution functioRl (w1, wy) = CRE(F1(wy), Fo(W,); 6) and identi-
cal Weibull1, 1) marginals. The presence of positive dependence, determinge by
and of upper tail dependenadg, = 2-%°, are clearly visible.
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Fig. 5. A random sample of 500 simulations from a bivariate Rotated Clayton copula,
with dependence parametet 5, marginald= = Weibull(1, 1) = Exp(1).

With the increase ofl, the solution of the optimality Problem 2 does not change, as
illustrated in the left panel of Fig. 6 for fixed Weibull marginals with unit mean and
variance. It can also be seen that, for anyP(T¢ > x, T" > X) goes up a8 deviates from

zero. This may seem unexpected but it should be mentioned tidain@sases, not only

the tail dependence increases but so does the dependence throughout the whole range of
claim amounts. As a result of this, jointly small claims occur with higher probability and
through the risk processelR; and R{, affect more significanthyP(T¢ > x, T" > x) than

the occurrence of jointly large claims.

W~Weibul(1,1) W~Weibulla,8)
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Fig. 6. Solutions to the optimality Problem 2: dependent claim severities,
CRCE(F(wy), ...,F(wy); ) distributed, marginalsF = Weibull(a, 8), A1=1, x=1,
h(t) = he(t) + he(t) = (1.55-¢c)t+ ¢ t,M =0.25,L =M + 0.5.

The solution of the optimality Problem 2 for Weibull marginals with mean 1 and increas-
ing variance is given in the right panel of Fig. 6. As can be seen, the optimal vatue for
slightly decreases as the variance increases. This is meaningful, since the variance of the
cedent's claims increases with the variance of the original claims more significantly than
that of the reinsurer and hence, the reinsurance premium should decrease. The latter
effect is due to the fact that the reinsurer's liability is limited within the layet can

also be seen from the right panel of Fig. 6 #@t° > x, T" > x) increases as the variance
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increases which is a phenomenon, similar to the one illustrated in Fig. 4 and can be
explained applying similar reasoning.

5. Conclusions and comments.

In this paper, we have demonstrated that the optimal retention and limiting levels and the
optimal sharing of the premium income, obtained by maximizing the probability of joint
survival of the cedent and the reinsurer in an excess of loss contract, assuming continuous
claim severities, are sensible. It will be instructive to test this joint optimality criterion on
real claim data.

An interesting finding is the presence of unique solutions to Problems 1 and 2 in the
examples of Section 4.1. Proofs of such conjectures are a subject of ongoing research.

We have also demonstrated that formulae (4) and (14), through their reasonable general-
ity, conveniently allow to implement copulas in modelling dependence between consecu-
tive claim severities. These are only first steps in this important new direction of research
and a variety of open problems arrises. For example, it is interesting to explore how the
solutions of Problems 1 and 2, and al®d@° > x, T" > x), will be affected by different
dependence structures. In particular, will the upper and lower Fréchet bounds lead to
upper and lower bounds f&XT¢ > x, T" > x)?

Finally, viewing P(T¢ > x, T" > X) as a risk measure, one could define a performance
measure based on the expected profits, at the end of the time hqridfoie insurer and

the reinsurer and consider an optimality criterion which combines these measures and
could be used to optimally set the parameters of a reinsurance contract. The latter is a
subject of future investigation.
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