
A biobjective approach to recoverable robustness
based on location planning ∗

Emilio Carrizosa1, Marc Goerigk†2, and Anita Schöbel3

1Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas,
Universidad de Sevilla, Spain

2Department of Management Science, Lancaster University, Lancaster LA1 4YX, United
Kingdom

3Institute for Numerical and Applied Mathematics, Georg-August University, Göttingen,
Germany

Abstract

Finding robust solutions of an optimization problem is an important issue
in practice, and various concepts on how to define the robustness of a solu-
tion have been suggested. The idea of recoverable robustness requires that
a solution can be recovered to a feasible one as soon as the realized scenario
becomes known. The usual approach in the literature is to minimize the ob-
jective function value of the recovered solution in the nominal or in the worst
case.

As the recovery itself is also costly, there is a trade-off between the recovery
costs and the solution value obtained; we study both, the recovery costs and
the solution value in the worst case in a biobjective setting.

To this end, we assume that the recovery costs can be described by a
metric. We show that in this case the recovery robust problem can be reduced
to a location problem.

We show how weakly Pareto efficient solutions to this biobjective prob-
lem can be computed by minimizing the recovery costs for a fixed worst-case
objective function value and present approaches for the case of linear and
quasiconvex problems for finite uncertainty sets. We furthermore derive cases
in which the size of the uncertainty set can be reduced without changing the
set of Pareto efficient solutions.

Keywords robust optimization; location planning; biobjective optimization

1 Introduction
Robust optimization is a popular paradigm to handle optimization problems con-
taminated with uncertain data, see, e.g., [BTGN09, ABV09] and references therein.
Starting from conservative robustness models requiring that the robust solution is
feasible for any of the possible scenarios, new concepts have been developed, see
[GS16] for a recent survey. These concepts allow to relax this conservatism and to
control the price of robustness, i.e., the loss of objective function value one has to
∗Partially supported by grants SCHO 1140/3-2 within the DFG programme Algorithm Engi-

neering, and grant MTM2012-36163-C06-03.
†Corresponding author. Email: m.goerigk@lancaster.ac.uk

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/76963223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

pay in order to obtain a robust solution, see [BS04]. In many real-world problems
these new robustness concepts have been successfully applied.
Motivated by two-stage stochastic programs, one class of such new models includes
the so called recoverable robustness introduced in [LLMS09, CDS+07] and inde-
pendently also used in [EMS09]. Recoverable robustness is a two-stage approach
that does not require the robust solution to be feasible for all scenarios. Instead, a
recoverable-robust solution comes together with a recovery strategy which is able to
adapt the solution to make it feasible for every scenario. Such a recovery strategy
can be obtained by modifying the values of the solution or by allowing another
resource or spending additional budget, as soon as it becomes known which sce-
nario occurs. Unfortunately, a recoverable-robust solution can only be determined
efficiently for simple problems with special assumptions on the uncertainties and
on the recovery algorithms (see [Sti08]), and the recoverable-robust counterpart is
known to be NP-hard even in simple cases [CDS+09b].
Our contributions. In this paper we analyze the two main goals in recoverable
robustness: Obtaining a good objective function value in the worst case while min-
imizing the recovery costs. We consider the ε-constrained version as a geometric
problem, which allows to interpret robustness as a location planning problem, and
derive results on Pareto efficient solutions and how to compute them.
Overview. The remainder of the paper is structured as follows.
In the next section we sketch classic and more recent robustness concepts before
we introduce the biobjective version of recoverable robustness in Section 3. We
then analyze how to solve the scalarization of the recoverable-robust counterpart
in Section 4, and consider reduction approaches in Section 5. After discussing
numerical experiments in Section 6, we conclude with a summary of results and an
outlook to further research in Section 7.

2 Robustness concepts

2.1 Uncertain optimization problems
We consider optimization problems that can be written in the form

(P) minimize f(x)

s.t. F (x) ≤ 0

x ∈ X ,

where X ⊆ IRn is a closed set, F : IRn → IRm describes the m constraints and
f : IRn → IR is the objective function to be minimized. We assume f and F to
be continuous. In practice, the constraints and the objective may both depend on
parameters which are in many cases not exactly known. In order to accommodate
such uncertainties, the following class of problems is considered instead of (P).

Notation 1. An uncertain optimization problem is given as a parameterized family
of optimization problems

P(ξ) minimize f(x, ξ)

s.t. F (x, ξ) ≤ 0

x ∈ X ,

where F (·, ξ) : IRn → IRm and f(·, ξ) : IRn → IR are continuous functions for any
fixed ξ ∈ U , U ⊆ IRM being the uncertainty set which contains all possible scenarios
ξ ∈ IRM which may occur (see also [BTGN09]).

2

A scenario ξ ∈ U fixes the parameters of f and F . It is often known that all scenarios
that may occur lie within a given uncertainty set U , however, it is not known
beforehand which of the scenarios ξ ∈ U will be realized. We assume that U is a
closed set in IRM containing at least two elements (otherwise, no uncertainty would
affect the problem). Contrary to the setting of stochastic optimization problems,
we do not assume a probability distribution over the uncertainty set to be known.

The set X contains constraints which do not depend on the uncertain parameter
ξ. These may be technological or physical constraints on the variables (e.g., some
variables represent non-negative magnitudes, or there are precedence constraints
between two events), or may refer to modeling constraints (e.g., some variables are
Boolean, and thus they can only take the values 0 and 1).

In short, the uncertain optimization problem corresponding to P(ξ) is denoted as

(P(ξ), ξ ∈ U). (1)

We denote
F(ξ) = {x ∈ X : F (x, ξ) ≤ 0}

as the feasible set of scenario ξ ∈ U and

f∗(ξ) = min{f(x, ξ) : F (x, ξ) ≤ 0, x ∈ X}

as the optimal objective function value for scenario ξ (which might be ∞ if it does
not exist). Note that F(ξ) is closed in IRn, as we assumed X to be closed, and
F (·, ξ) to be continuous. In the following we demonstrate the usage of ξ ∈ IRM for
the case of linear optimization. In the simplest case, ξ coincides with the uncertain
parameters of the given optimization problem.

Example 1. Consider a linear program minimize{ctx : Ax ≤ b, x ∈ IRn} with a
coefficient matrix A ∈ IRm,n, a right-hand side vector b ∈ IRm and a cost vector
c ∈ IRn. If A, b, and c are treated as uncertain parameters, we write

P(A, b, c) minimize f(x, (A, b, c)) = ctx

s.t. F (x, (A, b, c)) = Ax− b ≤ 0

x ∈ X = IRn,

i.e., ξ = (A, b, c) ∈ IRM with M = n ·m+ n+m

However, in (1) we allow a more general setting, namely that the unknown param-
eters A, b, c may depend on (other) uncertain parameters ξ ∈ IRM . For example,
there might be M = 1 parameter ξ ∈ IR which determines all values of A, b, c.
As an example imagine that the temperature determines the properties of different
materials. In such a case we would have

f(x, ξ) : IRn × IR→ IR, and
F (x, ξ) : IRn × IR→ IRm,

where f(x, ξ) = c(ξ)tx and F (x, ξ) = A(ξ)x− b(ξ).

We now summarize several concepts to handle uncertain optimization problems.

2.2 Strict robustness and less conservative concepts
The first formally introduced robustness concept is called strict robustness here. It
has been first mentioned by Soyster [Soy73] and then formalized and analyzed by

3

Ben-Tal, El Ghaoui, and Nemirovski in numerous publications, see [BTGN09] for
an extensive collection of results. A solution x ∈ X to the uncertain problem (1) is
called strictly robust if it is feasible for all scenarios in U , i.e., if F (x, ξ) ≤ 0 for all
ξ ∈ U . The set of strictly robust solutions with respect to the uncertainty set U is
denoted by SR(U) =

⋂
ξ∈U F(ξ). The strictly robust counterpart of (1) is given as

RC(U) minimize supξ∈U f(x, ξ)

s.t. x ∈ SR(U)

The objective follows the pessimistic view of minimizing the worst case over all
scenarios.
Often the set of strictly robust solutions is empty, or all of the strictly robust so-
lutions lead to undesirable solutions (i.e., with considerably worse objective values
than a nominal solution would achieve). Recent concepts of robustness hence try to
overcome the “over-conservative” nature of the previous approach. In this paper we
deal with recoverable robustness which is described in the next section. Other less
conservative approaches include the approach of Bertsimas and Sim [BS04], relia-
bility [BTN00], light robustness [FM09, Sch14], adjustable robustness [BTGGN04]
(which will be used in Section 3.3), and comprehensive robustness [BTBN06]. For
a more detailed recent overview on different robustness concepts we refer to [GS16].

3 A biobjective approach to recoverable robustness
Our paper extends the recently published concepts of recoverable robustness. As
before, we consider a parameterized problem

P(ξ) minimize f(x, ξ)

s.t. F (x, ξ) ≤ 0

x ∈ X

The idea of recoverable robustness (see [LLMS09]) is to allow that a solution can be
recovered to a feasible one for every possible scenario. There, a solution x ∈ X is
called recoverable-robust if there is a function y : U → X such that for any possible
scenario ξ ∈ U , the solution y(ξ) ∈ F(ξ) is not too different from the original
solution x. This includes on the one hand the costs for changing the solution x
to the solution y(ξ), and on the other hand the objective function value of y(ξ)
compared to the objective function value of x. The solution y(ξ) is called the
recovery solution for scenario ξ.
Examples include recoverable-robust models for linear programming [Sti08], shunt-
ing [CDS+07], timetabling [CDS+09a], platforming [CGST14], the empty reposi-
tioning problem [EMS09], railway rolling stock planning [CCG+12] and the knap-
sack problem [BKK11]. An extensive investigation can be found in [Sti08]. Note
that the model has the drawback that even for simple optimization problems an
optimal recoverable-robust solution is usually hard to determine.

3.1 Model formulation
Various goals may be followed when computing a recoverable-robust solution: On
the one hand, the new solution should be recoverable to a good solution y(ξ) ∈ F(ξ)
for every scenario ξ ∈ U . On the other hand, also the costs of the recovery are
important: A new solution has to be implemented, and if x differs too much from
y(ξ) this might be too costly. We assume that the recovery costs can be measured by
a metric d : IRn×IRn → IR. An example for metric recovery costs can be found, e.g.,

4

for shunting in [CCG+12]; recovery costs defined by norms are also used frequently,
e.g., in timetabling [LLMS09], in recoverable-robust linear programming [Sti08], or
in vehicle scheduling problems [GDT15]. Recently, distance functions have also
played a role in the development of uncertainty sets for distributional robustness,
see, e.g., [BTDHDW+13, BGK13, CBM15].

In our approach we use both objectives: quality of the recovered solution and
recovery costs. The resulting biobjective model for recoverable robustness can be
formulated as follows:

(Rec) vec−minimize (f(y), r(x, y)) =
(
supξ∈U f(y(ξ), ξ), supξ∈U d(x, y(ξ))

)
s.t. F (y(ξ), ξ) ≤ 0 for all ξ ∈ U

x ∈ X , y : U → X

We look for a recoverable robust solution x together with a recovery solution y(ξ) ∈
F(ξ) for every scenario ξ ∈ U . Note that if U is infinite, (Rec) is not a finite-
dimensional problem. In the objective function we consider

• the quality f(y(ξ), ξ) of the recovery solutions, which will finally be imple-
mented, in the worst case, and

• the costs of the recovery d(x, y(ξ)), i.e., changing x to y(ξ), again in the worst
case.

As usual in multi-criteria optimization we are interested in finding Pareto efficient
solutions to this problem. Recall that a solution (x ∈ X , y : U → X) is weakly
Pareto efficient if there does not exist another solution x′ ∈ X , y′ : U → X such
that

sup
ξ∈U

f(y′(ξ), ξ) < sup
ξ∈U

f(y(ξ), ξ) and

sup
ξ∈U

d(x′, y′(ξ)) < sup
ξ∈U

d(x, y(ξ)).

If there does not even exist a solution x′ ∈ X, y′ : U → X for which one of the two
inequalities holds with equality, then (x, y) is called Pareto efficient.

Notation 2. We call x recoverable-robust for (Rec) if there exists y : U → X
such that (x, y) is Pareto efficient for (Rec). y(ξ) is called the recovery solution for
scenario ξ.

We are interested in finding recoverable-robust solutions x. Note that (Rec) depends
on the uncertainty set U . This dependence is studied in Section 5.

In (Rec), the worst-case objective f does not depend on x. This is because we
assume that x is always modified to the appropriate solution y(ξ) when the scenario
is revealed.
We remark, that even if x or y is fixed, the resulting problem (Rec) is still challeng-
ing. If x is given, we still have to solve a biobjective problem and choose y(ξ) either
with a good objective function value in scenario ξ or with small recovery costs close
to x. If y is given, (Rec) reduces to a single-objective problem in which a point is
searched which minimizes the maximum distance to all points y(ξ), ξ ∈ U .

Our first result is negative: Pareto efficient solutions need not exist even for a finite
uncertainty set and bounded recovery costs as the following example demonstrates.

5

Example 2. Consider the uncertain program

P(ξ) min f(x, ξ)

s.t. 1 ≤ ξx1x2
ξx1 ≥ 0

x2 ≥ 0,

where U = {−1, 1} is the uncertainty set and X = IR2. The feasible sets of scenario
ξ1 = −1 and scenario ξ2 = 1 are given by:

F(−1) = {(x1, x2) ∈ IR2 : x1x2 ≤ −1, x1 ≤ 0, x2 ≥ 0},
F(1) = {(x1, x2) ∈ IR2 : x1x2 ≥ 1, x1, x2 ≥ 0}.

Both feasible sets are depicted in Figure 1.

x2

x11

1

Figure 1: An instance of (Rec) not having any Pareto efficient solution for an
uncertainty set U with only two scenarios.

For the objective function f(x, ξ) = |x1| and the recovery distance d(x, y) = ‖y−x‖1
the problem does not have any Pareto efficient solution.
This can be seen as follows: Let x = (x1, x2), y1 = (y11 , y

1
2) and y−1 = (y−11 , y−12)

be an arbitrary feasible solution to (Rec) where y1 and y−1 are the two recovery
solutions for the scenarios ξ = 1 and ξ = −1. Let a := max{x2, y12 , y−12 }+ 1. Then
the solution x̄ := (0, a), ȳ1 := (1

a , a) and ȳ−1 := (− 1
a , a) is strictly better in both

objective functions. To this end we use that y11 ≥ 1
y12
> 1

a and y−11 ≤ − 1
y−1
2

< − 1
a

and compute

f(y1, y−1) = max{|y11 |, |y−11 |} > max{
∣∣ 1
a

∣∣ , ∣∣− 1
a

∣∣} = f(ȳ1, ȳ−1),

r(x, y1, y−1) = max{‖x− y1‖1, ‖x− y−1‖1} ≥ max{|x1 − y11 |, |x1 − y−11 |}

≥ |y11−y
−1
1 |

2 > 1
a = max{‖x̄− ȳ1‖1, ‖x̄− ȳ−1‖1} = r(x, ȳ1, ȳ−1).

It is known that all weakly Pareto efficient solutions are optimal solutions of one of
the two ε-constraint scalarizations which are given by bounding one of the objective
functions while minimizing the other one.

The first scalarization bounds the recovery costs and minimizes the objective func-
tion value in the first place, i.e.,

(Recclass(δ)) minimize supξ∈U f(y(ξ), ξ)

s.t. d(x, y(ξ)) ≤ δ for all ξ ∈ U
F (y(ξ), ξ) ≤ 0 for all ξ ∈ U

x ∈ X , y : U → X .

6

This problem has been introduced as recoverable robustness (see [LLMS09]) and
solved in several special cases, e.g., in [KZ15, GDT15, BKK11]. It is hence denoted
as the classic scalarization approach.

In this paper we look at the other scalarization in which we minimize the recovery
costs while requiring a minimal quality of the recovery solutions:

(Rec(ε)) minimize supξ∈U d(x, y(ξ))

s.t. f(y(ξ), ξ) ≤ ε for all ξ ∈ U (2)
F (y(ξ), ξ) ≤ 0 for all ξ ∈ U (3)

x ∈ X , y : U → X

Note that Constraints (2) and (3) of this second scalarization do not depend on x.
To determine feasibility of (Rec(ε)), we hence check if for every ξ ∈ U there exists
y(ξ) such that

f(y(ξ), ξ) ≤ ε and F (y(ξ), ξ) ≤ 0,

i.e., if the sets

Gε(ξ) := {y ∈ X : F (y, ξ) ≤ 0 and f(y, ξ) ≤ ε}
= F(ξ) ∩ {y ∈ X : f(y, ξ) ≤ ε}

are not empty for all ξ ∈ U . For a fixed scenario ξ the set Gε(ξ) contains all feasible
recovery solutions y which have a sufficient quality, i.e., it is the intersection of the
feasible set with the level set (for level ε) of the problem P (ξ). To extend a given
x to a feasible solution, we choose some y(ξ) ∈ Gε(ξ) which is closest to x w.r.t the
metric d. This is possible since Gε(ξ) is closed: we define

d(x,Gε(ξ)) = min
y∈Gε(ξ)

d(x, y),

where the minimum exists whenever Gε(ξ) 6= ∅.
With d(x, ∅) := ∞, we can now rewrite (Rec(ε)) to an equivalent problem in the
(finitely many) x-variables only:

(Rec’(ε)) minimize supξ∈U d(x,Gε(ξ)) (4)
s.t. x ∈ X ,

i.e., x is an optimal solution to (Rec’(ε)) if and only if (x, y) with y(ξ) ∈ argminGε(ξ)d(x, y)
is optimal for (Rec(ε)).

3.2 Location-based interpretation of (Rec(ε))
In a classic location problem (known as the Weber problem or as the Fermat-
Torricelli problem, see e.g., [DKSW02]) we have given a set of points, called existing
facilities, and we look for a new point minimizing a measure of distance to these
given points. If the distance to the farthest point is considered as the objective
function, the problem is called center location problem. We have already seen that
for given y : U → X , our biobjective problem (Rec) reduces to the problem of find-
ing a location x which minimizes the maximum distance to the set {y(ξ) : ξ ∈ U},
i.e., a classic center location problem.

We now show that also the ε-constrained version (Rec(ε)) of recoverable robustness

min
x∈X

max
ξ∈U

d(x,Gε(ξ))

7

can be interpreted as the following location problem: The existing facilities are not
points but the sets Gε(ξ), ξ ∈ U . (Rec(ε)) looks for a new location in the metric
space X , namely a point x ∈ X which minimizes the maximum distance to the
given sets. For a finite uncertainty set U , such location problems have been studied
in [BW00, BW02a] for the center objective function and in [BW02b, NPRC03] for
median or ordered median objective functions. We adapt the notation of location
theory and call such a point (which then is an optimal solution to (Rec(ε)) a center
with respect to {Gε(ξ) : ξ ∈ U} and the distance function d. In our further analysis
we consider (Rec(ε)) from a location’s point of view. To this end, let us denote the
objective function of (Rec(ε)) by

rε(x,U) = sup
ξ∈U

d(x,Gε(ξ))

and let us call rε(x,U) the (recovery) radius of x with respect to ε and U . Let r∗ε(U)
denote the best possible recovery radius over X (if it exists). For a center location
x∗ we then have rε(x∗,U) = r∗ε(U). Figure 2 illustrates this point of view: For six
scenarios, we depicted the sets Gε(ξi), i = 1, . . . , 6. We look for a point x which
minimizes the maximum distance to these sets. If x has been fixed, the recovery
solutions yi := y(ξi), i = 1, . . . , 6 can be chosen as projections from x on the sets
Gε(ξi).

Figure 2: The sets Gε(ξ), ξ ∈ U together with an optimal solution x and recovery
solutions y(ξ), ξ ∈ U . x minimizes the maximum distance to the sets Gε(ξ).

For specific shapes of the sets Gε(ξ), algorithms of location theory may be used to
find a solution x to (Rec(ε)) efficiently. For example, if the sets Gε(ξ) are balls
of equal radius, it is known that the point x minimizing the maximum distance
to the sets Gε(ξ) is the same as the point x minimizing the maximum distance
to the center points of these sets. The latter is a classic point location problem
which can be solved efficiently [Meg84], hence in such a case an optimal solution to
(Rec(ε)) and therefore a weakly Pareto efficient solution for (Rec) can be computed
efficiently.

Closely related are quadratic programming problems of the type

P (ξ) min{
l∑
i=1

n∑
j=1

(xj − ξij)2, x ∈ IRn}

8

with uncertain parameters ξ = (ξij)i=1,...,l,j=1,...,n ∈ IRl,n, where the level sets of
the optimization problem P(ξk) and hence the sets Gε(ξk) for a specific scenario ξk

are balls around the centroid ξ̄k := 1
l

(∑l
i=1 ξ

k
i1, . . . ,

∑l
i=1 ξ

k
in

)
∈ IRn of the row

vectors of ξk.

3.3 Relation of the biobjective model to other robustness
concepts

We first point out the relation between (Rec) and the concept of strict robustness
of [BTGN09]. To this end recall from Section 2.2 that SR(U) = {x ∈ X : F (x, ξ) ≤
0 for all ξ ∈ U} is the set of strictly robust solutions and RC(U) is the strictly
robust counterpart of (P (ξ), ξ ∈ U).

Lemma 1. Let an uncertain problem (P(ξ), ξ ∈ U) be given. Then we have:

1. If x̄ is an optimal solution to RC(U) then (x̄, ȳ) with ȳ(ξ) := x̄ for all ξ ∈ U
is a lexicographically minimal solution to (Rec) w.r.t (r(x, y), f(y)).

2. Let (x̄, ȳ) be a lexicographically minimal solution to (Rec) w.r.t (r(x, y), f(y)).
Then SR(U) 6= ∅ if and only if r(x̄, ȳ) = 0 and in this case (x̄, ȳ) is optimal to
RC(U).

Proof. 1. Let x̄ be an optimal solution to RC(U). Define ȳ(ξ) := x̄ for all ξ ∈ U .
Then r(x̄, ȳ) = 0. Now assume (x̄, ȳ) is not lexicographically minimal. Then
there exists (x′, y′) with r(x′, y′) = 0 and f(y′) < f(ȳ). The first condition
yields that d(x′, y′(ξ)) = 0 for all ξ ∈ U , hence x′ = y′(ξ) for all ξ ∈ U , and
x′ ∈ SR(U). Using x′ = y′(ξ), the second condition implies supξ∈U f(x′, ξ) <
supξ∈U f(x̄, ξ), a contradiction to the optimality of x̄ for RC(U).

2. Now let (x̄, ȳ) be lexicographically minimal to (Rec).

• Let r(x̄, ȳ) = 0. Then 0 = r(x̄, ȳ) = supξ∈U d(x̄, ȳ(ξ)), i.e., x̄ = ȳ(ξ) for
all ξ ∈ U . Hence x̄ ∈ F(ξ) for all ξ ∈ U , i.e., x̄ ∈ SR(U).

• On the other hand, if SR(U) 6= ∅ there exists x ∈ F(ξ) for all ξ ∈ U .
We define y(ξ) := x for all ξ ∈ U and obtain r(x, y) = 0. Since (x̄, ȳ) is
lexicographically minimal this implies r(x̄, ȳ) = 0.

Finally, if r(x̄, ȳ) = 0 we already know that x̄ = ȳ(ξ) for all ξ ∈ U and x̄ ∈
SR(U), i.e., feasible for RC(U). The lexicographic optimality then guarantees
that x̄ is an optimal solution to RC(U).

Sorting the criteria in the objective function in the other order, i.e., minimizing first
f(y) and then r(x, y) is not directly related to any known robustness concept. This
lexicographically minimal solution (x, y) realizes an optimal solution y(ξ) in every
scenario, and among these optimal solutions minimizes the recovery costs.

Lemma 2. Let (x, y) be a solution to (Rec) which is lexicographically minimal w.r.t
(f(y), r(x, y)). Then f(y(ξ), ξ) = f∗(ξ) for all ξ ∈ U .

We now turn our attention to (Rec(ε)) and show that this scalarization can be
interpreted as adjustable robustness as in [BTGGN04]. Motivated by stochastic
programming, the variables in this concept are decomposed into two sets: The
values for the here-and-now variables have to be found in the robust optimization
algorithm while the decision about the wait-and-see variables can wait until the

9

actual scenario ξ ∈ U becomes known. For an uncertain problem (P(ξ), ξ ∈ U),
recall that (Rec(ε)) is given as

min
x∈X

sup
ξ∈U

d(x,Gε(ξ)).

We can rewrite this problem in the following way:

min
z,x
{z : ∀ξ ∈ U ∃y ∈ Gε(ξ) : d(x, y) ≤ z}

which has the same structure as an adjustable robust problem. As an example,
for a problem with linear objective function f(x, ξ) = c(ξ)tx, linear constraints
F (x, ξ) = A(ξ)x− b(ξ) ≤ 0, and ‖ · ‖1 as recovery norm, we may write

min
z′,x

{
n∑
i=1

z′i : ∀ξ ∈ U ∃y : c(ξ)ty ≤ ε, A(ξ)y ≤ b(ξ), −z′ ≤ x− y ≤ z′
}
. (5)

Note that this is a problem without fixed recourse (i.e., coefficients of second-stage
variables are affected by uncertainty), such that most of the results in [BTGGN04]
are not applicable. However, we are still able to apply their results on using heuris-
tic, affinely adjustable counterparts, and Theorem 2.1 from [BTGGN04]:

Theorem 1. Let (P(ξ), ξ ∈ U) be an uncertain linear optimization problem, and let
the uncertainty be constraint-wise. Furthermore, let there be a compact set C such
that F(ξ) ⊆ C for all ξ ∈ U . Then, (Rec(ε)) is equivalent to the following problem

min
z′,x

{
n∑
i=1

z′i : ∃y ∀ξ ∈ U : c(ξ)ty ≤ ε, A(ξ)y ≤ b(ξ), −z′ ≤ x− y ≤ z′
}
. (6)

Note that problem (6) is a strictly robust problem, which is considerably easier to
solve than problem (5). Furthermore, [BTGGN04] show that there is a semidefinite
program for ellipsoidal uncertainty sets which is equivalent to problem (5).
Problem (Rec(ε)) can also be interpreted as a strictly robust problem in x (see (4)).
However, the function ξ 7→ d(x,Gε) has in general not much properties such that
most of the known results cannot be directly applied. Nevertheless, our geometric
interpretation gives rise to the results of the next section, in particular within the
biobjective setting.

4 Solving (Rec(ε))
In this section we investigate the new scalarization (Rec(ε)). After a more general
analysis of this optimization problem in Section 4.1, we turn our attention to the
case of a finite uncertainty set in Section 4.2 where we consider problems with
convex and with linear constraints.

4.1 Analysis of (Rec(ε))
Let us now describe some general properties of problem (Rec(ε)). Since d is a metric
we know that

0 ≤ rε(x,U) ≤ +∞ for all x ∈ IRn, (7)

hence the optimal value of (Rec(ε)) is bounded by zero from below, although it is
+∞ if all points x have infinite radius rε(x,U). This event may happen even when
all sets Gε(ξ) are non-empty. Indeed, consider, for instance, X = IR, Gε(ξ) = {ξ}
for all ξ ∈ U = IR. One has, however, that finiteness of rε(x,U) at one point x0 and
one ε implies finiteness of rε′(x,U) for all x ∈ X and for all ε′ ≥ ε. In that case we
obtain Lipschitz-continuity of the radius, as shown in the following result.

10

Lemma 3. Let an uncertain optimization problem (P(ξ), ξ ∈ U) be given. Suppose
there exists x0 ∈ IRn such that rε(x0,U) < +∞. Then, rε(x,U) < +∞ for all
x ∈ IRn and for all ε′ ≥ ε. In such a case, the function IRn 3 x 7−→ rε′(x,U) is
Lipschitz-continuous with Lipschitz constant L = 1 for every ε′ ≥ ε.

Proof. Take x ∈ IRn and ξ ∈ U . Let y ∈ Gε(ξ) such that d(x0,Gε(ξ)) = d(x0, y). We
have that

d(x,Gε(ξ)) ≤ d(x, y) ≤ d(x, x0) + d(x0, y) = d(x, x0) + d(x0,Gε(ξ))

Hence,
max
ξ∈U

d(x,Gε(ξ)) ≤ d(x, x0) + max
ξ∈U

d(x0,Gε(ξ)) < +∞,

and therefore, rε(x,U) is finite everywhere. Since rε′(x,U) ≤ rε(c,U) for all ε′ ≥ ε
we also have finiteness if we increase ε.

We now show that rε(·,U) is also Lipschitz-continuous. Let δ > 0, and let x, x′ ∈
IRn. Take ξ∗ such that

δ + d(x,Gε(ξ∗)) ≥ rε(x,U).

Since Gε(ξ∗) is closed, take also y′ ∈ Gε(ξ∗) such that d(x′,Gε(ξ∗)) = d(x′, y′).
Then,

rε(x,U)− rε(x′,U) ≤ δ + d(x,Gε(ξ∗))− d(x′,Gε(ξ∗))
≤ δ + d(x, y′)− d(x′, y′)

≤ δ + d(x, x′).

Since this inequality holds for any δ > 0, we obtain rε(x,U) − rε(x′,U) ≤ d(x, x′),
hence the function r(·,U) is Lipschitz-continuous with Lipschitz constant 1.

In what follows we assume finiteness of the optimal value of (Rec(ε)), and thus
Lipschitz-continuity of rε(·,U). Hence, (Rec(ε)) may be solved by using standard
Lipschitz optimization methods [SK10].

For a given x ∈ IRn let us call ξ ∈ U a worst-case scenario with respect to x (and
U) if

d(x,Gε(ξ)) = rε(x,U)

and letWCε(x,U) be the set of all worst-case scenarios, i.e., scenarios ξ ∈ U yielding
the maximal recovery distance for the solution x. Under certain assumptions, any
optimal solution x∗ to (Rec(ε)) has a set WCε(x

∗,U) with at least two elements,
as shown in the following result.

Lemma 4. Let an uncertain optimization problem (P(ξ), ξ ∈ U) be given. Suppose
that U is finite (with at least two elements) and X = IRn. Fix some ε and assume
that (Rec(ε)) attains its optimum at some x∗ ∈ IRn. Then, |WCε(x

∗,U)| ≥ 2.

Proof. Finiteness of U implies that the maximum of d(x∗,Gε(ξ)) must be attained
at some ξ. Hence, |WCε(x

∗,U)| ≥ 1.
In the case that rε(x∗,U) = 0, we have thatWCε(x

∗,U) = U . Thus, let rε(x∗,U) >
0.
In the case that WCε(x

∗,U) = {ξ∗} for only one scenario ξ∗ ∈ U , we can construct
a contradiction by finding a different x with a better radius: Take y∗ ∈ Gε(ξ∗) such
that d(x∗, y∗) = d(x∗,Gε(ξ∗)), and, for λ ∈ [0, 1], define xλ as

xλ = (1− λ)x∗ + λy∗.

11

Since, by assumption, WCε(x
∗,U) = {ξ∗} and U is finite, there exists δ > 0 such

that
d(x∗,Gε(ξ)) < d(x∗,Gε(ξ∗))− δ ∀ξ ∈ U , ξ 6= ξ∗.

Let us show that, for λ close to zero, xλ has a strictly better objective value than
x∗, which would be a contradiction. First we have

d(xλ,Gε(ξ∗)) ≤ d(xλ, y
∗)

= (1− λ)‖x∗ − y∗‖ = (1− λ)d(x∗,Gε(ξ∗))
< d(x∗,Gε(ξ∗)) for λ > 0.

For the remaining scenarios ξ 6= ξ∗,

d(xλ,Gε(ξ)) ≤ inf
y∈Gε(ξ)

{
‖xλ − x∗‖+ ‖x∗ − y‖

}
= inf

y∈Gε(ξ)

{
λ‖x∗ − y∗‖+ ‖x∗ − y‖

}
= λ‖x∗ − y∗‖+ d(x∗,Gε(ξ))
< λ‖x∗ − y∗‖+ d(x∗,Gε(ξ∗))− δ

< d(x∗,Gε(ξ∗)) for λ <
δ

‖x∗ − y∗‖
.

Hence, for 0 < λ < δ
‖x∗−y∗‖ , we would have that

max
ξ∈U

d(xλ,Gε(ξ)) < d(x∗,Gε(ξ∗)) = max
ξ∈U

d(x∗,Gε(ξ)),

contradicting the optimality of x∗.

If the finiteness assumption of Lemma 4 is dropped, not much can be said about
the cardinality of WCε(x,U), since this set can be empty or a singleton:

Example 3. Let U = {−1, 1}× [1,∞), and let F (x, (ξ1, ξ2)) = (x−ξ1)(ξ2x−ξ1ξ2 +
ξ1). Let f(x) = const and choose ε > const. It is easily seen that

Gε(−1, ξ2) = F(−1, ξ2) = [−1,−1 + 1
ξ2

]

Gε(1, ξ2) = F(1, ξ2) = [1− 1
ξ2
, 1]

(8)

For x = 0, rε(x,U) = 1, but there is no ξ ∈ U with d(x,Gε(ξ)) = 1. In other words,
WCε(0,U) = ∅.

4.2 Solving (Rec(ε)) for a finite uncertainty set U
In this section we assume that U is finite, U = {ξ1, . . . , ξN}. This simplifies the
analysis, since we can explicitly search for a solution yk = y(ξk) for every scenario
ξk ∈ U . Using the yk as variables we may formulate (Rec(ε)) as

min r
s.t. F (yk, ξk) ≤ 0 for all k = 1, . . . , N

f(yk, ξk) ≤ ε for all k = 1, . . . , N
d(x, yk) ≤ r for all k = 1, . . . , N
x ∈ X , r ∈ IR
yk ∈ X for all k = 1, . . . , N.

(9)

We can write (Rec(ε)) equivalently as

min
x∈X

max
1≤k≤N

d(x,Gε(ξk)).

12

Assuming that the distance used is the Euclidean d2(·, ·), the function x 7−→
maxk d2(x,Gε(ξk)) is known to be d.c. for closed sets Gε [HT99], i.e., it can be
written as a difference of two convex functions, and then the powerful tools of
d.c. programming may be used to find a globally optimal solution if (Rec(ε)) is
low-dimensional [BCH09], or to design heuristics for more general cases [AT05].

4.2.1 Convex programming problems

We start with optimization problems P(ξ) that have convex sets Gε(ξ) for all ξ ∈ U .
This is the case if the functions F and f of P(ξ) are quasiconvex for all fixed
scenarios ξ, and X is convex. We furthermore assume that d is convex, which is the
case, e.g., when d has been derived from a norm, i.e. d(x, y) = ‖y − x‖ for some
norm ‖ · ‖.
Let us fix ξ. Then the function IRn 3 x 7−→ d(x,F(ξ)) describes the distance
between a point and a convex set and is hence convex. We conclude that also
rε(x,U) is convex, being the maximum of a finite set of convex functions.

Lemma 5. Consider an uncertain optimization problem (P(ξ), ξ ∈ U) with quasi-
convex objective function f(·, ξ) and quasiconvex constraints F (·, ξ) for any fixed ξ.
Let X ⊆ IRn be convex, U be a finite set and d be convex. Then problem (Rec(ε))
is a convex optimization problem.

In order to solve (Rec(ε)) one can hence apply algorithms suitable for convex pro-
gramming, e.g., subgradient or bundle methods [SY06, HUL93]. In particular, if
(Rec(ε)) is unconstrained in x, a necessary and sufficient condition for a point x∗
to be an optimal solution is

0 ∈ ∂(rε(x
∗,U)),

i.e., if 0 is contained in the subdifferential of rε(·,U) at the point x∗. By construction
of rε(·,U), we obtain

0 ∈ conv {∂d(x∗,Gε(ξ)) : ξ ∈WCε(x
∗,U)}

whereWCε(x
∗,U) is the set of worst-case scenarios (see [HUL93]), and ∂d(x∗,Gε(ξ))

is the subdifferential of d(·,Gε(ξ)) at x∗.
Now, ∂d(x∗,Gε(ξ)) can be written in terms of the subdifferential of the distance used,
see [CF02], where also easy representations for polyhedral norms or the Euclidean
norm are presented. Although we do not know much a priori about the number
of worst-case scenarios, we do not need to investigate all possible subsets but may
restrict our search to sets which do not have more than n+ 1 elements as is shown
in our next result. This may be helpful in problems with a large number of scenarios
but low dimension n for the decisions.

Theorem 2. Let U be finite with cardinality of at least n+1. Let X = IRn. Suppose
(Rec(ε)) attains its optimum at some x∗, and that for each ξ the functions F (·, ξ)
and f(·, ξ) are quasiconvex. Let d be convex. Then there exists a subset U ⊆ U of
scenarios with 2 ≤ |U| ≤ n+ 1 such that

r∗ε(U) = rε(x
∗,U) = rε(x

∗,U) = r∗ε(U).

Proof. Let x∗ be optimal for (Rec(ε)). The result is trivial if rε(x∗,U) = 0: take any
collection of n + 1 scenarios. Hence, we may assume rε(x∗,U) > 0, which implies
that x∗ does not belong to all sets Gε(ξ).

13

By Lemma 4, |WCε(x
∗,U)| ≥ 2. If |WCε(x

∗,U)| ≤ n + 1, then we are done.
Otherwise, |WCε(x

∗,U)| > n+ 1, we have by the optimality of x∗ and convexity of
the functions d(·,Gε(ξ)), that

0 ∈ conv {∂d(x∗,Gε(ξ)) : ξ ∈WCε(x
∗,U)}

By Carathéodory’s theorem, WCε(x
∗,U) contains a subset U , 1 ≤ |U| ≤ n + 1

such that 0 ∈ conv
{
∂d(x∗,Gε(ξ)) : ξ ∈ U

}
. Such U clearly satisfies the conditions

stated.

4.2.2 Problems with linear constraints and polyhedral norms as recov-
ery costs

As in the section before, we assume a finite uncertainty set U = {ξ1, . . . , ξN}. Let
us now consider the case that all sets Gε(ξk), k = 1, . . . , N are polyhedral sets.
More precisely, we consider problems of type

P(ξ) min f(x, ξ) := c(ξ)tx

s.t. F (x, ξ) := A(ξ)x− b(ξ) ≤ 0

x ∈ X

with a finite uncertainty set U = {ξ1, . . . , ξN}, linear constraints A(ξ)x ≤ b(ξ) for
every ξ ∈ U , a linear objective function c(ξ)tx and a polyhedron X .

Furthermore, let us assume that the distance d is induced by a block norm ‖ ·‖, i.e.,
a norm whose unit ball is a polytope, see [WWR85, Wit64]. The most prominent
examples for block norms are the Manhattan (d1) and the maximum (d∞) norm,
which both may be suitable to represent recovery costs: In the case that the recovery
costs are obtained by adding single costs of each component, the Manhattan norm
is the right choice. The maximum norm may represent the recovery time in the
case that a facility has to be moved along each coordinate (or a schedule has to be
updated by a separate worker in every component) and the longest time determines
the time for the complete update.
We also remark that it is possible to approximate any given norm arbitrarily close
by block norms, since the class of block norms is a dense subset of all norms, see
[WWR85]. Thus, the restriction to the class of block norms may not be a real
restriction in a practical setting.

The goal of this section is to show that under the assumptions above, (Rec(ε)) is a
linear program.

We start with some notation. Given a norm ‖ · ‖, let

B = {x ∈ IRn : ‖x‖ ≤ 1}

denote its unit ball. Recall that the unit ball of a block norm ‖·‖ is a full-dimensional
convex polytope which is symmetric with respect to the origin. Since such a poly-
tope has a finite number S of extreme points, we may denote in the following the
extreme points of B as

Ext(B) = {ei : 1 ≤ i ≤ S}.

Since B is symmetric with respect to the origin, S ∈ IN is always an even number
and for any ei ∈ Ext(B) there exists another ej ∈ Ext(B) such that ei = −ej . Its
dual (or polar) norm defined as ‖x‖0 := max{xty : ‖y‖ ≤ 1} has the unit ball

B0 = {x ∈ IRn : xty ≤ 1 for all y ∈ B}.

14

It is known that B0 is again a polyhedral norm with extreme points

Ext(B0) = {e0i : 1 ≤ i ≤ S0},

where S0 is the number of facets of B (see, e.g., [Roc70]).

The following property is crucial for the linear programming formulation of (Rec(ε)).
It shows that it is sufficient to consider only the extreme points Ext(B) of either
the unit ball B of the block norm, or of the unit ball B0 of its polar norm in order
to compute ‖x‖ for any point x ∈ IRn.

Lemma 6 ([WWR85]). Let Ext(B) = {ei : 1 ≤ i ≤ S} be the extreme points of
a block norm ‖ · ‖ with unit ball B and let Ext(B0) = {e0i : 1 ≤ i ≤ S0} be the
extreme points of its polar norm with unit ball B0. Then ‖ · ‖ has the following two
characterizations:

‖x‖ = min

{
S∑
i=1

βi : x =

S∑
i=1

βiei, βi ≥ 0 ∀ i = 1, . . . , S

}

and

‖x‖ = max
i=1,...,S0

xte0i .

Lemma 6 implies that we can compute ‖x − y‖ for any pair x, y ∈ IRn by linear
programming. Thus, our assumptions on the sets Gε(ξk) and Lemma 6 give rise to
the following linear formulations of (Rec(ε)), if X is a polyhedron:

min r

s.t. A(ξk)yk ≤ b(ξk) for all k = 1, . . . , N (10)

c(ξk)tyk ≤ ε for all k = 1, . . . , N (11)

yk − x =

S∑
i=1

βki ei for all k = 1, . . . , N (12)

S∑
i=1

βki ≤ r for all k = 1, . . . , N (13)

x, yk ∈ X for all k = 1, . . . , N (14)

r, βki ≥ 0 for all k = 1, . . . , N, i = 1, . . . , S (15)

Note that constraints (10) and (11) are just the definition of the sets Gε(ξk). Fur-
thermore, (12) and (13) together ensure that ‖x − yk‖ ≤ r for all k = 1, . . . , N .
Hence, the linear program is equivalent to the formulation (9) for a finite set of
scenarios each of them having a polyhedron as feasible set and if a block norm is
used as distance measure. In this case we have hence shown that (Rec(ε)) can be
formulated as a linear program. In order to use the second characterization of block
norms in Lemma 6 we replace (12) and (13) by(

e0i
)t

(yk − x) ≤ r for all k = 1, . . . , N, i = 1, . . . , S0 (16)

to ensure that the value of ‖x − yk‖ is correctly computed. We summarize our
findings in the following result.

15

Theorem 3. Consider an uncertain linear optimization problem (P(ξ), ξ ∈ U) Let
U = {ξk : k = 1, . . . , N} be a finite set and let d be induced by a block norm. Let
X ⊆ IRn be a polyhedron. Then (Rec(ε)) can be solved by linear programming.
If the number of constraints defining X , and either the number of extreme points of
B or the number of facets of B depend at most polynomially on the dimension n,
then (Rec(ε)) can be solved in polynomial time.

We note that block norms may be generalized to the broader class of polyhe-
dral gauges where the symmetry assumption on the unit ball is dropped (see e.g.,
[NP09]). Nevertheless it is readily shown that Lemma 6 applies to polyhedral gauges
as well. Hence, it follows that Theorem 3 also holds for distance functions derived
from polyhedral gauges.

4.2.3 Problems with hyperplanes as feasible sets

We consider a special case in which (Rec(ε)) can be rewritten as a linear program,
even though the distance measure does not need to be derived from a block norm,
namely if the sets Gε(ξ) are all hyperplanes or halfspaces. Before we show the
resulting linear program for this case, we consider some situations in which this
happens:

Example 4. Let d be a distance derived from a norm, and let X = IRn.

1. For feasibility problems of type

P(a, b) min const

s.t. F (x, (a, b)) := atx− b = 0

with U = {(a1, b1), . . . , (aN , bN)}, a1, . . . , aN 6= 0 we obtain Gε(ak, bk) = {x :

ak
t
x− bk = 0} for all ε > const.

2. The same holds for problems

P (ξ) min{f(x, ξ) : x ∈ F(ξ)} for ξ ∈ U

if F(ξ) is a hyperplane for each ξ ∈ U and ε > f(x, ξ) for all x ∈ F(ξ).

3. For unconstrained uncertain linear optimization of the form

P (ξ) min{c(ξ)tx : x ∈ IRn}

the resulting sets Gε(ξk) = {x : c(ξ)tx ≤ ε} are halfspaces.

Let us first consider the case of hyperplanes: For ξk = (ak, bk), let Gε(ξ) = Hak,bk =

{x ∈ IRn : ak
t
x = bk} be a hyperplane. Then (Rec(ε)) is given by

min r

s.t. d(x,Hak,bk) ≤ r for all k = 1, . . . , N

x ∈ IRn, r ∈ IR,

Recall the point-to-hyperplane distance [PC01]

d(x,Ha,b) =
|atx− b|
‖a‖◦

,

16

where ‖·‖◦ denotes the dual norm to ‖·‖. As the values of ‖ak‖◦ can be precomputed
and the absolute value linearized, we gain a linear program

min r

s.t. − r ≤ ak
t
x− b
‖ak‖◦

≤ r for all k = 1, . . . , N (17)

x ∈ IRn, r ∈ IR.

For halfspaces Gε(ξk) = H+
ak,bk

= {x ∈ IRn : ak
t
x ≤ bk} instead of hyperplanes, the

distance is given by

d(x,H+
a,b) =

|atx− b|+

‖a‖◦
,

where |atx− b|+ = max{atx− b, 0}, resulting in the linear program

min r

s.t.
ak
t
x− b
‖ak‖◦

≤ r for all k = 1, . . . , N (18)

r ≥ 0

x ∈ IRn, r ∈ IR.

Theorem 4. Consider an uncertain optimization problem with finite uncertainty
set and sets Gε(ξ) that are hyperplanes or halfspaces. Let X = IRn and let d be
derived from a norm ‖ · ‖. Then (Rec(ε)) can be formulated as linear program (see
(17) and (18)) and be solved in polynomial time, provided that the dual norm of ‖ ·‖
can be evaluated in polynomial time.

5 Reduction approaches
In this section we analyze recoverable-robust solutions for different uncertainty sets
U , and hence write Rec(U), fU and rU to emphasize the uncertainty set that is
considered:

Rec(U) minimize (fU (y), rU (x, y)) =
(
supξ∈U f(y(ξ), ξ), supξ∈U d(x, y(ξ))

)
s.t. F (y(ξ), ξ) ≤ 0 for all ξ ∈ U

x ∈ X , y : U → X

Recall that a solution x is recoverable-robust with respect to U if there exists y :
U → X such that (x, y) is Pareto-efficient for Rec(U).
The main goal of this section is to reduce the set U to a smaller (maybe even finite)
set U ′ ⊆ U , such that the set of recovery-robust solutions does not change. This
is the case if we can extend any feasible solution (x, y′) for Rec(U ′) to a feasible
solution (x, y) for Rec(U) without changing the objective function values.

Lemma 7. Let U ′ ⊆ U . If for all feasible solutions (x, y′) of Rec(U ′) there exists
y : U → X such that

• (x, y) is feasible for Rec(U), i.e., F (y(ξ), ξ) ≤ 0 for all ξ ∈ U , and

• fU (y) = fU ′(y
′) and rU (x, y) = rU ′(x, y

′)

then Rec(U) and Rec(U ′) have the same recoverable-robust solutions.

17

Proof. Let (x, y) be feasible for Rec(U). Define

y|U ′ : U ′ → X through y|U ′(ξ) := y(ξ) for all ξ ∈ U ′

Then (x, y′) is feasible for Rec(U ′) and fU ′(y
′) ≤ fU (y), rU ′(x, y′) ≤ rU (x, y). To-

gether with the assumption of this lemma Pareto optimality follows since a solution
can be improved by switching between Rec(U) and Rec(U ′):

• Let x be recoverable-robust w.r.t U . Then there exists y : U → X such
that (x, y) is Pareto efficient for Rec(U). Define y′ := y|U ′ . Then (x, y′) is
Pareto-efficient for Rec(U ′): Assume that (x̃, ỹ′) dominates (x, y′). Due to the
assumption of this lemma there exists (x̃, ỹ) which is feasible for Rec(U) and
fU (ỹ) = fU ′(ỹ

′) and rU (x̃, ỹ) = rU ′(x̃, ỹ
′), i.e., (x̃, ỹ) then dominates (x, y), a

contradiction.

• Let x be recoverable-robust w.r.t U ′. Then there exists y′ : U ′ → X such that
(x, y′) is Pareto-efficient for Rec(U ′). Choose y according to the assumption
of this lemma. Then (x, y) is Pareto-efficient for Rec(U): Assume that (x̃, ỹ)
dominates (x, y). Then (x̃, ỹ|U ′) is feasible for Rec(U ′) and fU ′(ỹ|U ′) ≤ fU (ỹ)
and rU ′(x̃, ỹ|U ′) ≤ rU (x̃, ỹ), i.e., (x̃, ỹ|U ′) then dominates (x, y′), a contradic-
tion.

We now use Lemma 7 to reduce the set of scenarios U . Our first result is similar to
the reduction rules for set covering problems [TSRB71].

Lemma 8. If P(ξ2) is a relaxation of P(ξ1) for two scenarios ξ1, ξ2 ∈ U , then
Rec(U) and Rec(U \ {ξ2}) have the same recoverable robust solutions, i.e., scenario
ξ2 may be ignored.

Proof. We check the condition of Lemma 7: Let (x, y′) be feasible for Rec(U \{ξ2}).
Define

y : U → X through y(ξ) :=

{
y′(ξ) if ξ ∈ U \ {ξ2}
y′(ξ1) if ξ = ξ2

Then (x, y) is feasible since F (y(ξ), ξ) ≤ 0 for all ξ ∈ U \ {ξ2} and F (y(ξ2), ξ2) =
F (y(ξ1), ξ2) ≤ 0 since F (y(ξ1), ξ1) ≤ 0 and P(ξ2) is a relaxation of P(ξ1). Further-
more, f(y(ξ2), ξ2) = f(y(ξ1), ξ2) ≤ f(y(ξ1), ξ1) implies

fU (y) = sup
ξ∈U

f(y(ξ), ξ) = sup
ξ∈U\{ξ2}

f(y(ξ), ξ) = sup
ξ∈U\{ξ2}

f(y′(ξ), ξ) = fU\{ξ2}(y
′).

Finally, y(ξ1) = y(ξ2), hence

rU (x, y) = sup
ξ∈U

d(x, y(ξ)) = sup
ξ∈U\{ξ2}

d(x, y(ξ)) = sup
ξ∈U\{ξ2}

d(x, y′(ξ)) = rU\{ξ2}(x, y
′).

Note that depending on the definition of the optimization problem and the uncer-
tainty set U , often large classes of scenarios may be dropped. This is in particular
the case if the sets F(ξ) are nested.

In the following we are interested in identifying a kind of core set U ′ ⊆ U containing
a finite number of scenarios which are sufficient to consider in order to solve the
recoverable-robust counterpart. More precisely, we look for a finite set U ′ such that
Rec(U) and Rec(U ′) have the same recoverable-robust solutions.

18

In the following we consider a polytope U with a finite number of extreme points
ξ1, . . . , ξN , i.e., let

U = conv(U ′) where U ′ = {ξ1, . . . , ξN}.

Then many robustness concepts have (under mild conditions) the following prop-
erty: Instead of investigating all ξ ∈ U , it is enough to investigate the extreme
points ξ1, . . . , ξN of U . For example, for the strictly robust counterpart RC(U) of
an uncertain optimization problem (P (ξ), ξ ∈ U = conv{ξ1, . . . , ξN}), RC(U) is
equivalent to RC({ξ1, . . . , ξN}), if F (x, ·) is convex for all x ∈ X .
Unfortunately, a similar result for the recoverable-robust counterpart does not hold.
This means that the set of Pareto efficient solutions of Rec(U ′) does in general not
coincide with the set of Pareto efficient solutions of Rec(U) with respect to the
larger set U = conv(U ′) as demonstrated in the following example.

Example 5. Consider the following uncertain optimization problem:

P(a1, a2, b) min f(x1, x2) = const

s.t. a1x1 + a2x2 − b = 0

x1, x2 ∈ IR,

where
U = conv(U ′) with U ′ = {(1, 0, 0), (0, 1, 0), (1, 1, 2)}.

Let the recovery distance be the Euclidean distance. Then x∗ = (2 −
√

2, 2 −
√

2),
the midpoint of the incircle of the triangle that is given by the intersections of the
respective feasible solutions, is a Pareto efficient solution of Rec(U ′), as it is the
unique minimizer of the recovery distance (see Figure 3(a)).

(a) Optimal solution w.r.t. U ′. (b) Optimal solution w.r.t. U .

Figure 3: Rec(U ′) and Rec(U) may have different optimal solutions.

On the other hand, this solution is not Pareto efficient when the convex hull of U ′
is taken into consideration. Indeed, by elementary geometry, one finds that

r(x∗,U) =
√

2 · (2−
√

2) ≈ 0.828,

r(x̄,U) =
1√
2
≈ 0.707,

where x̄ = (1
2 ,

1
2) (see Figure 3(b)). Therefore, solving Rec(U ′) does not give the set

of Pareto efficient solutions for Rec(U) .

19

However, assuming more problem structure, we can give the following result.

Theorem 5. Consider an uncertain optimization problem with uncertainty set U =
conv(U ′) with U ′ := {ξ1, . . . , ξN}. Let F consist ofm constraints with Fi : IRn×U →
IR, i = 1, . . . ,m and f : IRn×U → IR be jointly quasiconvex in the arguments (y, ξ).
Let d(x, ·) be quasiconvex. Let X be convex.
Then Rec(U) and Rec(U ′) have the same set of recoverable-robust solutions.

Proof. Let (x, y′) be feasible for Rec(U ′). We first define y : U → X .
Let ξ ∈ U . Then there exist λi, i = 1, . . . , N such that ξ =

∑N
i=1 λiξ

i with∑N
i=1 λi = 1 and λi ≥ 0. We set y(ξ) :=

∑N
i=1 λiy

′(ξi). Note that this implies
y(ξi) = y′(ξi) for all i = 1, . . . , N . We now check the conditions of Lemma 7.

For every constraint k = 1, . . . ,m the joint quasiconvexity implies that

Fk(y(ξ), ξ) = Fk

(
N∑
i=1

λiy(ξi),

N∑
i=1

λiξ
i

)
≤ max
i=1,...,N

Fk(y(ξi), ξi) ≤ 0 ∀k = 1, . . . ,m,

where the last inequality holds since y(ξi) = y′(ξi) and (x, y′) is feasible for Rec(U ′).
We hence have that (x, y) is feasible for Rec(U).
Analogously, joint quasiconvexity of f implies f(y(ξ), ξ) ≤ maxi=1,...,N f(y(ξi), ξi)
for all ξ ∈ U , hence

fU (y) = sup
ξ∈U

f(y(ξ), ξ) = max
ξ∈U ′

f(y(ξ), ξ) = max
ξ∈U ′

f(y′(ξ), ξ) = fU ′(y
′).

Finally, for the recovery distance d we assumed quasiconvexity in its second argu-
ment which implies d(x, y(ξ)) ≤ maxi=1,...,N d(x, y(ξi)), hence

rU (x, y) = sup
ξ∈U

d(x, y(ξ)) = max
ξ∈U ′

d(x, y(ξ)) = max
ξ∈U ′

d(x, y′(ξ)) = rU ′(x, y
′).

An important particular case of Theorem 5 is the case in which

F (x, ξ) = G(x)− b(ξ)

for a convex G and concave b (i.e., the uncertainty is in the right-hand side), since
F is then jointly quasiconvex in (x, ξ).

Corollary 1. Let (P(ξ), ξ ∈ U) be an uncertain optimization problem with uncer-
tainty set U = conv(U ′) with U ′ := {ξ1, . . . , ξN}. Let F (x, ξ) = G(x) − b(ξ) with
a convex function G : IRn → IRm and a concave function b(ξ) : IRM → IRm. Let
f(x, ξ) be jointly quasiconvex, X be convex, and let d(x, ·) be quasiconvex. Then
Rec(U) and Rec(U ′) have the same recoverable-robust solutions.

We remark that G must not depend on the scenario ξ. Example 5 shows that
Corollary 1 is not even true for a linear function F (x, ξ) = A(ξ)x − b(ξ): If the
matrix A is dependent on ξ, we cannot conclude that Rec(U) and Rec(U ′) have the
same recoverable-robust solutions.
Note that Corollary 1 applies in particular for the special case where b(ξ) = ξ, i.e.,
for uncertain convex optimization problems of the type

P(b) min
x∈IRn

{f(x) : G(x) ≤ b}. (19)

In particular we know for P(b) that the center with respect to some finite set U ′
solves the uncertain problem with respect to U = conv(U ′).
This means we can use the finite set U ′ instead of U when solving (Rec) if the
conditions of the previous theorem apply. This is summarized next.

20

Corollary 2. Let (P(ξ), ξ ∈ U) be an uncertain optimization problem with uncer-
tainty set U = conv(U ′) with U ′ := {ξ1, . . . , ξN} and with constraints F (x, ξ) =
G(x) − b(ξ) with a convex function G : IRn → IRm and a concave function b(ξ) :
IRM → IRm. Let X ⊆ IRn be convex, let f be jointly convex, and let d(x, ·) be
convex. Then (Rec) can be formulated as the following convex biobjective program:

min (r, z)
s.t. G(yk) ≤ b(ξk) for all k = 1, . . . , N

d(x, yk) ≤ r for all k = 1, . . . , N
f(yk, ξk) ≤ z for all k = 1, . . . , N
x, yk ∈ X for all k = 1, . . . , N
r, z ∈ IR

(20)

Combining this corollary with Theorem 3 from Section 4.2.2, we obtain the following
result: The recoverable-robust counterpart of an optimization problem with convex
uncertainty which is only in its right-hand side and with polyhedral uncertainty
set can be formulated as a linear program if a block norm is used to measure the
recovery costs. In particular, the recoverable-robust counterpart of such a linear
program under polyhedral uncertainty sets and block norms as distance functions
remains a linear program.

Theorem 6. Let (P(ξ), ξ ∈ U) be an uncertain linear program with concave uncer-
tainty only in the right-hand side, and U = conv(U ′) with U ′ := {ξ1, . . . , ξN}. Let d
be derived from a block norm. Then, (Rec) can be formulated as a linear biobjective
program.
If the terms defining X and either the number of extreme points or the number
of facets of the unit ball of the block norm depend at most polynomially on the
dimension n, then the problem (Rec(ε)) be solved in polynomial time.

Proof. According to Theorem 1 we can replace U by the finite set U ′ in the recoverable-
robust counterpart, i.e., we consider Rec(U ′) instead of Rec(U). We are hence left
with a problem for which the assumptions of Theorem 3 are satisfied yielding a
formulation as linear program.

Note that many practical applications satisfy the conditions of Theorem 6. Among
these are scheduling and timetabling problems where the uncertainty is the length
of the single tasks to be completed and hence in the common linear formulations in
the right-hand side. We refer to [GS10] for applications in timetabling, to [HL05]
for project scheduling, to [EMS09] for container repositioning, and to [BvdAH11]
for knapsack problems.

6 Numerical experiments
In the following, we consider two computational experiments: The first experiment
is concerned with computation times on randomly generated portfolio optimization
instances. We analyze the difference between our scalarization (Rec(ε)) and the
”classic” scalarization (Recclass(δ)) to calculate the Pareto front. In the second
experiment, we use real-world stock exchange data and analyze the performance of
the biobjective model.
Note that both recovery distance and worst-case performance are relevant quality
measures in portfolio optimization. On the one hand, a good worst-case perfor-
mance ensures that the solution will perform well over all scenarios. On the other
hand, however, the small recovery distance adds an element of stability to the op-
timization, as it can be used to avoid solutions where only few stocks are bought.
This stability then translates to additional robustness over time.

21

6.1 Experiment 1: Computation Times
6.1.1 Problem setting

We consider a portfolio problem of the form

max

n∑
i=1

pixi

s.t.
n∑
i=1

xi = 1

x ≥ 0

where variable xi denotes the amount of investment in opportunity i ∈ {1, . . . , n}
with profit pi. We assume that profits are uncertain and stem from a finite uncer-
tainty set U = {p1, . . . , pN} ⊆ IRn

+. The biobjective recoverable-robust model we
would like to solve is the following:

(max z, min d)

s.t. z ≤
n∑
i=1

pki x
k
i ∀k = 1, . . . , N

n∑
i=1

xi = 1

n∑
i=1

xki = 1 k = 1, . . . , N

n∑
i=1

(xi − xki)2 ≤ d ∀k = 1, . . . , N

x, xk ≥ 0

In this setting, we would like to fix some choice of investment x now, but can modify
it, once the scenario becomes known. Our aim is to maximize the resulting worst-
case profit, and also to minimize the modifications to our investment, which we
measure by using the Euclidean distance.
We compare the two ε-constraint approaches, where either a fixed budget on d is
given (Recclass(δ)), or a budget on z is given (Rec(ε)).
Moreover, we consider the following iterative projection method as another solution
approach to (Rec(ε)) It is based on the method of alternating projections. Say we
have some candidate solution x available. For every scenario k, we want to find a
solution xk that is as close to x as possible, and also respects a desired profit bound
P . The resulting problems are independent for every k. For a fixed k, it can be
formulated as the following quadratic program:

min

n∑
i=1

(xki − xi)2

s.t.
n∑
i=1

xki = 1

n∑
i=1

pki x
k
i ≥ P

xk ≥ 0

22

Having calculated all points xk, we then proceed to find a new solution x′ that is
as close to all points xk as possible:

min d

s.t.
n∑
i=1

x′i = 1

n∑
i=1

(x′i − xki)2 ≤ d ∀k = 1, . . . , N

x′ ≥ 0

We then repeat the calculation of closest points, until the change in objective value
is sufficiently small. In this setting, the projection method is known to converge to
an optimal solution (see, e.g., [Dat10, Goe12])

6.1.2 Instances and computational setting

We consider instances with n = 5, 10, 15, 20, 25, 30 and N = 5, 10, 15, 20, 25, 30,
where we generate 100 instances for each setting of n andN (i.e., a total of 6·6·100 =
3600 instances were generated). An instance is generated by sampling uniformly
randomly values for pki in the range {1, . . . , 100}.
For each instance, we first calculate the two lexicographic solutions with respect to
recovery distance and profit. Then the following problems were solved:

• We solve the classic scalarization, (Recclass(δ)), i.e., (Rec) with bounds on the
recovery distance, where the bounds are calculated by choosing 50 equidistant
points within the relevant region given by the lexicographic solutions. This
approach is denoted as Rec-P.

• For solving the new scalarization, i.e., (Rec(ε)), we used three different ap-
proaches:

– Using also 50 equidistant bounds on the profit, we solve recoverable-
robust problems (Rec(ε)) directly. This approach is denoted as Rec-D.

– In the same setting as for Rec-D, we use the iterative projection algorithm
instead of solving the recovery problem directly with Cplex. This is
denoted as Rec-It.

– Finally, as preliminary experiments showed that Rec-It is especially fast
if the bound on the profit P is large, we used a mixed approach that uses
Rec-D for the 2/3 smallest bounds on P , and Rec-It for the 1/3 largest
bounds on P . This is denoted as Rec-M.

We used Cplex v.12.6 to solve the resulting quadratic programs. The experiments
were conducted on a computer with a 16-core Intel Xeon E5-2670 processor, running
at 2.60 GHz with 20MB cache, and Ubuntu 12.04. Processes were pinned to one
core.

6.1.3 Results

We show the average computation times for the biobjective portfolio problem in
Table 1.
The best average computation time per row is printed in bold. Note that Rec-It
requires higher computation times than any other approach; however, in combina-
tion with Rec-D (i.e., Rec-M), it is highly competitive. While Rec-P performs well
for smaller instances, Rec-D and Rec-M perform best for larger instances.

23

n N Rec-P Rec-D Rec-It Rec-M

5

5 0.29 0.32 1.70 0.48
10 0.48 0.56 2.56 0.77
15 0.74 0.91 3.43 1.16
20 0.99 1.15 3.78 1.40
25 1.26 1.49 4.14 1.75
30 1.55 1.86 5.30 2.18

10

5 0.57 0.62 3.31 0.74
10 1.45 1.53 6.22 1.67
15 2.70 2.59 8.60 2.79
20 4.42 4.11 13.15 4.33
25 3.70 4.12 17.95 4.99
30 4.47 5.04 21.36 6.38

15

5 0.85 0.96 5.08 1.04
10 2.85 2.97 8.62 2.84
15 5.46 5.13 14.82 4.94
20 10.85 9.16 25.65 8.80
25 18.08 14.56 32.12 13.31
30 10.37 20.83 46.30 19.07

20

5 1.19 1.25 6.74 1.33
10 4.86 5.08 13.60 4.50
15 11.23 10.03 25.10 8.91
20 20.48 13.22 34.78 12.27
25 30.02 22.81 49.34 19.98
30 44.38 36.88 65.80 31.45

25

5 1.57 1.51 8.08 1.59
10 5.06 4.22 19.55 4.23
15 10.58 8.62 29.81 8.35
20 19.04 15.10 46.93 14.19
25 35.82 28.18 75.60 26.09
30 53.97 42.80 102.47 38.49

30

5 2.02 1.83 9.77 1.84
10 6.27 4.98 25.59 5.16
15 13.44 10.29 45.68 10.32
20 24.04 18.31 71.05 18.44
25 39.49 29.53 101.90 28.90
30 68.43 51.67 145.12 47.77

Table 1: Average computation times in s to calculate Pareto solutions.

24

There are some surprises in Table 1, which are not due to outliers. For Rec-P and
n = 10, one can see that solving N = 20 takes longer than solving N = 25. The
same holds for n = 15, N = 25 and N = 30. Also, for N = 15, we find that Rec-P
is faster for n = 25 than for n = 20 (the same holds for Rec-D). This behavior
disappears for large n and N .
Summarizing, our experimental results show that switching perspective from the
classic recoverable-robust approach (Recclass(δ)) that maximizes the profit subject
to some fixed recovery distance to the (Rec(ε)) approach we suggest, in which the
distance is minimized subject to some bound on the profit, results in improved
computation times. These computation times are further improved by applying
methods from location theory, that can allow the (Rec(ε)) version to be solved
more efficiently.

6.2 Experiment 2: Performance on Real-World Instance
6.2.1 Setting

In this experiment we analyze the performance of the biobjective model on a real-
world portfolio instance. We use data of the S&P 100 stock market index consisting
of 100 companies that are amongst the largest and most established at the US
market exchange. Our dataset consists of daily values of all stocks for the time
period 1/4/2010 – 31/12/2015. These 2100 days are divided into 70 periods of 30
days each.
As a starting portfolio, a unit of wealth is equally distributed over all available
stock options. After each 30 day period, the portfolio can be changed. When
the portfolio is recomputed, we use the last 30 days as one scenario each. Using
historical data as scenarios in such a way is considered a simple yet reasonable way
to generate meaningful scenarios, see [GMS09].We remark that better scenario sets
may be generated by forecasting methods.
As recovery distance, we use the median with respect to the Manhattan norm,
and also include the current portfolio in the computation of the distance. We test
different weight values w ∈ [0, 1] between the two objectives from (Rec), namely
recovery distance r(x, y) (in the portfolio case min d) and worst-case performance
f(y) (in the portfolio case max z).
Note that for the special case w = 0, the equidistributed starting solution is kept
over all periods (i.e., it is an index tracker fund). For the special case w = 1, we
use a lexicographic post-optimization to ensure that we find an efficient solution
(i.e., each scenario is solved separately, and then the median of all solutions with
additional portfolio value constraint is computed).
Additionally, we compute a worst-case solution on the same scenario set for com-
parison; i.e., a single portfolio that maximizes the worst-case performance over the
observations of the past 30 days. We denote this solution as ”WC” in the following.
Note that WC protects only against these past scenarios, but future developments
may be different. Furthermore, the worst-case solution may not be ”robust” in the
sense that it spreads the portfolio over many options, but it may instead use few
options that seem to perform well in the worst case.
The purpose of this experiment is to compare the performance and qualitative prop-
erties of the approach (Rec) for various objective function weights and also with
the worst-case approach. Our aim is not to solve the portfolio problem more effi-
ciently than in the current literature, for which more advanced scenario generation
procedures and optimization models can be found in the literature, e.g., [Pri07].

6.2.2 Results

We present the key findings in Figure 4.

25

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000

V
a
lu

e

Time

Rec, w=0.00
Rec, w=0.47
Rec, w=1.00

WC

(a) Performance over time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 S

to
c
k
 S

iz
e

Weight

Rec
WC

(b) Portfolio size.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 V

a
lu

e

Weight

Rec
WC

(c) Average wealth.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

F
in

a
l
V

a
lu

e

Weight

Rec
WC

(d) Final wealth.

Figure 4: Results of Experiment 2.

The average value of the portfolio over the 2100 day period for different weights
w is shown in Figure 4(c). The horizontal blue line indicates the average value of
WC. While the average portfolio value fluctuates over w, there is a slight trend that
higher weights (i.e., models where the worst-case performance is weighted higher)
perform better on average. For w = 1, the solution shows very different performance
than for any other value of w. Also, note that nearly all approaches perform better
than the simple index tracking solution w = 0.
The average value is complemented by Figure 4(d), which shows the value of the
portfolio at the end of the 2100 day period. It can be seen that even though some
weight values did not perform well on average, they did give a high value in the
end, which is often better than WC.
This behavior can be explained by Figures 4(a) and 4(b), where the average size of
the portfolio (i.e., the average number of stocks i for which xi > 0) and the portfolio
value over time for a sample of weight values is shown, respectively.
As can be seen in Figure 4(b), the weight w and the size of the portfolio are clearly
correlated. The maximum average portfolio size is 95, as not all stocks options that
are included in this instance were already part of the S&P index at the starting time
of the considered time period. The more important the worst-case performance
becomes, the less stock options are being used. This gives the potential of high
gains, but at the same time, also makes the solution more vulnerable. In this sense,
also WC is not ”robust”.
In Figure 4(b), the effect of this vulnerability can be seen shortly before the end of
the 2100 day period. Both the solution for w = 1 and WC decrease dramatically in
value, as one of the few stock options that were being used decreased in value. This
did not happen for w = 0.47, which spread the wealth over a more diverse set of
options. As the uncertainty set cannot make accurate future predictions, this adds

26

another layer of security to the portfolio. The solution with respect to w = 0, for
example, shows little fluctuation, but is in this sense too conservative to increase in
value as the other approaches.
Overall, we find that using both recovery distance and worst-case performance in a
biobjective setting can help improving the portfolio value in this real-world exam-
ple, in particular, the resulting portfolios performed better as the equidistributed
starting solution which corresponds to an index tracker fund. Both WC and the
lexicographic approach that solves each scenario separately, and then takes the me-
dian over all solutions, turn out to use only few of the available stock options. If
a scenario occurs that is not part of the uncertainty set (as it is likely in this set-
ting), such a restricted choice can lead to a bad performance overall. By using a
weighted sum between both objectives, a good compromise can be found between
over-specialization and over-spreading of the portfolio.

7 Summary and conclusion
In this paper, we introduced a location-analysis based point of view to the problem
of finding recoverable-robust solutions to uncertain optimization problems. Table 2
summarizes the results we obtained.

uncertainty constraints uncertainty rec. costs deterministic results
set U F (·, ξ) F (x, ·) d constraints X

finite quasiconvex arbitrary convex convex and
closed

- (Rec(ε)) convex problem
(Lemma 5)

X = IRn - Reduction to (Rec(Ū) for
smaller sets Ū (Theorem 2)

finite linear arbitrary block norm polyhedron - (Rec(ε)) linear problem
(Theorem 3)

polyhedron jointly quasiconvex convex closed - Pareto solution w.r.t. ex-
treme points of U is Pareto
(Theorem 5)

polyhedron convex quasiconvex,
right-hand

convex closed - solution w.r.t extreme
points of U is Pareto (Corol-
lary 1)

side convex and
closed

- (Rec(ε)) convex problem
(Corollary 2)

polyhedron linear quasiconvex,
right-hand
side

block norm polyhedron - (Rec(ε)) linear problem
(Theorem 6)

Table 2: Summary of properties of (Rec) and (Rec(ε)) depending on the optimiza-
tion problem P(ξ), the uncertainty set U , the type of uncertainty, and the recovery
costs.

The following variation of (Rec) should be mentioned: In many cases it might not
be appropriate to just look at the worst-case objective function of the recovered
solutions, because there might be one very bad scenario which is the only relevant
one. Pareto efficient solutions would hence neglect the objective function values of
all other scenarios.

27

This might lead to another goal, namely to be as close as possible to an optimal
solution in all scenarios instead of only looking at a few scenarios which will be very
bad anyway. This leads to the following problem in which we bound the difference
between the objective value of the recovered solution and the best possible objective
function value in the worst case:

(R̂ec) minimize
(
f̂(y), r(x, y)

)
=
(
supξ∈U f(y(ξ), ξ)− f∗(ξ), supξ∈U d(x, y(ξ))

)
s.t. F (y(ξ), ξ) ≤ 0 for all ξ ∈ U

x ∈ X , y : U → X

The new objective function f̂ in (R̂ec) can be interpreted as a minmax-regret ap-
proach as described in [KY97]. Again, we can look at the scalarizations of this
problem. Instead of (Rec(ε))we receive

(R̂ec(ε)) minimize supξ∈U d(x, y(ξ))

s.t. f(y(ξ), ξ)− f∗(ξ) ≤ ε for all ξ ∈ U
F (y(ξ), ξ) ≤ 0 for all ξ ∈ U

x ∈ X , y : U → X

In case that f∗(ξ) is known for all ξ ∈ U , (R̂ec(ε)) admits similar properties as
(Rec(ε)).

Note that the lexicographic solution of (R̂ec(ε)) with respect to (f̂ , r) requires to
find optimal solutions for each scenario ξ ∈ U which can be reached with min-
imal recovery costs. It can be found by solving (R̂ec(0)). This is exactly the
robustness approach recovery-to-optimality which has been described in [GS14], see
[GS10, GS11] for scenario-based approaches for its solution. On the other hand, the
lexicographic solution of (R̂ec(ε)) with respect to (r, f̂) is related to minmax regret
robustness.

Ongoing research includes the analysis of other special cases of (Rec) as well as its
application to other types of problems e.g. from traffic planning or evacuation. We
also work on generalizations to multi-objective uncertain optimization problems as
already done for several minmax robustness concepts [EIS14].

References
[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and

min–max regret versions of combinatorial optimization problems:
A survey. European Journal of Operational Research, 197(2):427 –
438, 2009.

[AT05] L. T. H. An and P. D. Tao. The dc (difference of convex functions)
programming and dca revisited with dc models of real world non-
convex optimization problems. Annals of Operations Research,
133:23–46, 2005.

[BCH09] R. Blanquero, E. Carrizosa, and P. Hansen. Locating objects in
the plane using global optimization techniques. Mathematics of
Operations Research, 34:837–858, 2009.

[BGK13] D. Bertsimas, V. Gupta, and N. Kallus. Data-driven robust opti-
mization. arXiv preprint arXiv:1401.0212, 2013.

28

[BKK11] C. Büsing, A.M.C.A. Koster, and M. Kutschka. Recoverable ro-
bust knapsacks: the discrete scenario case. Optimization Letters,
5(3):379–392, 2011.

[BS04] D. Bertsimas and M. Sim. The price of robustness. Operations
Research, 52(1):35–53, 2004.

[BTBN06] A. Ben-Tal, S. Boyd, and A. Nemirovski. Extending scope of ro-
bust optimization: Comprehensive robust counterparts of uncer-
tain problems. Mathematical Programming, 107(1-2):63–89, 2006.

[BTDHDW+13] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and
G. Rennen. Robust solutions of optimization problems affected by
uncertain probabilities. Management Science, 59(2):341–357, 2013.

[BTGGN04] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Ad-
justable robust solutions of uncertain linear programs. Math. Pro-
gramming A, 99:351–376, 2004.

[BTGN09] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimiza-
tion. Princeton University Press, Princeton and Oxford, 2009.

[BTN00] A. Ben-Tal and A. Nemirovski. Robust solutions of linear program-
ming problems contaminated with uncertain data. Math. Program-
ming A, 88:411–424, 2000.

[BvdAH11] P.C. Bouman, J.M. van den Akker, and J.A. Hoogeveen. Recov-
erable robustness by column generation. In C. Demetrescu and
M. M. Halldórsson, editors, Algorithms – ESA 2011, volume 6942
of Lecture Notes in Computer Science, pages 215–226. Springer
Berlin Heidelberg, 2011.

[BW00] J. Brimberg and G. O. Wesolowsky. Note: facility location with
closest rectangular distances. Naval Research Logistics (NRL),
47(1):77–84, 2000.

[BW02a] J. Brimberg and G. O. Wesolowsky. Locating facilities by minimax
relative to closest points of demand areas. Computers & Operations
Research, 29(6):625–636, 2002.

[BW02b] J. Brimberg and G. O. Wesolowsky. Minisum location with closest
euclidean distances. Annals of Operations Research, 111(1-4):151–
165, 2002.

[CBM15] J. G. Carlsson, M. Behroozi, and K. Mihic. Wasserstein distance
and the distributionally robust TSP. Submitted manuscript, 2015.

[CCG+12] V. Cacchiani, A. Caprara, L. Galli, L. Kroon, G. Maroti, and
P. Toth. Railway rolling stock planning: Robustness against large
disruptions. Transportation Science, 46(2):217–232, 2012.

[CDS+07] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and
A. Navarra. Robust Algorithms and Price of Robustness in Shunt-
ing Problems. In Proc. of the 7th Workshop on Algorithmic Ap-
proaches for Transportation Modeling, Optimization, and Systems
(ATMOS07), pages 175–190, 2007.

29

[CDS+09a] S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, A. Navarra,
M. Schachtebeck, and A. Schöbel. Recoverable robustness in shunt-
ing and timetabling. In Robust and Online Large-Scale Optimiza-
tion, number 5868 in Lecture Notes in Computer Science, pages
28–60. Springer, 2009.

[CDS+09b] S. Cicerone, G. D’Angelo, G. Stefano, D. Frigioni, and A. Navarra.
Recoverable robust timetabling for single delay: Complexity and
polynomial algorithms for special cases. Journal of Combinatorial
Optimization, 18:229–257, 2009.

[CF02] E. Carrizosa and J. Fliege. Generalized goal programming: poly-
nomial methods and applications. Mathematical Programming,
93(2):281–303, 2002.

[CGST14] A. Caprara, L. Galli, S. Stiller, and P. Toth. Delay-robust event
scheduling. Operations Research, 62(2):274–283, 2014.

[Dat10] J. Dattorro. Convex optimization & Euclidean distance geometry.
Meboo Publishing USA, 2010.

[DKSW02] Z. Drezner, K. Klamroth, A. Schöbel, and G.O. Wesolowsky. The
Weber problem. In Z. Drezner and H.W. Hamacher, editors, Fa-
cility Location: Applications and Theory, pages 1–36. Springer,
2002.

[EIS14] M. Ehrgott, J. Ide, and A. Schöbel. Minmax robustness for multi-
objective optimization problems. European Journal of Operational
Research, 239:17–31, 2014.

[EMS09] A.L. Erera, J.C. Morales, and M. Savelsbergh. Robust opti-
mization for empty repositioning problems. Operations Research,
57(2):468–483, 2009.

[FM09] M. Fischetti and M. Monaci. Light robustness. In R. K. Ahuja,
R.H. Möhring, and C.D. Zaroliagis, editors, Robust and online
large-scale optimization, volume 5868 of Lecture Note on Computer
Science, pages 61–84. Springer, 2009.

[GDT15] M. Goerigk, K. Deghdak, and V. T’Kindt. A two-stage robust-
ness approach to evacuation planning with buses. Transportation
Research Part B: Methodological, 78:66 – 82, 2015.

[GMS09] G. Guastaroba, R. Mansini, and M. G. Speranza. On the effective-
ness of scenario generation techniques in single-period portfolio op-
timization. European Journal of Operational Research, 192(2):500–
511, 2009.

[Goe12] M. Goerigk. Algorithms and Concepts for Robust Optimization.
PhD thesis, University of Göttingen, 2012.

[GS10] M. Goerigk and A. Schöbel. An empirical analysis of robust-
ness concepts for timetabling. In Thomas Erlebach and Marco
Lübbecke, editors, Proceedings of ATMOS10, volume 14 of Ope-
nAccess Series in Informatics (OASIcs), pages 100–113, Dagstuhl,
Germany, 2010.

30

[GS11] M. Goerigk and A. Schöbel. A scenario-based approach for ro-
bust linear optimization. In Proceedings of the First international
ICST conference on Theory and practice of algorithms in (com-
puter) systems, TAPAS’11, pages 139–150, Berlin, Heidelberg,
2011. Springer-Verlag.

[GS14] M. Goerigk and A. Schöbel. Recovery-to-optimality: A new two-
stage approach to robustness with an application to aperiodic
timetabling. Computers & Operations Research, 52, Part A:1 –
15, 2014.

[GS16] M. Goerigk and A. Schöbel. Algorithm engineering in robust op-
timization. In L. Kliemann and P. Sanders, editors, Algorithm
Engineering: Selected Results and Surveys, volume 9220 of LNCS
State of the Art. Springer, 2016. Final Volume for DFG Priority
Program 1307.

[HL05] W. Herroelen and R. Leus. Project scheduling under uncertainty:
Survey and research potentials. European Journal of Operational
Research, 165:289–306, 2005.

[HT99] R. Horst and N.V. Thoai. Dc programming: Overview. Journal
of Optimization Theory and Applications, 103(1):1–43, 1999.

[HUL93] J.B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and min-
imization algorithms. Springer Verlag, Berlin, 1993.

[KY97] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Ap-
plications. Kluwer Academic Publishers, 1997.

[KZ15] A. Kasperski and P. Zielinski. Robust recoverable and two-stage
selection problems. CoRR, abs/1505.06893, 2015.

[LLMS09] C. Liebchen, M. Lübbecke, R. H. Möhring, and S. Stiller. The
concept of recoverable robustness, linear programming recovery,
and railway applications. In R. K. Ahuja, R.H. Möhring, and
C.D. Zaroliagis, editors, Robust and online large-scale optimiza-
tion, volume 5868 of Lecture Note on Computer Science, pages
1–27. Springer, 2009.

[Meg84] N. Megiddo. The weighted euclidean 1-center problem. Mathemat-
ics of Operations Research, 8(4):498–504, 1984.

[NP09] S. Nickel and J. Puerto. Location Theory - A Unified Approach.
Springer, 2009.

[NPRC03] S. Nickel, J. Puerto, and A. M. Rodriguez-Chia. An approach to
location models involving sets as existing facilities. Mathematics
of Operations Research, 28(4):693–715, 2003.

[PC01] F. Plastria and E. Carrizosa. Gauge distances and median hy-
perplanes. Journal of Optimization Theory and Applications,
110(1):173–182, 2001.

[Pri07] Jean-Luc Prigent. Portfolio optimization and performance analy-
sis. CRC Press, 2007.

[Roc70] R.T. Rockafellar. Convex Analysis. Princeton Landmarks, Prince-
ton, 1970.

31

[Sch14] A. Schöbel. Generalized light robustness and the trade-off between
robustness and nominal quality. Mathematical Methods of Opera-
tions Research, 80(2):161–191, 2014.

[SK10] Y. D. Sergeyev and D. E. Kvasov. Lipschitz Global Optimization.
John Wiley & Sons, Inc., 2010.

[Soy73] A.L. Soyster. Convex programming with set-inclusive constraints
and applications to inexact linear programming. Operations Re-
search, 21:1154–1157, 1973.

[Sti08] S. Stiller. Extending concepts of reliability. Network creation
games, real-time scheduling, and robust optimization. PhD the-
sis, TU Berlin, 2008.

[SY06] W. Sun and Y. Yuan. Optimization theory and methods: nonlinear
programming. Springer, 2006.

[TSRB71] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location
of emergency facilities. Operations Research, 19:1363–1373, 1971.

[Wit64] C. Witzgall. Optimal location of a central facility: mathematical
models and concepts. Technical Report 8388, National Bureau of
Standards, 1964.

[WWR85] J.E. Ward, R.E. Wendell, and E. Richard. Using block norms for
location modeling. Oper. Res., 33:1074–1090, 1985.

32

