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Abstract 

Heterotrimeric guanine nucleotide–binding protein (G protein) signaling links hundreds of G 

protein–coupled receptors (GPCRs) with four G protein signaling pathways. Two of these, 

one mediated by Gq and G11 (Gq/11) and the other by G12 and G13 (G12/13), are implicated in 

the force-dependent activation of transforming growth factor–β (TGFβ) in lung epithelial 

cells. Reduced TGFβ activation in alveolar cells leads to emphysema, whereas enhanced 

TGFβ activation promotes acute lung injury and idiopathic pulmonary fibrosis. Therefore, 

precise control of alveolar TGFβ activation is essential for alveolar homeostasis. Here, we 

investigated the involvement of the Gq/11and G12/13 pathways in epithelial cells in generating 

active TGFβ and regulating alveolar inflammation. Mice deficient in both Gαq and Gα11 

developed inflammation that was primarily caused by alternatively activated (M2-polarized) 

macrophages, enhanced matrix metalloprotease 12 (MMP12) production, and age-related 

alveolar airspace enlargement consistent with emphysema. Mice with impaired Gq/11 

signaling had reduced stretch-mediated generation of TGFβ by epithelial cells and enhanced 

macrophage MMP12 synthesis, but were protected from the effects of ventilator-induced lung 

injury. Furthermore, synthesis of the cytokine interleukin-33 (IL-33) was increased in these 

alveolar epithelial cells, resulting in the M2-type polarization of alveolar macrophages 



independently of the effect on TGFβ. Our results suggest that alveolar Gq/11 signaling 

maintains alveolar homeostasis, and likely independently increases TGFβ activation in 

response to mechanical stress of the epithelium and decreases epithelial IL-33 synthesis. 

Together, these findings suggest that disruption of Gq/11 signaling promotes inflammatory 

emphysema but protects against mechanically induced lung injury. 

 

Introduction 

Heterotrimeric guanine nucleotide–binding protein (G protein) signaling is a ubiquitous 

system that couples many hundreds of G protein–coupled receptors (GPCRs) to a diverse 

array of effector molecules. Despite the huge diversity of receptors and effectors, there are 

only four families of heterotrimeric G proteins: GS, Gi/Go, Gq/G11, and G12/G13. Two of 

these families (Gq/G11 and G12/G13) mediate activation of the RhoA signaling pathways (1, 

2). Work by our group and others identified that Gq/G11 and G12/G13 signaling to RhoA 

and Rho kinase in epithelial cells is central to the αvβ6 integrin–mediated activation of 

transforming growth factor–β (TGFβ) in vitro (3, 4). However, the importance of 

heterotrimeric G protein signaling pathways in the activation of TGFβ in the alveoli in vivo 

has not been described. 

 

TGFβ plays a central role in diverse physiological processes, including homeostasis, repair, 

and immunity. The essential role of TGFβ in maintaining alveolar homeostasis was 

demonstrated in mice with defective TGFβ signaling pathways. Mice deficient in Smad3 (5), 

a major intracellular signal transducer and transcriptional modulator of TGFβ signaling, or 

the epithelial TGFβ receptor subunit TGFβRII (6) develop age-related emphysema because 

of increased production of matrix metalloprotease-12 (MMP12) by alveolar macrophages. 

Furthermore, over-expression of TGFβ in the lung leads to pulmonary fibrosis (7), and 



increased TGFβ abundance is associated with the development of acute and ventilator-

associated lung injury (8, 9). Disruption of alveolar TGFβ signaling also leads to human 

disease. Mutations in TGFβ1 and its receptors, as well as reduced serum concentrations of 

TGFβ1 are associated with the development of chronic obstructive pulmonary disease 

(COPD) (10-12). Furthermore, increased TGFβ signaling in the alveoli is associated with 

conditions such as idiopathic pulmonary fibrosis (IPF) (13). Therefore, precise control of 

alveolar TGFβ activity is central to the homeostatic function of pulmonary alveoli. Activation 

of the latent TGFβ complex is the rate-limiting step in TGFβ biosynthesis, and it is mediated 

in cells in vitro by a number of distinct mechanisms, including physical changes such as low 

pH or oxidation, proteases (14-16), or through the direct physical interaction of the 

extracellular domain of integrins with the RGD-binding site in the latent TGFβ binding 

protein (17-19). Studies in mice suggest that in vivo, in development at least, most pulmonary 

TGFβ1 activation is through both the αvβ6 and αvβ8 integrins (20, 21). Furthermore, mice 

with no functional αvβ6 integrins develop MMP12-dependent, age-related emphysema (22), 

consistent with observations from mice with defective TGFβ signaling. 

 

To investigate the whether G protein signaling pathways were required to generate alveolar 

TGFβ and control alveolar homeostasis, mice were generated that were deficient in both Gαq 

and Gα11 (Gαq/Gα11) or in both Gα12 and Gα13 (Gα12/Gα13) surfactant protein C (SftpC)-

positive cells, restricting the defect in signaling predominantly to type II alveolar (ATII) 

epithelium. We showed that alveolar epithelial Gq/G11 signaling was required not only to 

promote stretch-mediated production of TGFβ by epithelial cells within the lungs, but also to 

suppress synthesis of the key epithelial alarmin interleukin-33 (IL-33) and inhibit the M2 

polarization of alveolar macrophages. Loss of signaling through this pathway leads to 

emphysematous changes in the lungs because of the disruption of epithelial cell–mediated 



suppression of macrophage activation and the resulting widespread alveolar destruction, but 

protected against stretch-mediated lung injury. 

 

Results 

Characterization of mice deficient in Gαq/Gα11 or Gα12/Gα13 in surfactant protein C–

positive epithelial cells 

To assess the role of the Gq/G11 and G12/G13 signaling pathways in alveolar epithelial cell 

function, two strains of mice were generated by Cre-loxP recombination. Mice heterozygous 

for the expression of Cre-recombinase under the control of the surfactant protein C promoter 

(SftpC+/-) were crossed with mice either constitutively deficient in the gene encoding Gα11 

(Gna11-/-) and carrying floxed alleles of the gene encoding Gαq (Gnaqfl/fl) (23) or 

constitutively deficient in the gene encoding Gα12 (Gna12-/-) and carrying floxed alleles of 

the gene encoding Gα13 (Gna13fl/fl) (24) to generate alveolar epithelial cell–specific, double 

knockout mice termed SftpC+/-;Gnaqfl/fl;Gna11-/- and SftpC+/-;Gna12-/-;Gna13fl/fl, respectively. 

SftpC+/-;Gnaqfl/fl;Gna11-/- progeny were born at the expected Mendelian ratios from regular 

matings of founder animals. In contrast, the litter sizes of mice in the SftpC+/-;Gna12-/-

;Gna13fl/fl colony were smaller and animals were not born at the expected Mendelian 

frequency (12.5% of each genotype), with only 6.8% of offspring being Cre-positive and 

carrying two null Gna12 alleles and two floxed Gna13 alleles. 

 

Gαq/Gα11 colony mice were genotyped by PCR analysis (fig. S1A). Cre-mediated deletion 

of Gnaq in the alveolar cells of SftpC+/-;Gnaqfl/fl;Gna11-/- mice was confirmed by a reduction 

in the abundances of Gαq protein (fig. S1B) and mRNA (fig. S1C) compared with those of 

alveolar type II (ATII) cells isolated from Cre-negative Gna11-/- control mice. 

Immunohistochemical analysis of Gαq proteins demonstrated that the signaling molecule was 



not detected in ATII cells from SftpC+/-;Gnaqfl/fl;Gna11-/- mice, but was detected in Cre-

negative Gna11-/- mice (fig. S1D). Gα12/Gα13 colony mice were genotyped by PCR analysis 

(fig. S1E), and the Cre-mediated deletion of Gna13 in the ATII cells of SftpC+/-;Gna12-/-

;Gna13fl/fl mice was confirmed by immunohistochemical analysis of Gα13 protein (fig. S1F) 

and real time reverse-transcriptase PCR (RT-PCR) analysis of the abundance of Gna13 

mRNA in ATII cells (fig. S1G). 

 

Gq/11-deficient mice have alveolar airspace enlargement and an obstructive lung defect 

Analysis of the lungs from SftpC+/-;Gnaqfl/fl;Gna11-/- mice (Fig. 1A) revealed that they were 

morphologically normal at two weeks of age, although by four weeks there were widespread 

inflammatory infiltrates and architectural distortion within the lungs. There was enhanced 

inflammation and localized disruption of the alveolar architecture at six weeks, and this was 

maximal at eight weeks of age. Mean linear intercept analysis confirmed that substantial 

increases in alveolar size were not detected in the SftpC+/-;Gnaqfl/fl;Gna11-/- mice until they 

were four weeks of age (Fig. 1B), and that these animals subsequently showed a progressive 

and age-related increase in the size of the alveoli up to eight weeks of age compared with 

age-matched Gna11-/- control mice. Although there was no further increase in mean linear 

intercept beyond eight weeks, alveolar size remained substantially greater in SftpC+/-

;Gnaqfl/fl;Gna11-/- mice than in Gna11-/- mice up to six months of age (Fig.1B). In contrast 

with that of SftpC+/-;Gnaqfl/fl;Gna11-/- mice, mean linear intercept analysis of lung sections 

from Cre-positive heterozygous Gαq/Gα11 colony mice and from SftpC+/-;Gna12-/-;Gna13fl/fl 

mice showed no evidence of increased alveolar airspace size (fig S2A) or inflammatory 

infiltrates (fig. S2, B to D). Even at the later time points of 12 and 24 weeks of age (fig. S2E), 

there was no evidence of inflammation or architectural distortion in the lungs of SftpC+/-



;Gna12-/-;Gna13fl/fl mice, suggesting that G12/G13 signaling does not play a role in the 

postnatal development of alveoli or in alveolar homeostasis. 

 

To confirm that the morphological changes had functional consequences, lung function was 

measured by invasive plethysmography at eight weeks of age. SftpC+/-;Gnaqfl/fl;Gna11-/- mice 

showed an obstructive defect as evidenced by a statistically significant reduction in the ratio 

of forced expiratory volume in the first 100 ms (FEV100) to forced vital capacity (FVC), that 

is, the FEV100/FVC (Fig. 1C). A reduction in the FEV100/FVC ratio is characteristic of the 

development of emphysema together with increased static lung volumes as reflected by 

statistically significantly increased total lung capacity (TLC) (fig. S3A) and functional 

residual capacity (FRC) (fig. S3B) when compared with Gna11-/- mice. There was no 

significant increase in residual volume (RV) detected in the SftpC+/-;Gnaqfl/fl;Gna11-/- mice 

(fig. S3C). Leukocytes isolated from the bronchoalveolar lavage fluid (BALF) of SftpC+/-

;Gnaqfl/fl;Gna11-/-  mice had substantially increased amounts of Mmp2 (Fig. 1D), Mmp9 (Fig. 

1E), and Mmp12 (Fig. 1F) mRNAs compared with those of Gna11-/- mice, as determined by 

real time RT-PCR analysis, which suggests a contributory role for these enzymes in the 

alveolar destruction observed in the SftpC+/-;Gnaqfl/fl;Gna11-/-  mice. 

 

Loss of alveolar epithelial Gq/11 signaling leads to decreased activation of TGFβ in the 

lung 

To determine whether TGFβ signaling pathways were disrupted by the loss of Gαq and Gα11 

from epithelial cells, we measured the total TGFβ1 concentrations in whole-lung 

homogenates and found them to be substantially decreased in SftpC+/-;Gnaqfl/fl;Gna11-/- mice 

compared to those in Gna11-/- control mice (Fig. 2A). Analysis of supernatants collected from 

cultured lung slices detected the release of active TGFβ from the Gna11-/- lung slices, but no 



active TGFβ1 was measured in the supernatants of SftpC+/-;Gnaqfl/fl;Gna11-/-  lung slices (Fig. 

2B). To examine the role of Gαq and Gα11 in TGFβ activation in response to a contraction 

stimulus, lung slices were incubated with methacholine, which activates Gq/G11 signaling 

through muscarinic receptors. There was no substantial increase in the amount of active 

TGFβ detected in the lung slice supernatants of either genotype (Fig. 2B); however, treatment 

of slices from Gna11-/- mice with methacholine led to increased amounts of phosphorylated 

Smad2 (pSmad2) protein in lung slice lysates, which was not observed in the treated slices 

from SftpC+/-;Gnaqfl/fl;Gna11-/- animals (Fig. 2C). 

 

To confirm that the reduction in total TGFβ generation observed was to the result of reduced 

alveolar TGFβ activation in vivo, BAL leukocytes were used as reporter cells for the 

activation of TGFβ in epithelial cells (Fig. 2D). Nuclear extracts of BAL leukocytes collected 

from SftpC+/-;Gnaqfl/fl;Gna11-/- mice had substantially less pSmad2 abundance than did the 

nuclear extracts of BAL leukocytes from Gna11-/- mice, thus confirming that the amount of 

active TGFβ produced by the lung epithelium was reduced in the SftpC+/-;Gnaqfl/fl;Gna11-/- 

mice (Fig. 2D). Furthermore, exogenous stimulation of BAL leukocytes from SftpC+/-

;Gnaqfl/fl;Gna11-/- mice with TGFβ for 1 hour stimulated a small, although statistically 

significant, increase in pSmad2 abundance, which was considerably blunted compared with 

that observed in cells from Gna11-/- mice (Fig. 2D). RT-PCR analysis of the expression of 

two TGFβ-responsive genes, Itgb6 (Fig. 2E) and Tsp1 (Fig. 2F) demonstrated that ATII cells 

from SftpC+/-;Gnaqfl/fl;Gna11-/- mice had statistically significantly lower amounts of both 

mRNAs than did cells from Gna11-/- littermate controls. 

 

Disruption of alveolar Gq/G11 signaling leads to aberrant alveolar macrophage 

responses 



To investigate the mechanism behind the reduced responsiveness of BAL leukocytes from 

SftpC+/-;Gnaqfl/fl;Gna11-/- mice to TGFβ (Fig 2D), we measured the abundances of the 

mRNAs encoding TGFβ receptor I (Tgfbr1) and II (Tgfbr2). Tgfbr1 mRNA abundance was 

substantially reduced in BAL macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/- mice compared to 

that in cells from Gna11-/- littermate control mice (Fig. 3A). In contrast, the abundance of 

Tgfbr2 mRNA was increased in the cells isolated from SftpC+/-;Gnaqfl/fl;Gna11-/- mice, 

although this difference did not reach statistical significance (Fig. 3A). To determine whether 

TGFβR abundance in BAL macrophages was regulated by factors secreted into the alveolar 

compartment, crossover experiments were performed in which BAL macrophages from 

Gna11-/- mice or SftpC+/-;Gnaqfl/fl;Gna11-/- mice were cultured with BALF from either Gna11-

/- mice or SftpC+/-;Gnaqfl/fl;Gna11-/-mice and then Tgfbr mRNA abundances were assessed. 

Tgfbr mRNA abundance was measured in BAL macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/- 

animals cultured in BALF from SftpC+/-;Gnaqfl/fl;Gna11-/- mice or Gna11-/- mice, and 

exposure of SftpC+/-;Gnaqfl/fl;Gna11-/- macrophages to BALF from Gna11-/- mice for 24 hours 

induced a statistically significant increase in macrophage Tgfbr1 expression, which was 

blocked by concomitant administration of an anti-TGFβ blocking antibody (Fig. 3B). 

Stimulation of BAL macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/- mice with TGFβ induced a 

substantial increase in Tgfbr1 mRNA abundance, which confirms a role for TGFβ in 

regulating the expression of its own receptor (Fig. 3C). To assess the consequences of 

reduced alveolar TGFβ activation on BAL macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/-mice, 

we measured Mmp12 mRNA abundance. Culturing alveolar macrophages, obtained from the 

BAL from Gna11-/- mice in BALF from the SftpC+/-;Gnaqfl/fl;Gna11-/-mice induced the 

expression of Mmp12 in these cells. This increase was markedly inhibited by co-stimulation 

with exogenous TGFβ (Fig. 3D) suggesting that the Gq/11-dependent generation of TGFβ 

from epithelial cells is required to suppress macrophage MMP12 production and prevent the 



development of emphysema. In contrast, co-administration of an anti-TGFβ blocking 

antibody led to a trend towards increased Mmp12 mRNA abundance (Fig 3E), but this was 

not statistically significant. 

 

Loss of Gq/G11 signaling leads to inflammatory cell recruitment and the M2 

polarization of alveolar macrophages 

A characteristic feature of SftpC+/-;Gnaqfl/fl;Gna11-/- mice was the appearance of enlarged and 

vacuolated cells within the alveolar airspaces (Fig. 4A), which stained positive for the 

macrophage marker F4/80 (Fig. 4B). SftpC+/-;Gnaqfl/fl;Gna11-/- mice had a 10-fold increase in 

the total numbers of leukocytes within the alveolar airspaces compared with Gna11-/-, Cre-

positive heterozygous littermate controls or SftpC+/-;Gna12-/-;Gna13fl/fl mice (Fig. 4C). 

Cytospin analysis of BALF from the SftpC+/-;Gnaqfl/fl;Gna11-/- animals confirmed the 

increased numbers of enlarged, vacuolated cells (Fig. 4D), which were not observed in the 

cytospins from any other genotype and were made up of approximately 50% of the cells 

within the BALF (Fig. 4E). Phenotypic analysis revealed a heterogeneous population of 

macrophages with widespread distribution of M2-like markers, including resistin-like 

molecule α (RELMα; M2a) and mannose receptor (M2a/c) together with a more restricted 

pattern of sphingosine kinase (Sphk1; M2b) positivity in the BAL cells isolated from SftpC+/-

;Gnaqfl/fl;Gna11-/- mice (Fig 4F). Quantification of the immunofluorescence staining 

confirmed the increased amounts of all three M2 macrophage markers. Although there was a 

statistically significant increase in the abundance of inducible nitric oxide synthase (iNOS) in 

the SftpC+/-;Gnaqfl/fl;Gna11-/- BAL cells, most of the enlarged macrophages did not contain 

iNOS, suggesting that they had an M2 phenotype (Fig. 4F). Further analysis also 

demonstrated that macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/- animals contained 



significantly more IL-10 than did macrophages from Gna11-/- mice (Fig. 4G), which is 

consistent with their polarization to an M2 phenotype. 

 

Disruption of alveolar epithelial Gq/G11 signaling leads to increased IL-33 production 

To determine the effect of disrupting alveolar epithelial Gq/G11 and G12/G13 signaling on 

global gene networks, Affymetrix gene chip analysis was performed on mRNA isolated from 

alveolar epithelial cells from Gna11-/-, SftpC+/-;Gnaqfl/fl;Gna11-/-, Gna12-/-, and SftpC+/-

;Gna13fl/fl;Gna12-/- mice. Affymetrix analysis compared gene expression in SftpC+/-

;Gnaqfl/fl;Gna11-/- cells with that in four different comparator groups, namely: (i) Gna11-/- 

mice alone; (ii) SftpC+/-;Gna13fl/fl;Gna12-/- mice alone; (iii) Gna11-/- mice and Gna12-/- mice 

combined; and (iv) Gna11-/- mice, Gna12-/- mice, and SftpC+/-;Gna13fl/fl;Gna12-/- mice 

combined. Using the data obtained from all four contrasting genotypes we identified 304 

probes that mapped to 256 genes (see supplementary data file S1) that were differentially 

expressed in the SftpC+/-;Gnaqfl/fl;Gna11-/- epithelial cells regardless of the comparator group 

used. Hierarchical cluster analysis of the differentially expressed genes showed separation 

between epithelial cells from the SftpC+/-;Gnaqfl/fl;Gna11-/-mice and epithelial cells from mice 

of all other genotypes (Fig. 5A), reflecting the differences observed in the pulmonary 

phenotype. Ingenuity Pathway Analysis suggested increased activation of signal transducer 

and activator of transcription 6 (STAT6) pathways terminating in enhanced IL-33 production 

in the SftpC+/-;Gnaqfl/fl;Gna11-/- alveolar epithelial cells compared with that in alveolar 

epithelial cells from Gna11-/- control mice, which was confirmed by Western blotting analysis 

(Fig. 5B). 

 

Immunohistochemical analysis of lung tissue detected increased IL-33 abundance in the 

nuclei of ATII cells from SftpC+/-;Gnaqfl/fl;Gna11-/- mice compared with that in the nuclei of 



ATII cells from Gna11-/- mice (Fig. 5, C and D). Cytoplasmic IL-33 was present only in 

alveolar epithelial cells from SftpC+/-;Gnaqfl/fl;Gna11-/- mice (Fig. 5, C and D). Concentrations 

of IL-33 in lung homogenates from SftpC+/-;Gnaqfl/fl;Gna11-/- mice were statistically 

significantly greater than those in lung homogenates from Gna11-/- mice (Fig. 5E). In 

contrast, concentrations of the T helper 2 (TH2)-type cytokines IL-4, IL-10, and IL-13 were 

similar between SftpC+/-;Gnaqfl/fl;Gna11-/- mice and Gna11-/- mice (fig. S4, A to C). Although 

the amount of the soluble IL-33 receptor ST2 was not substantially increased in lung tissue 

homogenates (fig. S4D), it was markedly increased in the BALF from SftpC+/-

;Gnaqfl/fl;Gna11-/- mice compared with that in the BALF from Gna11-/- mice, suggesting that 

IL-33 was secreted into the extracellular compartment (Fig. 5F). The concentrations of IL-33 

in the lungs of mice deficient in Itgb6 (which encodes the β6 integrin subunit) were not 

substantially different from those in the lungs of wild-type mice (Fig. 5G), suggesting that 

αvβ6 integrin–mediated activation of TGFβ was not required to suppress IL-33 production. 

 

The increased IL-33 production from Gq/11-deficient epithelial cells promotes the 

polarization of alveolar macrophages to an M2 phenotype 

To assess the role of IL-33 in M2 macrophage polarization, alveolar macrophages from 

Gna11-/- mice were cultured in BALF from SftpC+/-;Gnaqfl/fl;Gna11-/- mice, which resulted in 

a substantial increase in Il10 mRNA abundance (Fig. 6A). Concomitant treatment with 

exogenous TGFβ had no effect on Il10 mRNA abundance; however, the induction of Il10 

mRNA expression was completely inhibited by an anti-IL-33 blocking antibody (Fig. 6A). 

Similarly, exposure of Gna11-/- macrophages to BALF from SftpC+/-;Gnaqfl/fl;Gna11-/- mice 

resulted in a trend towards increased Arginase 1 (Arg1; M2a/c) and Sphk1 mRNA 

abundances (characteristic of M2 macrophages), although these differences were not 

statistically significant (Fig. 6B). Neutralization of IL-33 in the BALF from SftpC+/-



;Gnaqfl/fl;Gna11-/- mice blocked the increase in Arg1 and Sphk1 mRNA abundances in the 

alveolar macrophages (Fig. 6B). Furthermore, culturing alveolar macrophages from Gna11-/- 

mice in the BALF from SftpC+/-;Gnaqfl/fl;Gna11-/- mice for 24 hours lead to the increased 

abundance of the M2a macrophage marker RELMα, as measured by immunofluorescence, 

which was substantially inhibited in the presence of an anti-IL-33 blocking antibody (Fig. 6, 

C and D). Together, these date suggest that the M2 macrophage polarization in the SftpC+/-

;Gnaqfl/fl;Gna11-/- mice is driven by the increased production of IL-33 by alveolar epithelial 

cells. 

 

Gq/11 signaling in alveolar epithelial cells transduces stretch-mediated generation of 

TGFβ in the lungs 

To assess the role of alveolar epithelial Gq/G11 signaling in stretch-mediated TGFβ 

generation, Gna11-/- mice and SftpC+/-;Gnaqfl/fl;Gna11-/- mice were exposed to high pressure 

ventilation to induce ventilator-induced lung injury (VILI). Mice of each genotype were 

ventilated for 60 min to a standardized plateau pressure (Gna11-/- mice: 37.93 ± 037 cm H2O; 

SftpC+/-;Gnaqfl/fl;Gna11-/- mice: 37.83 ± 038 cm H2O) that was designed to impart an 

equivalent degree of mechanical stress and stretch to each set of lungs. This period of high-

pressure ventilation (VT) was followed by 3 hours of non-injurious ventilation. Gna11-/- mice 

showed statistically significant increases in peak inspiratory pressure (Fig. 7A), plateau 

pressure (Fig. 7B), and lung elastance (Fig. 7C) after exposure to high VT, which is indicative 

of the development of lung injury. In contrast, SftpC+/-;Gnaqfl/fl;Gna11-/- mice were protected 

from the development of physiological responses associated with ventilator-induced lung 

injury (Fig. 7, A to C). There was no statistically significant difference in lung resistance 

between the two genotypes of mice (Fig. 7D). 

 



Protection from the development of ventilator-induced lung injury in SftpC+/-;Gnaqfl/fl;Gna11-

/- mice was linked to the inability of these animals to generate TGFβ1 in response to 

mechanical stretch (Fig. 7E). Lung TGFβ1 concentrations were substantially increased in 

Gna11-/- animals exposed to short-term, high-stretch ventilation compared with those in 

animals exposed to only non-injurious low ventilation pressures for 4 hours. These stretch-

induced increases in TGFβ1 were completely abrogated in SftpC+/-;Gnaqfl/fl;Gna11-/- mice. 

Although IL-33 concentrations were statistically significantly greater in the lungs of SftpC+/-

;Gnaqfl/fl;Gna11-/- mice than in the lungs of their Gna11-/- littermate controls, IL-33 

production in the lungs was not dependent on alveolar epithelial stretch (Fig. 7F), suggesting 

that Gq/G11 signaling has non-overlapping effects on the TGFβ and IL-33 signaling 

pathways. 

 

Discussion 

The aim of this study was to investigate the role of two key G protein signaling pathways, 

those mediated by Gq/G11 and G12/G13, in the regulation of alveolar epithelial homeostasis, 

and to understand the pathological consequences of disrupting these pathways within the 

alveoli. Because of the functional redundancy of closely related G proteins and the induction 

of compensatory processes, it was necessary to perform studies in animals in which pairs of 

G proteins were deleted. Embryonic lethality has been reported in both Gq/G11 (23) and 

G12/G13 (25) knockout animals; therefore, a cell-targeted approach was required in which 

pairs of G proteins were deleted only in SftpC-positive epithelial cells within the lung. 

Comparisons were made with Gna11-/- or Gna12-/- Cre-negative littermate control mice, 

which previously had no reported lung abnormalities. 

 

We did not find any phenotype associated with the alveolar deletion of both Gna12 and 



Gna13 with respect to lung development. Similarly, we did not find any phenotype associated 

with Gna11-/- animals, although we cannot exclude a role for these G proteins in response to 

lung injury. We did, however, show that deletion of both Gαq and Gα11 in SftpC-positive 

ATII cells led to a phenotype of impaired TGFβ signaling and enhanced IL-33 production. 

This resulted in M2 macrophage polarization and the increased expression of Mmp12 by 

macrophages, which resulted in changes within the lungs, including inflammation and 

alveolar airspace enlargement consistent with emphysema. Although we cannot completely 

exclude the possibility that the observed phenotype was primarily because of the alveolar 

deletion of Gnaq, we believe that this is unlikely for a number of reasons. First, most genetic 

models have not demonstrated any evidence of defects in the absence of Gαq alone. In the 

few cases in which Gαq deficiency promotes abnormalities, such as defective platelet 

activation (26) and the development of cerebellar ataxia (27), this is because Gα11 is not 

found in platelets (26) or is present at relatively low abundance in Purkinje cells (28). 

Second, these observations are consistent with biochemical data showing that GPCRs do not 

distinguish between Gαq and Gα11 (29-32) and that both G proteins regulate the same 

effectors (33, 34). Therefore, it is likely that the observed phenotype is the result of deletion 

of both the Gαq and Gα11 signaling molecules. 

 

We determined that impaired Gq/G11 signaling in alveolar epithelial cells led to two 

nonredundant, non-overlapping consequences in the alveoli. First, we observed reduced 

stretch-mediated TGFβ1 generation in the alveoli as measured by reduced TGFβ1 release in 

vivo, in addition to decreased amounts of active TGFβ and pSmad2, which were measured ex 

vivo in methacholine-treated lung slices from SftpC+/-;Gnaqfl/fl;Gna11-/- mice. This deficiency 

in TGFβ production in the alveoli ultimately resulted in altered macrophage functioning 

because of a reduction in Tgfbr1 expression and an increase in Mmp12 expression in alveolar 



macrophages. Second, we identified increased synthesis of IL-33 by alveolar epithelial cells, 

which promoted the polarization of alveolar macrophages towards an M2 phenotype in ex 

vivo experiments. These data confirm our previous in vitro findings that suggest that Gq/G11 

signaling is crucial for mediating the activation of TGFβ in alveolar epithelial cells (4), and 

highlight a hitherto unknown role for alveolar Gq/G11 signaling in suppressing IL-33 

production and maintaining alveolar macrophage homeostasis. It is likely that the Gq/G11-

dependent generation of TGFβ and suppression of IL-33 production is a fundamental 

pathway in the epithelium. Previous studies of mice deficient in Rac1 (a downstream effector 

of Gq/G11 signaling) specifically in airway epithelial cells demonstrated enhanced 

inflammatory responses, impaired TGFβ production, and exaggerated IL-33–dependent 

responses (35), with which our data are consistent. Moreover, the intestinal helminth 

Heligmosomoides polygyrus secretes proteins that induce TGFβ signaling (36) and inhibit IL-

33 (37), thus mimicking the effect of epithelial Gq/G11 signaling. 

 

Previous in vivo studies that have attenuated TGFβ signaling in the lung, either through 

whole-body deletion of Smad3 (5) or αvβ6 integrins (22, 38) or through epithelial cell–

specific deletion of TGFβRII (6), have shown mild pulmonary inflammation, epithelial 

airspace enlargement, and enhanced Mmp12 expression, consistent with our findings with the 

SftpC+/-;Gnaqfl/fl;Gna11-/- mice. However, the degree of inflammation and airspace 

destruction observed in the lungs of SftpC+/-;Gnaqfl/fl;Gna11-/- mice was considerably worse 

at an earlier stage of development than that reported in the previous studies. It is possible that 

the combination of increased expression of Mmp9 and Mmp12 within the BAL leukocytes of 

the SftpC+/-;Gnaqfl/fl;Gna11-/- mice may contribute to the exaggerated response seen in these 

animals, because both effects may play a role in the development of emphysema (22, 39). 

However, we believe that the severe phenotype most likely results from the combined effects 



of a failure of TGFβ activation on alveolar epithelial cells and an increase in their production 

of IL-33. IL-33 is associated with enhanced pulmonary inflammation and increased 

generation of ST2 and IL-10 (40) in addition to promoting the polarization of macrophages 

toward an alternatively activated (M2) state (41, 42). Increased epithelial IL-33 has also 

previously been linked to the development of COPD (43). 

 

These data demonstrate that SftpC+/-;Gnaqfl/fl;Gna11-/- mice have reduced amounts of TGFβ 

in their lungs which, in contrast with Gna11-/- mice, could not be increased in response to 

epithelial cell stretch after high-pressure ventilation in vivo or methacholine-induced 

contraction ex vivo. This is consistent with a failure of αvβ6 integrin–mediated activation of 

TGFβ, which requires force generation through RhoA-induced intracellular cytoskeletal 

reorganization (4, 44, 45). The phenotype of impaired αvβ6 integrin–mediated TGFβ 

activation is further supported by the reduced abundance of pSmad2 in alveolar macrophages 

and the reduced abundance of itgb6 mRNA in alveolar epithelial cells from SftpC+/-

;Gnaqfl/fl;Gna11-/- mice. Our previous findings suggested a critical role for Gαq in the 

regulation of αvβ6 integrin–mediated TGFβ activation independently of the abundance of αvβ6 

(4). However, TGFβ signaling increases the epithelial cell abundance of αvβ6 integrin by 

inducing itgb6 expression (46), which has led to the proposal of a TGFβ–αvβ6 integrin 

positive feed-forward loop (47). These data support this hypothesis, because sustained 

reduction of alveolar TGFβ activation in the SftpC+/-;Gnaqfl/fl;Gna11-/- mice led to reduced 

itgb6 expression in alveolar epithelial cells. 

 

Itgb6-/- mice are protected from the development of ventilator-induced lung injury (9), and 

our data demonstrate that SftpC+/-;Gnaqfl/fl;Gna11-/- mice are also protected from the 

deleterious effects of high-pressure ventilation, suggesting that Gq/11 signaling pathways are 



crucial for epithelial mechanotransduced signals that promote TGFβ activation. Furthermore, 

we observed that airspace enlargement in the SftpC+/-;Gnaqfl/fl;Gna11-/- mice developed 

postnatally, when spontaneous ventilation began, and was not apparent until the mice were 

four weeks of age. Therefore, we propose the hypothesis that spontaneous ventilation leads to 

cyclical alveolar stretch and the release of GPCR ligands that act through the Gq/G11 

pathway to promote alveolar TGFβ activation, suppress macrophage Mmp12 expression, and 

prevent the subsequent development of emphysema. However, further evidence is required to 

determine whether the stretch-induced production of TGFβ is directly linked to TGFβ 

activation by the αvβ6 integrin. 

 

We suggest that Gq/G11 signaling has non-overlapping effects on TGFβ activation and IL-33 

production. Although previous studies have suggested that IL-33 is a mechanically stimulated 

cytokine (48), we found no evidence that IL-33 production in the lungs was regulated by 

exposure to epithelial cell stretch. Therefore, it is likely that the enhanced IL-33 generation 

observed in the SftpC+/-;Gnaqfl/fl;Gna11-/- mice was driven by transcriptional signals rather 

than by mechanotransduction. TGFβ limits the production of IL-33 by macrophages (49); 

therefore, it is possible that the observed increase in IL-33 abundance in the SftpC+/-

;Gnaqfl/fl;Gna11-/- mice was a result of reduced TGFβ activity in the alveoli. However, we do 

not favor this hypothesis because, in contrast to the findings in the SftpC+/-;Gnaqfl/fl;Gna11-/- 

mice, we did not observe any change in IL-33 concentrations in the lungs of Itgb6-/- mice. 

 

In summary, our findings suggest that Gq/G11 signaling is required for two non-overlapping 

signaling pathways: the mechanotransduced generation of TGFβ and the transcriptional 

suppression of IL-33, both of which appear to be essential for the maintenance of alveolar 

macrophage homeostasis. Enhanced IL-33 production promotes the polarization of the 



alveolar macrophages to an M2 phenotype, whereas the failure of epithelial cells to generate 

TGFβ led to impaired Tgfbr1 expression in alveolar macrophages and the loss of TGFβ–

mediated suppression of MMP12 production by macrophages. Loss of the homeostatic 

control of alveolar macrophages results in widespread alveolar destruction and airspace 

enlargement associated with the development of emphysema. These data confirm the central 

role of Gq/G11 signaling in stretch-mediated alveolar TGFβ generation in vivo, reveal a 

hitherto unknown role for Gq/G11 signaling in the regulation of IL-33 by epithelial cells, and 

highlight a molecular pathway that is required to prevent ventilation-associated alveolar 

disease. 

 

Material and Methods 

Study design 

All animal experiments were designed to test a specific hypothesis or objective, with data 

being recorded and reported in accordance with the guidelines from the Fund for The 

Replacement of Animals in Medical Experiments (FRAME) and Animal Research: Reporting 

of In Vivo Experiments (ARRIVE). Phenotyping experiments were performed blind to 

genotype to minimize bias and with a factorial design to minimize confounding variables. 

Animals were assigned a six-digit identity code at weaning and were genotyped before 

analysis, but data collection was performed by researchers blinded to genotype. Initial studies 

were performed to establish the baseline phenotype of the mice and the variability of 

observed biochemical, morphological, and physiological parameters. For ventilator-induced 

lung injury and lung function experiments, mice were assigned to experimental groups based 

on genotype; however, experimental procedures, data collection, and analysis were 

performed by an investigator blinded to the allocation sequence and genotype. Studies were 

powered to detect a 1 standard deviation difference in endpoints using a power calculation 



assuming an 80% power at the 5% significance level, resulting in group sizes of 5 to 8 mice 

per group based on initial phenotyping data. Sample sizes were pre-determined for in vitro 

studies with isolated primary cells, including RNA analysis and gene array studies and based 

on large expected effect sizes required three to six mice of each genotype. 

 

Experimental animals 

Mice were housed under specific pathogen–free conditions, and all animal experiments were 

performed in accordance with the U.K. Animals (Scientific Procedures) Act 1986 and 

approved by the Animal Welfare and Ethical Review Committee at the University of 

Nottingham. The generation of floxed alleles of the genes encoding Gαq (Gnaq) and Gα13 

(Gna13) and of the null alleles for the genes encoding Gα11 (Gna11) and Gα12 (Gna12) has 

been described previously (23, 24). Mice constitutively deficient in Gna11 and containing 

floxed alleles of Gnaq or mice constitutively deficient in Gna12 and containing floxed alleles 

of Gna13 were crossed with mice expressing Cre recombinase under the control of the 

Surfactant Protein C promoter (SftpC-Cre) obtained from Brigid Hogan, Duke University 

(50). Mice were genotyped from DNA isolated from ear notch biopsies by polymerase chain 

reaction (PCR) analysis with allele-specific primers (table S1) and analyzed by 

electrophoresis on ethidium bromide–stained agarose gels as previously described (23, 24). 

The genetic background of the mice was predominantly C57BL6 (at least a sixth-generation 

backcross for Gαq/Gα11 and Gα12/Gα13 mice and at least fourth-generation backcross for 

SftpC-Cre mice). 

 

Antibodies 

Anti-mouse Gαq (Clone E17, sc-393, Santa Cruz Biotechnology, UK) and anti-IL-33 (Clone 

Nessy-1, ab54385, Abcam, UK) antibodies were used for Western blotting analysis. The 



following antibodies for immunohistochemistry or immunofluorescence staining were 

purchased from Abcam: anti-Sphk1 (ab71700), anti-mouse iNos (ab15323), anti-mouse 

RELMα (ab39626), anti-mouse IL-10 (ab9969), anti-mouse Gnaq (ab128060), and anti-

Gα13 (Clone EPR5436). Anti-mouse CD206 (Mannose Receptor) was obtained from 

Serotec, UK (MCA225). Anti-mouse IL-33 (AF3626) and anti-TGFβ-1,2,3 blocking 

antibody (clone 1D11) were purchased from R&D systems, UK. Anti-IL-33 (Bondy-1-1) 

blocking antibody was from Caltag Medsystems Ltd, UK. Biotinylated or Dylight488- and 

Dylight649-labelled secondary antibodies were purchased from VectorLabs and Jackson 

ImmunoResearch, respectively. Horseradish peroxidase (HRP)-conjugated secondary 

antibodies for Western blotting analysis were obtained from Dako, UK. 

 

Quantitative morphometry and mean linear intercept 

Mice were terminally anaesthetized with Euthatal (Merial Animal Health, UK) and the lungs 

and trachea were exposed. The lungs were perfused with phosphate-buffered saline (PBS) 

containing heparin (40 U/ml) through the left ventricle to remove all of the blood before the 

trachea was cannulated. Lungs were insufflated in situ with 10% neutral-buffered formalin at 

a constant pressure of 20 cm H2O, removed, and paraffin-embedded for the preparation of 

histological sections. Lung morphology was assessed in hematoxylin and eosin–stained 5-µm 

tissue sections. For each set of lungs, eight random fields were photographed across all lobes 

with a Nikon Eclipse 90i microscope at 10x magnification and NIS Elements Software v3.2. 

Images were overlaid with a 100-µm grid, and the mean linear intercept [defined as the linear 

sum of the lengths, in µm, of all lines in all frames counted divided by the number of 

intercepts (defined as an alveolar septa intersecting with a counting line)] was calculated with 

a method adapted from Dunnill (51). 

 



Lung function measurements by forced pulmonary maneuvers 

Eight-week-old mice were anesthetized with an intraperitoneal injection of ketamine (75 

mg/kg) and medetomidine hydrochloride (1 mg/kg) to maintain spontaneous breathing under 

anesthesia. Mice were tracheostomized, placed in a body plethysmograph, and connected to a 

computer-controlled ventilator (Forced pulmonary maneuver system; Buxco Research 

Systems, USA). An average breathing frequency of 120 breaths/min was imposed on the 

anesthetized animal by pressure-controlled ventilation until a regular breathing pattern and 

complete expiration at each breathing cycle were obtained. To measure functional residual 

capacity (FRC), ventilation was stopped at the end of expiration through the immediate 

closure of a valve located proximally to the endotracheal tube. Pressure changes at the mouth 

and in the bodybox after spontaneous breathing maneuvers against a closed valve were 

recorded to calculate the FRC (Boyle’s law). To measure the total lung capacity (TLC), 

residual volume (RV), inspiratory capacity (IC), and vital capacity (VC), the quasistatic 

pressure volume maneuver was performed. In this maneuver, the lungs are inflated to a 

standard pressure of +30 cm H2O, which was followed by a slow exhalation until a negative 

pressure of -30 cmH2O was reached. The quasi-static compliance was defined as the 

volume:pressure ratio at 50% of the expiration (Cchord50). For the fast flow volume 

maneuver, lungs were first inflated to +30 cm H2O (TLC) and immediately afterwards 

connected to a highly negative pressure to enforce expiration until the RV reached –30 cm 

H2O. Forced expiratory flows (PEF and FEF), times of expiration and inspiration (Te, Ti), 

and forced expiratory volumes (forced expiratory volume at 100 and 200 ms, FEV100 and 

FEV200, respectively) were recorded during this maneuver. Suboptimal maneuvers were 

rejected, and for each test in every single mouse at least three acceptable maneuvers were 

conducted to obtain a reliable mean for all numeric parameters. 

 



Ventilator-induced lung injury 

Mice were anesthetized (80 mg/kg ketamine:8 mg/kg xylazine) and surgically instrumented 

for ventilation as described in detail previously (52) by an experimenter blinded to genotype. 

In brief, animals were tracheostomized and connected to a custom-made 

ventilator/pulmonary function testing system. The left carotid artery was cannulated to enable 

continual monitoring of arterial blood pressure, removal of samples for blood gas analysis at 

predetermined intervals, and infusion of fluids [heparin (10 U/ml) in 0.9% NaCl, 0.3 

ml/hour]. During surgery and the subsequent stabilization period, mice were ventilated with a 

noninjurious strategy [8 to 9 ml/kg tidal volume (VT), 3 cm H2O positive end expiratory 

pressure (PEEP), 120 breaths per minute] using 100% O2. Lung volume history was 

standardized by sustained inflation, and baseline respiratory mechanics were evaluated by the 

end-inflation occlusion technique. After baseline measurements were made, VT was increased 

to produce stretch-induced lung injury. Specifically, ventilation was standardized with a 

plateau pressure of 37.5 to 38.5 cm H2O, which was designed to ensure that mice of different 

genotypes were exposed to an equivalent degree of mechanical stress to stretch the lungs. 

Additionally, PEEP was set to zero, respiratory rate was 80 breaths per minute, and inspired 

gas was changed to 96% O2/4% CO2 to prevent hypocapnia. Animals were ventilated with 

this constant tidal volume for 60 min or until airway plateau pressure had increased by 15%, 

whichever occurred first. Ventilation was then returned to match the baseline “pre-stretch” 

strategy, and maintained for a further 3 hours. Sustained inflation maneuvers were performed 

every 30 min during this “non-injurious” ventilation period to reduce the development of 

atelectasis. Anesthesia was maintained by bolus intraperitoneal administration of 

ketamine:xylazine (40 mg/kg:4 mg/kg) every 20 to 25 min. Animals were terminated by 

overdose of anesthetic followed by exsanguination. The lungs were lavaged with 750 µl of 

ice-cold PBS containing phosphatase inhibitor cocktail (Calbiochem), and the recovered fluid 



was centrifuged at 210g for 5 min at 4°C. Aliquots of supernatant and the lavage cell pellet 

were frozen at -80°C. After lavage, the chest wall was opened and the right lung was tied off 

at the hilum, removed, and snap-frozen in liquid N2. Finally, the left lung was inflated with 

4% paraformaldehyde at 20 cm H2O before being embedded in paraffin for histological 

analysis. 

 

Precision-cut lung slices 

Mice were terminally anaesthetized as described earlier, exsanguinated, and then had their 

lungs and trachea exposed. The lungs were perfused with PBS containing heparin (200 U/ml) 

through the left ventricle to remove all of the blood. The trachea was cannulated and the 

lungs were filled with 1.2 ml of 1% low-melting point agarose pre-warmed to 42°C, which 

was followed by 0.3 ml of air. The lungs were cooled by covering them with ice-cold PBS to 

enable the agarose to set, carefully removed, and the lobes were dissected. Lung slices of 

150-µm thickness were prepared from each lung lobe with a VT1200S Vibratome (Leica). 

Lung slices (2 per well) were cultured overnight in serum-free DMEM containing penicillin 

and streptomycin before being stimulated. To induce contraction of the lung slices, they were 

repeatedly stimulated for 10 min with 100 µM methacholine at one-hour intervals for 8 hours. 

After they were stimulated, the lung slices were washed in PBS and homogenized in protein 

lysis buffer [20 mM Tris-HCl (pH 7.4), 137 nM NaCl, 2 nM EDTA, 25 mM β-

glycerophosphate, 1 nM Na3VO4, 1% Triton X-100, 10% glycerol]. This buffer was 

supplemented with leupeptin, phenylmethylsulfonyl fluoride (PMSF), protease inhibitor 

(protease inhibitor mixture, Roche Applied Science), dithiothreitol (DTT), and phosphatase 

inhibitor (PhosStop, Roche Applied Science) . 

 

Western blotting 



The amounts of Gαq or IL-33 in whole-cell extracts of ATII cells were determined by 

Western blotting analysis. Protein samples (30 µg per lane) were subjected to electrophoresis 

on a 10% SDS-polyacrylamide gel and blotted onto a polyvinylidene fluoride (PVDF) 

membrane. After blocking for 1 hour (in TBS, 5% nonfat milk, 0.1% Tween 20), the 

membrane was incubated either overnight at 4°C with monoclonal anti-Gαq antibody in 

blocking buffer or for 48 hours with anti-IL-33 antibody (Nessy-1). After being washed [with 

PBS (pH 7.4), 0.3% Tween-20] the membrane was incubated at room temperature in 

blocking buffer with the appropriate HRP-conjugated secondary antibody for 1 or 2 hours for 

the detection of Gαq or IL-33, respectively. The membrane was incubated with Enhanced 

Chemiluminescence (ECL) Western blotting detection reagent and visualized by exposure to 

Hyperfilm-ECL. To quantify the differential production of IL-33 in the alveolar epithelial 

cells, densitometry was performed with Adobe Photoshop CC2014 software and the mean 

pixel densities were calculated. Densitometry data are presented as the ratio of IL-33 

abundance to that of GAPDH in cells independently isolated from three mice per group. 

 

RNA isolation and quantitative RT-PCR 

Total RNA was extracted from lung samples, purified ATII cells, and BAL cells by 

homogenization in Trizol B (Invitrogen) and was processed according to the manufacturer’s 

instructions. Samples were reverse-transcribed into complementary DNA (cDNA) with 

Moloney murine leukemia virus reverse transcriptase (for BAL cell pellets; Promega, UK) or 

Superscript II reverse transcriptase (for lung samples and ATII cells; Invitrogen, UK). The 

cDNA was subjected to quantitative RT-PCR analysis with gene-specific primers (table S1). 

Amplification was performed with an MXPro3000 (Stratagene, UK) with KapaSybr FastTaq 

(Anachem, UK) on the following program: initial denaturation at 95°C for 3 min followed by 

40 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 10 s. Amplification of a single DNA 



product was confirmed by melting curve analysis. Data were analyzed relative to the 

abundances of the housekeeping genes hypoxanthine phosphoribosyltransferase 1 (Hprt) (for 

BAL samples) or glucuronidase beta (Gusb) (for whole-lung and ATII samples) and 

expressed as the fold-change in mRNA abundance using the ∆∆Ct equation as described 

previously (53). 

 

Bronchoalveolar lavage and cytospin analysis 

Animals were terminally anaesthetized as described earlier, their tracheae were cannulated, 

and their lungs were washed with eight sequential 0.5-ml aliquots of cold PBS or PBS 

containing 1x phosphatase inhibitor solution (ActivMotif, UK). Aliquots were pooled and 

centrifuged, and the cell pellets were resuspended in PBS or PBS containing 1x phosphatase 

inhibitor solution (ActivMotif) for the analysis of pSmad2 and macrophage culture 

experiments. Cells were counted with a Sceptre 2.0 automated cell counter (Millipore, UK) 

and cell concentrates were cytospun onto glass slides and stained with Diff-Quick (Dade 

Diagnostics). Cell subsets were counted under ×40 objective magnification (200 cells per 

slide). Designation of alveolar macrophages as “normal” or “enlarged” was made visually 

based on cell size. The enlarged macrophages observed only in SftpC+/-;Gnaqfl/fl;Gna11-/-  

mice were identified after cytospin analysis by their increased cytoplasmic surface area when 

compared with alveolar macrophages from Gna11-/-, Gna12-/-, or SftpC+/-;Gna12-/-;Gna13fl/fl 

animals. 

 

Culture of BAL cells 

BAL cells were collected into serum-free Dulbecco’s Modified Eagle Medium (DMEM, 

Lonza. UK) containing glutamine, penicillin, and streptomycin and pelleted by centrifugation 

at 150g for 5 min at 4°C. BAL fluid (BALF) was collected, and BAL cells were pooled from  



Gna11-/- mice (n = 10 to 24 mice) and SftpC+/-;Gnaqfl/fl;Gna11-/- mice (n = 3 to 5). For 

crossover experiments in which the effect of secreted factors in BALF on gene expression 

were examined, 2.5 x 105 BAL cells from Gna11-/- mice or SftpC+/-;Gnaqfl/fl;Gna11-/- mice 

were resuspended in 1 ml of the appropriate BALF and then were plated into 12-well plates 

for RNA endpoint analysis or in 250 μl of BALF and then were plated into 8-well chamber 

slides for immunofluorescent staining. Cells were incubated with BALF for 24 hours at 37°C, 

non-adherent cells were removed by washing, and the adherent macrophages were lysed by 

the addition of Trizol B before RNA was isolated or were fixed in ice-cold 100% methanol 

for 10 min before immunofluorescent staining was performed. For cytokine stimulation or 

blocking experiments, serum-free DMEM or BALF was mixed with TGFβ (2 ng/ml), anti-

TGFβ antibody (5 µg/ml, 1D11), or anti-IL-33 antibody (1.5 µg/ml, Bondy-1-1) and 

incubated with BAL cells in culture for 24 hours. 

 

Immunostaining and image analysis 

Formalin-fixed lung tissue sections (5-µm thickness) were de-paraffinized and re-hydrated 

before antigen retrieval by being microwaved in 10 mM citric acid buffer (pH 6.0). 

Endogenous peroxidase activity in the sections was blocked with methanol containing 3% 

H2O2 for 15 min at room temperature. Nonspecific binding was blocked with 5% normal 

serum before the sections were incubated overnight with primary antibody at 4°C, which was 

followed by a 30- to 60-min incubation with an appropriately labeled secondary antibody at 

room temperature. All sections were visualized with DAB and counterstained with 

hematoxylin and mounted in DPX (Sigma-Aldrich, UK) for immunohistochemical analysis 

or were counterstained with DAPI (Invitrogen, UK) for 5 min and mounted in Prolong Gold 

Antifade (Invitrogen) for immunofluorescence analysis. To stain isolated alveolar 

macrophages, methanol-fixed cells were permeabilized with 0.1% triton X-100 for 10 min 



before being blocked in 5% normal serum, incubated overnight with primary antibody at 4°C, 

and then incubated for 30 to 60 min with an appropriately fluorescently labeled secondary 

antibody at room temperature. All antibody incubations were performed in staining buffer 

containing PBS, 5% serum, and 0.1% BSA. Slides were washed in PBS (Sigma-Aldrich). 

Images were captured with a Nikon 90i (for immunohistochemistry) or a Nikon Ti confocal 

microscope (for immunofluorescence) with NIS-Elements Software v3.2. To quantify the 

staining of isolated alveolar macrophages, individual cells were identified with NIS-Elements 

Software v3.2, and the total numbers of pixels for both antibody-stained and negative control 

cells were calculated. Pixel counts were determined in 40 to 100 individual cells from images 

captured in 5 to 20 randomly selected fields of view. The average number of pixels per cell in 

the unstained sections (negative control) were subtracted from the values calculated for 

antibody-stained sections to eliminate autofluorescence, and the data were presented as the 

number of pixels/cell. 

 

Isolation of type II alveolar epithelial cells 

Mice were terminally anaesthetized as described earlier, exsanguinated, and had their lungs 

and trachea exposed. The lungs were perfused with PBS containing heparin (200 U/ml) 

through the left ventricle to remove all of the blood. The trachea was cannulated and 

bronchoalveolar lavage was performed with eight sequential 0.5-ml aliquots of cold PBS to 

remove leukocytes. The lungs were filled with 1 ml Dispase (BD Pharmingen, UK) and 

allowed to collapse naturally before the instillation of 0.5 ml of 1% low melting point agarose 

(Promega) pre-warmed to 42°C. The lungs were then covered in ice for 2 min to enable the 

agarose to set before they were removed. The lungs were incubated at room temperature for 

45 min in 2 ml of Dispase and then washed briefly in ice-cold PBS before being transferred 

to petri dishes containing DMEM with 10% FCS, glutamine, and DNase 1(100 U/ml, Sigma). 



Lung tissue was carefully separated from the large airways and blood vessels before the cell 

suspension was dissociated. The crude cell suspension was sequentially filtered through 70- 

and 40-µm tissue sieves (BD) and then plated into plastic petri dishes coated with mouse IgG 

(1.5 mg IgG/plate). Nonadherent cells were collected after a 1-hour incubation at 37°C and 

were pelleted by centrifugation at 150g for 5 min. Contaminating leukocytes were removed 

by negative sorting with magnetic beads labeled with sheep anti-rat CD16/32 and CD45 

antibodies (Dynabeads, Dynal) for 1 hour at 4°C according to the manufacturer’s 

instructions. The remaining cells were resuspended in Bronchial Epithelial Growth Medium 

(BEGM; Lonza) without hydrocortisone and containing keratinocyte growth factor (10 

µg/ml, R&D Systems) and the purity of the ATII cell suspension was assessed by modified 

Papanicolaou staining of cell cytospins as previously described (54). The cells were plated 

onto collagen-coated, 24-well plates and ATII cells were grown to confluence. Cell purity 

was routinely >75%, with the major contaminating cells being fibroblasts. For experiments in 

which ATII cells were to be used for mRNA analysis, an additional purification step was 

added after the completion of the standard protocol in which epithelial cells in the cell 

suspension were enriched by positive sorting with sheep anti-rat magnetic beads labeled with 

an anti-E-cadherin antibody (Dynabeads, Dynal). After washing to remove the bead-free 

cells, the mixture of beads and ATII cells was immediately mixed with Trizol B reagent. 

 

ELISA/Luminex analysis 

Total TGFβ1 concentrations in murine lung homogenates were measured after acid-activation 

of samples with a murine TGFβ1 Quantikine ELISA kit (R&D Systems). Concentrations of 

active TGFβ secreted into lung slice supernatants were also determined with this ELISA kit, 

but without acid activation. The concentrations of soluble ST2 were measured in lung 

homogenates and BALF with a mouse ST2/IL-1 R4 Quantikine ELISA Kit (R&D Systems), 



whereas the concentrations of IL-33, IL-4, IL-10, and IL-13 were assessed with a customized 

mouse Magnetic Luminex Screening Assay (R&D Systems). Additional IL-33 analysis was 

performed with a mouse IL-33 ELISA kit (R&D Systems). All assays were performed 

according to the manufacturers’ instructions. 

 

Measurement of pSmad2 by ELISA 

Nuclear protein was prepared from BAL cells with a Nuclear Extract kit (ActivMotif) 

according to the manufacturer’s protocol. To analyze lung slices, total protein extracts were 

generated according to the manufacturer’s instructions (Cell Signalling Technologies, UK). 

The amounts of pSmad2 were measured in 10 µg of nuclear protein (BAL cells) or 10 µg of 

total protein (lung slices) with a solid-phase Pathscan PhosphoSmad2 (Ser465/467) sandwich 

ELISA kit (Cell Signalling Technologies, UK) according to the manufacturer’s instructions. 

 

Microarray analysis 

Total RNA was assessed quantitatively on a Nanodrop and qualitatively (RIN>7) by 

Bioanalyser (Agilent, UK). After the quantity and quality of RNA were assessed, 10 ng of 

total RNA was used to prepare microarray hybridization probes with Epistem’s RNAamp 

RNA amplification kits (Epistem, Manchester, UK). After fragmentation the biotinylated 

cRNA was hybridized to Genechip Murine MOE430 2.0 microarrays (Epistem). After 

hybridization, the microarrays were washed and scanned with Genechip Scanner 7G. 

Microarray data were background-corrected, Log2-transformed, and normalized with Robust 

Multi-array Average (RMA), followed by quantile normalization, and the RMA data from all 

of the arrays that passed quality control were analyzed with Partek Genomics Suite version 

6.5. Principle Component Analysis (PCA) was used to interrogate the effects of all of the 

tracked and recorded experimental technical factors (dates, yields, randomization order, etc.) 



on overall cohort data structure. Multivariate analysis of variance (ANOVA) was applied 

within Partek GS software for each pairwise comparison of groups using the Method of 

Moments. To further rank or prioritize genes that might be useful as candidate biomarkers, 

the degree of change in RNA abundance, or fold change, was used to select genes that 

differed in expression statistically significantly by one-way ANOVA (unadjusted P value of 

< 0.05) between compared groups and also exhibited a two-fold or greater change in 

expression. Further selection was performed by establishing overlaps between treatment 

groups. Further investigation of biological relevance was performed with Ingenuity IPA 

software. 

 

Statistical analysis 

All statistical analyses were performed with GraphPad Prism 6 software. Data were assessed 

for normality. Where differences between two groups were measured, the pooled mean 

values were compared with unpaired t tests. Comparisons between more than two groups 

were made by one-way ANOVA with Bonferroni or Dunn-Šidák multiple testing corrections 

applied to post-hoc, pairwise comparisons. Comparisons between groups over multiple time 

points were made by repeated measures ANOVA. Corrected P values < 0.05 were considered 

to be statistically significant. 

 

Supplementary materials 
Fig. S1 Characterization of alveolar epithelial cell–specific, G protein–deficient mouse 
colonies. 
Fig. S2 Histological analysis of littermate control mice. 
Fig. S3. Loss of epithelial Gαq/Gα11 signaling leads to altered lung function. 
Fig. S4 Effect of the deficiency in epithelial Gq/11 signaling on the concentrations of TH2 
cytokines and ST2 in the lung. 
Table S1. Sequences of genotyping primers. 
Table S2. Sequences of RT-PCR primers. 
Data file S1. Affymetrix gene array data. 
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Fig. 1. Age-related morphological changes in the lungs of mice with homozygous 

deficiency in Gαq and Gα11 in alveolar epithelial cells. (A) Hematoxylin and eosin (H&E) 

staining of lung sections of SftpC+/-;Gnaqfl/fl;Gna11-/- mice at 2 to 24 weeks of age. Images 

are representative of three to ten mice/genotype. (B) Mean linear intercept analysis of 

airspace size in Gna11-/- mice (hatched bars) and SftpC+/-;Gnaqfl/fl;Gna11-/- mice (solid bars). 

Data are means ± SEM of three to ten mice/group. (C) FEV100/FVC was measured by 

invasive plethysmography of the indicated mice at 8 weeks of age. Data are means ± SEM of 

six mice/group. (D to F) The relative abundances of Mmp2 mRNA (D), Mmp9 mRNA (E), 

and Mmp12 mRNA (F) in BAL leukocytes from 6- to 8-week-old Gna11-/- (n = 3) and 

SftpC+/-;Gnaqfl/fl;Gna11-/- (n = 6) mice were determined by  RT-PCR analysis. *P < 0.05; **P 

< 0.01; ***P < 0.001 ; ****P < 0.0001 by one-way ANOVA with Bonferroni corrected post-

hoc comparisons (B) or by unpaired t test (C to F). Scale bars, 100 μm. 

 

Fig. 2. Decreased TGFβ activation after disruption of the Gq/G11 signaling pathway in 

alveolar epithelial cells. (A) Total TGFβ concentrations in lung homogenates from the 

indicated mice were measured by ELISA Data are from 10 mice/group and means are 

represented by horizontal bars. Each symbol represents an individual mouse. (B) 

Concentrations of spontaneously active TGFβ in supernatants from lung slices of the 



indicated mice that were left unstimulated or were stimulated by repeated administration of 

100 µM methacholine. Data are means ± SEM of three mice/group. (C) Lung slices from the 

indicated mice were left untreated or were stimulated repeatedly with 100 µM methacholine. 

The amounts of pSmad2 in the lung slices were measured by ELISA. Data are means ± SEM 

of four mice/group. (D) BAL cells from the indicated mice were cultured in the presence or 

absence of TGFβ (2 ng/ml) for 1 hour before the concentrations of pSmad2 in the cells were 

determined. Data are means ± SEM of four mice/group. (E and F) The relative abundances of 

Itgb6 mRNA (E) and Tsp1 mRNA (F) in ATII cells from Gna11-/- mice (n = 3) and SftpC+/-

;Gnaqfl/fl;Gna11-/- mice (n = 3) were determined by RT-PCR analysis. The abundances of the 

indicated mRNAs were normalized to that of Gusb mRNA. Data are means ± SEM. *P < 

0.05; **P < 0.01; ***P < 0.001 when analyzed by unpaired t test (A, E, and F) or one-way 

ANOVA with Dunn-Šidák corrected post-hoc comparisons (B to D). 

 

Fig. 3. Aberrant responses in alveolar macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/- mice. 

(A) The relative abundances of Tgfbr1 and Tgfbr2 mRNAs in BAL leukocytes from Gna11-/- 

and SftpC+/-;Gnaqfl/fl;Gna11-/- mice were determined by RT-PCR analysis. Data are means ± 

SEM of six mice per group. (B) The relative abundance of Tgfbr1 mRNA in alveolar 

macrophages from SftpC+/-;Gnaqfl/fl;Gna11-/- mice cultured for 24 hours in BALF from 

SftpC+/-;Gnaqfl/fl;Gna11-/- mice or from Gna11-/- mice in the presence or absence of an anti-

TGFβ antibody (α-TGFβ, 5 µg/ml). Data are means ± SEM and combined from three 

independent experiments with cells, BALF, or both pooled from 10 to 24 Gna11-/- mice per 

experiment or three to five SftpC+/-;Gnaqfl/fl;Gna11-/- mice per experiment. (C) The relative 

abundances of Tgfbr1 and Tgfbr2 mRNA in alveolar macrophages from SftpC+/-

;Gnaqfl/fl;Gna11-/- mice that were left unstimulated or were stimulated with TGFβ (2 ng/ml) 

for 8 hours were determined by RT-PCR. Data are means ± SEM of six mice per group. (D 



and E) The relative abundances of Mmp12 mRNA in alveolar macrophages isolated from 

Gna11-/- mice and cultured for 24 hours in BALF from Gna11-/- mice or SftpC+/-

;Gnaqfl/fl;Gna11-/- mice in the presence or absence of (D) TGFβ (2 ng/ml) or (E) anti-TGFβ 

antibody (5 µg/ml) were determined by RT-PCR. Data are combined from four independent 

experiments with cells, BALF, or both pooled from 10 to 24 Gna11-/- mice per experiment or 

three to five SftpC+/-;Gnaqfl/fl;Gna11-/- mice per experiment. The abundances of the indicated 

mRNAs were normalized to that of Hprt mRNA. Data are means ± SEM. *P < 0.05; **P < 

0.01; ***P < 0.001 when analyzed by unpaired t test (A) or one-way ANOVA with Dunn-

Šidák corrected post-hoc comparisons (B to D). 

 

Fig. 4. Accumulation of M2 macrophages in the lungs of mice with Gαq/Gα11-deficient 

alveolar epithelial cells. (A) High-power magnified image of enlarged and vacuolated cells 

(marked with arrows) in the alveoli of SftpC+/-;Gnaqfl/fl;Gna11-/-mice. Images are 

representative of three experiments. (B) Immunofluorescent staining of F4/80-positive cells 

(marked with arrows) in the lungs of SftpC+/-;Gnaqfl/fl;Gna11-/- mice. Images are 

representative of three experiments. (C) Total cell counts in BALF isolated from the 

indicated mice. (D) Cytospin analysis of BAL leukocyte populations isolated from the 

indicated mice and stained with Diff-Quik. (E) Analysis of alveolar macrophage morphology. 

The percentages of normal and enlarged macrophages in the BALF of the indicated mice 

were calculated. (F and G) Immunofluorescence staining (left) and quantification of M2 

markers (right; number of pixels/cell) in BAL cells from Gna11-/- and SftpC+/-

;Gnaqfl/fl;Gna11-/- mice for (F) RELMα, mannose receptor, Sphk1, and iNOS and (G) IL-10. 

Data in (C) and (E) are means ± SEM of three to ten mice per genotype. Data in (F) and (G) 

are means + SEM of the pixel counts/cell from 30 to 80 individual cells pooled from two 

independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 when 



analyzed by one-way ANOVA with Bonferroni corrected post-hoc comparisons (C) or by 

unpaired t test (E). All experiments were performed with 6-week-old mice. Scale bars, 20 

µm. 

 

Fig. 5. Increased alveolar IL-33 production in the absence of Gq/11 signaling. (A) 

Hierarchical cluster analysis of differentially expressed genes in epithelial cells from SftpC+/-

;Gnaqfl/fl;Gna11-/-, Gna11-/-, Gna12-/-, and SftpC+/-;Gna13fl/fl;Gna12-/- mice (n = 3 

mice/genotype). (B) Top: Alveolar epithelial cells from the indicated mice were analyzed by 

Western blotting with antibodies against the indicated proteins. Bottom: Densitometric 

analysis of the relative abundance of IL-33 protein normalized to that of GAPDH. Data are 

means ± SEM of three mice/genotype. (C and D) Low-power (C) and high-power (D) 

magnified images of immunohistochemical staining for IL-33 in the lungs of Gna11-/- and 

SftpC+/-;Gnaqfl/fl/Gna11-/- mice. Images are representative of three mice/genotype. (E) The 

amounts of IL-33 in lung homogenates from Gna11-/- and SftpC+/-;Gnaqfl/fl;Gna11-/- mice 

were determined by ELISA. Data are from 11 mice/genotype and means are presented by 

horizontal bars. (F) ST2 concentrations in BALF from Gna11-/- mice and SftpC+/-

;Gnaqfl/fl/Gna11-/- mice were determined by ELISA Data are from 8 mice/genotype and 

means are presented by horizontal bars. (G) The concentrations of IL-33 in lung homogenates 

from Itgb6-/- mice and their wild-type (WT) littermate controls were determined by ELISA. 

Data are from 5 or 6 mice/genotype and means are presented by horizontal bars. *P < 0.05; 

**P < 0.01; ***P < 0.001 by unpaired t test. Scale bars, 20 µm (C) and 10 µm (D). 

 

Fig 6. Regulation of alveolar macrophage M2 phenotype by IL-33. (A and B) The relative 

abundances of Il10 (A) and Arg1 and Sphk1 (B) mRNAs in alveolar macrophages that were 

isolated from SftpC+/-;Gnaqfl/fl;Gna11-/- mice and cultured for 24 hours in BALF from either 



Gna11-/- mice or SftpC+/-;Gnaqfl/fl;Gna11-/- mice in the presence or absence of TGFβ (2 

pg/ml) or anti–IL-33 blocking antibody (1.5 µg/ml). Data are combined from three 

independent experiments with cells pooled from 10 to 24 Gna11-/- mice and 3 to 5 SftpC+/-

;Gnaqfl/fl;Gna11-/- mice per experiment. (C and D) Immunofluorescence analysis (C) and 

quantification (D) of RELMα abundance in alveolar macrophages isolated from Gna11-/- 

mice and cultured for 24 hours in BALF from SftpC+/-;Gnaqfl/fl;Gna11-/- mice in the presence 

or absence of anti-IL-33 blocking antibody (1.5 µg/ml). Data are combined from two 

independent experiments with cells pooled from 10 to 24 Gna11-/- mice and BALF isolated 

from 3 to 5 SftpC+/-;Gnaqfl/fl;Gna11-/- mice/experiment. Quantification was performed on 40 

to 100 cells per treatment group in images captured from 5 to 20 fields of view. *P < 0.05; 

****P < 0.0001 by one-way ANOVA with Dunn-Šidák corrected post-hoc comparisons (A) 

or by unpaired t test (D). Scale bars, 20 µm. 

 

Fig. 7. Gq/11-dependent signaling pathways regulate stretch-mediated TGFβ 

production in the lungs. (A and B) Changes in peak inspiratory pressure (A) and plateau 

pressure (B) during the high-stretch (1 hour) and normal (low) ventilation periods (3 hours) in 

Gna11-/- and SftpC+/-;Gnaqfl/fl;Gna11-/- mice. (C and D) Effects of high stretch for 1 hour on 

lung elastance (C) and resistance (D) in the indicated mice. (E and F) Concentrations of 

TGFβ (E) and IL-33 (F) in the lungs of the indicated mice exposed to normal ventilation 

alone (4 hours) or high stretch for 1 hour followed by 3 hours of normal ventilation. 

Statistical analysis was performed by repeated measured ANOVA (A to D) or by one-way 

ANOVA with Dunn-Šidák corrected post-hoc comparisons (E and F). ****P < 0.0001. Data 

are means ± SEM (A to D) or calculated mean values (E and F) from four to nine mice/group. 
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