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by
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Abstract
Explicit expressions for the probability of joint survival up to time x of the cedent and the
reinsurer,  under  an  excess  of  loss  reinsurance  contract  with  a  limiting  and  a  retention
level  are  obtained,  under  the  reasonably  general  assumptions  of  any  non-decreasing
premium  income  function,  Poisson  claim  arrivals  and  continuous  claim  amounts,  mod-
elled by any joint distribution. By stating appropriate optimality problems, we show that
these  results  can  be  used  to  set  the  limiting  and  the  retention  levels  in  an  optimal  way
with  respect  to  the  probability  of  joint  survival.  Alternatively,  for  fixed  retention  and
limiting levels, the results yield an optimal split of the total premium income between the
two parties in the excess of loss contract. This methodology is illustrated numerically on
several examples of  independent and dependent claim severities. The latter are modelled
by a copula function. The effect of varying its dependence parameter and the marginals,
on  the  solutions  of  the  optimality  problems  and  the  joint  survival  probability,  has  also
been explored. 
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1. Introduction

Several approaches to optimal reinsurance have been attempted in the actuarial literature,
based on risk theory, economic game theory and stochastic dynamic control. Examples of
research in each of these directions are the papers by Dickson and Waters (1996, 1997),
Centeno (1991, 1997), Andersen (2000), Krvavych (2001), by Aase (2002), Suijs, Borm
and De Waegenaere (1998), and by Schmidli (2001, 2002), Hipp and Vogt (2001), Taksar
and Markussen (2003). A common feature of most of the quoted works is that optimality
is  considered  with  respect  to  the  interest  of  solely  the  direct  insurer,  minimizing  his
(approximated)  ruin  probability,  under  the  classical  assumptions  of  linearity  of  the  pre-
mium income function and independent, identically distributed claim severities.

Recently, a different reinsurance optimality model, which takes into account the interests
of  both the cedent  and the reinsurer,  has been considered by Ignatov,  Kaishev and Kra-
chunov (2004). As a joint  optimality criterion they introduce the direct  insurer's and the
reinsurer's  probability  of  joint  survival  up  to  a  finite  time horizon.  Under  this  model,  a
volume  of  risks  is  insured  by  a  direct  insurer,  who  is  entitled  to  receiving  certain  pre-
mium  income  in  return  for  the  obligation  to  cover  individual  claims.  The  latter  are
assumed to have any discrete joint distribution and Poisson arrivals. It is further assumed
that  the cedent  is seeking to share claims and premium income with a reinsurer under a
simple  excess  of  loss  contract  with  a  retention  level  M ,  taking  integer  values.  In  their
paper, Ignatov, Kaishev and Krachunov (2004) have derived expressions for the probabil-
ity of joint survival of the cedent and the reinsurer and have demonstrated its applicability
in the context of optimal reinsurance. 

Catastrophic  events  in  recent  years  have  caused  insurance  and  reinsurance  losses  of
increasing  frequency  and  severity.  As  a  result,  some  reinsurance  companies  have  been
downgraded with respect to their credit rating while others, such as the 6-th largest rein-
surer worldwide Gerling Global Re, even became insolvent and went out of business. The
latter developments have motivated even stronger the proposed idea of considering reinsur-
ance not  solely  from the point  of  view of  the direct  insurer,  but  taking into  account  the
contradicting interests of the two parties, by jointly measuring the risk they share.

Our  aim  in  this  paper  is  to  generalize  the  joint  survival  optimality  reinsurance  model,
introduced by Ignatov, Kaishev and Krachunov (2004). We extend it here by considering
an  excess  of  loss  (XL)  contract  in  which  the  reinsurer  covers  each  individual  claim  in
excess of a retention level M , but up to a limiting level L  and individual claim severities
are not discrete but are modelled by continuous (dependent) random variables, with any
joint  distribution.  Under  these  reasonably  general  assumptions  we  give  closed  form
expressions  for  the  probability  of  joint  survival  of  the  cedent  and  the  reinsurer  up  to  a
fixed future moment in time. Based on these expressions, we state two optimality prob-
lems, according to which optimal values of M  and L  or alternatively, an optimal split of
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the total premium income, maximizing the probability of joint survival, can be obtained.
These problems have been solved numerically, due to the infeasibility of their analytical
solution.  The  derived  joint  survival  probability  formulae,  conveniently  allow  the  use of
copula functions in modelling the dependency between claim severities. We have shown
how varying the degree of  dependence through the copula parameter(s) affects  the opti-
mal  choice  of  the  retention  and  the  limiting  levels,  the  optimal  sharing  of  the  premium
income and also the probability of joint survival. 

The  results  presented  in  this  paper  comprise  an  extension  of  the  model  considered  by
Ignatov, Kaishev and Krachunov (2004), to the practically more important case of continu-
ous,  dependent  claim  severities.  In  addition,  the  more  general  XL  contract  considered
here  gives  a  refined  control  over  the  optimal  structure  of  this  risk  sharing arrangement.
For further details on XL contracts with one or more layers, see e.g. Bugmann (1997).

The  paper  is  organized  as  follows.  In  Section  2  we  introduce  the  XL  contract  and  the
related joint survival probability model, considered further. Our main results are stated in
Section 3 and illustrated numerically in Section 4, where we have introduced the copula
approach  to  modelling  dependence  of  consecutive  claim  severities  under  reinsurance.
The final  Section  5  provides some concluding remarks  and indicates questions for  fur-
ther research.

2. The XL contract.

We  will  consider  an  insurance  portfolio,  generating  claims  with  inter-occurrence  times
t1, t2, ...., assumed identically, exponentially distributed r.v.s with parameter l. Denote
by T1 = t1,  T2 = t1 + t2 ,  ...  the sequence of  random variables  representing the consecu-
tive moments of occurrence of the claims. Let Nt = # 8i : Ti § t< , where #  is the number of
elements of the set 8.<. The claim severities are modeled by the non-negative continuous
r.v.s. W1, W2, ..., Wk, ..., with joint density function yHw1, ..., wkL. It will be convenient
to  introduce  the  random  variables  Y1 = W1,  Y2 = W1 + W2, ...  representing  the  partial
sums of consecutive claim severities.

The  r.v.s  W1, W2, ...,  are  assumed  to  be  independent  of  Nt .  Then,  the  risk  (surplus)
process Rt , at time t, is given by Rt = hHtL - YNt , where hHtL is a nonnegative, non-decreas-
ing,  real  function,  defined  on  + ,  representing  the  aggregated  premium  income  up  to
time t , to be received for carrying the risk associated with the entire portfolio. The func-
tion  hHtL  may  be  continuous  or  not.  If  hHtL  is  discontinuous  we  will  assume  that
h-1HyL = inf  8z : hHzL ¥ y<.  Clearly,  hHtL  represents a rather general  class of  functions and
the classical  case,  hHtL = u + c t,  with initial  reserve u  and premium rate c,  is  of  course
included.  We will  assume that the premium has been determined in such a way that the
premium  income  defined  by  the  function  hHtL  adequately  corresponds  to  the  aggregate
claim amount, generated by the portfolio up to time t .  For the purpose, the various pre-
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mium rating principles (see e.g., Gerber, 1979 and Wang, 1995) or other practical rating
techniques can be used.

Without reinsurance, explicit formulae for the probability of non-ruin (survival) PHT > xL
of  the  direct  insurer,  in  a  finite  time  interval  @0, xD, x > 0,  with  the  time  T  of  ruin,
defined as 

(1)
T := inf  8t : t > 0, Rt < 0< ,

were derived by Ignatov and Kaishev (2004) and by Kaishev and Dimitrova (2003).

Here,  we will  be concerned with the case when the direct  insurer wishes to reinsure his
portfolio  of  risks by concluding an XL contract  with a retention level  M  and a limiting
level L, M ¥ 0, L ¥ M . In other words, the cedent reinsures the part of each claim which
hits the layer m = L - M , i.e., each individual claim Wi  is shared between the two parties
so  that  Wi = Wi

c + Wi
r  i = 1, 2, ...  where  Wi

c  and  Wi
r  denote  the  parts  covered  respec-

tively by the cedent and the reinsurer. Clearly, we can write 

Wi
c = minHWi, M L + maxH0, Wi - LL

and 

Wi
r = minHL - M , maxH0, Wi - M LL. 

Denote by Y1
c = W1

c,  Y2
c = W1

c + W2
c, ...  and by Y1

r = W1
r ,  Y2

r = W1
r + W2

r, ...  the consecu-
tive partial sums of claims to the cedent and to the reinsurer, respectively. Under our XL
reinsurance model, the total premium income hHtL  is also divided between the two parties
so that  hHtL = hcHtL + hrHtL,  where hcHtL,  hrHtL  are the premium incomes of  the cedent  and
the  reinsurer,  assumed  also  non-negative,  non-decreasing  functions  on  + .  As  a  result,
the risk process, Rt ,  can be represented as a superposition of  two risk processes, that of
the cedent

(2)Rt
c = hcHtL - YNt

c

and of the reinsurer

(3)Rt
r = hrHtL - YNt

r

i.e., Rt = Rt
c + Rt

r .

There are two alternative optimization problems which may be stated in connection with
such an XL contract. The first is, given M  and m are fixed, how should then the premium
income  hHtL  be  divided  between  the  two  parties,  so  as  to  optimize  a  certain  criterion
measuring their joint risk or performance. And alternatively, if the total premium income
hHtL  is  divided  in  an  agreed  way  between  the  cedent  and  the  reinsurer,  i.e.,  hcHtL  and
hrHtL = hHtL - hcHtL  are fixed,  how should the parameters M  and L  of  the XL contract  be
optimally set so as to minimize (maximize) the chosen joint risk or performance criterion.
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3. The probability of joint survival optimality.

In  this  section we will  introduce some risk measures,  assuming both the cedent  and the
reinsurer jointly survive up to time x.

Define the moments, Tc  and Tr ,  of ruin of correspondingly the cedent and the reinsurer
as in (1), replacing Rt  with Rt

c  and Rt
r  respectively.  Clearly, the two events HTc > xL  andHTr > xL,  of  survival  of  the  cedent  and  the  reinsurer  are  dependent  since  the  two  risk

processes  Rt
c  and  Rt

r  are  dependent  through  the  common  claim  arrivals  and  the  claim
severities Wi , i = 1, 2, ...  as seen from (2) and (3). Hence, as has been proposed in Igna-
tov, Kaishev and Krachunov (2004), it  is meaningful to consider the probability  of joint
survival,  PHTc > x, Tr > xL,  as  a  measure  of  the  risk  the  two  parties  share  and  jointly
carry.  The two optimization problems we have stated can now be  formulated more pre-
cisely as follows. 

Problem 1. For fixed hHtL, hcHtL, hrHtL such that hHtL = hcHtL + hrHtL, find

max
L, M

 PHTc > x, Tr > xL .
Problem 2. For fixed M , L and hHtL, find

max
hcHtL,

hHtL=hcHtL+hrHtL
 PHTc > x, Tr > xL .

Problems  1  and  2  may  be  given  the  following  interpretation.  In  Problem  1,  the  ceding
company may wish to retain a certain fixed part, hcHtL, of the premium income, hHtL, and
then to find values for M  and L, defining the corresponding optimal portion of the risk it
would need to accept, so as to have maximum chances of joint with the reinsurer survival,
up to a finite  time x.  Alternatively,  the values M  and L  may be fixed,  according to the
ceding company's risk aversion and/or according to decisions, driven by negotiations with
the reinsurer or other market conditions, after which the optimal split of hHtL, between the
two parties would need to be defined,  solving Problem 2. To explore Problems 1 and 2,
next we will derive closed form expressions for the probability PHTc > x, Tr > xL.
Theorem 1. The probability of joint survival of the cedent and the reinsurer up to a finite
time x under an XL contract with a retention level M and a limiting level L is

(4)

PHTc > x, Tr > xL =
‰-l x

ikjjjjj1 + „
k=1

¶
lk ‡

0

hHxL‡
0

hHxL-w1

∫ ‡
0

hHxL-w1-...-wk-1

AkHx ; nè1, ..., nèkL yHw1, ..., wkL „ wk ...„ w2 „ w1

y
{
zzzzzzzz

where

nè j = minHzè j, xL, zè j = maxHhc
-1Hy j

cL, hr
-1Hy j

r LL, y j
c = ⁄i=1

j wi
c, y j

r = ⁄i=1
j wi

r , j = 1, ...,k,

wi
c = minHwi, M L + maxH0, wi - LL, wi

r = minHL - M , maxH0, wi - M LL, and
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AkHx ; nè1, ..., nèkL ,  k = 1, 2, ...  are  the  classical  Appell  polynomials AkHxL  of  degree k,
defined by

A0 HxL = 1, Ak
'  HxL = Ak-1 HxL, Ak HnèkL = 0.

Remark 1. Appell polynomials were introduced by P.E. Appell (1880) and up to a normal-
ization,  contain  many  classical  sequences  of  polynomials,  among  which  the  Bernoulli,
Hermite  and  Laguerre  polynomials.  The  sequence  of  Appell  polynomials8AkHxL : k = 0, 1, ...< are alternatively defined by a generating function 

 f HyL ‰x y = ⁄k=0
¶ AkHxL Hyk êk!L,

where  f HyL = ⁄k=0
¶ AkH0L Hyk êk!L,  H f H0L ∫ 0L.  and  the  values   AkH0L,  k = 0, 1, ...

uniquely determine 8AkHxL : k = 0, 1, ...<.
Clearly,  Theorem  1  establishes  a  promising  link  of  the  survival  probability
PHTc > x, Tr > xL  to  the  wide  and  important  class  of  Appell  polynomials.  This  link,
worth further exploration, may give new insights into the properties of formula (4), and
in  particular  may  lead  to  a  substantial  improvement  of  its  numerical  efficiency.  For  a
more detailed account on Appell polynomials we refer to Kaz'min (2002).

Proof of Theorem 1. The event of joint survival 8Tc > x, Tr > x< can be expressed as

 PHTc > x, Tr > xL = ⁄k=0
¶ PHNx = kL PHTc > x, Tr > x » Nx = kL

(5)
8Tc > x, Tr > x< = › j=1

¶ @8Hhc
-1HYj

cL < T jL ‹ Hhr
-1HYj

rL < T jL< ‹ 8x < T j<D
= › j=1

¶ @8maxHhc
-1HYj

cL, hr
-1HYj

rLL < T j< ‹ 8x < T j<D    

Noting that W = ‹k=0
¶ 8Nx = k< , applying the partition theorem we have

 PHTc > x, Tr > xL = ⁄k=0
¶ PHNx = kL PHTc > x, Tr > x » Nx = kL

(6) = ‚
k=0

¶ Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PHTc > x, Tr > x » 8Tk § x< › 8Tk+1 > x<L
In (6), we have used the fact that the event 8Nx = k< ª 8Tk § x< › 8Tk+1 > x<.
If we now express 8Tc > x, Tr > x< in (6) using its representation given by (5) we obtain

PHTc > x, Tr > xL = ‚
k=0

¶ Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x 
PH› j=1

¶ @8maxHhc
-1HYj

cL, hr
-1HYj

rLL < T j< ‹ 8x < T j<D » 8Tk § x< › 8Tk+1 > x<L
(7)

= ‚
k=0

¶ Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x 
PHH› j=1

¶ @8maxHhc
-1HYj

cL, hr
-1HYj

rLL < T j< ‹ 8x < T j<DL › 8Tk § x< › 8Tk+1 > x< »8Tk § x< › 8Tk+1 > x<L
where  in  the  last  equality  we  have  used  that  PHA » BL = PHA› B » BL.  Applying  some
algebraic manipulations on the event in (7) it can be shown that
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(8)
H› j=1

¶ @8maxHhc
-1HYj

cL, hr
-1HYj

rLL < T j< ‹ 8x < T j<DL › 8Tk § x< › 8Tk+1 > x<
= H› j=1

k 8maxHhc
-1HYj

cL, hr
-1HYj

rLL < T j<L › 8Tk § x< › 8Tk+1 > x<
Substituting (8) back in (7) leads to

PHTc > x, Tr > xL
= ‚

k=0

¶ Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PH› j=1
k @8maxHhc

-1HYj
cL, hr

-1HYj
rLL < T j< › 8Tk § x< › 8Tk+1 > x<D »8Tk § x< › 8Tk+1 > x<L

(9)= ‚
k=0

¶ Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PH› j=1
k 8maxHhc

-1HYj
cL, hr

-1HYj
rLL < T j< » 8Tk § x< › 8Tk+1 > x<L

It is known that (see Karlin and Taylor, 1981)

(10)PHT1 § t1, ..., Tk § tk » 8Tk § x< › 8Tk+1 > x<L = PHTè 1 § t1, ..., T
è

k § tkL
where  T

è
1 § ... § T

è
k  are  the  order  statistics  of  k  independent,  uniformly  distributed

random variables in the interval H0, xL.  From the independence of the two sequences of
random  variables  Yj

c,  Yj
r ,  j = 1, 2, ...  and  Tk ,  k = 1, 2, ...  and  applying  (10)  we  can

rewrite (9) as

(11)PHTc > x, Tr > xL = ‚
k=0

¶ Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  e-l x PH› j=1
k maxHhc

-1HYj
cL, hr

-1HYj
rLL < T

è
jL

The random variables T
è

1 § ... § T
è

k  have a joint density (see Karlin and Taylor, 1981)

fTè 1,...,T
è

k
Ht1, ..., tkL = 9 k!ÅÅÅÅÅÅxk

0
 

if 0 § t1 § ... § tk § x

otherwise

hence, introducing the notation

k ª J 0 § w1, ..., 0§ wk

w1 + ... + wk § hHxL N,
we can express the probability on the right-hand side of (11) as

(12)

PH› j=1
k maxHhc

-1HYj
cL, hr

-1HYj
rLL < T

è
jL

= ‡ ∫ ‡
k

yHw1, ..., wkL ‡ ∫ ‡
min@maxHhc

-1Hy1
cL,hr

-1Hy1
r LL,xD<t1<x

...

min@maxHhc
-1Hyk

cL,hr
-1Hyk

r LL,xD<tk<x

t1§...§tk

 k!ÅÅÅÅÅÅxk  „ tk ∫ „ t1 „ wk ∫ „ w1

where min@maxHhc
-1Hy j

cL, hr
-1Hy j

r LL, xD, j = 1, 2, ...,k  appear as lower limits of integration
since  maxHhc

-1Hy j
cL, hr

-1Hy j
r LL  can  in  general  exceed  x  for  some  value

y j = y j
c + y j

r = w1
c + ... + w j

c + w1
r + ... + w j

r = w1 + ... + w j ,  j = 1, 2, ...,k.  In  this  case
min@maxHhc

-1Hy j
cL, hr

-1Hy j
r LL, xD = x, i.e., the integral in (11) vanishes as is necessary, since

such trajectories t # y j  cause ruin of at least one of the parties and therefore should not
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contribute  to  the  probability  of  their  joint  survival.  To  simplify  notation,  we  let
nè j = min@zè j , xD, zè j = maxHhc

-1Hy j
cL, hr

-1Hy j
r LL, j = 1, 2, ...,k and use (12) to rewrite (11) as

 PHTc > x, Tr > xL
= e-l x „

k=0

¶  Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk!  ‡ ∫ ‡
k

 yHw1, ..., wkL ‡ ∫ ‡
nè1<t1<x

....

nèk<tk<x

t1§...§tk

 k!ÅÅÅÅÅÅxk  „ tk ∫ „ t1 „ wk ∫ „ w1

= e-l x „
k=0

¶  
Hl xLkÅÅÅÅÅÅÅÅÅÅÅÅÅk! ‡ ∫ ‡

k

 yHw1, ..., wkL k!ÅÅÅÅÅÅxk ‡nè1

x ‡
max@nè2, t1D

x  ∫ ‡
max@nèk, tk-1D

x  „ tk ∫ „ t2 „ t1 „ wk ∫ „ w1

(13)= e-l x „
k=0

¶  lk ‡ ∫ ‡
k

 yHw1, ..., wkL AkHx ; nè1, ..., nèkL „ wk ∫ „ w1

where we have set

  AkHx ; nè1, ..., nèkL = ‡nè1

x‡
max@nè2, t1D

x

∫ ‡
max@nèk, tk-1D

x „ tk ∫ „ t2 „ t1 .

It  can be seen directly  that  AkHx ; nè1, ..., nèkL  is  a polynomial  of  degree k  with a coeffi-
cient at the highest degree 1êk!. Moreover, applying similar reasoning as in Theorem 1
of Ignatov and Kaishev (2004) it can be shown that AkHx ; nè1, ..., nèkL, k = 1, 2, ...  are the
classical Appell polynomials. 

The asserted joint survival probability formula now follows, appropriately rewriting the
multiple integral in (13).Ñ
An alternative formula for PHTc > x, Tr > xL is provided by the following

Theorem 2. The probability of joint survival is

(14)

PHTc > x, Tr > xL = ‰-l x
ikjjjjj‚k=1

¶ ‡
0

hHxL‡
0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2‡
hHxL-w1-...-wk-1

¶

Bl Hzè1, ..., zèl-1, xL yHw1, ..., wkL „ wk „ wk-1 ...„ w2 „ w1

y{zzzzz
where

BlHzè1, ..., zèl-1, xL = ‚
j=0

l-1 H-lL j  b jHzè1, ..., zè jL J‚
m=0

l- j-1 HxlLmÅÅÅÅÅÅÅÅÅÅÅÅÅÅm! N,  with  B0H ÿ L ª 0,  B1H ÿ L = 1,

l  is such that zè1 § ... § zèl-1 § x < zèl ,

b j  Hzè1, ..., zè jL = ‚
i=1

j  H-1L j+i zè j
j-i+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅH j-i+1L!  bi-1 Hzè1, ..., zèi-1L , with b0 ª 1,
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 zè j  and yHw1, ..., wkL are defined as in Theorem 1. 

Proof of Theorem 2. The probability  of survival  of the cedent without reinsurance (see
Kaishev and Dimitrova, 2003) is given by

(15)

PHT > xL = ‚
k=1

¶ ‡
0

hHxL‡
0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2‡
hHxL-w1-...-wk-1

¶

PHT > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ...- wk-1Lä
yHw1, ..., wkL „ wk „ wk-1 ...„ w2 „ w1

where

(16)
PHT > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ... - wk-1L
= ‰-l x BkHz1, ..., zk-1, xL

and zj = h-1Hw1 + ... + w jL, provided that h-1Hw1 + ... + wk-1L § x < h-1Hw1 + ... + wkL.
By analogy with the reasoning in deriving (15) we can write

(17)

PHTc > x, Tr > xL = ‚
k=1

¶ ‡
0

hHxL‡
0

hHxL-w1

... ‡
0

hHxL-w1-...-wk-2‡
hHxL-w1-...-wk-1

¶

PHTc > x, Tr > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ...- wk-1L
yHw1, ..., wkL „ wk „ wk-1 ...„ w2 „ w1

Following  equality  (10)  of  Ignatov,  Kaishev  and  Krachunov  (2004),  it  is  possible  to
show that 

(18)
PHTc > x, Tr > x » W1 = w1, ..., Wk-1 = wk-1; Wk ¥ hHxL - w1 - ... - wk-1L
= PH› j=1

k-1 8maxHhc
-1Hy j

cL, hr
-1Hy j

r LL § T j< › 8Tk > x<L
From (16) and (18) it can be concluded that

(19)PH› j=1
k-1 8maxHhc

-1Hy j
cL, hr

-1Hy j
r LL § T j< › 8Tk > x<L = ‰-l x BkHzè1, ..., zèk-1, xL

where zè j = maxHhc
-1Hy j

cL, hr
-1Hy j

r LL,  j = 1, ...,k.  It  is not difficult to see that there should
exist  an  index  1§ l § k,  such  that  zè1 § ... § zèl-1 § x < zèl  and  since  we  consider  the
events of  ruin  of  the cedent  and the reinsurer  up to  time x  only,  hence we can rewrite
(19) as

(20)PH› j=1
k-1 8zè j § T j< › 8Tk > x<L = ‰-l x BlHzè1, ..., zèl-1, xL

Formula (14) now follows from (18), (20) and (17) which completes the proof of Theo-
rem 2.Ñ
The use of formulae (4) and (14) to compute PHTc > x, Tr > xL  is discussed in Section 4
where the case of independent and dependent claim severities are thoroughly explored.
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4. Computational considerations and results.

In this section we demonstrate that using the results of Theorem 1 and 2, one can success-
fully find solutions to Problems 1 and 2, stated in Section 3, and optimally determine the
parameters of an XL contract.  A quick analysis of formulae (4) and (14) reveals that an
attempt  to  use  them in  solving  the  optimization   Problems  1  and  2  analytically  is  con-
fronted with considerable difficulties. For example formula (4) requires the maximization
of  a  complex  functional  with  respect  to  the  function  hcHtL,  with  the  constraint
hHtL = hcHtL + hrHtL, and under the additional assumption of invertibility of hcHtL  and hrHtL.
This is a task which is hardly feasible, at least under the rather general definitions of hHtL,
hcHtL  and hrHtL  assumed here. For this reason, in what follows we will use (4) and (14) to
solve Problems 1 and 2 numerically.

Formulae (4)  and  (14)  have  been  implemented  in  Mathematica  in  the  case  of  any  joint
distribution  of  the  original  claims  and  linear  premium  income  function  hHtL = u + c t,
where u is the total initial reserve and c is the total premium rate. Thus, Problems 1 and 2
have  been  solved  with  different  joint  distributions  for  the  claim  amounts  and  different
choices for the rest of the model parameters. In the independent case, results for Exponen-
tial,  Pareto and Weibull  claim amount distributions are presented and the effect  of  their
varying  tail  behavior  on  the  probability  of  joint  survival  is  assessed.  In  order  to  model
dependence between claim severities, copula functions have been successfully used. The
copula  approach has allowed us to  study how the assumption of  dependence affects  the
solutions  to  Problems  1  and  2  and  the  probability  of  joint  survival.  For  the  purpose,  a
combination of Rotated Clayton copula with Weibull marginals has been implemented.

In  general,  our  experience  has  shown  that  expression  (4)  is  computationally  more  effi-
cient than (14) since it converges faster with respect to k, i.e., a small number of terms is
required in the summation in order to reach a desired accuracy of the result. The multiple
integration is less computationally  involved and hence faster,  since all  limits of  integra-
tion in (4) are finite whereas in (14) the inner most integral is infinite. However, it should
be noted that the derived expressions for PHTc > x, Tr > xL  are rather general and that in
each particular case, when the input parameters are fixed, both formulae could be simpli-
fied and of course, depending on the software used for the implementation, the computa-
tional efficiency may turn to be in favour of (14).

4.1 Independent claim severities.

Here,  we  have  assumed  that  claim  amounts  are  independent  and  have  three  alternative
distributions:  lighter  tailed  Exponential  and  heavier  tailed  Pareto  and  Weibull  distribu-
tions. The optimization Problems 1 and 2 have been solved in each of these cases and the
effect  of  the  different  tail  behaviour  of  the  claim  distributions  on  the  optimal  solutions
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have been studied.  Sensitivity  results  with respect  to the choice of  other  model parame-
ters are also presented. 

The solution of the optimization Problem 2 in the case of exponentially distributed claim
severities  with  parameter  a = 1,  Poisson  intensity  l = 1,  finite  time  interval  x = 2  and
hHtL = u + c t, with total initial reserve u = 0  and premium rate c = 1.55,  is illustrated in
Fig  1.  For  fixed  combinations  of  values  of  the  levels  M  and L,  an  optimal  reinsurance
premium  rate,  cr ,  is  found,  which  maximizes  PHTc > x, Tr > xL,  given  that
hHtL = hcHtL + hrHtL = H1.55- crL t + cr t .  This  is  achieved  by  varying  the  proportion,
hrHtL = cr t ,  of  the  premium  income,  given  to  the  reinsurer  from  1%  to  99%,  i.e.,  cr  is
varied from 0.1 to 1.5 with a step 0.1. In the left panel of Fig. 1 we present results for the
case of an XL contract without a limiting level, i.e. L = ¶, while the right panel refers to
a retention level M  and a limiting level L = M + 0.5. In both cases, the optimal premium
rate  cr  decreases  when  the  retention  level  M  increases.  This  complies  well  with  the
market  principle  that  a  smaller  reinsurance  premium  should  be  charged  for  a  smaller
proportion  of  the  risk,  taken  by  the  reinsurer.  Comparing  the  two  cases  L = ¶  and
L = M + 0.5, it can be seen that, in the latter case, the optimal solutions for cr  are shifted
to  the  left,  since  there  is  a  fixed  non-zero  layer  m = L - M = 0.5,  covered  by  the  rein-
surer. 

From both panels of Fig. 1 it  can also be seen that each curve has a single global maxi-
mum of the joint survival probability. This suggests that the optimization Problem 2 has a
unique solution, at least for the classical linear hHtL. The proof of this interesting conjec-
ture is hindered by the complexity of formulae (4) and (14) and in particular of the defini-
tions of nè j , z

è
j , wi

c, wi
r , and is a subject of current investigation.
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PHTc>x,Tr >xL L=∞

1.5
1.25
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0.2
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0.3

0.35

0.4

0.45

PHTc>x,Tr >xL L=M+0.5

1.5
1.25
0.75
0.5
0.25
0.05
M

Fig. 1. Solutions to the optimality Problem 2: independent claim severities, ExpH1L distrib-
uted, l = 1, x = 2, hHtL = hcHtL + hrHtL = H1.55- crL t + cr t .

Problem 2 has also been solved for different choices of the total initial reserve u  and the
initial  reserves  of  the  cedent,  uc  and  the  reinsurer,  ur .  The  impact  of  different  initial
reserves on PHTc > x, Tr > xL  and hence on the optimal value of cr  is illustrated in the left
panel  of  Fig 2, for  fixed levels M = 0.5, L = ¶  and parameters as in Fig 1,  i.e.,  Exp(1)
distributed claim severities, l = 1 and x = 2. For this set of parameters, an optimal value,
cr ,  is  found,  which  maximizes  PHTc > x, Tr > xL,  given  that  hHtL = u + c t ,
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hcHtL = uc + H1.55- crL t ,  hrHtL = ur + cr  t ,  with  u = uc + ur  and
c = cc + cr = H1.55- crL + cr . Five curves are given in the left panel of Fig 2 which corre-
spond  to  five  different  choices  of  the  pair  of  values  uc,  ur ,  for  which  the  total  reserve
u = uc + ur  is  correspondingly  equal  to  0.0, 1.0, 0.5, 1.0, 1.0.  There  are  two  effects
which can be observed. First, with the increase of the total reserve u, given uc = ur , (see
curves  corresponding  to  Huc, urL = 8H0, 0L, H0.25, 0.25L, H0.5, 0.5L<),  the  probability  of
joint survival  increases as can be expected. The second effect is that, for fixed value of
the total reserve u = 1, the optimal reinsurance premium cr  is lower if uc < ur , increases
when  uc = ur ,  and  goes  further  up  if  uc > ur .  Hence,  the  conclusion  is  that,  if  a  direct
insurance company wants to pay less in reinsurance premium and at the same time wants
to  maximize  its  and  the  reinsurer's  chances  of  survival,  the  company  should  seek  for  a
reinsurer with initial reserves higher than its own reserves, which is a practically meaning-
ful business strategy. In the alternative case, uc > ur , the optimal reinsurance premium is
much higher, since given the direct insurance company wants a maximum probability of
joint survival, it has to pay much more in order to compensate the lower level of reserves
kept by the reinsurer. But this clearly is not in favour of the direct insurer and is not what
reinsurance is about. 

In the right panel of Fig 2, we illustrate the impact of the time horizon x on the probabil-
ity  of  joint  survival  and cr .  As can be seen, PHTc > x, Tr > xL  decreases for  longer time
horizons, which is natural to expect. On the other hand, increasing x from 0.5 to 3 results
in higher reinsurance premium, whereas further increase of x does not affect cr . This can
be  explained  with  the  higher  possibility  of  arrival  of  large  claims  to  the  reinsurer  as  x
initially goes up. 

0.2 0.4 0.6 0.8 1 1.2 1.4
cr

0.2

0.3

0.4

0.5

0.6

PHTc>x,Tr >xL
0.25, 0.75
0.75, 0.25
0.50, 0.50
0.25, 0.25
0 , 0
uc , ur

0.2 0.4 0.6 0.8 1 1.2 1.4
cr

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PHTc>x,Tr >xL

4
3
2
1
0.5
x

Fig. 2. Solutions to the optimality Problem 2: independent claim severities, ExpH1L distrib-
uted,  l = 1,  x = 2,  c = 1.55,  L = ¶,  M = 0.5;  Left  panel:  u ¥ 0,  Right  panel:
u = uc = ur = 0, x = 0.5, 1, 2, 3, 4.

The solution of  the optimization Problem 1 has been performed in the case of exponen-
tially  and  Pareto  distributed  claim  severities,  both  with  unit  mean,  l = 1,  x = 2  and
hHtL = 1.55 t . Thus, in Fig. 3 two 3D plots are given, which illustrate the behaviour of the
probability  of  joint  survival  as  a  function  of  M  and  m = L - M  when  the  premium
income is equally shared, i.e. hcHtL = hrHtL  for any t ¥ 0. The left panel of Fig. 3 refers to
the  case  of  exponentially  distributed  claim  amounts,  Wi ,  i = 1, 2, ...  with  mean  and
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variance EHWL = VHWL = 1, whereas the plot in the right panel is for Pareto claims with
EHWL = 1  and  VHWL = 3.  As  seen  from  both  panels  of  Fig.  3,  PHTc > x, Tr > xL  has  a
single global maximum with respect to M  and m. As with Problem 2, the existence of a
unique  solution  of  Problem  1  can  be  conjectured,  but  the  proof  is  related  with  similar
difficulties.

Solutions of Problem 1 for different choices of cr , i.e., for different proportions in which
the total  premium income is shared,  are summarized in Table 1.  As can be seen, giving
higher  proportion of  hHtL  to  the  reinsurer  causes the optimal  retention level,  M ,  to  drop
and the optimal limiting level, m, to increase. The latter is not surprising as the cedent's
retained  risk  should  decrease  when  the  premium  income,  passed  on  to  the  reinsurer,
increases.

Table 1. Optimal values of M  and m, maximizing PHTc > x, Tr > xL  in the case of inde-
pendent  claim  severities,  ExpH1L  distributed,  with  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55- crL t + cr t .

maxM,m P HTc > x, Tr > xL cr = 0.25 cr = 0.50 cr = 0.775 cr = 1.00 cr = 1.25

M 0.4 0.3 0.3 0.2 0.001

m 0.1 0.3 0.7 1.2 > 1.5

As can also be seen from Fig. 3, although the implemented Exponential and Pareto distri-
butions have different variance and imply lighter and heavier tails of the claim severities,
the two surfaces are very similar and the optimal values of M  and m,  which  maximize
PHTc > x, Tr > xL  in each case,  are very close.  This is explained by the similarity in the
shape of the Exponential and Pareto densities, as can be seen from the left panel of Fig. 4,
since all other model parameters are the same. We have also implemented Weibull distrib-
uted claims, which does not affect the form of the surface as well. It is interesting to note
that the probability of joint survival is higher for Pareto distributed claim amounts, com-
pared with the exponential case, given that other model parameters coincide. The probabil-
ity PHTc > x, Tr > xL  is even higher if the claim size follows Weibull distribution with the
same mean, EHWL = 1, and VHWL = 2.2. An illustration of the latter phenomenon is given
in the right panel of Fig. 4. It can be explained by the fact that the time interval, @0, 2D, is
relatively short and PHTc > x, Tr > xL  is affected most significantly by the distribution of
the smaller but more probable claims rather than by the less probable extreme claims in
the  tail.  This  is  in  compliance  with  the  order  of  the  probabilities  0.955,  0.940,  0.917,
computed  as  PHW § hH2LL = PHW § 3.1L  correspondingly  for  exponentially,  Pareto  and
Weibull distributed claims. The shape of the three densities, given in the left panel of Fig.
4, are also in support of this explanation. Our experience shows that for higher x  the tail
behaviour is of more importance for PHTc > x, Tr > xL and the order may reverse.
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Fig. 3. Solutions to the optimality Problem 1: independent claim severities, l = 1, x = 2,
hHtL = hcHtL + hrHtL = H1.55- crL t + cr t ,  cr = 0.775. Left  panel  -  exponentially  distributed,
EHWL = VHWL = 1; Right panel - Pareto distributed, EHWL = 1, VHWL = 3.
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Fig.  4.  Left  panel  -  assumed  probability  density  functions  for  the  claim  amounts  Wi ,
i = 1, 2, ...;  Right  panel  -  PHTc > x, Tr > xL  as  a  function  of  the  layer  m,  l = 1,  x = 2,
hHtL = hcHtL + hrHtL = H1.55- crL t + cr t , cr = 0.775.

The  general  conclusion  based  on  these  examples  is  that  PHTc > x, Tr > xL  is  a  relevant
reinsurance risk optimization  criterion,  which complies with  some basic  principles driv-
ing reinsurance risk assessment and pricing decisions.

4.2 Dependent claim severities.

In  what  follows,  we  provide  some  very  interesting  results  for  the  probability  of  joint
non-ruin and the solutions of Problems 1 and 2, assuming dependence between the claim
severities W1, W2, ...  .  We show how this  dependence could  be modelled,  using copula
functions. The effect on PHTc > x, Tr > xL  of the degree of dependence, modelled by the
underlying copula parameter, and of the choice of the marginals, is also studied.

A difficulty, related to the copula approach is that, in general, a large number of consecu-
tive  claims  may  arrive  at  the  insurance  company  and  modelling  their  joint  distribution
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will  require  highly  multivariate  copulas.  The  curse  of  dimensionality  is  overcome  here
due to the fast convergence of formula (4), for which only the first few terms in the sum-
mation with respect to k  are needed, in order to compute PHTc > x, Tr > xL  with a reason-
able accuracy. This allows us to use up to a five-variate copula in the numerical examples
presented here.

Let  H  denote  the  k-dimensional  distribution  function  of  the  random vector  of  consecu-
tive claim amounts HW1, ..., WkL  with continuous marginals F1, ..., Fk . Then, one can use
the  well-known  Sklar's  theorem  to  represent  H  through  a  k-dimensional  copula
CHu1, ..., ukL,  0 § u j § 1,  which  depends  on  a  set  of  parameters  q ,  as
HHw1, ..., wkL = CHF1Hw1L, ..., FkHwkLL.  By  changing  the  values  of  q  within  a  specified
range,  one  can  control  the  degree  of  dependence,  in  general,  from  extreme  negative,
through  independence,  to  extreme  positive  dependence.  To  measure  the  dependence  in
the tails of the distributions of two consecutive claims W1  and W2 , one can use the upper
and lower tail dependence coefficients, defined as

lL = limuØ0+ CHu, uL êu

lU = limuØ1- H1 - 2u + CHu, uLL ê H1 - uL
where  lL œ H0, 1D,  lU œ H0, 1D.  The  copula  C  has  no  upper  (lower)  tail  dependence  iff
lU = 0  (lL = 0).  For  example,  in  our  context,  lU > 0  would  mean that  extremely  large
insurance losses are likely to occur jointly.  For further  properties of  copulas and related
dependence  measures  we  refer  to  Joe  (1997).  An  extensive  account  on  some  actuarial
applications of copulas can be found in Frees and Valdez (1998).

It  should  be  noted  that  dependence  between  the  components  of  the  random  vectorHW1, ..., WkL  implies  dependence  between  the  components  of  the  random  vectorHW1
c, ..., Wk

cL  and  also  between  the  components  of  HW1
r, ..., Wk

rL,  since  Wi = Wi
c + Wi

r .
So,  the  two  risk  processes,  Rt

c  and  Rt
r ,  which  implicitly  define  PHTc > x, Tr > xL,  also

incorporate  dependent  claims,  namely  HW1
c, ..., Wk

cL  and  HW1
r, ..., Wk

rL.  However,  since
formulae  (4)  and  (14)  involve  the  joint  density  function  yHw1, ..., wkL  of  the  random
vector HW1, ..., WkL, in order to compute PHTc > x, Tr > xL  under dependence, we express
this density through the copula function as

(21)

yHw1, ..., wkL = ∑k CHF1Hw1L, ..., FkHwkLLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑w1 ... ∑wk

= ∑k CHu1, ..., ukLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑u1 ... ∑uk
‰
i=1

k ∑FiHwiLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑wi
= cHF1Hw1L, ..., FkHwkLL ‰

i=1

k

fWi HwiL
where cHu1, ..., ukL  is  the density  of  the copula C  and fWi HwiL,  i = 1, ...,k  are the mar-
ginal  density  functions.  As  can  be  seen  from  (21),  the  copula  approach  to  modelling
dependence between claim amounts is very convenient since it separates the dependence
structure, incorporated into the copula, from the marginals. Thus, one can independently
choose the copula and its parameter(s), and the marginals, and study separately the effect
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of these two choices on PHTc > x, Tr > xL  and on the solutions of the optimality Problems
1  and  2.  For  the  purpose,  we  have  chosen  C  to  be  the  k-dimensional  Rotated  Clayton
copula, CRCl, and F1, ..., Fk  to be identical WeibullHa, bL marginals.

Clayton  and  Rotated  Clayton  copulas  are  suitable  for  modelling  dependence  between
claim  severities.  To  see  this,  let  us  first  introduce  the  Clayton  copula,  which  is  an
Archimedean copula, with generator fHtL = t-q - 1, q > 0, defined as

CClHu1, ..., uk; qL = H⁄i=1
k ui

-q - k + 1L-1êq
,

where 0§ ui § 1, i = 1, ...,k and q œ H0, ¶L is a parameter. Its density is given by

cClHu1, ..., uk; qL = qk GH1êq+kLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅGH1êqL H¤i=1
k ui

-q-1L H⁄i=1
k ui

-q - k + 1L-1êq-k
.

As  q Ø 0,  the  Clayton  copula  converges  to  the  product  copula  with  density
cHu1, ..., ukL = 1,  which,  as  seen  from  (21),  corresponds  to  independent  claim  amounts.
The  degree  of  dependence  increases  as  q  increases.  Further  properties  of  the  Clayton
copula and its application in finance can be found in Cherubini et al. (2004).

In the general insurance context, it is of interest to consider the case in which the occur-
rence  of  large  claims  is  highly  correlated  with  the  emergence  of  further  large  claims.
Hence, it is meaningful to use a copula with upper tail dependence. However, the Clayton
copula has lower tail  dependence with coefficient  lL = 2-1êq , which makes it  convenient
for modeling dependence in the left  tails of the marginal distributions, i.e. between very
small claims. A typical example would be the joint occurrence of a large number of small
motor insurance claims caused by a common (catastrophic) event, e.g. hail or bad driving
conditions. 

Based on the Clayton copula, one can model upper tail dependence using the multivariate
Rotated Clayton copula, defined as

(22)CRClHu1, ..., uk; qL = ⁄i=1
k ui - k + 1 + H⁄i=1

k H1 - uiL-q - k + 1L-1êq
,

with  density  cRClHu1, ..., uk; qL = cClH1 - u1, ..., 1- uk; qL  and  q œ H0, ¶L.  The  value
q = 0   corresponds  to  independence  as  for  CCl .  A  two  dimensional  version  of  (22)  has
been considered by Patton (2004). The Rotated Clayton copula has upper tail dependence
with  coefficient  lU = 2-1êq  and  is  suitable  for  modeling  dependence  between  extreme
insurance  losses.  The  dependence  structure,  defined  by  a  Rotated  Clayton  copula  with
parameter q = 5, is illustrated in the left panel of Fig. 5 through a random sample of 500
simulated  pairs  Hu1, u2L.  In  the  right  panel,  we  give  the  corresponding  simulated  claim
amounts with  joint  distribution function HHw1, w2L = CRClHF1Hw1L, F2Hw2L; qL  and identi-
cal  WeibullH1, 1L  marginals.  The presence of  positive dependence,  determined by q = 5,
and of upper tail dependence, lU = 2-1ê5 , are clearly visible.
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Fig.  5.  A  random  sample  of  500  simulations  from  a  bivariate  Rotated  Clayton  copula,
with dependence parameter q = 5, marginals F ª WeibullH1, 1L ª ExpH1L.
With  the  increase  of  q ,  the  solution  of  the  optimality  Problem  2  does  not  change,  as
illustrated  in  the  left  panel  of  Fig.  6  for  fixed  Weibull  marginals  with  unit  mean  and
variance. It can also be seen that, for any cr , PHTc > x, Tr > xL  goes up as q  deviates from
zero. This may seem unexpected but it should be mentioned that, as q  increases, not only
the tail  dependence increases but so does the dependence throughout the whole range of
claim amounts. As a result of this, jointly small claims occur with higher probability and
through  the  risk  processes,  Rt

c  and  Rt
r ,  affect  more  significantly  PHTc > x, Tr > xL  than

the occurrence of jointly large claims.
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Fig.  6.  Solutions  to  the  optimality  Problem  2:  dependent  claim  severities,
CRClHFHw1L, ..., FHwkL; qL  distributed,  marginals  F ª WeibullHa, bL,  l = 1,  x = 1,
hHtL = hcHtL + hrHtL = H1.55- crL t + cr t , M = 0.25, L = M + 0.5.

The solution of the optimality Problem 2 for Weibull marginals with mean 1 and increas-
ing variance is given in the right panel of Fig. 6. As can be seen, the optimal value for cr

slightly decreases as the variance increases. This is meaningful, since the variance of the
cedent's claims increases with the variance of the original claims more significantly than
that  of  the  reinsurer  and  hence,  the  reinsurance  premium  should  decrease.  The  latter
effect  is  due to the fact  that  the reinsurer's  liability  is  limited within  the layer  m.  It  can
also be seen from the right panel of Fig. 6 that PHTc > x, Tr > xL  increases as the variance
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increases  which  is  a  phenomenon,  similar  to  the  one  illustrated  in  Fig.  4  and  can  be
explained applying similar reasoning.

5. Conclusions and comments.

In this paper, we have demonstrated that the optimal retention and limiting levels and the
optimal sharing of the premium income, obtained by maximizing the probability of joint
survival of the cedent and the reinsurer in an excess of loss contract, assuming continuous
claim severities, are sensible. It will be instructive to test this joint optimality criterion on
real claim data. 

An  interesting  finding  is  the  presence  of  unique  solutions  to  Problems  1  and  2  in  the
examples of Section 4.1. Proofs of such conjectures are a subject of ongoing research. 

We have also demonstrated that formulae (4) and (14), through their reasonable general-
ity, conveniently allow to implement copulas in modelling dependence between consecu-
tive claim severities. These are only first steps in this important new direction of research
and a variety of open problems arrises. For example, it  is interesting to explore how the
solutions  of  Problems 1  and 2,  and also PHTc > x, Tr > xL,  will  be  affected  by different
dependence  structures.  In  particular,  will  the  upper  and  lower  Fréchet  bounds  lead  to
upper and lower bounds for PHTc > x, Tr > xL?
Finally,  viewing  PHTc > x, Tr > xL  as  a  risk  measure,  one  could  define  a  performance
measure based on the expected profits, at the end of the time horizon x, of the insurer and
the  reinsurer  and  consider  an  optimality  criterion  which  combines  these  measures  and
could  be  used  to  optimally  set  the  parameters  of  a  reinsurance  contract.  The  latter  is  a
subject of future investigation.
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