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Abstract: This paper presents a comparison of the results obtained from experiments and CFD studies of slug 

flow in a vertical riser. A series of two experimental investigations were carried out on a 6 m vertical pipe with a 

0.067 m internal diameter charged with an air–silicone oil mixture. For the first set of experiments, the riser was 

initially full of air, and then liquid and gas flows set to liquid and gas superficial velocities = 0.05 and 0.344 

m/s, respectively, electrical capacitance tomography (ECT) and wire mesh sensor (WMS) transducers were 

employed. In the second one, the riser was initially full of (static) liquid, and then liquid and gas flows set to 

liquid and gas superficial velocities = 0.05 and 0.344 m/s, respectively, only ECT was used. A characterization 

of the observed slug flow regimes was carried out. This includes the evaluation of the instantaneous distribution 

of the phases over the pipe cross -section, the Probability Density Function (PDF) of void fraction, time series of 

cross-sectional void fraction, Power Spectral Density (PSD), structure velocity of the Taylor bubble, lengths of 

the liquid slug and Taylor bubble and void fractions in the liquid slug and Taylor bubble. The  simulation results 

were validated both qualitatively and quantitatively against experimental data. A reasonably good agreement 

was observed between the results of the experiment and CFD.   

Keywords:  CFD, ECT, VOF, Slug flow, air–silicone oil, riser, PDF, void fraction, PSD, Taylor bubble length, velocity  

 

1. Introduction: 

Slug flow in a vertical riser is a very common flow regime under normal operating conditions 

of a two-phase flow facility, such as an oil production riser. One feature of slug flow is the 

acceleration of the liquid phase to form fast moving liquid slugs, which can carry a 

significant amount of liquid with high kinetic energy. This is potentially hazardous to the 
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structure of the flow transport system and processing equipment due to the strong oscillating 

pressure produced by the mechanical momentum of the slugs.  

In oil production, the presence of liquid slugs in the riser gives an irregular output in terms of 

gas and liquid flow at either the outlet to the system or the next processing stage. This can 

pose challenges to the design and operation of such flow systems. The pressure drop 

experienced for slug flow regimes is substantially higher when compared to other flow 

regimes, and consequently the maximum possible length of a liquid slug that might be 

encountered needs to be known. Often, slug catching devices are used to collect the slugs, 

and avoid any damage to the downstream equipment. For the design of such slug catchers, it 

is important to know what kind of slugs to anticipate.  For that reason, it is important to study 

the behaviour of slug flow in great detail for the optimal, efficient and safe design and 

operation of two-phase gas–liquid flow systems. 

A considerable amount of research has been devoted to the study of this two-phase flow 

regime. The important question of when and how these slugs are formed has received much 

attention from research workers: [1–5] among others. A critical review of this topic is given 

by Fabre and Line [6]. However, there remains much to be investigated and understand about 

that flow pattern. In particular, deeper investigation is needed to attain a thorough 

understanding of the internal structure of slug flow. Moreover, reports on slug flow behaviour 

with fluids which are relevant to the industry are limited. Empirical correlations and 

mechanistic models have been presented in the literature. These are mainly one-dimensional 

approaches that cannot fully characterize the flow. The limitations of one-dimensional 

models may be addressed by the use of Computational Fluid Dynamics (CFD). The 

applications of CFD to investigate multiphase flow are highly dependent on the flow pattern 

under study, as different closure models are needed for different flow regimes. These models 
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require to be validated to gain confidence in their use. The validation of CFD models requires 

experimental data that characterize the important flow parameters over a range of liquid and 

gas flow rates.  

In this work, different slug flow characteristics (e.g. void fraction in liquid slug and Taylor 

bubble, lengths of liquid slug and Taylor bubble, slug frequency, structure velocity) are 

determined using the results of experiments and the solutions to the CFD models. To validate 

the CFD models the results were compared against the corresponding experimental data. 

2. Experimental Methodology: 

The experimental investigations were carried out on an inclinable pipe flow rig within the 

Chemical Engineering Laboratories at the University of Nottingham. The details of this 

experimental facility may be found in Azzopardi et al. [7] and [8–10]. In brief: the 

experimental test section of the facility consists of a transparent acrylic pipe of 6 m length 

and 0.067 m internal diameter. The test pipe section may be rotated on the rig to allow it to 

lay at any inclination angle of between -5 to 90o to the horizontal. For the experiments 

reported in this paper the rig test pipe section was mounted as a vertical riser (an inclination 

of 900 to the horizontal). It is worthy of mention that full-experimentation in risers of this 

magnitude and other larger ones is expensive and therefore a more cost-effective approach 

for exploring the behaviour of two-phase flow in these risers is by using validated CFD 

model simulations. 

The resultant flow patterns obtained from two sets of experimental campaigns involving air–

silicone oil flow rates were recorded using electrical capacitance tomography (ECT) and wire 

mesh sensor (WMS). A detailed description of theory behind the ECT technology can be 

found in [7], and [11–12]. In this study, a ring of two measurement electrodes were placed 

around the circumference of the riser at a given height above the injection portals at the 
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bottom of the 6 m riser section. The use of two such circumferential rings of sensor 

electrodes, located at a specified distance apart (also known as twin-plane sensors), enabled 

the determination of the rise velocity of any observed Taylor bubbles and liquid slugs. The 

twin-plane ECT sensors were placed at a distance of 4.4 and 4.489 m upstream of the air–

silicone oil mixer, and injection portal, located at the base of the riser. A flow chart of the 

various experimental measurements and the calculated parameters that characterise the flow 

are presented in Table 1.  

The capacitance WMS placed at 4.92 m away from the mixing section, described in detail by 

da Silva et al. [13], can image the dielectric components of the two-phase mixture in the pipe 

by measuring, rapidly and continually, the capacitances of the passing fluid at the crossing 

points in the mesh. This capacitance signal is a measure of the amount of silicone oil, and 

thus indicates the local phase composition in the grid cell. 

The physical experiments were conducted as a series of two campaigns: (1) pipe initially full 

of air, and then liquid and gas flows set to liquid and gas superficial velocities of 0.05 and 

0.344 m/s, respectively and (2) the second involved pipe initially full of (static) liquid, and 

then liquid and gas flows set to liquid and gas superficial velocities of 0.05 and 0.344 m/s, 

respectively (the same as for the subsequent CFD simulation models).  
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Table 1: Flowchart of the collection and processing of the experimental measurements used to obtain the parametric 

characterisation of the slug flow regime  

Direct physical measurement Data processing method Parametric Output 1 Parametric Output 2 

Instrument Data    

ECT  

Time series 

of void 

fraction 

 

 

 

 

 

   

 

2.1 Gas-liquid mixing section 

In the design of the physical experimental rig, it was ensured that the mixing section of the air 

and silicone oil phases took place in such a way as to reduce flow instability. Flow stability 

was achieved by using a purpose built mixing device, to provide maximum time for the two-

phase flow to develop. The mixing device is made from PVC pipe as shown in Figure 2. The 

silicone oil enters the mixing chamber from one side and flows around a perforated cylinder 

through which the air is introduced through a large number of 3 mm diameter orifices. This 

arrangement ensures that the gas and liquid flows were well mixed at the entry to the test 

section. The inlet volumetric flow rates of the liquid and air were determined by a set of 

rotameters located above a set of valves on the two inlet feed flow pipes.  

The introduction of the air and liquid flows at the inlet to the CFD models was defined as a 

velocity-inlet boundary at which the mixture velocity and the liquid volume fraction are 

specified. The mixture velocity profile is assumed to be uniform. This approach requires no 

PDF of void fraction 

PSD – Power 

Spectral Density 

Cross-correlation 

Flow pattern, 

,, TBgs  frequency 

Frequency, symbols of 

parameter set 

Structure velocity, 
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Lengths of liquid 

slug and Taylor 

bubble, symbols of 

parameter set 

Image reconstruction 
Contours of phase 

distribution 
3D structures 
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additional experimental knowledge about the formation of the liquid slugs to formulate the 

numerical simulation.  

 

                                            Figure 2: Air–silicone oil mixing section 

 

3. CFD Model: 

Parallel to the execution of the physical experiments, the construction and solution of CFD 

models were carried out. The aim of the numerical simulations was to investigate the 

potential application of the multiphase flow models, built in the commercial CFD codes Star-

CD and Star-CCM+. The Star-CD code employs the Finite Volume method to numerically 

discretize the computational flow domain. In the present work, isothermal motion of an 

incompressible two-phase flow is considered. The condition of slug two-phase flow has been 

simulated with the Volume of Fluid (VOF) method of Hirt and Nichols [14].The movement 

of the modelled gas–liquid  interface is tracked based on the distribution of,
1G , the volume 

fraction of gas in a computational cell; where 0G , is a liquid cell and 1G in a gas 

phase cell, [14]. Therefore, the gas-liquid interface exists in the cell where G lies between 0 

and 1. 
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3.1 Computational domain: 

In order for the simulation to produce meaningful results, it was important to ensure that the 

geometry of the flow domain faithfully represented the experimental arrangement. Hence, a 

full 3-Dimensional flow domain, as shown in Figure 1, was considered based on the fact that 

the flow simulated has been found to be axisymmetric according to the conclusions of the 

previous experimental studies of Azzopardi et al. [7] and [10] and In the present work, three 

CFD measurement sections were located at positions similar to those of the experimental 

work, namely, at distances of 4.4 m, 4.489 m and 4.92 m above the base of the riser. Here, 

the locations 4.4 m and 4.489 m represent the two electrical capacitance tomography (ECT) 

planes, whilst 4.92 m the wire mesh sensor (WMS). Air and silicone oil are injected at the 

inlet section of the pipe, then the two-phase mixture flows upwards through the vertical riser 

pipe, finally discharges through the outlet at atmospheric pressure. The relevant fluids 

properties are shown in Table 2. 

 

Figure 1: 3-D geometry of the computational flow domain showing the location of the recording sections that correspond to 

the locations of the experimental measurement transducers. 
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Table 2: Properties of the fluids 

Fluid Density(kg/m3) Viscosity(kg/ms) Surface tension (N/m) 

Air 1.18 0.000018 
0.02 

Silicone oil 900 0.0053 

 

 
3.2 Grid generation: 

The model riser flow geometry was built and meshed with Star-CD, then imported into Star-

CCM+, where the computation and post-processing of the results were performed. The 

geometries of the mesh employed is the butterfly grid (O-grid), which has been successfully 

employed by [10], and [15–16]. Figure 3 shows the mesh for the riser used for the CFD 

simulation. It uses a Cartesian mesh at the centre of the pipe combined with a cylindrical one 

around it. According to Hernandez-Perez [15], the O-grid (butterfly grid) allows for a good 

representation of the boundary layer and it is adequately stretched along the longitudinal axis.  

It was essential in this work to have a reasonably fine grid close to the wall, with a thickness 

of 0.0000123 m. A growth function was used to build the grid with these properties where the 

first grid was fixed to a distance of 10-6 m to ensure a y+<1 and to properly resolve the 

boundary layer close to the wall surface. The y+ is a non-dimensional wall distance that 

describes how coarse or fine a mesh is for a wall-bounded flow. In this particular case, a fine 

grid is required to properly capture the sub layer between the laminar flow (near the wall 

region) (y+ 5 ), the transition (5 30 y ) and the turbulent flow (in the bulk region) 

(y+ 30 ).  
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                                 Figure 3: Computational mesh used for simulations  

 

3.3 Governing equations  

Slug flow was modelled using the Volume of Fluid (VOF) method with a High Resolution 

Interface Capturing Scheme (HRIC) based on the Compressive Interface Capturing Scheme 

for Arbitrary Meshes (CISCAM) introduced by [18] and enhanced by [19].  

The continuity and momentum equations represented respectively by equations (1) and (2) 

for two-phase flow through the flow domain are: 
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where, ui and x i denote, respectively, the velocity component and the co-ordinate in the 

direction i (i =1, 2 or 3), t, being the time; and through the resolution of the momentum 

equation shared by the two considered fluids, P, g and F indicate, respectively, the pressure, 

the gravitational acceleration and the external force per unit volume.  
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The tracking of the phase indicator function and the identification of the location and shape 

of the interface between the gas–liquid phases are accomplished by solving the volume 

fraction continuity equation for each phase, expressed as equation (3): 

0
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x

u

t
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where,  

and the volume fractions of all phases as shown in equation (4) sum to unity in each control 

volume: 

1
1




n

q

q                                                                                                                                                    (4) 

where, q is the liquid or gas phase. 

The properties of the qth phase are used in the transport equations when the computational 

cell is completely controlled by the qth phase. At the interface between the phases, the 

mixture properties are determined based on the volume fraction weighted average, and the 

density and viscosity can be expressed as: 

1222 )1(                                                                                                                             (5) 

1222 )1(                                                                                                                             (6) 

where, the phases are represented by the subscripts 1 and 2 and if the volume fraction of the 

phase 2 is known, the  and  in each cell can be determined. 

In the present work, the Continuum Surface Force (CSF) model proposed by Brackbill et al. 

[20] was used to model the surface tension. With this model, the addition of surface tension 

to the VOF model calculation results in a source term in the momentum equation. 
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3.4 Turbulence model 

In order to simulate turbulence, the standard k-ε model, Launder and Spalding [21] was used 

for this study as suggested by the multiphase flow studies of Ramos-Banderas et al. [22] and 

[23]. The model is described by the following elliptic equations required as closure for the 

Reynolds Averaged Navier Stokes (RANS) equations: 
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In the above equations, k is the turbulent kinetic energy; ε is the dissipation rate of k. k ,  , 

C1 and C2 are constants whose values are 1.0, 1.3, 1.44 and 1.92 respectively, ui is the i 

component of the fluid velocity u, x j is the j spatial coordinate. The fluid viscosity must be 

corrected for turbulence in the Navier-Stokes equations by employing an effective viscosity 

teff   where  is the dynamic viscosity and t is the turbulent viscosity. 

The numerical solution of these sets of equations (1-8) was performed using the software 

package Star-CCM+.  A second order discretization scheme was used to determine the fluxes 

at the control volume faces required by the VOF model.  

3.5 Boundary and initial conditions: 

All solid boundary walls were assumed to possess a no slip boundary condition, where v = 0 

relative to the wall and the standard wall function approach based on the Launder and 

Spalding [21] was used.  At the flow inlet at the base of the riser, the mixture superficial 

velocity, UM
,, defined as the sum of liquid and gas superficial velocities (USL+USG) is 

specified. Also specified are the homogeneous volume fraction for the liquid (USL/UM) and 

gas (USG/UM).  The flow inlet values for turbulent kinetic energy, k , and its dissipation 
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rate, , are estimated using the following equations proposed by Launder and Spalding [29]: 

22

2

3
inin UIk                                                                                                                       (9) 

dkinin /2
2/3

                                                                                                                   (10) 

8/1Re

16.0
I                                                                                                                        (11) 

Where d is the internal pipe diameter, and I the turbulence intensity for fully developed pipe 

flow. 

The volume fraction and density of each phase were both specified at the riser inlet as a 

homogeneous mixture. It is worthy of mention that the volume fraction of gas at the riser 

inlet is different from void fraction. The latter cannot be calculated analytically based on the 

fact that it is a function of different operational (liquid and gas properties, flow pattern, etc) 

and geometric properties (i.e. pipe diameter, pipe inclination, etc). At the flow outlet at the 

top of the riser, the remaining variables are transported out of the computational domain with 

zero average static pressure so that the mass flow balance is satisfied.  

At t = 0 seconds, all velocity components are set to 0 m/s ( 0tt   0

^

. Vvn  ) and the initial 

condition was the riser full of (static) liquid. This initial condition eases the convergence 

process. In addition, an initial guess for the turbulent kinetic energy and the dissipation rate 

were applied in the simulation.  

A surface average monitor were located at 4.4 m, 4.489 m and 4.92 m corresponding to ECT-

plane 1, ECT-plane 2 and WMS, respectively at three stations of the riser to avoid any inlet 

and outlet effects and to ensure that the slug flow is fully developed. This surface monitor 

determines the void fraction of air in these sections. 

The operating conditions were specified as being standard atmospheric pressure (101.3 kPa) 
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and temperature 20oC. Gravity effects are accounted for and the acceleration due to gravity to 

be -9.81 m/s2 on the vertical.  

3.6 Solution algorithm:  

In order to numerically solve the system of governing partial differential equations, 

discretization of the equations has been carried out using a Finite Volume Method (FVM) 

with an algebraic segregated solver and co-located grid arrangement, as implemented in Star-

CCM+[17]. In this grid arrangement, pressure and velocity are both stored at cell centres. 

Details of the discretization (FVM) can be in Versteeg and Malalasekera [24]. Since Star-

CCM+ uses a segregated solver for the VOF model, the continuity and momentum equations 

need to be linked. Various techniques are reported in the literature. However, the Semi-

Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm, (Patankar and Spalding 

[25]), is applied as it produces a fast and convergent solution. In addition, the iterative solver 

was further improved by the use of an Algebraic Multigrid (AMG) technique to yield a better 

convergence rate. 

All simulations in this work are performed under time dependent conditions. Under 

relaxation factors of 0.3, 0.7 and 0.8 respectively, were applied on pressure, momentum and 

turbulence kinetic energy parameters, as recommended by [17]. The residuals were set to 10-4 

to ensure a converged solution. 

3.7 Mesh independence study: 

In order to identify the minimum mesh density to ensure that the solution is independent of 

the mesh resolution, a mesh sensitivity analysis has been carried out in the construction and 

analysis of the CFD model. In the mesh independence study, a computational domain of 1m 

length was used as this length is sufficient to carry out a test on the performance of the mesh 

with quite reasonably computational effort. Six 3-Dimensional meshes were investigated in 
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the present study as shown in Figure 4. The mesh sensitivity study is performed with a 

constant ratio 




x

t
1 410  and the mesh sizes of 24,000, 36,000, 54,600, 76,800, 84,000 and 

102,600 cells. The meshes were tested with an inlet flow condition (mixture superficial 

velocity, UM = USL+USG = 0.05+0.344 = 0.394 m/s and homogeneous void fraction = USG/UM 

= 0.87). An initial condition of flow domain full of (static) liquid was used.  

Since slug flow is characterized by void fraction fluctuation, one aspect that is interesting to 

look at is the time trace of cross-sectional average void fraction. 

In order to determine the time series of the void fraction, the following procedure similar to 

that used by Hernandez-Perez [15] was performed: a cross-sectional plane is defined across 

the measurement location and an area-weighted average value of the void fraction is 

calculated. The area-weighted average of the void fraction is computed by dividing the 

summation of the product of the air volume fraction and facet area by the total area of the 

surface as follows: 

 



n

i

iA
A

A
A 1

11
                                                                                                                         (12) 

Finally the value of average void fraction in the cross-sectional plane is recorded for every 

time step. 

The velocity of the Taylor bubble, UN is given by the relation of Nicklin et al. [3]: 

gDUUU SGSLN 35.0)(2.1                                                                              (13)                                                             

A calculation was performed to compare the performance of these meshes. The time 

calculated for the bubble to reach the measurement section (0.5 m) turned out to be 0.66 
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seconds. The plot of the time history of the void fraction for the six meshes is shown in Table 

3.  

From Table 3, it can be observed that meshes 5 (84,000 cells) and 6 (102,600 cells) perform 

well as the time the Taylor bubble got to the measurement location is closer to the one 

predicted by the theoretical expression.  Here, the % error is 1.4.         

The % error is evaluated as follows: 

% error
analytical

simulatedanalytical

X

XX 
                                                                                        (14) 

 Where X is the time average of the variable for which the error is computed. The purpose of 

this is to compare the predictions once the code has reached a steady-state. 

It can be concluded that for a given flow condition, the residence time of a fluid particle in a 

cell (t=x/u) decreases as the mesh density increases and that the finer the mesh is, the 

narrower the error between predicted (simulated) and analytical solution becomes. 

An insight into the effect of mesh density can also be obtained from the probability density 

function (PDF) of void fraction that was successfully employed by Hernandez-Perez [15] for 

his mesh independence studies. An examination of the plots of the PDF of void fraction 

shows that when the mesh is too coarse a refinement in the mesh can have a remarkable 

influence on the results, as depicted in Table 3. Therefore, it can be concluded that the mesh 5 

with 84000 cells is adequate, as the change in the results produced is very small when the 

number of cells is increased to 102600, and it requires less computational effort than the 

102600 cells.  
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Figure 4: Cross-sectional view of different sizes of computational grid used for mesh independent study (a) 26400 cells (b) 

36000 cells (c) 54,600 cells (d) 76,800 cells (e) 84,000 cells (f) 102,600 cells. Liquid and gas superficial velocities = 0.05 

and 0.344 m/s, respectively. An initial condition of riser full of (static) liquid was used. 

 

Table 3: The results obtained from the CFD mesh independence studies.  Liquid and gas superficial velocities = 0.05 and 

0.344 m/s, respectively. An initial condition of riser full of (static) liquid was used. 

 

Number of 

cells 

Time series of void 

fraction 

PDF of void fraction Time the Taylor 

bubble arrived the 

measurement location 

(seconds) 
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3.8 Flow development: 

A fully developed flow is defined as one when the flow pattern does not change with the 

distance downstream. Flow development in the vertical riser was studied using CFD and the 

results are presented and discussed. The advantage of the CFD simulation compared to the 

physical experiment is the possibility to record the void fraction time series at many 

measurement sections along the pipe. Also, due to physical limitations in the length of the rig, 

the question that we are going to address here is whether a sufficient pipe length (often 

quoted in terms of pipe diameter) had been provided so that observations taken at the end of 

the pipe could be considered to be a true representation of a fully developed flow situation.  
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0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  

0.669 

102600 

 

0

0.03

0.06

0.09

0.12

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  

0.669 
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 Table 4: Interrogating flow development in a vertical 67 mm internal diameter and 6 m long riser. Riser initially full of   

(static) liquid, and the liquid and gas flows set to liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively  

 

Distance from 

the mixing 

section of the 

riser (m) 

Time averaged void fraction Probability density function 

(PDF) of void fraction 

 

 

1.0 (15 pipe 

diameters) 

 
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

 

1.15 (17 pipe 

diameters) 

 

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

 

2.0 (30 pipe 

diameters) 

 
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

 

2.1 (31.3 pipe 

diameters) 

 
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

 

2.8 (41.8 pipe 

diameters) 

 

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

PD
F

Void fraction  

 

 

3.0 (45 pipe 

diameters) 

 
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

 

4.0 (60 pipe 

diameters) 

 
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
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4.4 (66 pipe 

diameters) 

 
 

 

 

4.489 (67 

pipe 

diameters)  
0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

 

4.92 (73 pipe 

diameters) 

 

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

PD
F

Void fraction  

 

 

5.5 (82 pipe 

diameters) 

 0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

P
D

F

Void fraction  
 

Time series of void fraction, and probability density function (PDF) of void fraction obtained 

from the CFD simulation are used to assess the change in flow characteristics with distance.  

Table 4 shows simulation results of time varying void fraction and PDF of void fraction 

derived from the eleven measurement locations at liquid and gas superficial velocities of 0.05 

and 0.344 m/s, respectively. The simulations were performed within a flow domain of 6 m 

long vertical pipe (the same length as the one used in the experiment) with the measurement 

sections located as indicated in the table.  

It can be observed from the time series of void fraction shown in Table 4 that the length of 

the large bubbles (Taylor bubbles) increases with axial distance. This can be explained by the 

occurrence of bubble coalescence. The PDF of the time series of void fraction at 1.0 m, just 

downstream of the two-phase mixing section, shows a single peak at low void fraction with a 
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broadening tail down to higher void fraction. It also shows that the results obtained from 1.0 

m are initially affected by entrance effects. This is further reinforced by the time trace of void 

fraction. With the time series of void fraction showing a maximum void fraction of 0.78 

while the PDF of void fraction depicting a single peak at about 0.16, void fraction with a tail 

down to 0.8. The flow patterns begin to change to slug flow at a distance of about 2.8 m (42 

pipe diameters) from the mixing section. At a distance of 2.8 m from the mixing section, both 

the time series and PDF of void fraction have taken the shape of slug flow. Though, it 

becomes more apparent at 4.0 m from the mixing section. 

It is worthy of mention that at a distance of 4.0 to 5.5 m as depicted in Table 4, the PDF of 

void fraction show the traditional features of slug flow; a double peak. One peak at lower 

void fraction represents liquid slug whilst the one at higher void fraction, Taylor bubble. On 

the other hand, the time series of void fraction also show large bubbles separated by smaller 

ones. It can be concluded that between, 4.0 to 5.5 m, that flow is fully developed based on the 

fact that the flow remains quite similar, i.e. not changing with distance from 4.0 to 5.5 m. 

This corresponds to approximately 60 to 82 pipe diameters. It is in view of this development 

that we decided to locate our experimental measuring instruments at 4.4 (66 pipe diameters), 

4.489 (67 pipe diameters) and 4.92 m (73 pipe diameters) corresponding to the ECT plane1, 

ECT-plane 2 and WMS. 

4. Results and discussion: 

The study will begin by providing a qualitative comparison between CFD simulations and 

experiment based on different methods of initially introducing fluid into the riser. For the 

CFD, the riser was initially full of (static) liquid, and then liquid and gas flows set to liquid 

and gas superficial velocities of 0.05 and 0.344 m/s, respectively whilst for experiment, the 

riser was initially full of air, and then liquid and gas flows set to same flow rates as for the 
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CFD. The number of cells used for the CFD calculation is 500,000. The results of the 

comparison showed that the method of introducing the fluid into the riser ceases to be an 

issue once the flow reaches steady-state, fully developed.  And that the comparison between 

CFD and experiment when steady-state is reached is reasonably good. Thereafter, a detailed 

quantitative comparison between CFD and experiments was made based on same method of 

initially introducing full (static) liquid into the riser. It is worth mentioning that only the ECT 

is used here. WMS was not used here based on the fact that it has a single plane (velocity 

cannot be determined) and as such cannot be used to characterize slug flow. It is worth 

mentioning however, that a dual WMS can be used for such a task. The liquid and gas 

superficial velocities = 0.05 and 0.344 m/s, respectively for both CFD and experiment. Here, 

again the comparison is reasonably good. 

 

4.1 Qualitative comparison between CFD and experiment: 

As a starting point, the raw experimental data will be plotted in the form of time series of 

void fraction, PDF of void fraction and PSD of void fraction, see Figure 5. The data is 

collected at three measurement locations, ECT-plane 1, ECT-plane 2 and WMS. These 

locations correspond respectively to 4.4 m, 4.489 m and 4.92 m from the two-phase flow 

mixer. The data is obtained after an interval of 60 seconds. 

It can be observed from the figure that as the flow reaches steady–state, the shape of the PDF 

and PSD of void fraction for both the CFD and experiment are similar. Both CFD and 

experimental PDF predict slug flow as the flow pattern, according to the definition of 

Costigan and Whalley [26]. According to them, slug flow is a flow pattern characterised by a 

PDF graph with two peaks, one at lower void fraction (liquid slug) and the other one at higher 

void fraction, Taylor bubble.  



22 

 

 

Figure 5: Comparison between experimental data and CFD simulation results at liquid and gas superficial velocities of 0.05 

and 0.344 m/s, respectively. The initial conditions are riser full of (static) liquid and riser full of air, for CFD and 

experiment, respectively.   Locations 4.4 m, 4.489 m and 4.92 m corresponds to ECT-plane 1, ECT-plane 2 and WMS, 

respectively. 

 

The contours of phase distribution reported in Figures 6 (a-d) and Figures 7 (a-d) for the 

Taylor bubble obtained from both CFD and experiment show that the CFD results are in 

better agreement with those obtained from the WMS. On the contrary, the comparison 

between the CFD and ECT is poor. 

It is worth mentioning that it is difficult to measure experimentally the velocity for these 

conditions due to the presence of the bubbles and the highly turbulent flow field. However, 

this has been successfully modelled and is represented in Figure 8, by means of velocity 
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vectors. From the figure, three regions can be observed from the velocity vectors: the Taylor 

bubble, falling film and the wake region. Interestingly, the Taylor bubble can be seen moving 

vertically upwards whilst the liquid film on the other hand is moving downwards. A similar 

observation was reported by [4] and [5]. The falling film with some entrained bubbles drop 

into the wake region and a vortex region is created. Furthermore, the liquid film and some of 

the entrained bubbles are subsequently carried upwards by the incoming gas phase. This 

behaviour is similar to that observed by Fernandes et al. [4] and [27] who worked on slug 

flow in a vertical pipe using air–water as the model fluid. They claimed that the bubbles in 

the liquid slug rise due to entrainment in the wake of the Taylor bubble and that much of this 

entrained gas is swept around a vortex in the Taylor bubble wake and may coalesce with the 

trailing Taylor bubble.   

 

Figure 6: Comparison of contours of phase distribution at liquid and gas superficial velocities of 0.05 and 0.344 m/s, 

respectively for between (a) CFD and (b) WMS and for (c) CFD and (d) ECT. For the CFD and WMS comparison, the 

liquid and gas phases are represented by red and blue colours, respectively. On the contrary, blue represents gas phase for t he 

ECT. The initial conditions are riser full of (static) liquid and riser full of air, for CFD and experiment, respectively. 
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Figure 7: Contours of phase distribution (cross-sectional void fraction of gas) for the Taylor bubble obtained at liquid and 

gas superficial velocities of 0.05 and 0.344 m/s, respectively from (a) CFD and (b) WMS and for (c) CFD and (d) ECT. For 

the CFD and WMS comparison, the liquid and gas phases are represented by red and blue colours, respectively. On the 
contrary, blue represents gas phase for the ECT.  The initial conditions are riser full of (static) liquid and riser full of air, for 

CFD and experiment, respectively. 

 

Figure 8: Velocity field around the (a) Taylor bubble (b) Wake region of the Taylor bubble at liquid and gas superficial 

velocities of 0.05 and 0.344 m/s, respectively obtained from CFD. The initial conditions are riser full of (static) liquid  
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4.2 Quantitative comparison between CFD and experiment: 

The experimental data was obtained over an interval of 60 seconds whilst for the CFD, 16 

seconds. Readings were taken when the Taylor bubble arrived at the measurement sections. 

Figure 9 shows a typical plot of a large trailing Taylor bubble (start–up) and leading train of 

Taylor bubbles (steady–state).  

 

Figure 9: A plot showing a combination of a large trailing Taylor bubble (start–up) and leading train of smaller Taylor 

bubbles (steady-state) at liquid and gas superficial velocities = 0.05 and 0.344 m/s, respectively). The initial condition for 

both CFD and experiment is riser full of (static) liquid. 

 

A detailed methodology for the determination of these parameters can be found in 

Abdulkadir et al. [28]. A comparison will finally be made between CFD and experiment 

based on static pressure. The errors between experimental measurement and predictions are 

listed in Tables 5 and 6. The error % is evaluated as follows: 

Error 100
exp

exp





erimental

simulatederimental

X

XX
                                                                          (14)  

Where X is the time average of the variable for which the error is computed. The purpose is 

to compare the predictions once the code has reached a steady-state. 
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Table 5a: Comparison between the CFD and experiments for the large trailing Taylor bubble (Start -up) at liquid and gas 

superficial velocities of 0.05 and 0.344 m/s, respectively). The initial condition for both CFD and experiment is riser full of 

(static) liquid. 
  

 

Table 5b: Comparison between the CFD and experiments for the large trailing Taylor bubble (Start-up) at liquid and gas 

superficial velocities of 0.05 and 0.344 m/s, respectively). The initial condition for both CFD and experiment is riser full of 

(static) liquid. 

  

 
 

 
 

 
 
  Parameters 

                        CFD          EXPERIMENT % 
ERROR 

                                        ECT - PLANE 1(4.4 m)  

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

V
o

id
 f

ra
ct

io
n

Time (seconds)  

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

V
o
id

 f
ra

ct
io

n

Time (seconds)  

 

Velocity of the 

back of the 
Taylor bubble 
(m/s) 

0.89 0.84 5.95 

Velocity of the 

front of the 
Taylor bubble 

(m/s) 

0.89 0.84 5.95 

Length of 
Taylor bubble 

(m) 

6.68 6.38 4.70 

Void fraction 
in the Taylor 
bubble 

0.8 0.77 3.90 

Liquid film 

thickness 
(mm) 

3.54 4.10 13.66 

                             CFD                                 EXPERIMENT % 

error 

                                   ECT –PLANE 2 (4.489 m)  

Parameters 

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

V
o

id
 f

ra
ct

io
n

Time (seconds)  

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

V
o

id
 f

ra
ct

io
n

Time (seconds)  

 

Velocity 0.89 0.82 8.54 
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Tables 5a and 5b presents a summary of the quantitative comparison between CFD and 

experiment in terms of different characteristics of slug flow in the riser. It can be concluded 

that the best degree of agreement between CFD and experiments in terms of slug flow 

characterization for the large trailing Taylor bubble is the void fraction in the Taylor bubble 

while the least is the liquid film thickness. 

The velocity of the back and front of the Taylor bubble from the CFD compares very well 

with experiment. The length of the Taylor bubble for the CFD also compares well with the 

experiment. The void fraction in the Taylor bubble for the CFD and experiment are also 

compared, for this case the CFD prediction is quite accurate. The liquid film thickness was 

also determined from the CFD and experiment. For the CFD, the liquid film thickness 

obtained is 3.54 mm while 4.10 mm for the experiment which means CFD under predicted 

the liquid film thickness by 13.66 %.  

of the back 
of the 
Taylor 

bubble 
(m/s) 

Velocity 

of the 
front of 

the Taylor 
bubble 
(m/s) 

0.89 0.82 8.54 

Length of 

slug unit 
(m) 

6.68 6.23 7.22 

Void 

fraction in 
the Taylor 

bubble 

0.80 0.76 5.26 

Liquid 
film 

thickness 

(mm) 

3.54 4.30 21.47 
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As the large Taylor bubble reaches the ECT-plane 2 (Table 5b), a similar comparison of the 

slug flow characterisation was also carried out. The velocity of the large trailing Taylor 

bubble from CFD also compares well with experiment. As expected, the length of the Taylor 

bubble also dropped for the experiment but remains unchanged for the CFD. The values of 

the void fraction in the Taylor bubble and liquid film thickness for the experiment changed 

from (0.77 and 4.10 mm) to (0.76 and 4.30 mm) but remain unchanged for the CFD. 

For the leading Taylor bubble (Table 6b), it can be concluded that the best degree of 

agreement in terms of comparison between CFD and experiment is the length of the Taylor 

bubble while the least, void fraction in the liquid slug. 

Table 6a: Comparison between the CFD and experiments for the leading Taylor bubble (steady–state)/ (fully developed) at 

liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively). The initial condition for both CFD and experiment 
is riser full of (static) liquid. 

 

 

Table 6b: Comparison between the CFD and experiments for the leading Taylor bubble (steady–state)/ (Fully developed) at 

liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively). The initial condition for both CFD and experiment 

is riser full of (static) liquid. 

                           CFD                    EXPERIMENT 

                                                             ECT - PLANE 1 

0

0.2

0.4

0.6

0.8

1

7.8 8.8 9.8 10.8 11.8 12.8

V
o
id

 f
ra

ct
io

n

Time (seconds)   
                                                     ECT –PLANE 2 

0

0.2

0.4

0.6

0.8

1

7.8 8.8 9.8 10.8 11.8 12.8

V
o
id

 f
ra

ct
io

n

Time (seconds)   
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Table 6b: Comparison between the CFD and experiments for the leading Taylor bubble (Fully developed) 

Slug 

characteristics 

 (CFD) Experiment % error 

Parameter Plane 1 

 

Plane 2 Plane 1 Plane 2 Plane 1 Plane 2 

Void fraction 

in liquid slug
 

0.14 0.13 0.17 0.16 17.6 18.75 

Void fraction 

in Taylor 

bubble 

0.60 0.56 0.65 0.62 7.69 9.68 

Frequency 1.8 2.40 2.0 2.0 9.6 20 

Translational 

velocity of 

the  Taylor 

bubble  

1.48 1.59 6.9 

Length of the 

slug unit (m) 

 0.82 0.80 2.5 

Length of the 

Taylor bubble 

(m) 

0.5 0.49 2.04 

Length of the 

liquid slug 

(m) 

0.32 0.31 3.23 

Peak of time 

series of void 

fraction 

0.77 0.74 0.76 0.78 1.3 5.13 

 

The maximum height of the peak of the void fraction from the time trace of void fraction and 

slug frequency for the CFD compares well with those from experiment. The time of passage 

of the Taylor bubble from ECT-plane 1 to 2 based on CFD and an experiment is 0.1 seconds. 

Both CFD and experiment predict the flow pattern as slug flow, same flow pattern as for 

plane 1. However, the appearance of slug flow according to Table 6a is more obvious than for 
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plane 1. This may be due to the fact that at 4.489 m from the mixing section (plane 2), the 

flow is more fully developed. A 20 % error is observed from the comparison between slug 

frequency obtained from CFD and experiment. This may be due to the fact that the 

experimental measurements were taken over 60 seconds whilst for the CFD 16 seconds. 

The translational velocity of the leading Taylor bubble has been calculated for the CFD as 

well as for the experimental study as shown in Figure 10. The figure illustrates the procedure 

to calculate the translational velocity of the Taylor bubble for both the CFD and experiment. 

The results show that translational velocity of the Taylor bubble for the CFD compares well 

with the experiment. 

The lengths of both the liquid slug, Taylor bubble and slug unit are also obtained from CFD 

which all compared well with experiment. A comparison between the CFD simulation and 

the experiments is also made based on the void fractions in both the liquid slug and the 

Taylor bubble. The values obtained are reasonably good as shown in Table 6b. 

 

Figure 10: Time delay of a Taylor bubble passing through two different measuring locations along the pipe. The liquid and 
gas superficial velocities are 0.05 and 0.344 m/s, respectively (a) CFD and (b) Experiment. The initial condition for both 

CFD and experiment is riser full of (static) liquid. VTB represents the structure velocity of the Taylor bubble. 
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A comparison is also made between experiment and CFD based on static pressure. The value 

obtained from experiment is 41042.3  Pa whilst for the CFD as shown on the pressure 

contour plot (Figure 11) is 41037.3  Pa. The simulation under predicts the experiment by 1.5 

%. The value obtained from experiment was evaluated as follows: 

ghP mStatic                                                                                                                (15) 

Where m is the mixture density and is obtained based on the knowledge of the cross-

sectional void fraction and h is the height of the riser. 

 

Figure 11: Static pressure contour plot for liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively obtained 

from CFD. The initial condition for both CFD and experiment is riser full of (static) liquid. 
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Conclusions: 

A comparison between the results of slug flow characterization obtained from CFD 

simulation and experiments has been successfully carried out for a 67 mm internal diameter 

vertical riser with air and silicone oil as the model fluids and the following conclusions can 

be drawn: 

1) The qualitative comparison between CFD and experiment based on different methods of 

introducing fluid into the riser liquid and gas superficial velocities of 0.05 and 0.344 m/s 

respectively did not yield any significant difference once the flow reaches steady-state. At 

steady-state, both the CFD and experiment predict similar behaviours. 

2)  The slug flow pattern can be considered fully developed at 4.0 m (60 pipe diameters). 

3)   A reasonably good agreement between CFD and experiment was obtained. CFD simulation 

can be used to characterize slug flow parameters with a good level of confidence. However, 

further parametric studies are required to close some of the gaps between CFD and 

experimental results. 

4)   This work confirms the results reported in the literature for the characteristics of slug flow. 

5)   The best degree of agreement in terms of the slug flow characterization for the large trailing 

Taylor bubble between CFD and experiment is the void fraction in the Taylor bubble whilst 

the least is the liquid film thickness. On the other hand, the length of the Taylor bubble and 

the void fraction in the liquid slug, respectively, represent the best and the least degree of 

agreement for the leading Taylor bubble between CFD and experiment. 

6)  The comparison between CFD and experiment based on static pressure is qualitatively good. 
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Nomenclature: 

A Area [m2] 

F Frequency [H 

VTB Structure velocity [m/s] 

SUL  Length of the slug unit [m] 

SL  Length of the liquid slug [m] 

TBL  Taylor bubble length [m]
 

g            Gravitational acceleration [ 2/ sm ] 

k            Kinetic energy of turbulence [ 22 / sm ] 

n            number of phases [-] 

t             Time [ s ] 

u            Velocity [ sm / ] 

          Dynamic viscosity [ smkg ./ ] 

          Material density [ 3/ mkg ] 

          Surface tension [ mN / ] 

ji,      Space directions 

q          Phase index 
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Figure captions: 

Figure 1   3-D geometry of the computational flow domain showing the location of the 

recording sections that correspond to the locations of the experimental measurement 
transducers. 

Figure 2 Air-silicone oil mixing section 

Figure 3   Computational mesh used for simulations 

Figure 4: Cross-sectional view of different sizes of computational grid used for mesh 
independent study (a) 26400 cells (b) 36000 cells (c) 54,600 cells (d) 76,800 cells (e) 84,000 

cells (f) 102,600 cells. Liquid and gas superficial velocities = 0.05 and 0.344 m/s, 
respectively. An initial condition of riser full of (static) liquid was used. 

 

Figure 5: Comparison between experimental data and CFD simulation results at liquid and 

gas superficial velocities of 0.05 and 0.344 m/s, respectively. The initial conditions are riser 
full of (static) liquid and riser full of air, for CFD and experiment, respectively.  The time 
difference observed in the CFD is due to the different times recorded for the Taylor bubble to 

arrive the measurement locations. Locations 4.4 m, 4.489 m and 4.92 m corresponds to ECT-
plane 1, ECT-plane 2 and WMS, respectively. 

 

Figure 6: Comparison of contours of phase distribution at liquid and gas superficial 
velocities of 0.05 and 0.344 m/s, respectively for between (a) CFD and (b) WMS and for (c) 

CFD and (d) ECT. For the CFD and WMS comparison, the liquid and gas phases are 
represented by red and blue colours, respectively. On the contrary, blue represents gas phase 

for the ECT. The initial conditions are riser full of (static) liquid and riser full of air, for CFD 
and experiment, respectively. 

 

Figure 7: Contours of phase distribution (cross-sectional void fraction of gas) for the Taylor 

bubble obtained at liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively 
from (a) CFD and (b) WMS and for (c) CFD and (d) ECT. For the CFD and WMS 
comparison, the liquid and gas phases are represented by red and blue colours, respectively. 

On the contrary, blue represents gas phase for the ECT.  The initial conditions are riser full of 
(static) liquid and riser full of air, for CFD and experiment, respectively. 

 

Figure 8: Velocity field around the (a) Taylor bubble (b) Wake region of the Taylor bubble 
at liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively. The initial 
conditions are riser full of (static) liquid and riser full of air, for CFD and experiment, 

respectively. 

Figure 9: A plot showing a combination of a large trailing Taylor bubble (start–up) and 
leading train of smaller Taylor bubbles (steady-state) at liquid and gas superficial velocities = 
0.05 and 0.344 m/s, respectively). The initial condition for both CFD and experiment is riser 

full of (static) liquid. 
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Figure 10: Time delay of a Taylor bubble passing through two different measuring locations 
along the pipe. The liquid and gas superficial velocities are 0.05 and 0.344 m/s, respectively 

(a) CFD and (b) Experiment. The initial condition for both CFD and experiment is riser full 
of (static) liquid. 
 

Figure 11: Static pressure contour plot for liquid and gas superficial velocities of 0.05 and 
0.344 m/s, respectively obtained from CFD. The initial condition for both CFD and 

experiment is riser full of (static) liquid. 

                                                           

                                                           Table captions: 

Table 1    Table of flowchart for experimental measurement used to obtain the parametric 

characterisation of the slug flow regime 

Table 2    Properties of the fluids 

Table 3: The results obtained from the CFD mesh independence studies.  Liquid and gas 
superficial velocities = 0.05 and 0.344 m/s, respectively. An initial condition of riser full of 
(static) liquid was used. 

 
Table 4: Interrogating flow development in a vertical 67 mm internal diameter and 6 m long 

riser. Riser initially full of   (static) liquid, and the liquid and gas flows set to liquid and gas 
superficial velocities of 0.05 and 0.344 m/s, respectively  
 

Table 5a: Comparison between the CFD and experiments for the large trailing Taylor bubble 
(Start-up) at liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively). The 
initial condition for both CFD and experiment is riser full of (static) liquid. 

  
  

Table 5b: Comparison between the CFD and experiments for the large trailing Taylor bubble 
(Start-up) at liquid and gas superficial velocities of 0.05 and 0.344 m/s, respectively). The 
initial condition for both CFD and experiment is riser full of (static) liquid. 

 

Table 6a: Comparison between the CFD and experiments for the leading Taylor bubble 
(steady–state)/ (fully developed) at liquid and gas superficial velocities of 0.05 and 0.344 m/s, 
respectively). The initial condition for both CFD and experiment is riser full of (static) liquid. 

 

Table 6b: Comparison between the CFD and experiments for the leading Taylor bubble 
(steady–state)/ (Fully developed) at liquid and gas superficial velocities of 0.05 and 0.344 
m/s, respectively). The initial condition for both CFD and experiment is riser full of (static) 

liquid. 


