
Cooperative Resource Pooling in
Multihomed Mobile Networks

Richard Withnell

School of Computing and Communications

This dissertation is submitted for the degree of Doctor of Philosophy

Abstract

The ubiquity of multihoming amongst mobile devices presents a unique opportu-

nity for users to co-operate, sharing their available Internet connectivity, forming

multihomed mobile networks on demand. This model provides users with vast

potential to increase the quality of service they receive. Despite this, such mobile

networks are typically underutilized and overly restrictive, as additional Internet

connectivity options are predominantly ignored and selected gateways are both

immutable and incapable of meeting the demand of the mobile network. This

presents a number of research challenges, as users look to maximize their quality of

experience, while balancing both the financial cost and power consumption asso-

ciated with utilizing a diverse set of heterogeneous Internet connectivity options.

In this thesis we present a novel architecture for mobile networks, the contribution

of which is threefold. Firstly, we ensure the available Internet connectivity is ap-

propriately advertised, building a routing overlay which allows mobile devices to

access any available network resource. Secondly, we leverage the benefits of mul-

tipath communications, providing the mobile device with increased throughput,

additional resilience and seamless mobility. Finally, we provide a multihomed

framework, enabling policy driven network resource management and path selec-

tion on a per application basis. Policy driven resource management provides a

rich and descriptive approach, allowing the context of the network and the device

to be taken into account when making routing decisions at the edge of the Inter-

net. The aim of this framework, is to provide an efficient and flexible approach to

the allocation of applications to the optimal network resource, no matter where it

resides in a mobile network. Furthermore, we investigate the benefits of path se-

lection, facilitating the policy framework to choose the optimal network resource

for specific applications. Through our evaluation, we prove that our approach

to advertising Internet connectivity in a mobile network is both efficient and ca-

pable of increasing the utilization of the available network capacity. We then

demonstrate that our policy driven approach to resource management and path

selection can further improve the users quality of experience, by tailoring network

resource usage to meet their specific needs.

Declaration

This dissertation is my own work and contains nothing which is the outcome

of work done in collaboration with others, except where specified in the text.

This dissertation is not substantially the same as any that I have submitted for a

degree or diploma or other qualification at any other university. This dissertation

does not exceed the prescribed limit of 60,000 words.

Richard Withnell

December, 2015

Acknowledgements

Foremost, I would like to express my deepest thanks to my supervisor, Dr.

Christopher Edwards, for the consistent guidance and tutelage over the last four

years. Without his time and patience none of this would have been possible.

Besides my supervisor, I would especially like to thank the members of my the-

sis committee, Dr. Utz Roedig and Dr. Michael Welzl, for taking their time

to review my thesis, and for providing valuable insight and feedback during my

defence.

I am incredibly grateful to Dr. Ben McCarthy, who provided me with much

needed direction in the early stages of the PhD and was an excellent source of

guidance and knowledge throughout. I would also like to thank those in the Net-

working Group, that I have worked with closely over the years: Ibrahim Alsukayti,

Musab Isah, Yusuf Sani, and Hayat Kara. With whom I have had countless dis-

cussions, helping to shape my work. I also need to express my sincere gratitude

to Matthew Broadbent and Oliver Bates, for both the technical discussions, and

for reminding me that sometimes the best thing for your work is to take a break

from it.

Finally, it’s imperative that I thank my family for their unconditional support.

Especially my parents, Steve and Janet Withnell, who have always been there,

providing endless love, support, and encouragement. Without such a positive

influence, I would never have accomplished this much.

Contents

1 Introduction 21

1.1 Motivation . 22

1.2 Contributions . 26

1.3 Thesis Outline . 27

2 Background 29

2.1 Resource Pooling . 30

2.1.1 Challenge . 30

2.1.2 Link Layer . 31

2.1.3 Network Layer . 32

2.1.4 Transport Layer . 34

2.1.4.1 TCP . 34

2.1.4.2 SCTP . 35

2.1.4.3 RTP . 37

2.1.5 Application Layer . 38

2.1.6 Summary . 39

2.2 Multipath-TCP . 40

2.2.1 Signalling . 42

2.2.2 Congestion Control . 43

2.2.3 Path Management . 44

2.2.4 Scheduling . 45

2.2.5 Mobility . 46

2.2.6 Summary . 46

3 Crowdsourcing Connectivity 47

3.1 Multihomed Mobile Networks . 48

3.1.1 Interior Routing . 48

3.1.2 Gateway Discovery . 49

3.1.3 Gateway Selection . 51

3.2 User Cooperation . 53

3.2.1 Cooperative Internet Connectivity 53

3.2.2 Modelling Incentive . 58

3.2.3 Opportunistic Networks 60

3.3 Network Resource Management 62

3.3.1 Always Best Connected . 62

3.3.2 Policy Based Network Management 64

3.3.3 Path selection . 65

3.4 Requirements . 67

3.4.1 Terminology . 68

3.4.2 System Requirements . 70

3.4.2.1 Multipath Advertisement Protocol 70

3.4.2.2 User Policy Framework 72

3.4.3 Research Context and Methodology 73

3.5 Summary . 74

4 Design 75

4.1 Overview . 75

4.1.1 System Example . 76

4.2 Multipath Advertisement Protocol 79

4.2.1 Operation . 81

4.2.1.1 Header . 82

4.2.1.2 Requests . 83

4.2.1.3 Updates . 83

4.2.2 MAP Behaviour . 85

4.2.2.1 Loop Avoidance 85

4.2.2.2 Stablility . 87

4.2.2.3 Link Backup List 87

4.2.2.4 Subnet Collision Detection 88

4.2.2.5 Accounting and Authentication 88

4.2.2.6 Security . 89

4.2.2.7 MPTCP Integration 90

4.2.3 Software Design . 90

4.2.3.1 Resource Monitor 91

4.2.3.2 Network Interface 92

4.2.3.3 Topology Representation 93

4.2.3.4 Enforcing Routing 94

4.2.3.5 MAP API . 95

4.2.3.6 Configuration . 95

4.3 User Policy Framework . 95

4.3.1 Context Policies . 97

4.3.1.1 Configuration . 98

4.3.2 Application Policies . 100

4.3.2.1 Configuration . 101

4.3.2.2 Network Measurements 102

4.3.2.3 Route Allocation 104

4.3.3 Framework Design . 105

4.3.3.1 MPTCP Integration 106

4.3.3.2 Callback Events 107

4.4 Path Selection . 111

4.4.1 Selection Algorithms . 114

4.4.2 Selection Interface . 115

4.4.3 Selection Algorithm . 115

4.5 Summary . 121

5 Implementation 122

5.1 Development Environment . 122

5.1.1 Real World . 123

5.1.2 Simulation . 123

5.2 Multipath Advertisement Protocol 124

5.2.1 Routing Overlay . 124

5.2.2 Architecture . 128

5.2.2.1 Host Configuration 128

5.2.2.2 Interface Lists . 130

5.2.2.3 Resource Management 132

5.2.2.4 Network Interface 133

5.2.2.5 Aggregation Logic 133

5.2.3 Resource Pooling . 134

5.2.3.1 Load Balancing 134

5.2.3.2 Multipath-TCP 135

5.2.4 Implementation Decisions 136

5.2.4.1 External Link Identifiers 136

5.2.4.2 Heartbeats and Link Timeouts 137

5.2.4.3 Scalability . 139

5.2.4.4 Supporting Multipath Unaware Hosts 139

5.2.4.5 API . 140

5.3 User Policy Framework . 140

5.3.1 Resource Management . 141

5.3.1.1 Data Representation 141

5.3.1.2 Link Monitor . 143

5.3.1.3 Link Manager . 143

5.3.1.4 MAP Interaction 143

5.3.1.5 Network Measurements 144

5.3.2 Context Management . 144

5.3.2.1 Context Configuration 145

5.3.2.2 Context Modules 145

5.3.2.3 Context Manager 146

5.3.3 Policy Handler . 146

5.3.3.1 Application Configuration 148

5.3.3.2 Route Enforcement 149

5.3.4 MPTCP Controller . 152

5.3.4.1 Communication 152

5.3.4.2 User Space . 154

5.3.4.3 Kernel Space Modifications 154

5.4 Path Selection . 155

5.4.1 Algorithm Implementation 155

5.4.2 Integration . 156

5.5 Summary . 158

6 Evaluation 159

6.1 Multipath-TCP . 160

6.1.1 Experiment . 162

6.1.2 Homogenous Results . 164

6.1.3 Heterogenous Results . 165

6.2 MAP Behaviour . 167

6.2.1 Overhead Results . 168

6.2.2 Latency Results . 170

6.2.3 Device Impact . 172

6.3 MAP Network Utilisation . 174

6.3.1 Topology . 175

6.3.2 Results . 177

6.4 MAP Real World . 183

6.5 MAP Mobility . 186

6.5.1 Results . 187

6.6 User Policy Framework . 189

6.6.1 Preempting Disconnections 190

6.6.2 Adapting to battery capacity 190

6.6.3 Migrating traffic based on priority 195

6.6.4 Collaborative Policy Results 196

6.7 Path Selection . 199

6.8 Summary . 200

7 Conclusion 203

7.1 Summary . 203

7.2 Future Work . 205

7.2.1 IPv6 . 206

7.2.2 Coupled Congestion Control 206

7.2.3 Policy Definition . 207

7.2.4 Path Selection . 207

7.3 Final Words . 208

Bibliography 225

A Mobile Connectivity 226

A.1 Terminology . 226

A.2 Mobility . 227

A.2.1 Network Layer . 229

A.2.2 Transport Layer . 232

A.2.3 Application Layer . 234

A.3 Mobile Networks . 235

A.3.1 Mobile Ad-Hoc . 235

A.3.2 Network Mobility . 237

A.4 Summary . 238

B Additional Evaluation 240

B.1 MAP Behaviour . 241

B.2 MAP Utilization . 242

B.2.1 Flat Network . 242

B.2.2 Single Host Access . 244

List of Figures

2.1 Internet Protocol Suite . 29

2.2 Relationship between the traditional Transport Control Protocol

(TCP) and Multipath-TCP (MPTCP) network stacks. 41

2.3 Sequence for the initial MPTCP Three Way Handshake 42

3.1 Example of a multihomed mobile network, with associated termi-

nology. 69

4.1 Design overview for a single host combining the Multipath Adver-

tisement Protocol (MAP) and the User Policy Framework. 76

4.2 An example topology for a MAP enabled mobile network. 77

4.3 Worked example of MAP and the User Policy Framework 78

4.4 Worked example of MAP and the User Policy Framework 80

4.5 Message Exchange for the MAP. 81

4.6 Representation of a MAP request packet in an IPv4 environment. 82

4.7 Representation of a MAP packet in an IPv4 environment. 82

4.8 Representation of a network resource entry in the MAP, for IPv4. 82

4.9 Two MAP enabled hosts connected via a single network connection. 85

4.10 Two MAP enabled hosts connected via two network connections. . 86

4.11 Proposed architecture for the MAP system. 91

4.12 Application flow for the MAP software. 92

4.13 Application flow for the resource handling component of MAP. . . 93

4.14 Application flow for the network component of MAP. 94

4.15 Taxonomy of different types of context for a mobile device. 97

4.16 The architectural design for the User Policy Framework. 105

4.17 Application flow for meeting conditions. 108

4.18 Application flow when the system link state changes. 109

12

4.19 Application flow for a significant change in path metrics. 110

4.20 Application flow when a new MPTCP connection is established. . 112

4.21 Overview of the path selection process. 115

5.1 Real world experimental development environment. 123

5.2 Initial addressing routing installed in a simple mobile network. . . 125

5.3 Routing tables for Fig. 5.2 after MAP has converged, allowing all

network resource to be accessed. 126

5.4 The basic architecture for the Multipath Advertisement Protocol

Daemon (MAPD) implementation. 128

5.5 The basic flow of data from the network interface and resource

monitor in the MAPD implementation. 130

5.6 Implementation of the User Policy Frameworks Resource Manager

component. 142

5.7 Overview of the path selection process within the User Policy

Framework. 149

5.8 Overview of the MPTCP user space controller and kernel space

path manager implementation and interactions. 152

6.1 Topology for testing the potential throughput for increasing num-

bers of MPTCP subflows. 161

6.2 Throughput for TCP and MPTCP with an increasing number of

flows, each transmitted over an independent path. 163

6.3 Utilisation of an increasing number of homogeneous paths. 163

6.4 Utilisation of an increasing number of paths with heterogeneous

latency. 165

6.5 Utilisation of an increasing number of paths with heterogeneous

bandwidths. 166

6.6 Utilisation of an increasing number of paths with heterogeneous

bandwidths and latencies. 166

6.7 Overhead of running MAPD on various network topologies. 169

6.8 Time taken for dissemination of MAPD to complete for various

network topologies. 171

6.9 Topology for testing the potential throughput for increasing num-

bers of MPTCP subflows. 173

6.10 Visulisation of nested tree topology for MAP simulations. 175

6.11 Visulisation of flat topology for MAP simulations. 176

6.12 Throughput from simulation of the tree based topology for 64KB

flows using iPerf. 177

6.13 Throughput from simulation of the tree based topology for 512KB

flows using iPerf. 178

6.14 Throughput from simulation of the tree based topology for 4MB

flows using iPerf. 178

6.15 Throughput from simulation of the tree based topology for 32MB

flows using iPerf. 179

6.16 Throughput from simulation of the mesh based tree topology for

64KB flows using iPerf. 180

6.17 Throughput from simulation of the mesh based tree topology for

512KB flows using iPerf. 181

6.18 Throughput from simulation of the mesh based tree topology for

4MB flows using iPerf. 181

6.19 Throughput from simulation of the mesh based tree topology for

32MB flows using iPerf. 182

6.20 Real world network topology for evaluating the benefits of MAP. . 184

6.21 Throughput for the real world network, transferring a variety of

file sizes. 185

6.22 Network resource usage during the mobility scenario for each indi-

vidual host. 188

6.23 Handover of WiFi to Cellular with (a) MPTCP and (b) Context

Driven MPTCP . 191

6.24 Energy consumption while streaming video for (a) MPTCP and

(b) Context Driven MPTCP . 193

6.25 TCP flows competing for network resource for (a) MPTCP and (b)

Context Driven MPTCP. App One represents background activity

and App Two represents the users active application. 197

6.26 Context modules triggering policy decisions in a cooperative mo-

bile environment. 198

A.1 An example of the architecure for Mobile Internet Protocol (IP). . 228

B.1 Overhead of running MAPD on various network topologies. 241

B.2 Throughput from simulation of the flat topology for 64KB flows

using iPerf. 242

B.3 Throughput from simulation of the flat topology for transferring

512KB flows using iPerf. 242

B.4 Throughput from simulation of the flat topology for transferring

4MB flows using iPerf. 243

B.5 Throughput from simulation of the flat topology for 32MB flows

using iPerf. 243

B.6 Throughput from simulation of the nested topology, a single host

creates 64KB flows using iPerf. 244

B.7 Throughput from simulation of the nested topology, a single host

creates 512KB flows using iPerf. 244

B.8 Throughput from simulation of the nested topology, a single host

creates 4MB flows using iPerf. 245

B.9 Throughput from simulation of the nested topology, a single host

creates 32MB flows using iPerf. 245

List of Tables

2.1 Multipath Specific TCP Options 41

4.1 Description of measurable network quality parameters. 102

4.2 Emulated link characteristics for Principal Component Analysis

(PCA) Path Selection Algorithm example. 116

4.3 Application specifications and the links chosen from Table 4.2 on

page 116 for communication, according to the PCA algorithm. . . 116

4.4 Correlation coefficient matrix for Quality of Service (QoS) metrics,

normalized against the video application requirements. 118

4.5 Loadings for each principal component. 119

4.6 Contribution Rates (CR) and Cumulative Contribution Rates (CCR)

for each eigenvalue. 119

4.7 Final utility scores for each principal component and the aggregate

score with rankings of the available network resource in relation to

the video application. 120

4.8 Links chosen for the applications specified Table 4.3 on page 116

and links from Table 4.2 on page 116 for communication, according

to the PCA algorithm. 120

5.1 MAPD implementation components and the corresponding source

code. 129

5.2 User Policy Framework implementation components and the cor-

responding source code. 141

6.1 Experimental configurations for testing the performance and through-

put of TCP and MPTCP with a variety of congestion control al-

gorithms. 160

16

6.2 Captured real world network latency, used with NetEm and Net-

work Simulator 3 (NS3) to emulate or simulate real packet re-

ordering across different MPTCP subflows. 161

6.3 Network Topologies with an increasing number of Internet enabled

gateways, installed at the root node. 168

6.4 Time taken in seconds for MAP to process an increasing number

of network resources from a single update. 172

6.5 Energy (Joules) expended by a Raspberry Pi 2 with WiFi connec-

tivity, at different frequencies of heart beats per minute (HPBM).

The base value represents a device with no network connectivity. . 172

6.6 TCP/MPTCP configurations used for each simulation scenario. . 174

6.7 Emulated link characteristics applied to network links in real world

deployment. 183

6.8 Host centric comparison of MPTCP with and without MAP in the

presented real world network. 184

6.9 Description of mobility events, for users, hosts, and links. 186

6.10 Application specifications and the links chosen from Table 6.7 on

page 183 for communication, according to the PCA algorithm. . . 200

6.11 Quality of service and experience ratings for a set of applications

and the calculated PCA utility scores (US), with the default and

selected links. 201

Glossary

AAA Anonymity Authentication and Accounting. 45

ABC Always Best Connected. 50

AODV Ad-hoc On-Demand Distance Vector. 38

API application programming interface. 128

BALIA Balanced Link Adaptation. 32

BGP Border Gateway Protocol. 101

CDPD Cellular Digital Packet Data. 20

CMT Concurrent Multipath Transfer. 10

CoNes Collaborative Network Sharing. 45

cTCP Concurrent-TCP. 23

DBAS Deployable Bandwidth Aggregation System. 26

DCE Direct Code Execution. 111

ECMP Equal Cost Multipath Routing. 101

FTP File Transfer Protocol. 26

ICMP Internet Control Message Protocol. 91

INDAPSON Incentive Data Plan Sharing System Based on Self-Organizing

Network. 44

IP Internet Protocol. 17

ISDN Integrated Services Digital Network. 20

ISP Internet Service Provider. 47

LACP Link Aggregation Control Protocol. 19

LCP Link Control Protocol. 20

LIA Linked Increases Algorithm. 31

MAP Multipath Advertisement Protocol. 14

MAPD Multipath Advertisement Protocol Daemon. 110

MPRTP Multipath-RTP. 25

MPTCP Multipath-TCP. 10

MTU Maximum Transmission Unit. 20

NAT Network Address Translation. 21

NS3 Network Simulator 3. 147

OLIA Opportunistic Linked Increases Algorithm. 31

OLSR Optimized Link State Routing. 36

PAN Personal Area Network. 56

PCA Principal Component Analysis. 15

PPP Point to Point Protocol. 20

pSockets Parallel Sockets. 26

pTCP Parallel-TCP. 23

QoE Quality of Experience. 10

QoS Quality of Service. 12

RPC Remote Procedure Call. 92

RTCP Real-time Transport Control Protocol. 25

RTP Real-time Transport Protocol. 25

RTT Round Trip Time. 25

SAW Simple Additive Weighting. 102

SCTP Stream Control Transmission Protocol. 22

SDN Software Defined Networking. 45

SHIM6 Site Multihoming by IPv6 Intermediation. 21

SSH Secure Shell. 26

TCP Transport Control Protocol. 17

TRUMP Trusted Mobile Platform. 12

UDP User Datagram Protocol. 19

VoIP Voice over IP. 10

VPN Virtual Private Network. 45

WiSE Wireless SCTP Extension. 54

wVegas Weighted Vegas. 32

CHAPTER 1

Introduction

The Internet is a vast system, linking countless computer networks to one another,

providing global connectivity to billions of devices all over the world. Since the

turn of the century the demand for bandwidth has exploded; between 2002 and

2014 the total amount of Internet traffic increased by over 16000% and is pre-

dicted to increase by an additional 220% by 2019 [29]. While the increase in

total Internet traffic is immense, it is now skewed towards mobile devices with

consumption in this domain predicted to grow by over 800% by 2019 [30]. The

expansion in the mobile domain has been predicated by an influx in smart phones,

tablets, and ultra-books, allowing users to consume high bandwidth services on

the move. With large screens, fast processors, and limited storage capabilities,

users are streaming video and audio, browsing the web, and backing up data

remotely, everywhere and anywhere. This in part is facilitated by the increased

availability of Internet access; as current smart devices are typically equipped

with a range of different access technologies to ensure connectivity is always at

the users fingertips. With the amount of diversity in accessing the Internet,

always-on connectivity is becoming the norm instead of the exception. In [11],

an inverse relationship between WiFi and Cellular availability was discovered

across three different cities in the USA, leading to a total network coverage of

91%. Given the availability and heterogeneity of Internet connectivity, this thesis

considers the problem of network resource utilisation in a mobile context. The

research predominantly focuses on (but is not limited to) how multiple users can

cooperate, sharing their available network connectivity to communally improve

the quality of service and experience received.

21

1.1 Motivation

The demand for mobile data has exploded in recent years and is predicted to

continue for the foreseeable future [167]. As new access technologies [120] [171]

are developed and wireless spectrum is repurposed [119], user applications and

services quickly respond by saturating the newly available bandwidth. This is

already seen today as cloud services such as Video on Demand adapt, based on

bandwidth availability, ranging from Standard to Ultra High Definition streams.

The prevalence of such media streaming applications, cloud storage, and real time

communication such as Voice over IP (VoIP) [30] will make maintaining a satis-

factory Quality of Experience (QoE) across all services increasingly challenging.

The solution to this mobile data crunch, cannot be met by traditional advances

in access technology or allocation of additional wireless spectrum. Physically, it

is not possible to create new spectrum and increasing spectral efficiency is bound

by the Shannon Limit [150]. In addition to the mobile data demand, users may

experience periods of poor to no connectivity, based on their location in relation

to base stations and access points or by reaching pre-allocated bandwidth quotas.

Therefore, to alleviate these problems we must do more to improve the utilisa-

tion of the bandwidth that is currently available. To counter connectivity and

availability issues, devices have become multihomed, which means to possess two

or more network interfaces such as WiFi and Cellular, that may be connected

simultaneously. However, due to the ubiquity and deficiencies of current multi-

homing solutions, the network resource available to a mobile device is already

under-utilized; access schemes typically function by allocating a single link based

on availability as opposed to using quality or cost factors. In the context of

a single mobile device, resource pooling [174] protocols such as Multipath-TCP

(MPTCP) [60] and Concurrent Multipath Transfer (CMT) [113] can help to im-

prove utilisation by aggregating cellular and WiFi links. Additionally, MPTCP

is also able to better manage network resource [122] but the control of which is

still too coarse to fully describe how a user may want to allocate their physical

access. Moreover, host based protocols are still limited by a given users mobile

subscription, and switching cellular providers on the fly is currently not econom-

ically viable. To summarise the problem domain, there are three key issues at

the edge of the network:

22

• Underutilized Capacity – Multihomed devices often have access to ad-

ditional connectivity that is not used. This is facilitated by inadequate

connectivity models, typically forcing the use of a single Internet connec-

tion and optimizing selection based on availability instead of quality.

• Inadequate Connectivity – Users face a number of connectivity issues;

from poor coverage in specific areas to running out of their data allowance

for both WiFi and cellular plans.

• Increasing Demand – The shift towards mobile connectivity and con-

sumption requires heavy use of the available wireless access technologies,

and is putting unprecedented strain on the cellular network. Addressing the

increase in demand traditionally, is becoming too expensive for providers

and novel solutions are required.

The increased cost of connectivity has led to providers pushing users to offload

to fixed networks, such as WiFi and Femto Cells with wired back-hauls. Alterna-

tive schemes have become prominent within the research community, in an effort

to enhance mobile data offloading through mobile ad-hoc and opportunistic net-

works [27]. Novel solutions to the problem of insufficient resource allocation,

attempt to crowd source connectivity [13] [181] [166], dynamically establishing

mobile networks at the edge of the Internet which allow users to cooperate by

sharing their available connectivity. This connectivity model enables users to

increase their available bandwidth, improve resilience and can help to alleviate

the heavily congested cellular network. These approaches however are still not

sufficient in regards to maximizing and optimizing usage of the network resources

that are made available to them. Given these observed and well understood prob-

lems; the state of the art solutions are still insufficient. To help alleviate these

issues, we propose three functional requirements for future mobile devices and

networks:

• Cooperative Resource Pooling - Hosts in a mobile network should be

able to share their Internet connectivity with one another, increasing the

total amount of bandwidth available. Sharing can help to alleviate con-

gestion and improve utilisation, when combined with multipath transport

protocols such as MPTCP.

23

• Policy Driven Resource Management - Current access models are not

descriptive enough to fully meet the users’ needs. Access policies are typ-

ically crude, prioritizing interfaces to be used independently, regardless of

availability or quality. Users should be able to define exactly how and when

their different Internet connectivity options are used, based on the context

of both the device and the network.

• Optimal Path Selection - Many applications have specific network re-

quirements, which can be described in terms of metrics such as bandwidth,

delay, jitter and loss. Given a set of network resources, the optimal path

should automatically be selected in an effort to improve the QoS and expe-

rience that applications receive.

There are three key use cases that we envisage will benefit from the proposed

requirements:

Use Case One – Public Infrastructure: It is becoming increasingly common

for public spaces, transport and businesses, to be equipped with open Wireless

Access Points. The access points typically provide members of the public with

access to free or metered WiFi, instead of continued use of their more costly

cellular network interfaces. While users typically look for WiFi, in order to offload

from their cellular networks, free connectivity options can be congested and of

low quality. In [85], a survey of 1375 respondents suggested that 82% of mobile

workers found free WiFi access to be “limited, slow, or unreliable”. To this

end, users routinely share their existing cellular connectivity between their own

devices as opposed to using free WiFi or paying for on demand access, ignoring

the additional WiFi capacity that is offered. This model can be extended allowing

users to connect their devices to benefit from additional diversity and network

availability.

Use Case Two – TRUMP: Trusted Mobile Platform (TRUMP)1 is a collabo-

rative project [47], investigating how mobile technology can be used to improve

the management of chronic illness in rural areas across the UK and India. In

rural environments, it can be considerably more difficult and time consuming

1This PhD has been funded by the TRUMP Project to investigate and provide connectivity
in rural areas across the UK and India.

24

to travel regularly to the nearest health care facility, increasing the burden on

vulnerable individuals [10]. The default assumption of the TRUMP project, con-

siders data connectivity to be widely available, allowing users to interact remotely

with health care organisations. While this view may be realistic in the UK, with

projects such as B4RN [9], providing fiber-to-the-home in rural areas of the north

of England, and increasing provision of Cellular networks. In developing countries

such as India, the rural population tends to be significantly larger, estimated at

around 68% as of 2013, as opposed to 18% of the UK. To meet this demand the

TRUMP project envisages the deployment of a rural mesh network, providing

Internet access to the community in Cellular, WiFi, and WiMAX black spots,

enabling the management of chronic illness remotely. Due to the size of rural

communities in India, a single cellular back haul is unlikely to be sufficient to

support the expected amount of traffic. To counter-act this, the mesh will need

to support a number of heterogeneous access technologies. Furthermore, as the

size of a rural village in India can range between less than 50 and more than

10,000 residents [154], the scalability of the mesh network as well as the ability

to balance traffic across the available Internet connectivity is of vital importance.

Use Case Three – First Responder Networks: This use case has been

drawn from correspondence with a UK fire service. When approaching large

scale fires, the area is split into multiple sectors each of which is serviced by a fire

engine. Each sector and fire engine has a number of team members associated

with it that have application requirements, such as voice and video streaming back

to the headquarters. These services are currently unfulfilled due to unsuitable

and unreliable network infrastructure. Communication requirements between the

sectors and teams are currently serviced by “runners” i.e., team members who’s

primarily role is to move information between sectors. To address this problem

prior work has interconnected each of the fire engines using a wireless mesh,

adding a range of cellular links to provide Internet access. This connectivity can

then be extended to the team members through the introduction of WiFi access

points, which is used to support a diverse set of emergency applications. This

use case presents a complex network topology, with applications that require a

guaranteed QoS while mobile. Currently, the available connectivity models do not

meet these requirements; therefore, it is necessary to improve the utilisation of

the available network resources, and optimise the QoS of the active applications.

25

1.2 Contributions

The initial contribution of this work is the design, implementation and evaluation

of the MAP, which goes beyond the traditional use of a single, static Internet

connection per network or gateway, and enables multipath protocols and appli-

cations to benefit from the dynamic addition of Internet connectivity by actively

pushing information regarding the state of multihomed links into the network.

The following contributions, improve the usability and efficacy of the proposed

MAP with the design and development of a host-centric policy framework, provid-

ing a much needed, descriptive approach identifying how and when the available

network resources should and can be used. Finally this is combined with a novel

path selection algorithm to allocate single path applications to the most appro-

priate network resource. These contributions can be summarised as a routing

overlay, policy framework and path selection algorithm, described in more detail

as follows:

1. Multipath Advertisement Protocol : We initially design, implement

and evaluate an approach for disseminating multihomed information through-

out a mobile network. Doing so makes each host in the network aware of

the available connectivity options, which can in turn allow the users appli-

cations to benefit from increased throughput and resiliency. Additionally,

making the host aware of the available Internet connectivity options can

enable multipath protocols such as MPTCP to create additional subflows

for each connection, no matter where it resides in the mobile network. We

believe that dissemination of network resource is necessary, as the mobile

device itself is best suited to choosing the most appropriate link or subset of

links for a specific application. The reasoning for this is twofold, firstly the

host can easily be made aware of the requirements of its applications. Sec-

ondly, a gateway is typically unaware of the alternative network resource

available to a mobile device, without the introduction of additional and

complex signalling protocols.

2. User Policy Framework : Mobile devices suffer from inadequate man-

agement of multihomed network interfaces, which is further exacerbated

when the number of available Internet connectivity options is expanded us-

ing the proposed routing overlay. To this end, we propose a framework

26

with multihoming and multipath communications at the core of the design.

This framework allows users to specify exactly the conditions in which their

Internet connections can be used, based on the current context of both the

mobile device and the network. We believe that by increasing the gran-

ularity of control a user has over the use of their network interfaces it is

possible to improve both the QoS and experience. We demonstrate how the

policy framework can meet the needs of the user, and further more evaluate

the QoS and experience benefits that can be drawn from improving the

granularity of network resource usage.

3. Path Selection Algorithm : A significant portion of traffic may not be

appropriately handled by multipath protocols. Real time communications

and flows limited by the application (as opposed to the network) may not

benefit from splitting their packets over a diverse set of links, and at worst

the QoS could be significantly degraded by using multiple paths with vastly

different network metrics. To account for the subset of applications that

are better suited to single path communications, we present a path selection

algorithm using PCA, to statistically choose the best path by removing the

correlation that exists between network metrics. This algorithm is built into

the policy framework to dynamically allocate applications to the optimal

link in the mobile network.

1.3 Thesis Outline

2. Background: In this chapter we focus on the core networking concepts

that the presented work is based on, surveying the state of the art in resource

pooling. Firstly, we present a layered view of current technologies that leverage

multihoming and multiplicity in the network. This is followed by an in-depth

introduction to MPTCP, focusing on the core aspects of the protocol in addition

to novel path management and congestion control approaches.

3. Crowdsourcing Connectivity: This chapter presents an overview of

related work, including multihomed networks, techniques that allow multiple

interfaces to be used, and further more how these approaches can allow users to

cooperate and take advantage of diversity in network resource. We then reflect

27

on the direction and success of the related work, and subsequently detail a set

of requirements that we believe are necessary to achieve the proposed goals of

improving network resource utilisation and increasing QoS and experience.

4. Design: The design chapter presents the specification for the routing

overlay, policy framework and path selection algorithm. The focus of this

chapter is to address theoretical challenges and provide robust architectural

guidelines for implementation of the proposed work on any suitable platform.

5. Implementation: The implementation chapter presents a realisation of the

specified design. Detailing a deployable Linux solution of the routing overlay,

policy framework and path selection algorithm.

6. Evaluation: We first evaluate the applicability of MPTCP for use across

a large number of independent and heterogeneous paths. Subsequently we

investigate and evaluate the practicality and scalability of the proposed routing

overlay, in a simulation environment. The evaluation then continues, with a

real world testbed, initially verifying the simulation results and then extending

them, by introducing the policy framework and path selection algorithms, using

QoS and experience metrics to determine the level of improvement.

7. Conclusion: In this final chapter, we reflect on the work presented in

this thesis. We identify areas of future work that we predict to be of significant

interest to the research community, and propose the necessary steps to continue

to leverage the power of multihoming and cooperative resource pooling in a

mobile context.

28

CHAPTER 2

Background

In the previous chapter, we outlined a series of problems with the current mobile

connectivity model. This model prevents individual users from maximising the

utilisation of the available connectivity options, through the combination of inad-

equate multihoming functionality and sharing capabilities. As multihoming has

become the de facto standard for mobile devices there has been extensive research

in this area, attempting to aggregate, load balance, and increase resilience across

the diverse set of heterogeneous access technologies that are available, progressing

towards the resource pooling principle [174]. In this chapter, we present tradi-

tional technologies and protocols as well as the state of the art research in the

resource pooling domain. Secondly, we present a detailed analysis of Multipath-

TCP, as one of the most successful and widely deployed protocols, abiding by the

resource pooling principle.

The main point of reference in this chapter is the TCP/IP network stack as

shown in Fig. 2.1. This model describes a layered set of abstract functionality,

specifying how devices should communicate, which has a fundamental impact on

how new resource pooling and connectivity approaches are defined. Customarily

new solutions to these problems are either confined to a single layer or spread

across multiple layers.

Application
Transport
Network

Link

Figure 2.1: Internet Protocol Suite

29

2.1 Resource Pooling

The deep-rooted focus on resilience, redundancy and load balancing has been

imperative to the success and development of the Internet. At its core the In-

ternet is intrinsically a multipath system, providing unprecedented diversity in

terms of the number of paths available to service two remote end-points. Despite

this, the suite of protocols and technologies that run on top of the network are

typically single path, leading to a fundamental gap between the network and the

applications. In [174], Wischik et al. present the resource pooling principle, which

they describe to be a collection of network resources behaving like a single pooled

resource. The main benefits of resource pooling are defined as follows:

1. Increased robustness.

2. Ability to handle traffic surges.

3. Maximize utilisation.

These benefits match closely to the problems that we presented in Chapter 1,

due to inadequate support for multihoming in mobile devices and current network

stacks. This section presents a layered overview of both traditional and novel

techniques that take advantage of multihomed devices, increasing throughput

and resilience by utilizing the bandwidth of additional redundant paths. As with

many networking problems, this is a challenge that can be solved at any layer in

the network stack. Each of the proposed layers and technologies presents its own

unique strengths and weaknesses, as there is a fundamental trade-off between the

applicability and the ability to optimize each solution. For example, the lower in

the stack a solution resides the more technologies and protocols it will encompass;

while the higher up in the stack, the solution becomes increasingly tailored to the

needs of specific applications. For this section, we focus on the Internet Protocol

Suite which is a realisation of the OSI model, considering: the link, network,

transport and application layers.

2.1.1 Challenge

As discussed the de facto approach for two hosts to communicate using the

TCP/IP stack is single-path. When introducing additional paths that may be

30

used for the same connection, stream or flow, the differences in link characteris-

tics can have a significant impact on the performance and therefore the proposed

solution. The differences in link characteristics that need to be addressed can

be categorised as bandwidth and latency heterogeneity as proposed in [52]. In a

mobile environment the heterogeneity present between links can be massive; fur-

thermore, the capabilities and characteristics of individual links can also change

frequently, as access technologies change based on availability while the potential

bit rate depends on the type of modulation and coding which can fluctuate based

on link quality. Bandwidth heterogeneity requires that the solution is able to

balance packets or traffic over individual links, depending on the available capac-

ity, in order to maximise throughput. TCP achieves this over a single link using

congestion control, to increase the rate that packets are sent and dropping it in

the event of packet loss. The heterogeneity of latency across paths, can have a

significant and detrimental effect on resource pooling, as out of order packets in

TCP can lead to the congestion window being cut in half. Latency heterogeneity

may also have a negative impact on specific User Datagram Protocol (UDP) ap-

plications such as voice communications, if packets are received after the playback

point, they become redundant and are dropped, degrading the perceived quality

of the application.

2.1.2 Link Layer

The link layer is the lowest in the TCP/IP stack, it is only concerned with pro-

tocols that enable communication between directly connected hosts that reside

on the same local network. Therefore no routing is required to transmit a packet

from one host to another. At this layer bandwidth aggregation typically focuses

[81] [37] on a single hop as this is the fixed scope of the available protocols.

This is realistically only beneficial if the bottleneck for a hosts connectivity is

the immediately attached link or network. Link aggregation as defined in [81]

requires support from the directly connected switch, and is managed by the Link

Aggregation Control Protocol (LACP) to simplify configuration. 802.11ax spec-

ifies that all Ethernet links must share the same speed and duplex settings and

additionally transmits all packets for the same flow on the same link, minimising

the issue of re-ordering. While Link Aggregation is highly beneficial and widely

used to remove bottlenecks that exist between two directly connected hosts, it

31

is not designed for use in a wider context. Furthermore the re-ordering issues

encountered would be magnified, without buffering or appropriate scheduling to

account for this.

Many cellular and wireless access technologies rely on Point to Point Pro-

tocol (PPP) for their link layer protocol. In an effort to improve the typically

poor throughput of these wireless links, there have been a number of extensions

proposed to PPP. In [157], one of the first standards is presented for splitting

and recombining datagrams across multiple PPP links. This approach requires

compatibility at each end-point of the connection and modifies the Link Control

Protocol (LCP) to indicate support for multiple links, additionally datagrams

are numbered so they can be re-ordered before being passed up to the network

layer. The proposed scheduler simply performs a round-robin over the avail-

able links. While this work is applicable to multiple PPP links in any context,

the focus was originally on exploiting a set of channels within Integrated Services

Digital Network (ISDN). Subsequent work addressed these assumptions by specif-

ically targeting PPP in wireless environments. In [158], the heterogeneity issues

associated with wide-area wireless access networks are identified. The authors

presented their work in the context of a Cellular Digital Packet Data (CDPD)

network, however the fundamental problems induced by variable bandwidths and

latencys remain the same today. This work uses Multilink PPP as its foundation

and extends it with a more appropriate scheduler based on the estimated link

quality, representing the estimated throughput. The scheduling algorithm artifi-

cially alters the Maximum Transmission Unit (MTU) depending on the perceived

throughput for each link in order to balance load. Altering the MTU however

does not fully account for the heterogeneity exhibited by multiple wireless links,

which can degrade throughput through re-ordering at the transport layer or by

extended waiting times at the link layer.

2.1.3 Network Layer

The primary functionality of the network layer is to ensure that two remote end-

hosts are able to communicate, through globally addressing hosts and forwarding

packets between one or more networks. The most ubiquitous network layer proto-

col in use today is the IP, which provides connectionless communication as each

packet is handled on an individual basis, depending purely on the addressing in-

32

formation provided. To this end, IP inherently supports multipath and therefore

multihomed hosts. As the network layer is the first point in the network stack

in which each of the end-points are known (discounting LANs behind Network

Address Translation (NAT)) it provides a promising foundation for bandwidth

aggregation solutions. Additionally, as all network applications effectively use

IP, a network layer solution can provide global bandwidth aggregation for a host,

covering applications relying on any transport layer protocol. While this global

applicability may be appealing, accounting for the characteristics of different

transport layer protocols can be incredibly challenging, in regards to buffering

and re-ordering of packets across flows.

One of the first proposals for network layer bandwidth aggregation required

the use of IP-in-IP tunnels [132]. For each available network interface, an IP tun-

nel is established and the transport layer packets are simply striped over them,

this provides a straightforward aggregation solution; however, while it is a func-

tional approach, it fails to address the challenges introduced by bandwidth and

latency heterogeneity. Furthermore, IP in IP is typically not suited to travers-

ing NAT boxes making it an unsuitable approach for IPv4 and especially mobile

devices. The proposal for Site Multihoming by IPv6 Intermediation (SHIM6)

[117], presents a more appropriate and feasible IPv6 based solution, requiring

a new shim layer be inserted between the IP and transport layer headers. The

premise behind the SHIM6 protocol, is to provide IP address agility, allowing

applications to change their IP address mid connection and additionally allow

different applications to use different paths. The shim layer separates the loca-

tor from the identifier, masking the address changes that may occur from the

application and preventing connections from breaking. The shim functions by

signalling additional addresses that may be used and can subsequently balance

connections and flows across the available paths; therefore, spreading the load

and taking advantage of path diversity. The SHIM6 protocol however, does not

take full advantage of the available paths, for a single connection only one path

can be used. Furthermore, path quality is again not accounted for, which may

lead to some applications being allocated to sub-optimal paths. Evensen et.al [53]

propose a complete network layer bandwidth aggregation solution, using a proxy

to aggregate and stripe packets across the available paths. The authors introduce

network layer indicators for path quality, such that packets can be transmitted

over the most appropriate link. Initially, the latency across all available paths

33

was equalized, by introducing artificial delay on the lower latency links. While

this is sub-optimal, especially in the case of extreme latency heterogeneity, it can

improve the re-ordering observed. In subsequent work [55], the authors remove

the delay equalizer, in favor of adding sequence numbers to each packet allowing

the network layer proxy or host to re-order the packets before being passed on to

the transport layer, or transmitted to other hosts.

2.1.4 Transport Layer

The transport layer provides additional functionality on top of the end-to-end

communication of the network layer. The introduction of ports in addition to

addresses, enables multiple end-points to be created for each end-host allowing

a number of applications to run simultaneously. Therefore the transport layer is

responsible for ensuring that data is delivered appropriately to each application,

leading to a range of transport layer protocols to suit different requirements.

Typically TCP provides a reliable byte stream, while UDP offers a connectionless

best effort service. Bandwidth aggregation approaches at the transport layer can

be split into two main categories. Those which extend current transport protocols

and those which present new transport protocols, in this thesis we will focus on

extended transport protocol. In regards to this catagory, the main focus to date

has been on TCP and Stream Control Transmission Protocol (SCTP). Due to

the use of congestion control by TCP and SCTP, the transport layer is provided

with additional information regarding the associated network metrics for each

path that is currently in use. In terms of TCP this can be represented by the

congestion window and the round trip time, providing an estimate of the available

bandwidth and latency. These metrics are imperative to the operation of TCP

(likewise with congestion control enabled SCTP) and can help to provide a more

educated decision as to how packets should be multiplexed over the set of available

paths.

2.1.4.1 TCP

Transport Control Protocol (TCP) is the most widely used transport protocol

in existence, and accounts for the vast majority of Internet traffic today. The

scalability of TCP has ensured its success as the de facto transport layer protocol

since its inception. While it has evolved over the years, the fundamental nature

34

of the protocol remains the same. It provides a connection oriented, reliable,

ordered and error-checked byte stream. Through the use of flow and congestion

control, a TCP connection is able to prevent both the end-hosts and the network

from becoming overloaded. Due to the pervasive nature of TCP, it has seen a

number of extensions proposed to bridge the gap between the traditional single

path transport layer and the multipath network.

One of the first multipath extensions proposed was Parallel-TCP (pTCP) [74],

this work introduced the idea of associating multiple TCP flows with a single con-

nection, as each flow is provided with its own congestion control algorithm, the

work presents a decoupled approach to congestion control allowing the maximum

bandwidth of each path to be used. Subsequently mTCP [183] used a similar

technique, using multiple TCP subflows to stripe packets across a set of available

paths. The authors however, presented a shared congestion control algorithm, at-

tempting to detect shared bottlenecks to maintain fairness. Bottleneck detection

is determined by the correlation of fast-retransmits across paths. Concurrent-

TCP (cTCP)[41], proposed in 2006, presents another alternative approach, by

using a single global congestion window for all interfaces. During the three-way

handshake cTCP provides a list of the available interfaces, which allows packets

to be transmitted and used over multiple paths instead of establishing multiple

independent connections. The more recent MPTCP proposal [60], has seen sig-

nificant traction in comparison to other efforts and has been implemented and

deployed in a number of high profile devices and applications, such as Apple’s

iOS [6]. The design decisions present in the MPTCP proposal learn from previ-

ous efforts and keep deployability at the heart of the work. Instead of extending

TCP flows, MPTCP relies purely on the already present option space within the

header for signalling. Furthermore, MPTCP proposes a semi-coupled congestion

control algorithm differing from pTCP’s and mTCP’s, uncoupled and coupled

approaches respectively. The use of a semi-coupled congestion control algorithm,

provides MPTCP with a trade-off between maximising throughput and quickly

responding to congestion on each path.

2.1.4.2 SCTP

The Stream Control Transmission Protocol (SCTP) [161] is a flexible alternative

to more traditional transport protocols, as it attempts to fill the middle ground

35

between the rigid connection oriented byte stream of TCP and the connectionless

best effort approach of UDP. As SCTP was developed much more recently than

both TCP and UDP, multihoming was considered as part of the fundamental

protocol design, allowing each connection to support a number of IP addresses.

Due to the multihoming principals incorporated into SCTP, it makes a promis-

ing foundation for bandwidth aggregation solutions. The current standard for

SCTP only uses multihoming to provide resilience and load balancing, however

complete bandwidth aggregation schemes are not considered. The simultaneous

use of multiple paths has however been an area of interest since its inception. As

SCTP provides an underlying multihomed architecture, the focus of bandwidth

aggregation and resource pooling has been on appropriately adapting transmis-

sion of packets and acknowledgements over the most appropriate link, to address

bandwidth and latency heterogeneity.

CMT [113] proposed an extension to SCTP introducing multipath capabili-

ties. As with pTCP, each path is allocated its own congestion window, which is

decoupled, such that CMT will be more aggressive in the presence of a shared bot-

tleneck. To account for variability in round trip times and minimise the impact of

re-ordering, the authors propose the removal of erroneous fast re-transmits. Fur-

thermore acknowledgements are delayed according to the SCTP standard [161],

they are also delayed in the event of re-ordering. Moreover, the acknowledge-

ments are extended with extra path based information, allowing the recipient to

determine the difference between loss and re-ordering. The evaluation of CMT,

presents promising performance improvements at the transport layer. However,

the evaluation presented in [113] does not account for paths with diverse charac-

teristics, only modifying the percentage of loss experienced on each path. More

recent work has presented modifications to CMT which account for heterogeneous

paths [43] [42] [2]. In [2] the authors propose that the problems that arise when

using heterogeneous paths can be presented as a set of blocking issues, as buffers

at both the sender and receiver are limited while waiting on slower paths. To ad-

dress the buffer blocking problem, the authors propose a buffer splitting approach

that balances the amount of outstanding data that can be sent on each individual

path. In [103], cmpSCTP is proposed; as with CMT, cmpSCTP uses a decoupled

congestion window for each path. cmpSCTP differs from CMT, by introducing a

two level sequence number space, providing sequence numbers for both the indi-

vidual paths and the connection as a whole, this simplifies the identification of

36

re-ordering in comparison to the previously discussed CMT approach, removing

the need for previously proposed extensions.

2.1.4.3 RTP

The Real-time Transport Protocol (RTP) [146] is typically used to support audio

and video applications, enabling real time communications. RTP provides an

abstraction over the underlying transport layer, such as TCP or UDP, dedicated

to the principle of application level framing; which allows RTP to carry a range

of media types, and for new types to be implemented without modifying the

core protocol. Real-time Transport Control Protocol (RTCP) provides out-of-

band control information and statistics about the communications such as loss

percentages and delay. Real time applications face a different set of challenges

to those typically addressed by TCP and SCTP, especially in the multipath and

bandwidth aggregation domains. Due to the nature of real time communications

and heterogeneous network paths, it becomes incredibly challenging to ensure

multiple paths are used appropriately. In the case of TCP and SCTP simple

solutions may wait for a packet to be received over a slower link, however for

real time communications this may not be a viable option as the information can

quickly become redundant.

Despite the challenges associated with exploiting multiple paths for RTP,

there have been research efforts aiming to address the previously discussed prob-

lems. In [155], the authors propose multipath extensions to RTP, utilizing both

the core protocol in addition to RTCP. This work presents the base requirements

and design decisions that are necessary to implement a deployable Multipath-

RTP (MPRTP). MPRTP focuses on a similar set of goals to MPTCP, in that the

authors attempt to balance congestion across links while maintaining a constant

bit rate stream, without degrading the users QoS. MPRTP creates a set of sub-

flows for each desired path; and subsequently creates an RTCP stream for each

subflow, to monitor the quality in terms of Round Trip Time (RTT), jitter, and

lost or discarded packets. The quality information associated with each path is

then used by the MPRTP scheduler. The receiver additionally implements a “de-

jitter” buffer to reorder packets, attempting to improve the quality of playback.

When there are a large number of paths available, the authors propose grouping

paths with similar network metrics together, which are then ranked such that

37

paths with high bandwidths and low delays are preferred. The base concept for

the MPRTP scheduling approach is to send the next packet over the link with

the highest bandwidth
delay

, highest bandwidth, and the lowest loss rate. If any packets

are lost, they are re-transmitted over the path that is currently assumed to be

the best, according to the previous criteria. If a path becomes congested, the

scheduler will attempt to shift traffic away in an effort to reduce congestion on

these links.

2.1.5 Application Layer

The application layer typically provides a specific service, which is dependent on

the underlying layers to facilitate communication, such as the File Transfer Pro-

tocol (FTP) or Secure Shell (SSH). The type of application at this layer dictates

precisely the network requirements to receive the optimal QoS, which is not pos-

sible at the transport layer. For example, FTP benefits from being allocated as

much bandwidth as possible, while the interactive nature of SSH sessions can be

improved through faster response times. Application layer solutions commonly

take these factors into account, optimizing bandwidth aggregation techniques for

a specific domain [54], losing generality in favor of improved performance. One

of the significant issues with this approach is that applications will typically need

to be modified or created to support a specific bandwidth aggregation approach,

neglecting legacy applications that may not be upgradable.

The authors of PSockets [156] define the challenges associated with tuning

TCP to match the underlying network. Typically manual tuning is necessary

choosing the correct congestion control algorithm and buffer sizes for optimal

performance. The authors negate this manual tuning process, by creating mul-

tiple Parallel Sockets (pSockets), each of which is associated with an underlying

TCP connection. To this end, the authors prove that striping data across multi-

ple sockets at the application layer can improve performance, inline with optimal

TCP tuning. While the authors only consider the problem of improving per-

formance over a single path, the PSockets concept could easily be extended to

a multihomed device, being well suited to quickly downloading large files, due

to the increase in throughput. The Deployable Bandwidth Aggregation System

(DBAS) [70] is a bandwidth aggregation middleware, that attempts to estimate

both the requirements of the application and the available network interfaces to

38

maximise the efficacy of the solution. For single connection oriented transport

protocols, the DBAS attempts to allocate the optimal link for the application,

such that all packets are transmitted over the same interface, which seamlessly

supports legacy servers. If the server is DBAS capable, then a packet-oriented

approach can be used, in which individual packets for the same application can

be scheduled over different network interfaces or paths. The authors propose a

linear algorithm, that aims to choose the optimal interface, however the parame-

ters of the presented optimisation function, neglects real time characteristics such

as latency and jitter, instead focusing on bandwidth and system load. Addition-

ally, the estimation of application requirements also focuses on bandwidth over

more find grained characteristics, which may be necessary to fully describe the

expected behaviour.

In [54], Evensen et.al present an application specific bandwidth aggregation

scheme. The authors propose a multihomed extension to DAVVI [86] (HTTP

Adaptive Streaming), enabling the use of multiple network interfaces. The multi-

homed extension splits video segments into smaller subsegments that are retrieved

across different paths simultaneously. The size of subsegments is calculated on-

the-fly according to the available throughput for each network path, improving

the adaptivity of the DAVVI client. This improvement, is represented by increas-

ing the users QoE, downloading higher quality segments and dropping the total

number of interruptions during playback. In [170] a multipath rate controller was

developed and evaluated; this solution relied on TCP at the transport layer to

split data over multiple independent paths aggregating at a single homed host

as the receiving end point. Alternatively it was proposed in [184] that transport

layer multipath protocols such as MPTCP are overly complex for certain appli-

cations such as file transfer; by implementing more specific protocols such as the

suggested Self-adapted Rescheduling Reliable Multipath Transfer Protocol, light

weight and deployable bandwidth aggregation can be achieved.

2.1.6 Summary

From this layered survey of bandwidth aggregation schemes, it is obvious that

there will not be a single standard enabling an end-host to use all of the available

network resource. However, we believe that the transport layer is realistically the

lowest point in the network stack that effective bandwidth aggregation schemes

39

should be explored. While the network layer is usable, we believe that bandwidth

aggregation is not a function that should be supported at this point in the stack,

due to the wide range of arbitrary applications and protocols that are dependent

on it. Additionally, the network layer solutions presented typically rely on the

use of a proxy, which could lead to them following in the footsteps of Mobile IP,

with a lack of uptake due to additional infrastructure and cost. At the transport

layer, the set of path metrics and measurements that are required for effective

bandwidth aggregation begins to be exposed inherently, making it much more

suitable. Furthermore the types of applications using specific transport layer

protocols become better defined. The common factor that essentially all of the

discussed technologies share, is the reliance on multiple addresses to inform the

host that they are multihomed and addressable across the network. Taking this

common factor into account at the design stage will theoretically allow for any of

the presented and future technologies to be used for cooperative resource pooling.

Of all the presented bandwidth aggregation approaches, the majority focus on

aggregation at the end-host, therefore additional paths that exists one or more

hops away are neglected and could limit the desired performance and resilience

improvements. In [142] and [151] the authors attempt to provide bandwidth

aggregation for multiple users through the use of a multihomed gateway. This

however, is still limited to aggregating bandwidth based on a single hosts available

paths despite passing the benefit on to multiple users.

2.2 Multipath-TCP

In the previous section we presented a layered view of resource pooling and band-

width aggregation technologies. As we briefly discussed, the most prolific and

successful deployment of such a protocol to date is MPTCP. So far the protocol

has seen significant uptake with implementations spanning a wide range of sys-

tems including, Linux, FreeBSD and Apple’s iOS. One of the key factors to the

success of MPTCP is transparency, to both the application and the network. Any

current applications are able to benefit from multipath communications without

modification. Additionally, as MPTCP relies purely on traditional TCP subflows

with only additional header options used for signalling, the current network in-

frastructure is able to handle the extensions seamlessly (the difference between

40

TCP

Application

IP

(a)

MPTCP

Application

TCP
Subflow

TCP
Subflow

IP IP

(b)

Figure 2.2: Relationship between the traditional TCP and MPTCP network
stacks.

Option Value Description

MP CAPABLE 0x00 Indicates multipath capability.
MP JOIN 0x01 A new subflow is joining an established connection.
DSS 0x02 Maps the subflows byte to the matching data sequence.
ADD ADDR 0x03 Add an address to the connection.
REMOVE ADDR 0x04 Remove an address from the connection.

Table 2.1: Multipath Specific TCP Options

the TCP and MPTCP network stack is shown in Fig. 2.2). For these reasons

we believe that MPTCP, as well as similar transport layer extensions have a

future in next generation networks, and will subsequently be a critical compo-

nent in supporting seamless, heterogeneous mobile connectivity. Therefore for the

remainder of this thesis, we will consider MPTCP when making design and imple-

mentation decisions, in order to maximise the benefits of bandwidth aggregation

and resource pooling. For the remainder of this section, we will provide a more

detailed overview of MPTCP. The four main components that MPTCP relies on,

is the signalling between hosts, coupled congestion control, path management,

and scheduling.

41

Client Server

SYN + MP_CAPABLE
KA

SYN/ACK + MP_CAPABLE
KB

ACK + MP_CAPABLE
KA+KB

Create KA

Create KB

Figure 2.3: Sequence for the initial MPTCP Three Way Handshake

2.2.1 Signalling

To maintain backwards compatibility and provide transparency, MPTCP is founded

on creating subflows that look and behave like traditional TCP. The only mod-

ification required at the packet level, is the introduction of additional MPTCP

options, inserted into the TCP option space. A subset of the core options for

controlling an MPTCP connection are shown in Table 2.1 on the previous page.

The MP CAPABLE option identifies if a host understands MPTCP, similarly

to cTCP, if during the three-way handshake, a SY N or SY N − ACK is re-

ceived without this option, the connection falls back to traditional TCP providing

backwards compatibility. During the multipath-capable three-way handshake, a

unique key is created which is used to identify the MPTCP connection, shown

in Fig. 2.3. The MP JOIN option is used when a new subflow is added to

the MPTCP connection. The new subflow signals the MP JOIN option during

the three-way handshake, along with a token generated from the previously de-

scribed key, to identify which MPTCP connection the subflow belongs to. Like

pTCP, MPTCP creates an additional sequence and ACK number space for the

global connection, this includes a Data Sequence Number and Data ACK, which

42

is passed in the Data Sequence Signal (DSS). The DSS option describes how the

data from an individual subflow maps back to the ordering at the connection level

and similarly for the connection level acknowledgements. The ADD ADDR and

REMOV E ADDR options are used when one or both of the remote end-hosts

has additional IP addresses that can be used; for example, the server will indicate

an additional address is available through the use of the ADD ADDR option,

the client side will process this option and subsequently attempt to create a new

subflow for the announced address.

2.2.2 Congestion Control

The MPTCP working group presents three goals for congestion control algorithms

[135] to be used by MPTCP as follows:

1. Improve throughput – The MPTCP flow should obtain at least as much

throughput as single path TCP.

2. Do no harm – At a shared bottleneck, MPTCP should not receive more

than its fair share of bandwidth in comparison to a single path TCP flow.

3. Balance congestion – MPTCP should move traffic away from the most

congested paths.

Inspired by the work of Kelly and Voice in [97], MPTCP proposes the use of

a coupled congestion control algorithm to achieve these goals, initially proposing

the Linked Increases Algorithm (LIA) [135]. LIA alters the work of Kelly [97],

by only coupling the increases, such that for each ACK received on path i the

congestion window cwndi is increased by Eq. 2.1. In this equation α describes

how aggressive the multipath subflow should be in terms of throughput and is

tuned appropriately as discussed in [135], negotiating the trade-off between bal-

ancing congestion and responsiveness. The work of Khalili et.al [99] describes

inefficiencies in the Linked Increase Algorithm, which leads to suboptimal bal-

ancing of congestion, effectively breaking Goal 3. The proposed solution is the

Opportunistic Linked Increases Algorithm (OLIA), which alters the linked in-

crease phase of LIA. For each ACK on path i, OLIA increases cwndi by Eq. 2.2,

where I is the set of available paths. The first term of this equation is based

purely on [97], while the second term ensures the responsiveness of OLIA and

43

is calculated according to [99]. Subsequently a number of additional congestion

control algorithms have been designed and implemented for MPTCP, includ-

ing Weighted Vegas (wVegas) and the Balanced Link Adaptation (BALIA). In

wVegas [21] the authors propose a delay based congestion control algorithm for

MPTCP, extending the work originally proposed in [18] for multiple paths. While

the aim of BALIA [169], is to balance the trade-off between the responsiveness

and friendliness of MPTCP, providing a middle ground between LIA and OLIA.

α · bytes acked ·mssi
total cwnd

(2.1)

cwndi/rtt
2
i

(
∑

pεI cwndp/rttp)
2

+
αi

cwndi
(2.2)

2.2.3 Path Management

The path management functionality of MPTCP determines how, and when sub-

flows should be created over the set of available interfaces. MPTCP currently

provides a simple interface controlling the multipath capability of each network

interface. Three different options are available, a specific interface can either be

set to enabled, disabled or to act as a backup. In backup mode the interface

is only used in the event no other network interface is available to be used. As

MPTCP has matured, the path management functionality has been modularized,

making management decisions flexible and extensible. The following list provides

an overview of current path managers that are built into the MPTCP Linux

implementation, as well as novel proposals for specific domains such as wireless

environments and data centres:

• ndiffports – The ndiffports path manager is simple, as it creates a pre-

determined number of subflows between a single pair of IP addresses be-

tween the hosts. This path manager can be beneficial in a data centre

environment, in which the hosts are single-homed but the network load

balances TCP flows across redundant paths.

• Full Mesh – The full mesh path manager creates a TCP subflow for every

pair of IP addresses present at the two end points. The remote host does

not attempt to create any subflows, however, it does advertise additional

44

addresses that are present. The server advertises its available IP addresses

to the client and for each advertised address the path manager creates a

subflow for each of its own addresses. This path manager attempts to

take advantage of both resource pooling and path diversity, to improve

bandwidth and resilience.

• MPTCP-MA – In [165] the author focuses on using link quality infor-

mation at the MAC layer to improve the decisions about how subflows are

managed. Based on link quality estimation subflows are labelled either ac-

tive or inactive. If the link quality is poor the subflow becomes inactive and

its in-flight packets are re-transmitted using other available subflows.

• A-MPTCP – In [35], the authors propose that information from the user

space can be used to inform the number of subflows that are created in a

cloud environment. For example, if there are multiple redundant paths in a

data center the user space application informs the MPTCP path manager

of the available paths, leading to the optimal number of subflows being

created.

2.2.4 Scheduling

In addition to path management, MPTCP also provides a modular structure to

determine how packets should be scheduled over each path. The default approach

is to schedule each packet to be sent on the path which has both the lowest round

trip time (RTT) and available space in the congestion window. This lowest-RTT

first approach provides an effective method of handling paths with heterogeneous

network metrics. However, in the case that a flows throughput is limited by

the application and not the network, this can lead to only a single subflow being

used. Alternative scheduling schemes such as the round-robin scheduler, in which

packets are allocated sequentially to all subflows equally, provides a more balanced

approach allocating packets to all paths. This can be detrimental however, when

the set of paths is diverse leading to low quality paths hampering the effective

bandwidth.

45

2.2.5 Mobility

One of the implicit benefits of the MPTCP proposal is the inherent support for

mobility [137]. As multiple subflows must be supported for a single connection

end-point the identifiers and locaters that are used are split. This split allows new

MPTCP subflows to associate with the initial connection regardless of whether

or not there is an active subflow. This decoupling between the subflows and the

connections provides a number of benefits on top of Mobile IP and comparable

network layer solutions. Typically Mobile IP requires the physical or link layer

connectivity to change before a handover can occur from one network interface

to another, known as break-before-make. With MPTCP it is no longer neces-

sary to wait for a connection to break, as data for the same end-point can be

transmitted simultaneously over multiple paths; a make-before-break model can

be established, providing truly seamless handover as packets are shifted to a new

path before the old path fails. A full review of alternative mobility techniques

is presented in Appendix A. Implementing and supporting alternative dedicated

mobility models such as Mobile IP [126] in the presence of MPTCP introduces

additional unnecessary redundancy; furthermore, it over complicates routing and

introduces superfluous overhead.

2.2.6 Summary

In this section we have presented Multipath-TCP (MPTCP), focusing on the

operation and design of the current standard. Furthermore, we detailed import

factors that must be considered when account for multiple paths; such as, path

management, shared congestion control, and the scheduling of packets. Finally

we discussed the ability of MPTCP to seamlessly support mobility due to the

decoupling between the application layer socket and the identify tuple of the

individual subflows.

46

CHAPTER 3

Crowdsourcing Connectivity

In the previous chapter we presented a layered survey of resource pooling tech-

nologies followed by an in depth review of MPTCP. Leveraging the mobility

properties that are inherent within MPTCP can provide an efficient and robust

mobile connectivity model; furthermore, allowing users to share network resource

can improve connectivity through increased multiplicity and diversity. Extending

this model to account for cooperation between users can help to address a number

of problems that a single device cannot. Allowing users and devices to cooperate

and share their connectivity has been a point of interest for some time [59] and

is currently transitioning into the mobile domain [13] [105] [92]. These connec-

tivity models are attempting to alleviate some of the problems we described in

Chapter 1, focusing on the inadequate availability and capacity of wireless links.

Currently there is a wide range of research and commercial products focusing

on these problems [181] [166] [13] [33], which make it evident that the problem

domain is significant and of importance to both users and service providers. For

users, there is a need to obtain as much bandwidth as possible at a reasonable

price; while service providers must meet this demand in a cost effective manner

allowing them to generate revenue. To this end, cellular data plans are becom-

ing increasingly expensive for users [106], and service providers are struggling to

meet their requirements. Recently the cost of the necessary capacity surpassed

the expected revenue [164]. To this end, both researchers and service providers

are looking for approaches to alleviate the congested mobile network. The con-

gestion experienced in cellular and mobile networks, is a perfect candidate for

the resource pooling principle to present a solution; such that congestion can be

balanced, in a responsive way, dynamically moving traffic across a set of diverse

47

paths based on the available bandwidth. As discussed in Chapter 2, MPTCP can

link the congestion control between subflows, allowing the host to move traffic

away from more congested paths onto less congested paths. Therefore, combining

resource pooling with cooperative mobile networks could allow multiple users to

improve the utilisation of the available network resource and additionally help to

alleviate congestion, by adaptively moving traffic to less congested paths. In this

chapter we first look at current research solutions that allow and promote cooper-

ation between users, sharing the available connectivity to improve resiliency and

capacity, and alleviate load on the congested cellular networks. We then go on to

present the set of requirements for a cooperative mobile network that we believe

are imperative to improve the usability and QoS that users receive while mobile.

3.1 Multihomed Mobile Networks

One of the main problems with capacity sharing in mobile networks is the single

homed approach to mobile connectivity that is ingrained in the network stacks of

operating systems, typically only using a single default route at a time. Further

multihomed support normally requires complex configuration and intervention

by the user. To this end, supporting multihoming throughout a mobile network,

becomes even more complex as detailed in [110]. In this section, we will focus on

how Internet connectivity is appropriated and shared between a set of intercon-

nected hosts, specifically looking at how the protocols enable the use of multiple

Internet connections and determine which will be used.

3.1.1 Interior Routing

In this section, we will discuss the interior routing aspects that allow hosts in a

mobile network to route between multiple gateways. One of the first discussions

of multihoming in Ad-Hoc networks was presented in [49]. Focusing on the pro-

active Ad-Hoc protocols and more specifically Optimized Link State Routing

(OLSR), the authors detail a multihoming solution, supporting NAT and Mobile

IP based gateways. The authors begin by presenting the problem domain of

utilising multiple gateways which is achieved through periodically changing the

default route, noting that UDP performance suffered and TCP connections are

broken, as expected. To address this well-known problem, the authors propose

48

IP-in-IP tunneling to the appropriate gateway, to ensure that a change in default

route does not break the existing connections. However, the actual scheme for

selecting the best gateway is left as future work. Alternatively, in [14] the authors,

embrace the use of the default route, avoiding the overhead incurred by tunneling,

which may be more appropriate for light weight applications such as VoIP. While

the use of the default route provides a lighter approach, it presents a trade off

against flexibility. Changing the default route or point of attachment can lead to

connections becoming unroutable, which may have a more severe impact on the

application than tunneling. Source routing is also a viable option as presented

in [19], this method requires that the address for each hop between the Mobile

Node and the Internet Gateway is added to the IP header, and is subsequently

stripped as it is forwarded.

More recently in [16], the authors present a tagging based approach to forward

packets to the appropriate Internet Gateway. In this scheme, each of the Internet

Gateways advertises a unique identifier (tag), which can be inserted into the

ToS field of an IP packet. When a tag is advertised the hosts forming the mesh

must configure the appropriate routes to match the tag to the correct next hop,

once this has been accomplished the routing process becomes straightforward.

The lightweight tagging approach can easily allow per-flow routing decisions to

be made, however the authors do not identify a complete solution to ensuring

uniqueness of the tags that are advertised, which is of significant importance as

the proposed ToS field is limited to six bits, preventing the use of potential global

identifiers such as IP or MAC addresses.

3.1.2 Gateway Discovery

Gateway discovery is necessary functionality to facilitate communications be-

tween hosts in an Ad-Hoc network and external networks, such as the Internet.

In an infrastructure network, the same functionality can be addressed by proto-

cols such as DHCP. In an Ad-Hoc environment there are additional challenges,

as multiple gateways may exist and connectivity is not always guaranteed. The

appropriate gateway discovery approach realistically depends on the type of Ad-

Hoc network that is being supported. To this end, there are effectively three

base types of gateway discovery that can be employed, proactive, reactive, and

hybrid. The proactive approach requires the gateway to periodically broadcast

49

an advertisement. The reactive approach requires that hosts make a request for

Internet connectivity, with the appropriate gateway responding; while the hybrid

approach, will typically combine both proactive and reactive. Hybrid approaches

attempt to reduce the overhead of advertisements in large networks, by limiting

the scope of the broadcast, requiring hosts that are further away to request ac-

cess. A full implementation and analysis of these base approaches can be found

in [144].

In [50], the authors propose a proactive approach, building a spanning tree

to route packets from the Mobile Node to the Internet Gateway. The authors

present two different methods to building the tree; including, a table driven and

a route driven approach. In both approaches, the tree is formed by the Mobile

Nodes in the Ad-Hoc network sending out broadcasts and essentially tracking and

incrementing the hop-count. The broadcast originates from the Internet Gateway

and contains the source address for hosts to use as a default route. When this

broadcast is received, the host replaces the default route with its own source

address, increases the hop count and re-broadcasts to the next hop.

In [153], the authors perform gateway discovery using a typical reactive ap-

proach, relying on the route request packets that are standard within Ad-hoc

On-Demand Distance Vector (AODV). The route request is broadcast from the

source host, and re-broadcast until it reaches the destination, which is a gateway

in this case. The gateway then responds by unicasting a proxy route request back

to the source host. The route discovery process is limited by a timer, so if no

gateway is observed, the route request must be re-transmitted.

In [7], the authors take a standard proactive approach, using Gateway Ad-

vertisement Packets (GWADVS). Each GWADV is periodically broadcasted by

each gateway, and contains information regarding the identity and properties of

the gateway. This is then flooded through the network, as each host that receives

the GWADV, rebroadcasts it. Optimisations to the base proactive approach are

introduced by including randomized delay before rebroadcasting, reducing the

number of potential collisions. Furthermore, a GWADV is only re-broadcast if it

has not been seen before, or a more optimal route has been discovered.

In [149], a more advanced hybrid scheme is presented, which causes a proac-

tive GWADV to be broadcast, when the gateway receives a reactive Gateway

Discovery (GWDSC) message. The TTL of the GWADV is set to equal the num-

ber of hops it took for the GWDSC to reach the gateway, which can help to stop

50

the Ad-Hoc network from being periodically flooded, reducing overhead.

Finally in [104] an alternative hybrid scheme is proposed based on building

bi-directional routes. To this end, the gateways in the network broadcast a “Root

Announcement”; when a host in the Ad-Hoc network receives a Root Announce-

ment, it sends a Route Request to the parent host (the host which delivered

the Root Announcement), as per typical reactive approaches, which is then for-

warded back towards the gateway. This process guarantees that a bi-directional

route is built between each host and the associated gateway, establishing a tree

topology. This process is repeated periodically as per proactive routing protocols,

to maintain the tree and spread up to date information regarding the gateways

connectivity.

3.1.3 Gateway Selection

In this section, we present a range of work which determines how to select from

a set of available gateways in a Mobile Ad-Hoc Network. In [153], the authors

present a reactive load balancing scheme for multihomed Ad-Hoc networks, aim-

ing to reduce congestion across the available Internet gateways. To this end, hosts

within the mobile network attempt to select the least congested Internet gateway.

As the solution is reactive, the Mobile Node broadcasts a request for an Internet

gateway when it is needed. As with AODV, this request is re-broadcasted until

it reaches a host with knowledge of an Internet Gateway or the Internet Gateway

itself, at which point a reply is sent back via unicast. As the network may be mul-

tihomed, the Mobile Node requesting Internet Connectivity can receive multiple

replies. The first reply that the Mobile Node receives is selected as the gateway

for the current connection; thus to balance load, the authors propose delaying the

replies depending on the load exhibited at the Internet Gateway. The authors

show that this model reduces packet loss and improves the load balancing capa-

bilities in comparison to selecting gateways based on the hop-count. If all the

gateways are significantly congested, the introduction of delay for selection be-

comes an unnecessary overhead. The authors identified that a signalling scheme

between Internet Gateways is necessary to further optimize the protocol in this

regard.

In [100] a system is presented for load balancing across multiple Internet Gate-

ways in a MANET. The authors use a hybrid load balancing metric, to determine

51

the optimal Internet Gateway for a Mobile Node. This hybrid metric is a combi-

nation of the number of hops between the Mobile Node and the Internet Gateway,

the number of Mobile Nodes registered to a specific Internet Gateway, and the

intra-MANET traffic load. To calculate the metric, each of these components is

simply weighted and summed, the Internet Gateway with the lowest value is then

chosen.

In [7], the authors propose the use of Ad-Hoc Networks as a feasible backbone

infrastructure and focus on the performance improvements necessary to realize

this model. There Gateway Selection algorithm, takes into account both the

quality of the available Internet Gateways as well as the routes required to reach

them. This is broken down further into three metrics, the gateway load, route

interference, and expected link quality. The gateway load is computed using the

average queue length at the Internet Gateway. Route interference is measured

as the combined interference of every physical link required to reach an Internet

Gateway, interference can be determined by calculating the percentage of time

that there is activity on the link, through carrier sensing. Finally the expected link

quality is estimated by periodically broadcasting probe traffic, and determining

quality by the success of the broadcast. Corroborating the approach presented

in [100], the authors select the Internet Gateway with the lowest overall value,

based on weighting and summing the discussed metrics.

To select a gateway in [149], the authors calculate the cost of each gateway

using three factors, hop count, interface queue size, and number of neighbours.

The hop count and interface queue size, have so far been typical metrics to use,

the introduction of the number of neighbours offers a novel metric. By including

the number of neighbours present at each hop, the density of a specific path

can be taken into account. This can improve the internal and external network

connectivity, as sparse paths are less likely to be congested leading to improved

performance.

In [104], each host in the Ad-Hoc network selects a primary gateway, while the

remaining gateways become a secondary backup. As [104] presents a proactive

scheme for advertising gateway information, the period in between advertise-

ments is used to measure load across each of the gateways and from the hosts.

This information is subsequently used to allocate and reallocate gateways as ei-

ther primary or secondary during the next advertisement. The gateways use the

Knapsack Algorithm [108] (the parameters for which are: host traffic load, gate-

52

way traffic load, and number of hosts), to determine which set of hosts in the

mesh should switch to a secondary gateway, creating a load balancing scheme.

3.2 User Cooperation

As discussed in the previous chapter, allowing users to cooperate and share con-

nectivity has been proposed and investigated a number of times. As early as

2005, the Fonera Wireless Router was built, allowing users to share their band-

width with other subscribers through an open and authenticated wireless hotspot

[59]. The model for user cooperation is still an active area of interest and has

seen numerous reiterations as the available wireless technologies evolve. To this

end, user cooperation has a number of key benefits, collectively mobile devices

can interconnect with the intention of optimizing a specific objective, such as

minimizing power consumption for the mobile network as proposed in [77], or

collaboratively downloading video content [94]. As discussed in Chapter 1 the

ability for users to cooperate, share and interact is of significant importance to

the future of mobile connectivity. For the remainder of this section, we present

the current state of user cooperation for mobile networks, the models that are

used for interconnecting the hosts and how Internet connectivity is ultimately

shared. Finally we will present novel incentive approaches that are necessary

for user cooperation to succeed and the associated benefits that can be obtained

through this new connectivity model.

3.2.1 Cooperative Internet Connectivity

Offloading from cellular networks has become increasingly important as the cost

of access rises with respect to the demand for mobile data. This has been shown

to be viable in cooperative resource pooling protocols as shown in [176]. Similar

schemes that enable user cooperation focus on accomplishing a specific task; for

example, [94] focuses on improving video streaming by scheduling the download

of video chunks between collaborating devices, based on the available bandwidth.

Alternatively, [71] proposes the use of social networks to disseminate content

between users, due to the negligible cost of sharing data locally, users become

less reliant on expensive Internet connectivity.

COMBINE presents a solution enabling collaborative downloading in a mobile

53

network [5]. The proposal relies on WLAN connectivity between the hosts in

the mobile network. To improve the energy efficiency, the authors introduce a

new power saving mode for the wireless network interface, called the “Waiting

Mode”, which wakes up periodically to broadcast “I-am-Alive” messages. To split

the collaborative download between users in the mobile network, the content is

segmented and each chunk is added to a work queue; each of the hosts in the

mobile network retrieve work from the queue, sequentially until it is complete.

The authors present two options allowing COMBINE to download from unaware

servers, the first is to either allocate a special-purpose proxy server, while the

second is to assume that the server hosting the content supports HTTP byte-

ranges, allowing each host to retrieve a predetermined segment.

In [162], the authors coordinate access between mobile devices, when each of

the users in a mobile network are interested in streaming the same P2P video con-

tent. The hosts form a mobile network using a sharing link, which is assumed to

be an Ad-Hoc WLAN connection or similar. Given the availability of the sharing

link [163], the authors propose a decentralized approach to sharing connectivity

information based on Multicast DNS [140]. Each host that joins the sharing link,

sends a query for other hosts. Hosts already associated with the sharing link will

reply, thus allowing them to form a connection. Subsequently, periodic checks are

made to ensure that the connected hosts are still alive. Each of the hosts in the

mobile network are assumed to have an access link that provides Internet con-

nectivity. Content retrieved over the access link, can then be redistributed over

the sharing link, offloading from the higher cost access links, such as cellular. In

[163], the authors present two real world schedulers for coordinating the retrieval

of chunks, a round robin approach and a historical approach. The round robin

scheduler selects the next idle link to download the next chunk, which is similar to

the work proposed in [5]. However, as [162] focuses on video streaming, chunks

need to be downloaded before the point of playback; therefore, a round robin

scheduler could lead to suboptimal performance as chunks are delayed on slower

links. The second scheduler aims to reduce this problem, by keeping historical

information regarding each links performance.

In [89], a bandwidth sharing mechanism is presented based on the concept of

creating user profiles. These profiles contain policies describing how an individual

user wants to collaborate, which are collated and processed using a Markov De-

cision Process [12]. To find other hosts, the authors propose the use of Bluetooth

54

discovery to obtain the set of MAC addresses that are in close proximity, this in-

formation is then uploaded to a server periodically (including host information),

which makes decisions for the host, in terms of selecting helpers, whom can assist

in the download process. The data shared between hosts is then transmitted over

an Ad-Hoc WiFi connection. The authors define three policies to specify how co-

operation between hosts can occur, an altruistic scheme, helper protection, and

energy thresholding. In the altruistic scheme, a perfect world scenario is taken

into account and assumes an entity has accurate state information with regards

to each of the hosts. This policy allocates each download to the optimal host,

even at the expense of the given hosts performance. The helper protection pol-

icy, aims to protect hosts from degrading their own performance when assisting

others. The final policy uses an energy threshold; if the host has sufficient power

to obtain its own content, it will use its own access link, otherwise it will request

help from another host. The use of user profiles, can help to encourage users

to participate in the system, by optimizing their chosen parameters, instead of

making assumptions about what they determine to be the cost, thresholds for

specific variables can be defined.

In MicroCast [94], the focus falls again on supporting cooperative video stream-

ing. The authors present a scheme where a number of users wish to collaborate

to watch the same piece of content. The MicroCast system is made up of three

key components: MicroDownload, a scheduler that decides which user should

download which piece of content; MicroNC-P2, which handles sharing of content

locally, using overhearing and network coding; and MicroBroadcast, that enables

broadcasts to be transmitted at a higher rate. The mobile network is formed

using typical WLAN Ad-Hoc networking, under the assumption there are a small

number of users, and that the users already trust one another. The scheduling

algorithm attempts to maximise the use of cellular links especially under opti-

mal conditions to ensure as much content can be downloaded as possible to help

counter periods of disruption. Using overhearing in the MicroNC-P2 component

helps to alleviate redundant data being transmitted over the local wireless link.

CrowdMAC [39] presents a crowdsourcing system for mobile access. The

authors attempt to solve the following four problems: admission control, so a host

relays sufficient data to be beneficial financially, but limits it such that network

capabilities are not reduced; mobile access point selection, given a variety of hosts

in close proximity, how does a host select the optimal gateway; how can hosts

55

attempt to solve challenges introduced by mobility when sharing connectivity; and

finally how can the hosts address security and legality issues introduced through

sharing. To allow the hosts to coordinate, while paying and billing for resources, a

remote server is used, to aggregate and maintain user information. To determine

access control, the Lyapunov framework [95] is used, which is an optimization

model for dynamic systems that attempts to describe stability. The authors

use the real network queue, a virtual queue representing projected load, and

finally revenue, as the inputs for the model. To help handle mobility, the authors

propose three approaches. Firstly, files are segmented to ease the downloading

process, minimizing impact in the event that connectivity changes. Secondly,

hosts are made aware of mobility and can choose access points that are more

likely to remain available to them. Finally, the authors propose constraining

mobility through incentive; such that, if the host providing connectivity breaks

the connection mid segment, the cost paid for the service is returned, at the

expense of the providing host. This could become a reason for hosts not to

share their connectivity, a system that constrains and penalizes users from normal

activity may not be seen favorably.

In [181], Incentive Data Plan Sharing System Based on Self-Organizing Net-

work (INDAPSON) is presented, which present three categories of user: primary,

assistant and detected. The primary users have a requirement to download con-

tent, the assistants are providing help to a primary user, and a detected user is

a host whom may act as an assistant. The authors present two technologies that

are required for the INDAPSON mobile network to form, Bluetooth management

and a wireless transmission layer (802.11). The Bluetooth management stage is

used during the initial formation of the mobile network, while the WLAN portion

is used to exchange data. To collaboratively obtain a piece of content the authors

propose a scheme similar to COMBINE [5]. When a primary user is provided

with a URL, the content size is queried and split into segments which are then

allocated to assistant users, until the entire piece of content has been retrieved;

the segments are then shared over the WLAN link. Importantly, a host who has

joined the INDAPSON mobile network, cannot become a member of a second

mobile network, preventing the potential for complex, multi-hop topologies to

form. During the formation and download process, a server is notified to keep a

record of the assistance provided and data gained by each user. Assistant users

are allocated based on a reputation scheme such that, the more a user helps oth-

56

ers the higher their reputation, and will therefore be more likely to have other

users reciprocate.

The Collaborative Network Sharing (CoNes) architecture presented in [166],

leverages both Software Defined Networking (SDN) and cloud services to pro-

vide inter-host connectivity and decision making processes. The authors present

four problems that they wish to solve through the CoNes system: present a flat

network abstraction over heterogeneity, fast network reconfigurations as host re-

quirements and capabilities change, hosts in the network must be provided with

a consistent view of the network, and active connections should not break dur-

ing mobility events. To tackle these problems, the authors propose using Open

vSwitch [131] to hide the heterogeneity of networking interfaces, enabling for-

warding between hosts. To provide mobility a Virtual Private Network (VPN) is

used, instead of typical standardised solutions such as Mobile IP [125]. During

the formation of the mobile network, the hosts use multicast to discover one hop

neighbours and subsequently measure the available throughput between them.

This process is repeated periodically, with the throughput information being up-

loaded to a cloud service. The cloud service then responds, providing each host

with a decision graph, describing how the available connectivity options should

be used. The hosts then synchronize with one another via the cloud service, to

acknowledge that the decision graph can be applied. The SDN forwarding model

implemented, allows any host to act as a gateway, client, or relay at any moment

in time. To ensure routability via other hosts, the sharing service on each host

additionally performs Network Address Translation.

The use of Software Defined Networking for capacity sharing is proposed in

[145]. The authors attempt to address a number of functional problems associated

with traditional networking under the capacity sharing model. For example, a

host in a mobile network is typically hidden from the gateway by one or more

relay nodes. Therefore the source host is subject to the same traffic shaping,

and rules as the host that is directly connected to the gateway. This presents

Anonymity Authentication and Accounting (AAA) problems and potential legal

issues depending on the nature of the traffic. To solve this problem, the Access

Points that the mobile network connects to are assumed to be SDN enabled,

allowing a host to check-in with the SDN controller, via the host which is acting

as a gateway and the SDN AP. This effectively becomes an SDN based AAA

approach for supporting mobile networks similar to the work proposed by [65].

57

This is a significant area of interest for the success of mobile networks, as users

become more security conscious and providers have a need to ensure they are able

to charge and identify users appropriately.

3.2.2 Modelling Incentive

One of the critical factors affecting cooperation between users is the ability to

create incentive. If users do not see a benefit in sharing their connectivity with

others, the entire system can fail, eradicating the network improvements that any

cooperation system may bring.

One of the first proposals for user cooperation in Ad-Hoc network was pre-

sented in [20]. The scope of this work focuses on selfish hosts that prefer not to

forward packets within the network. While the work focuses on internal Ad-Hoc

connectivity, the work presents and tackles a founding concept for user coop-

eration. This concept is that helping another user, requires the expenditure of

resource, which may be in the form of network, battery, or processing power. In

[20], the authors aim to stimulate cooperation by introducing a simple counter

at each host. The counter reflects whether or not a host is able to send its own

packet. When forwarding a packet, the counter is increased by one, when sending

a packet the counter is reduced by the estimated number of hops required. Thus,

hosts that forward more packets, sharing their own resource are able to receive a

better service. The simplicity of this model and the subsequent evaluation proves

that encouraging users to cooperate can have a positive impact on the network,

showing that decreasing the number of cooperative hosts decreases throughput.

The feasibility of counting packets in current mobile networks is questionable,

the authors identify this problem in terms of packet sizes being variable; how-

ever, not all hosts and links in a mobile network are equal and the cost or benefits

for a given user to forward a packet can fluctuate. The problem of variable cost

is considered in [36], which proposes a price based model, taking into account

the power consumption and bandwidth usage to inform which route a packet

should take. The pricing information is continuously updated and distributed

throughout the network. The ability for a user to send a packet is represented

as a monetary (credit) balance, which is increased when forwarding a packet and

decreased when sending a packet, based on the associated cost for each action.

The use of credits as a virtual currency has become one of the most common

58

ways for incentive to be modeled, ensuring that users are reimbursed fairly for

the service they provide. In [15] the authors propose that the credit scheme can

be presented as a game theoretic model, including both users, communities and

service providers. The authors use the Stackelberg leadership model, which is

based on the concept of leaders and followers. The community provider, i.e. the

user sharing their connectivity, takes the role of the leader, while the Internet Ser-

vice Provider (ISP) and users play the follower. The game is split into two levels,

first the leader (community provider) determines how money is distributed, and

secondly, the users and ISP’s determine if they want to participate in the sharing

community. Including the ISP in the incentive scheme is a novel approach that

could still help to alleviate connectivity problems seen in mobile networks today,

in which cellular providers limit or prevent sharing via tethering.

The work presented in [48], focuses on the problem of sharing WiFi connectiv-

ity in cities. The core of the proposal, revolves around a decentralized reciprocity

scheme, using digital receipts authenticated against a public-private key pair.

Individual WiFi communities are represented as clubs, and in order to gain mem-

bership to a club, the user must first contribute by sharing their connectivity

with existing club members. To disseminate contribution and consumption in

the form of digital receipts, the authors propose a gossiping algorithm, therefore

when connecting to WiFi access points belonging to a club, the mobile devices will

exchange the latest copies of their receipts. The metric to determine contribu-

tion and consumption rate only considers bytes transferred, which as previously

mentioned may lack a realistic representation of cost to the user and more specif-

ically may not represent the quality of the connectivity provided. In [84], a sim-

ilar decentralized approach is presented in the context of autonomous networks.

However, as opposed to gossiping and spreading consumption and contribution

information, the authors propose a double auction algorithm, in which the mem-

bers of the network bid, to buy and sell their network resource. The authors

treat contribution and consumption as a Social Welfare Problem [96], the cost

is raised for more selfish hosts that only attempt to maximise their own utility,

while the reimbursement for a host that attempts to minimize the cost to itself is

lowered. This model is then shown to maximise the social welfare problem, for a

generalized network optimisation function, which changes depending on the type

of network, such as Ad-Hoc or overlay.

A more recent research effort [182], uses incentive and sharing as a means

59

for hosts in a mobile network to conserve energy. The purpose of this work is

to remove the complex economic models that we have previously discussed in

favor of providing a simplified yet efficient interface. The authors propose that

the economic models discussed can take a long time for currency of credit to

establish worth, and predicting the real world implications and impact of such

approaches is difficult. To circumvent these problems, when a host agrees to share

its bandwidth the authors propose immediate compensation, whenever a Mobile

Node successfully requests bandwidth, it will allocate a portion of its available

bandwidth to the provider. Power savings are achieved through the bandwidth

exchange process, as Mobile Nodes are shown to require a lower transmit power

to forward to other hosts that are nearby. Even more recently [181] and [166]

have promoted a centralized approach, relying on cloud services to support, au-

thenticate and manage the incentive scheme. Both incentive schemes rely on

the use of a virtual currency which allows users to effectively pay one another

for bandwidth. [166] differs by using a game theoretic model, which is used to

allocate the appropriate gateway for users in a mobile network, balancing QoS

with both power consumption and financial cost, whereas [181] focuses on the

reputation of the users to inform pricing decisions. Both of these new models

provide a user-centric approach, putting the devices that are able to collaborate

at the centre of the system. Alternatively in [64] [98], the authors propose an

operator-assisted user-provided network. In this model, users are encouraged to

share the operators network connectivity, in return for the operator providing

them with a proportional amount of free data. By putting the operator in charge

of both the benefit and cost aspect of sharing, a simpler model can be achieved,

that users may be more inclined to support. The key problem with this approach

is that it segments the users whom are able to share their connectivity, which can

in turn reduce the diversity and heterogeneity, of the sharing model.

3.2.3 Opportunistic Networks

The world of Opportunistic Networking has evolved from MANET and Delay-

Tolerant Networking, looking for novel approaches to efficiently support hosts

through the use of mobile networks. This is a wide field ranging from technical

network problems, such as the underlying infrastructure [22] [79], to application

considerations such as caching within the network [28] [73], and determining high

60

level interactions between users using social models [72]. Opportunistic network-

ing approaches need to solve three crucial problems as defined in [34]. Firstly,

intermittent connectivity, as users and devices are mobile, the contact between

hosts, and the lack of knowledge about location and direction and available con-

nectivity options, can make communication challenging. Secondly, delay tolerant

networking protocols must be leveraged and improved with novel caching and

content management approaches, as users in the opportunistic network attempt

to access remote resources. Finally the issue of heterogeneity, as devices, networks

and services can be incredibly fragmented and diverse between users, providing

appropriate mechanisms to abstract over or exploit the available diversity will

be imperative to the success of the opportunistic model. Therefore there are a

number of research challenges associated with opportunistic networks, presented

in [34]. This includes areas such as, information management, context awareness,

resource management, and economic and social cooperation. While the research

in this area does not necessarily focus on leveraging and maximising the available

external connectivity, the work is typically looking to solve similar problems as

presented in Chapter 1. Such that, the ability to provide and benefit from a

diverse set of connectivity options is an implicit part of the research area.

One of the key approaches proposed in recent years in this field, is the model

of offloading from the congested cellular network onto an opportunistic network,

which may have routes to cheaper connectivity options, or be able to provide

the required content from a local cache. In a number of works, research has fo-

cused on how mobile networks can be created from online social networks, termed

MoSoNets in [71]. By introducing the social paradigm into the mobile network

space, incentive issues can be mitigated and shared interest can be exploited,

under the assumption that social links can help to predict attraction to similar

content.

In [27], the aim is to reduce the load on the cellular link. This can be achieved

by disseminating shared content throughout a network or coordinating access to

WiFi or Femto cells that may be a number of hops away. With the availability of

additional heterogeneous links, it is possible to not only allocate links based on the

application requirements but also based on the cost. This could relate to the users

financial or power requirements for the device, in [179] mobile data is offloaded

to a WiFi network in order to reduce the power consumption of the users device.

In addition to user requirements, cellular networks are becoming increasingly

61

overloaded due to the significant growth of cloud services and multimedia on

demand, making offloading even more vital. MADServer presented in [130] uses a

Delay Tolerant Network (DTN) based architecture, which enables web content to

be offloaded to opportunistic networks helping to alleviate congestion for cellular

providers.

Context is of significant importance in an Opportunistic Network, and in [17],

the authors propose three principal contexts. User context, service context and

device context. In the user context, both personal and social information is of

importance; for example, personal information includes, the users schedule, home

address and work address, while social information presents links between users

and places. Service context is based on the type of application that a user is

currently running or is interested in, such as the available set of users or hosts

whom can participate in the service. Finally, the device contexts are considered

to be characteristics of the physical hardware, such as the available connectivity

and battery capacity. All of these diverse contexts can be used to provide an

opportunistic network with sufficient information to make optimal forwarding

and data retrieval decisions. For example, the location and velocity of a set

of users could be combined with available bandwidth, to determine if there is

sufficient time to forward or share a piece of content.

3.3 Network Resource Management

The resource management domain encompasses a broad range of research. Since

the emergence of multihoming in mobile devices, areas pertaining to the effective

use of the additional network resource have become more prominent. In this

section we will review the various approaches to the management of network

resource in multihomed mobile devices.

3.3.1 Always Best Connected

The Always Best Connected (ABC) model for connectivity was one of the earliest

concepts for management of multihoming in a mobile context. In [68], the authors

present the concept of the ABC architecture and the associated challenges from

both a user and business perspective. The base premise of ABC is based on

exploiting diversity in access technologies and access providers to ensure that the

62

user is always connected to the optimal network.

The authors of [68] present a set of components that are required to sup-

port ABC, including: access discovery, access selection, AAA support, mobility

management, profile handling, and content adaptation. While the definition of

the components remains abstract the proposal and design is well grounded in

addressing the challenges of the mobile domain and is of significant value. Access

discovery requires a host to discover the available access networks, periodically

updating this information to ensure there are no better alternatives. During

the discovery stage, the authors propose that the available access networks pro-

vide the host with a set of parameters describing the quality and nature of the

access network. Access selection presents both host based and network based

approaches. The host based selection model, would allow the host to draw from

user preferences to make a selection decision. A network based approach would

take a broader, possibly centralised view; with a network service specifying the

best access network for a host to use, which could help to alleviate congestion,

by balancing users across different access networks. AAA support, is required to

ensure both users and providers are protected, this is of significant importance if

connecting via another user or roaming on an unknown network. Mobility man-

agement becomes even more important for mobile devices in the presence of ABC,

as users may regularly switch between points of attachment as the state of net-

work access changes, without appropriate mobility protocols, this would disrupt

the users connections and degrade the quality of service; appropriate mobility

models have been discussed in Appendix A. Profile management is presented in

the context of an ABC provider hosting a users preferences, such that access net-

works are always aware of the users needs and requirements. Finally, the content

adaptation component specifies that applications should be able to adapt to the

current conditions. The adaptation may take form by providing applications with

hooks into the ABC model; for example, a video may change the desired bitrate

based on the current state of connectivity.

The work presented by Song et al. in [159] proposes a scheme to ensure users

receive the best possible QoS at any given time. To this end, their solution is

comprised of two components, they first evaluate the criteria and weightings of

the QoS metrics, secondly the authors use grey relational analysis to rank the

choices. This process attempts to balance the quality of the network against user

preferences while also limiting frequent handoffs. Determining the most appropri-

63

ate network at any given time is a non trivial problem. As previously mentioned,

the authors propose balancing network metrics with user preferences, which re-

sults in a multi-parameter or multi-objective optimisation problem. Therefore

the use of well established mathematical models in such a scenario can help to

simplify the problem domain.

Wilson et al. presented an alternative approach to optimise wireless access

in [172]. Due to the complexity and uncertainty associated with choosing the

best network, the authors propose the use of fuzzy logic to infer the optimal

access network. This is justified in part, due to the subjective nature of po-

tential QoS parameters; for example, users may be able to specify criteria such

as “low latency” or “low cost”, which makes the definition of an appropriate

multi-parameter model very difficult. The use of fuzzy logic allows the authors to

account for this ambiguity in requirements. As discussed by the authors, the core

problem with this approach for network selection is that it requires a simple rule

base, that must be built in advance. The addition of alternative QoS parameters

may become challenging and overly complex, to counter these limitations the au-

thors propose the use of learning algorithms, with the ultimate goal of matching

the users behaviour.

3.3.2 Policy Based Network Management

In the realm of ABC, the authors typically discuss the use of “user profiles” or

prior configuration on the end-host. Leveraging user policy to describe the ap-

proach to connectivity can help to minimise overly complex selection algorithms.

A current example of such a tool is the Tasker [51] automation application for

Android. Tasker simplifies the ABC model, by requiring the user to specify their

network connectivity options based on a set of events and actions. For example,

Tasker may react to battery capacity dropping and subsequently turn off the

WiFi or Cellular interfaces. While Tasker is not built as a dedicated network

management application, the ability to turn network interfaces on and off based

on pre-defined events improves the basic connectivity model for mobile devices.

In addition to simple applications, policy based network management has been

a significant research problem in the core of networking, relating to service layer

agreements, traffic management and ensuring QoS. Typically the policy based

solutions focus on the core of the Internet and are of limited use at the edge,

64

leaving the end-host to make decisions for itself.

The user profiles specified in the ABC domain are typically simple; for exam-

ple, prioritising access to one network over another. In [116], the authors propose

putting the user and their associated context at the centre of the selection prob-

lem. To this end, the authors define a set of rules that can be used to limit

energy consumption, for example, if their are no on-going communications turn

off non-cellular interfaces, unless a user manually intervenes. By putting the users

requirements at the core of the system, the multi-parameter optimisation prob-

lem can be addressed by a simple additive weighting model [1]. Additionally, the

contexts the authors propose can increase the granularity of policy definition and

improve network selection beyond looking at QoS. This is especially beneficial for

applications that can adapt to the available bandwidth or network quality.

3.3.3 Path selection

The work presented in the ABC domain, has typically focused on the use of a

single interface at a time. In the previous chapter, we introduced a range of

resource pooling protocols that break this model, and rely on the simultaneous

use of multiple network interfaces to maximise performance. To this end, path

selection algorithms may provide a more fine grained approach to ABC. The

general scope of the path selection problem is similar to ABC, as there is still a

multi-parameter problem to solve, to define the best path.

In [93], the authors propose using active network measurements to help inform

the path selection decision, sending probe traffic to gauge the RTT and the bot-

tleneck bandwidth. This work focuses on addressing multihoming issues within

SCTP, therefore each connection has a primary path and a set of backup paths.

Given the set of paths and the associated metrics gathered by the probe traffic,

the authors propose a simple set of rules to determine the most appropriate path.

The rules comprise of a set of “if-statements”, looking to determine which net-

work path has the higher bandwidth, if both paths have sufficient bandwidth the

round trip times are compared. As the solution is bandwidth driven, there is a

possibility for a high rate of churn, as multiple SCTP connections may attempt

to converge on the same path.

In [61], the focus is again on the multihoming properties associated with

SCTP. The authors propose Wireless SCTP Extension (WiSE) to improve the

65

efficiency of an SCTP connection, by ensuring the best possible path is always

used. Three extensions to SCTP are presented, focusing on: congestion control,

path management, and bandwidth estimation. Firstly the authors attempt to

distinguish between losses due to congestion on the path and losses due to bad

channel conditions. This is achieved by comparing the current output rate of

the connection to the last known estimation of bandwidth. If the output rate

is higher, the authors assume the loss is due to congestion, while if it is lower

the physical channel is held responsible. The path management approach is very

simple, purely focusing on the bandwidth of each path. If an alternative path has

a higher bandwidth than the current path, a switch will occur, resulting in the

alternative path becoming the new primary path. Finally to estimate bandwidth

the authors use both active and passive measurements, adding additional com-

plexity in comparison to [93]. The primary path uses passive measurements due

to the assumption that there will be guaranteed traffic, this simply compares the

amount of data confirmed by the SACK and the RTT, to estimate bandwidth.

As no traffic is sent on the backup paths, active network measurements are used,

relying on sending a train of packet pairs as proposed in [76].

The work presented in [91] takes a QoS based approach to network selection

closer to that presented in the ABC domain. The authors simplify the QoS opti-

misation problem by selecting a minimal set of parameters, including: monetary

cost, area of coverage, required bandwidth, and the number of network interfaces

to be connected. Furthermore, it is proposed that users be split into three cate-

gories: bronze, silver, and gold. Bronze users prioritize cost over QoS. Silver users

desire a fair trade off between QoS and cost. While gold users demand the best

QoS regardless of the cost. The authors then propose using an analytic hierarchy

process to provide weightings for each QoS category for each user. Subsequently

each path is provided an overall utility value based on the weight of criteria. The

Euclidean distance is then used to determine which path is closest to the optimal

values. The presented QoS metrics may not be sufficient in all cases to describe

a users needs. As the authors focus on bandwidth and cost, important quality

metrics such as loss, and delay are ignored. In the case of voice applications

and other real time applications, high bandwidth is much less important than

stability and delay. While there may be a clear relationship between loss, delay,

and bandwidth; this can easily be broken for a number of reasons, such as access

points and providers placing bandwidth limits on individual hosts.

66

3.4 Requirements

In this section we will reflect on the previously discussed work, and subsequently

derive a set of requirements that are imperative for cooperative resource pooling

to succeed in a mobile network. Essentially, all of the work discussed so far is

limited in terms of resource pooling, despite the Internet connectivity that is

made available. For instance, in [166] the authors proposed the use of Open

vSwitch, masking multihoming from the network and transport layer. While

this simplifies the required routing and puts the power in the hands of SDN,

it limits the potential of bandwidth aggregation schemes that were discussed in

the previous chapter; as protocols such as MPTCP typically rely on the network

addresses being made available to the system.Therefore actively hiding or masking

the multihomed properties from the network, transport or application layers could

have a detrimental effect on both the hosts, and the networks ability to efficiently

balance traffic and allocate flows.

In [166], the authors over simplify the mobility problem, only requiring the

use of a VPN to tunnel traffic, which may lead to potential architectural issues.

In a multi-hop environment, tunneling may become nested, taking a “ping-pong”

routing approach when accessing the Internet. These issues may be exacerbated

by increasing the complexity of the mobile network. The problem of nested

tunneling has been of interest within the MANEMO community [110] and has

resulted in complex signalling between home agents. To counter theses issues,

we intend to use MPTCP to support mobility (with potential to support other

transport or application layer mobility protocols). Therefore, network or link

layer tunnels should only be used to provide additional security, and precautions

should be taken when configuring routing rules to ensure nesting does not occur.

The existing work has shown that mobile networks and multihoming covers a

diverse range of technologies, the majority of which are not compatible, requir-

ing extensions or modifications to the current protocols to cooperate and work

in harmony. To this end, we believe that the proposed solution should not be

limited by technological boundaries; instead, an independent approach, running

above the network layer would enable different link and network layer technolo-

gies to share connectivity seamlessly, bridging the gaps in what is typically a

vastly heterogeneous environment. For example, if a user carrying multiple de-

67

vices, supported by a Personal Area Network (PAN) connects to an access point

provided by a mesh backbone, the transition between the two networks can lead

to multihomed connectivity being lost. By introducing the connectivity shar-

ing at a higher layer, the complexities of proactive, reactive and hybrid routing

protocols can be avoided when enabling intra-network communication. Despite

this, an appropriate gateway discovery and selection scheme will still need to be

designed and implemented. As the proposed solution will not be integrated with

any current routing protocols, our design remains open and flexible beyond the

work presented thus far in Section 3.1. Additionally, we do not intend to focus

on a specific application domain as proposed in [94] or [162], we envisage any

application being able to take advantage of cooperative resource pooling.

The role of incentive in a mobile network is a powerful concept and is imper-

ative to the future success of cooperative networking. In the previous work [181]

[166], there has been significant interest in this area modeling demand and sharing

capabilities in a number of different ways. To this end, we do not envisage that

incentive is an appropriate avenue of research, and instead current solutions to

promote sharing should be implementable in the proposed cooperative resource

pooling solution.

3.4.1 Terminology

For the remainder of this thesis, we will use specific terminology to provide a

consistent and comprehensible syntax when discussing the different aspects of

mobile networks and the associated connectivity, which are detailed below and

depicted in Fig. 3.1 on the next page.

External Connectivity – In this thesis, the term external connectivity is used

to represent a network interface that provides access to a remote IP capable

host. This could include hosts that are connected to the Internet, or simply

provide access to infrastructure that is not a part of the mobile network. With

regards to a single host in a mobile network, there are two types of external

connectivity that may be used, direct external connectivity and indirect

external connectivity , these types of external connectivity are not mutually

exclusive. For example, external connectivity may be used both directly and

indirectly, simultaneously.

68

Internet

Ad-Hoc Network

Infrastructure Network
Cellular Base Station

Direct
External

Connectivity

Internal
Connectivity

Indirect External
Connectivity

Hybrid Mobile Network

Network Resource

Figure 3.1: Example of a multihomed mobile network, with associated terminol-
ogy.

69

Direct External Connectivity – A network interface that is physically at-

tached to the host, providing external connectivity.

Indirect External Connectivity – A network interface physically attached to

another host in the mobile network, that may be one or more hops away. Provides

external connectivity to other hosts within the mobile network.

Network Resource – A network resource is a network interface that can be used

to provide a host with a service. This could include, direct or indirect external

connectivity, or alternatively internal connectivity that provides access to another

host or service.

Hybrid Mobile Network – We consider a hybrid mobile network, to be a

mobile network that consists of any combination of physical, link and network

layer technologies. For example, a single host may support both ad-hoc and

infrastructure WiFi access using multiple WLAN network interfaces, attaching to

two distinct subnets. This host is then able to route between both the ad-hoc and

the infrastructure networks, when necessary. Furthermore, the connecting host

could interconnect using a diverse range of technologies, such as WiFi, Ethernet,

Bluetooth or USB. There is no requirement for the connecting host to be a

gateway, and may simply act as a relay between the two subnets. Finally, there

may be one or more hosts connecting multiple subnets together, forming a single

mobile network from a diverse range of mobile technologies.

3.4.2 System Requirements

This section contains the functional and quality requirements of the system, pro-

viding a detailed description of the specific features. The system is made up of

two key components; a network protocol allowing hosts to announce and share

connectivity, and a resource management system, allowing the available network

resource to be managed and utilised based on the user, device and network con-

text.

3.4.2.1 Multipath Advertisement Protocol

To achieve cooperative resource pooling, a network protocol is required that will

advertise and share the available network resource, enabling multipath commu-

70

nications to be leveraged by each of the hosts in the network. This is defined as

a network layer protocol, as we require a formal definition of the nature and type

of external connectivity that is made available, such that it can be understood

and processed by any compatible host.

Resource Monitoring – The underlying functionality requirement of the coop-

erative resource pooling approach is the ability to monitor changes in the hosts

available network interfaces. Whenever a change in local connectivity is detected,

this needs to be reflected in the applications current state. Furthermore, the dif-

ferent types of connectivity must be considered; for example, it is necessary for

the software to distinguish between Internet connectivity and local connectivity.

Finally the monitoring process should be dependent on a configuration file, en-

abling the user to include or exclude specific network resources in the network

protocols scope.

Advertisement – Given the available network resource can be monitored effi-

ciently, this information should be reflected by the network protocols advertise-

ments, when new connectivity is established, or old connectivity is removed, the

protocol should advertise this to other connected hosts. Furthermore, when an

advertisement is received, the hosts are required to interpret and appropriately

install the changes in connectivity information in to the applications state. As

with the resource monitoring, the network resource that should accept or share

network advertisements should be configurable, allowing users to only share or

accept connectivity over specific interfaces.

Configuration – As the application is provided with local connectivity via re-

source monitoring and indirect connectivity via the advertisement process, the

system will be required to configure the host accordingly, ensuring each connec-

tion is usable. Therefore, the available network connectivity whether direct or

indirect, can be used seamlessly. Additionally, the network and routing configu-

ration that is installed into the host, should be directly usable by any multihomed

capable application or protocol.

71

3.4.2.2 User Policy Framework

The system shall be able to intelligently allocate and optimize the available net-

work resource. This should not only optimize network performance but the QoS

or QoE for the user, based on the current context. In this case, context may refer

to the set of connectivity options, battery life, active applications, location, or

any other variable relating to the state of the device or the user.

Context Framework – The context framework will form the basis of the re-

source management software. The core framework will not directly support any

specific and implemented contexts, but will instead provide an interface such that

any desired context can be plugged into the framework, in a modular fashion. The

contexts to be considered, are network context and device context; examples of

these could include: location, battery capacity, active applications, or network

metrics. Due to the nature of the different types of context and how they should

be handled, the design of the specific contexts will be split into two components

within the framework. The contexts will require configuring, allowing the frame-

work to monitor and address designated changes in context. These contexts

should trigger actions or events when they meet or exceed pre-defined values.

The action or event should then modify the hosts connectivity or application

behaviour, depending on the users policy.

Policy Routing – Continuing from the configuration of the network protocol,

the resource management software should be able to extend the routing rules us-

ing policy, to determine how specific applications or flows are routed. The policy

routing will need to be informed by the previously discussed context framework to

determine the appropriate policies to install. To this end, if the network protocol

is active, the policy routing will need to query for how access to indirect connec-

tivity should be routed. Furthermore, policies should be flexible, considering the

type of traffic they are supporting; for example, applications or protocols may

support soft handover, and thus may benefit from being migrated from one path

to another. While other applications may suffer from such a process, the policy

manager should, in this case, only change the path that new flows take.

Path Selection – The intention of the path selection algorithm is to allocate

72

individual applications or flows to the most appropriate path, as opposed to mak-

ing coarse decisions based on load balancing, resource pooling or availability. To

this end, the path selection algorithm should be aware of two key sets of metrics,

the applications required performance and the current performance metrics of

the available network interface. In keeping with the framework design, the path

selection module should be pluggable at run time, and ultimately allow different

path selection approaches to be used for different applications, services, or users.

3.4.3 Research Context and Methodology

In the previous section, the focus was on the objectives and requirements of the

proposed system. For the remainder of this chapter, we will describe the method-

ology of the work, detailing how it will be carried out and more importantly, prove

the proposed concept of cooperative resource pooling.

In [46], the authors propose three distinct paradigms for the field of computer

science. The rationalist paradigm presents computer science as a branch of

mathematics, treating programs as mathematical objects, in which a priori knowl-

edge is valued. The technocratic paradigm treats computer science as an

engineering discipline, in which a posteriori knowledge is sought after. Finally,

the authors propose the scientific paradigm , which presents computer science

as an empirical or natural science, in which both a priori and posteriori knowl-

edge are combined. Different paradigms may be increasingly valuable in different

contexts; for example, the theoretical proof of coupled congestion control in [97]

benefits from the rationalist paradigm, while the real world impact of MPTCP

implementations as proposed in [124] is better proven through the technocratic

paradigm. Due to the practical and pragmatic nature of this thesis, the techno-

cratic paradigm will be employed, by designing and implementing a system to be

evaluated, in both simulation and real world environments.

Combining both simulation and real world measurements increases the va-

lidity of the proposed system. The simulation approach to evaluation provides

deterministic results, ensuring repeatability and the ability to tune variables in

a controlled environment to understand how the system will react. Subsequently

extending the evaluation and repeating in the real world improves the external

validity of the experiments and can further justify the benefits and need for the

proposed system. To further support our solution, the design and reliance on

73

protocols, should remain agnostic of the underlying hardware or software, pro-

viding generic guidance on how to achieve the intended benefits of the Multipath

Advertisement Protocol and the User Policy Framework.

3.5 Summary

In this chapter we have presented a broad range of related concepts, from Mobile

Ad-Hoc Networking to the opportunistic domain, and the ABC model. Taking

these fields into account, we presented an overview of the proposed system and

provided a detailed set of requirements that must be accounted for during the

design and implementation stages. These requirements look to address problems

identified in the mobile network domain by introducing resource pooling concepts,

allowing network resource to be advertised and shared. Furthermore, we propose

a flexible and extensible resource management framework, which adapts to both

the users and the applications requirements in an effort to improve the QoS and

QoE.

74

CHAPTER 4

Design

This chapter presents the proposed design to enable efficient co-operative resource

pooling throughout a mobile network, by disseminating the available external

connectivity to all interested hosts. In the previous chapter, the need for a host

centric approach to aggregating network resource was justified, discussing the

limitations of current cooperative networking solutions. To this end, the Mul-

tipath Advertisement Protocol (MAP) has been proposed to enable hosts in a

mobile network to take advantage of resource pooling technologies, to share and

to aggregate network resource no matter where it resides. The chapter initially

focuses on how to enable hosts to share and access direct and indirect network

resource. Following on from this, specific design decisions are presented, enabling

the support of complex network topologies. Finally, the User Policy Framework

is introduced, based on the device and network contexts, breaking the typical

resource pooling model that has been presented thus far. The aim of the User

Policy Framework is to improve the QoS and QoE for the applications and users,

which is achieved through fine grained resource management and path selection.

This chapter draws heavily on previous peer reviewed work in [176], [177].

4.1 Overview

The aim of the MAP design is to allow the hosts in an already established mo-

bile network to gain a complete topological view of the network resource that is

available to them, and furthermore, make the network resource routable, which

is not possible using current MANET or cooperative Internet access technolo-

gies. During the MAP configuration, the hosts in the network will advertise and

75

Mobile Host

MAP
Daemon

Policy
Framework

Device
Contexts

Path
Selection

Network
Metrics

WLAN Phy Cellular Phy Bluetooth Phy

Routing
Subsystem

Figure 4.1: Design overview for a single host combining the MAP and the User
Policy Framework.

disseminate the available Internet connectivity over the connected network inter-

faces. This process is similar to that of DHCP providing a host with a default

route, however it is adapted to support multiple gateways that are distributed

throughout the network, and additionally handle frequent changes in connectiv-

ity. The MAP process is further augmented with a User Policy Framework, which

takes the routing information that has been obtained through resource sharing,

and subsequently allocates a set of pre-defined applications to the most appro-

priate network resource in the mobile network. Furthermore, the User Policy

Framework supports an adaptable policy mechanism which draws on the context

of the device and the users preferences to intelligently control how the available

network resource is used. The overview of the system components and the inter-

action with the hosts network and routing information is presented in Fig. 4.1.

4.1.1 System Example

In this section, the proposed system will be demonstrated end to end, this is

presented through Fig. 4.3 and Fig. 4.4. In Fig. 4.3a we present the base network,

76

Ad-Hoc Link

Infrastructure Link External Connectivity

Figure 4.2: An example topology for a MAP enabled mobile network.

consisting of two hosts that wish to share their Internet connectivity. When the

network connection is established, the MAP software residing on each host will

make a request for the available connectivity in the form of a MAP request, as

shown in Fig. 4.3b. When a host receives a request for connectivity, it will respond

by transmitting the set of known external network connectivity, referred to as a

MAP update demonstrated in Fig. 4.3c. In this case, this is a WAN and PPP

connection for host H1, and a single PPP connection for host H2, along with the

routing information to push packets from one hosts egress interface to another.

Once the MAP updates have been received the routing and rules required to build

the overlay are installed in each host as shown in Fig. 4.3d, this process effectively

builds paths through to remote external connectivity, allowing it to be treated

and allocated as direct Internet connectivity.

Once the routes have been established by the host, all the available connec-

tivity in the network is free to be used. The User Policy Framework will first

measure the quality of the available network connectivity, using active or passive

measurements as shown in Fig. 4.4a. If the application is TCP based and can

benefit from multipath communications, the default routing information created

by the MAP process can allow an application to aggregate all of the available

77

w
la
n

w
an

H
1

w
la
n

p
p
p

H
2

pp
p

(a
)

w
la
n

w
an

H
1

w
la
n

p
p
p

H
2

pp
p

M
A
P

R
e
q
u
e
st

M
A
P

R
e
q
u
e
st

(b
)

w
la

n

w
an

H
1

w
la

n

p
p

p

H
2

pp
p

W
A

N
 v

ia
 W

LA
N

P
P

P
 v

ia
 W

LA
N

P
P

P
 v

ia
 W

LA
N

M
A

P
U

p
d

at
e

M
A

P
U

p
d

at
e

(c
)

w
la
n

w
la
n

w
an

vi
rt
0

vi
rt
2

vi
rt
1

vi
rt
1

vi
rt
2

vi
rt
0

p
p
p

pp
p

(d
)

F
ig

u
re

4.
3:

W
or

ke
d

ex
am

p
le

of
M

A
P

an
d

th
e

U
se

r
P

ol
ic

y
F

ra
m

ew
or

k

78

connectivity as shown in Fig. 4.4b. The aggregation approach chosen may in-

clude any of those presented in Chapter 2, such as MPTCP. Alternatively the

measurement process carried out by the User Policy Framework allows the host

to allocate specific applications to specific paths in the network, by creating and

enforcing additional routing rules as shown in Fig. 4.4c. The User Policy Frame-

work may also adapt the allocated connections based on the context of the device

or network, as shown in Fig. 4.4c, an alternative path may be chosen based on

changes in signal strength or battery capacity.

4.2 Multipath Advertisement Protocol

In order to provide a dynamic and flexible system, encompassing a wide variety

of network topologies, it is important for the proposed solution to sit above any

existing network configuration and routing protocols. The inter-connection of in-

frastructure and Ad-Hoc in complex mobile network topologies is common place.

Therefore, limiting the proposed protocol to function within these arbitrary net-

work boundaries may not lead to the most efficient usage of the available network

connectivity. An example of a complex hybrid network is presented in Fig. 4.2

on page 77.

The proposed system relies on a host-centric information dissemination ap-

proach. Ensuring that each of the hosts in the network has as much knowledge

as possible regarding the current context of the available Internet access. The

context of the network has been determined to be a composition of the available

resource, the associated metrics, current applications and inter-host mobility. As

complex network topologies are to be supported, the proposed system needs to

span a variety of different environments, formed from any combination of ad-hoc

or infrastructure networks. This helps to justify the need for an independent

protocol to disseminate the information throughout the network, as opposed to

adapting current host configuration protocols, such as DHCP as proposed in [173].

When a link is brought up on a device, which may be due to mobility, pre-defined

policies or user interaction, the information should be actively pushed into the

network, notifying all other hosts of the newly available resource. Subsequently

applications may decide to use the new link, if it is better suited to their require-

ments. Due to the vast increase in demand for data, it is also important that the

79

w
la

n
w

la
n

w
an

vi
rt

0
vi

rt
2

vi
rt

1
vi

rt
1

vi
rt

2
vi

rt
0

p
p

p
pp

p

7
 M

b
ps

 /
 9

0
m

s

1
 M

b
ps

 /
 3

00
 m

2
 M

b
p

s
/

7
0

 m
s U

PF

(e
)

w
la

n
w

la
n

w
an

vi
rt

0
vi

rt
2

vi
rt

1
vi

rt
1

vi
rt

2
vi

rt
0

p
p

p
pp

p

TC
P

A
p

p

(f
)

w
la
n

w
la
n

w
an

vi
rt
0

vi
rt
2

vi
rt
1

vi
rt
1

vi
rt
2

vi
rt
0

p
p
p

pp
p

U
D
P

A
p
p

(g
)

w
la
n

w
la
n

w
an

vi
rt
0

vi
rt
2

vi
rt
1

vi
rt
1

vi
rt
2

vi
rt
0

p
p
p

pp
p

P
o
lic
y

C
h
a
n
ge

(h
)

F
ig

u
re

4.
4:

W
or

ke
d

ex
am

p
le

of
M

A
P

an
d

th
e

U
se

r
P

ol
ic

y
F

ra
m

ew
or

k

80

Tim
e

Client Gateway

Figure 4.5: Message Exchange for the MAP.

proposed system supports the use of multipath protocols to enable the aggrega-

tion of the available network resource, which can help to facilitate high bandwidth

applications, such as viewing high definition content and quickly accessing files

from cloud storage providers.

4.2.1 Operation

The MAP is a connectionless network protocol, running above the transport

layer. It employs UDP to advertise known Internet connectivity information to

all hosts on the link. There are three key phases in the operation of the MAP,

which are shown in Fig. 4.5. The three phases consist of requests, responses and

updates. The process initiates with a client making a request for MAP updates

on to each of the available network interfaces, the initial request packet can either

be transmitted using broadcast or multicast.

The MAP initialisation takes place after the configuration of the network

interface, if a host is given the IP address 192.168.1.10/24, in the case of broadcast

the MAP request will be sent to 192.168.1.255/24. Responses to request packets

and the continuous updates may be unicast, multicast or broadcast. Requests

and continuous updates may be re-transmitted periodically depending on the

reliability of the network. In the response and update messages, the protocol will

provide routing information that will allow the host to create and establish its own

routes. By allocating and installing the overlay routes after the initial addressing

protocol has performed its role, we can allow hosts within the network to continue

81

0 4 8 12 16 20 24 28

Version Type Entries Family

0 0 0 AF INET

Figure 4.6: Representation of a MAP request packet in an IPv4 environment.

0 4 8 12 16 20 24 28

Version Type Entries Family

Entry 1

Entry 2

...

Entry N

Figure 4.7: Representation of a MAP packet in an IPv4 environment.

0 4 8 12 16 20 24 28

Depth Link Metric

Default Gateway

Subnet Mask

External ID

Figure 4.8: Representation of a network resource entry in the MAP, for IPv4.

communication as normal, while still allowing them to access additional remote

resource seamlessly.

4.2.1.1 Header

The header of the base MAP packet is shown in Fig. 4.6. In total the header is

four bytes long, containing four, one byte fields, that describe the protocol and

the specific packet as follows:

82

Version – This field specifies the implementation version of the MAP in use,

this is set to 0 for the reference implementation presented in this thesis.

Type – The type field specifies the kind of MAP packet, affecting how it should

be processed. Type 0, specifies a request packet, while 1, 2 and 3 are used for

update information. A value of 1, represents a full list of available interfaces,

while 2 and 3 represents whether the entries listed should be added or removed

respectively.

Entries – The entries field stores the number of network resources that are to

be advertised or removed in this update. The field is unsigned and one byte in

length, allowing for a total of 255 entries to be advertised in a mobile network.

Family – This specifies the address family for the contents of the packet,

AF INET for IPv4, or AF INET6 for IPv6. An update can contain either

IPv4 or IPv6 information, a mixture of the two is not permitted.

4.2.1.2 Requests

A MAP request packet indicates that there is a new MAP capable host in the

networks subnet, all hosts in the broadcast domain that receive the packet will

respond accordingly, as shown in Fig. 4.5 on page 81. The request packet only

contains the MAP header (shown in Fig. 4.6 on the previous page), as no route

information is necessary at this point in the capability exchange. If no response

is received the request is periodically re-transmitted, the time between requests

and the maximum number of requests is implementation dependent.

4.2.1.3 Updates

The packet shown in Fig. 4.7 on the previous page is made up of two major

components, the header describing the contents of the packet, and the list of

entries which detail how to create or update the hosts virtual interfaces. The

entry defined in Fig. 4.8 on the previous page is as follows:

Depth – The depth field, represents the hop count between the host receiving

the update and the host in possession of the remote network resource. If a remote

network resource is a large number of hops away, the host may decide not to use it.

This field can also be populated with alternative metrics that describe the quality

83

of the path between the host and the remote resource, which is to be specified

by the implementation, alternative metrics could include signal strength, packet

loss, bandwidth estimations, or queue sizes.

Link – The link value describes the physical medium in use to access Internet

connectivity, to be more descriptive of the link type, this is split into two nibbles.

The upper nibble describes the link type, while the lower nibble represents the

category within the link type. For example, the link type may be Cellular, while

the category could represent UMTS or HSPA.

Metric – The metric field describes the priority at the originating host. When the

user or operating system initially configures the multihomed properties within the

system, a metric value is assigned to each available Internet connection; the lower

the metric value, the higher the priority of the link. For example, considering a

multihomed laptop with access to Ethernet, WLAN, and Cellular, they could be

assigned metric 1, 10 and 20 respectively, based on the quality of the backhaul.

This metric value can be used to make simple decisions, determining how much

traffic should be pushed over each link.

Default Gateway – The Default Gateway field specifies the IP address that

the host should use to send its packets to, in order to reach the correct indirect

network resource. For example, the Default Gateway provided may be 172.16.1.1,

the recipient host will know it can then attempt to reach the Internet via this IP

address.

Subnet Mask – The subnet mask is combined with the default gateway field to

create the subnet that should be used by the receiving host. For example, given

the 172.16.1.1 default gateway and a subnet mask of 255.255.255.0, the host will

take its own primary identifier for the link (32 for example) and create the overlay

address 172.16.1.32. This IP address is then used as the source for any packets

that are transmitted and the destination for any packets that are received.

External ID – This represents a unique identifier for the network resource that

is known globally throughout the mobile network. The core use of this identifier

is to enable hosts to determine if two different network resources relate to the

84

L1

GW1 GW2

H1 H2

Figure 4.9: Two MAP enabled hosts connected via a single network connection.

same Internet connection, which is discussed in more detail in the loop avoidance

and link backup sections.

4.2.2 MAP Behaviour

Thus far, the protocol described is able to support a client-gateway model, in

which multihomed connectivity is disseminated downwards from a gateway to the

hosts within the network. In this section we will present a number of modifications

to the base protocol, which will be required in order to support more complex

network topologies, and subsequently, improve the reliability and dependability

of the network.

4.2.2.1 Loop Avoidance

The formation of loops in network topologies are a common occurrence, they

can be useful in providing redundancy but at other layers are also identified to

prevent packets from potentially looping infinitely. There are a number of feasible

approaches to loop avoidance, that could be used by the MAP however as the

overlay does not aim to enable host communication within the mobile network,

each host only posses the minimum amount of information required to access

the indirect external connectivity. Therefore no interior routing is made readily

available, on top of what is pre-configured by the network. It is assumed that

if the hosts are intended to communicate directly within the MAP domain, the

routes will already be available to them.

Local Link Negation

In Fig. 4.9, a network topology is presented which may allow the formation of

85

GW1 GW2

L1

L2
H1 H2

Figure 4.10: Two MAP enabled hosts connected via two network connections.

loops without explicit prevention measures being taken. In this case, both H1

and H2 have new Internet capable routes that they want to inform all other

hosts about. Without preventative behaviour being implemented, the default

would be for both H1 and H2 to push the new information back to each other,

repeating indefinitely. The purpose of negating the local links, is to make the

assumption that if a host receives an update on an interface, all other hosts

connected directly or indirectly to that interface already know about or will obtain

the information through another route. At the most basic level, this can be

enforced by remembering which interfaces Internet connections were discovered

on and then when it comes to pushing an update, the information is not relayed

back on to the originating interface. In addition to preventing a loops forming in

the network, by disallowing the replication of routing information back onto the

originating interface this has the added benefit of reducing network overhead.

External Link Identification

When considering more complex network topologies, simply preventing the trans-

mission of updates relating to the originating interface may not be sufficient to

prevent loops from forming in the network. Considering the simplified topology

shown in Fig. 4.10, each new link sent out over L1 from either H1 or H2 will be

resent over L2 or vice versa. The simplest and most effective way to solve this

problem, is to provide an external identifier for each advertised network resource

as is shown in Fig. 4.8 on page 82. This field will allow the host to compare

a received network resource to those that are currently known, if the external

identifier matches a pre-existing network resource, it becomes apparent that this

represents a different path through the network to the same resource. Determin-

ing the appropriate external identifier is left as an implementation decision. The

86

only design specification provided is the ability to uniquely identify an external

network interface.

4.2.2.2 Stablility

If there is significant churn in the network, in which the available hosts or net-

work resources are changing rapidly, there may be a detrimental effect on the

hosts performance. For example, if a new network resource is announced and is

incorporated into an MPTCP connection or is allocated for use by an application,

the subsequent loss of the network resource, will lead to packet loss. In the case

of MPTCP, this will lead to packets being re-transmitted over alternative paths,

or in the case of a single path application, the connection will be broken and re-

established over an alternative path. In this case, stability of paths should also

be taken into account, to prevent paths with low availability from being used.

To support this scenario, links should not be allocated immediately, and should

instead wait for a pre-specified period of time before they are used. Alternatively

opportunistic networking techniques may be used, for example, a GPS coordinate

as well as direction of travel could be used when advertising network resource, to

estimate if hosts are going to be connected for an extended period of time.

4.2.2.3 Link Backup List

In addition to preventing loops forming when disseminating Internet connectivity

information, advertising the external link to be used has a secondary functionality.

Adding the External Identifier, a host may be able to establish multiple different

routes for the same egress interface, switching between them as internal links fail

or become congested. The process of creating a backup list of routes to the same

external interface could provide redundancy, reducing the handover time if the

mobile network topology changes quickly. Previous research in multipath inside

Ad-Hoc networks however has shown, that aggregating multiple TCP flows can

be detrimental if the hosts are highly mobile [178]. Therefore, while this may be

of future interest, it is not deemed necessary to further investigate the internal

impact of MPTCP on throughput, in such an ad-hoc environment.

87

4.2.2.4 Subnet Collision Detection

If two independent MAP enabled networks connect via any given access medium,

there is no approach available that is guaranteed to ensure there are no over-

lapping subnets, without an external entity regulating subnet provision. The

potential for this to happen is mitigated by translating the addresses at each hop

in the network, for this to be a problem, two directly connected hosts would have

to share the same IP subnet, this problem could occur with either IPv4 or IPv6.

The minimal behaviour specified by the MAP is for the hosts with the overlap-

ping subnets to ignore the new matching subnet, preventing the dissemination

of any potential Internet connections available on either side of the overlap. To

resolve this issue, we present Subnet Collision Detection, at the simplest level

this process requires one of the hosts with the overlapping subnet to choose a

new subnet, and disseminate the change. For this change to work, the designated

overlapping host must first query the directly connected hosts, to confirm that

the new subnet is not in direct conflict with one of their subnets, at this point the

designated host can push the new subnet back to the host it originally collided

with. The query would take the form of an update message with a different type

number than those presented so far, with the response again incrementing the

type dependent on the query being successful or not. A change of IP address will

undoubtedly have an impact on the active connections. This is effectively only

problematic for hosts which are required to actively change one of their overlay

IP addresses. For connections established by child nodes, i.e. nodes that do not

have to change their overlay addresses, the presence of NAT at each host, will

prevent their connection from breaking. For hosts changing a directly attached

overlay IP address, this will break their connection, and the assumption is for the

mobility protocol or application to handle the change. In the case of MPTCP,

the connection will persist, creating a new subflow for the new IP address with

the same connection identifier.

4.2.2.5 Accounting and Authentication

The proposed protocol provides a lightweight approach for hosts to share and use

additional network resource. With the current set of information this will work

well with users or hosts that are happy to share altruistically, which could match

well to Use Case Two and Use Case Three, as presented in the introduction. In

88

Use Case One, however, the users and hosts may not know each other, therefore

there is no pre-established or implicit trust between the devices in the mobile

network. To solve this problem, we draw on work defined in Chapter 3, the pro-

tocol header should be extended to include an additional authentication field,

created using asymmetric encryption. The authentication field should contain a

privately signed key in both the request and update packets, the public key pro-

vided by a third-party management server can then be used to validate the user

and subsequently provide accounting details to the server. The accounting inter-

face should then inform the management server with information regarding usage

levels. This will additionally provide the hosts and the MAP implementation to

support access control and incentive mechanisms as discussed in Chapter 3. If

both the provider and the client report different usage levels, this could be used

to influence a reputation score similar to that proposed in [181]. Alternatively,

to help enforce accurate accounting the SDN based approach proposed in [145],

which allows the controller to provide AAA services could be used.

4.2.2.6 Security

A significant problem with any cooperative Internet access scheme, is the abil-

ity for users to maintain confidentiality and anonymity during the transmission

of data. Any user that is relaying data for the end-host has the capacity to

capture packets, or attempt a man-in-the-middle attack in an effort to hijack a

users connections. While application layer and transport layer encryption such

as SSL/TLS or TCPCrypt may appropriately secure the contents of any commu-

nication, relaying hosts will still be able to determine who the clients are com-

municating with, which may be of significant importance to some users. While

a completely secure solution is considered to be out of scope for this thesis, it

is assumed that users that are concerned with such an Internet access approach,

would be able to securely tunnel their traffic to a trusted server in the Inter-

net, before relaying it to the destination. As the proposed MAP design suggests

the use of multiple network interfaces simultaneously, it would also be necessary

to maintain a tunnel for each of the network resources that the host wishes to

use, the configuration of which may prove to be challenging in such a dynamic

and adaptive environment, as open and proprietary VPN solutions typically do

not support multihoming to the degree that would be required. The associated

89

problems with maintaining and supporting multiple tunnels in this way are being

met by the Mobile IP community, as they attempt to adapt the protocol to the

multihomed domain.

4.2.2.7 MPTCP Integration

During the design and implementation of Multipath-TCP, the capacity sharing

context was not considered. In the mobile domain, the focus was purely on pro-

viding a multipath transport layer from the perspective of a single multihomed

host. Because of this, research to date has not investigated the impact that

increasingly large numbers of subflows has on the host, or the total network

utilisation. In [136], the maximum number considered was limited to eight; the

authors discuss memory optimisations and evaluate the impact that increasing

the number of subflows has on the host, in terms of CPU usage, memory con-

sumption and achieved throughput. The current release of MPTCP supports up

to a maximum of 32 subflows, due to the use of a 32 bit bitmask for subflow iden-

tification. While this may be more than sufficient for a single multihomed device,

it is obvious to see that in a MAP enabled mobile network, 32 subflows could

quickly be exhausted, especially in the case that the target server is multihomed.

For example, assuming the full mesh path manager, if a host in a MAP enabled

network establishes a TCP connection with a multihomed server; any more than

16 Internet connections in the MAP network would be redundant, limiting the

potential utilisation of the available resource. Use of the full mesh path manager

further exacerbates this issue, as the maximum number of subflows that can be

associated with a single local or remote address is limited to eight. During the

implementation of the complete MAP software and cooperative resource pooling

system, we will provide a lightweight approach to increase the number of subflows

that can be associated with a single connection.

4.2.3 Software Design

For the remainder of this section, we will present and discuss the proposed design

for the MAP software, an architectural layout for the required components is

presented in Fig. 4.11 on the next page. As the hosts view of the available

connectivity will need to update based on its own network interfaces, as well

as the Internet connectivity of other hosts in the network, there are two main

90

MAP Software

Network Interfaces Routing Subsystem

Network
Comms

Resource
Monitor

Topology Representation

Resource
API

Figure 4.11: Proposed architecture for the MAP system.

sources of updates. Local updates and network updates, to monitor both of

these processes will require a threaded or event driven model, allowing each to

be monitored simultaneously. The base application logic for the MAP design is

presented in Fig. 4.12 on the next page. This figure presents the two core paths

and events that provide the foundation for the MAP software.

4.2.3.1 Resource Monitor

The resource monitor is the core component for handling direct network resource,

that may or may not provide external connectivity. The resource monitor should

ideally register with the routing subsystem to receive callbacks when, link state,

network address, or route changes occur. If the state of the physical link changes,

then this needs to be reflected even if the network interface does not lose its IP

address, for example, an interface may be manually set to an “off” state by the

user, at which point the MAP process should stop advertising and attempting to

send packets via the network interface. The reverse is true if the network interface

is set to “up”. If an IP address is changed, added or removed, this will typically

indicate a mobility event. If the IP address is changed or added, this indicates

the host is attached to a new subnet and should send a MAP request; if enabled

the host should also advertise its own connectivity onto the new subnet. Finally

if a change in default route is identified, this infers that changes have occurred

in direct Internet connectivity, which should be reflected by triggering an update

packet to be sent onto the appropriate interfaces. The monitoring and update

91

Load MAP
Configuration

Fork

Handle
Resource Changes

Handle
MAP Messages

Signal Received Signal Received

Join

Exit Process Exit Process

Resource ChangeMessage Received

Preload Network
Interfaces

Figure 4.12: Application flow for the MAP software.

process that the resource monitor is required to perform is illustrated in Fig. 4.13

on the next page.

4.2.3.2 Network Interface

The network interface component is required to interact with other hosts in the

network. As local updates are processed, they must be passed on to the network

interface component, so they can be appropriately converted and serialized for

the network, and deserialized on reception. The flow of the network interface

component is presented in Fig. 4.14 on page 94, this activity diagram shows the

sequence for receiving both requests and updates from the network. When an

update is received, adding or removing Internet connectivity, the host must first

update its local representation of the network topology and reconfigure its routes

accordingly, subsequently, this new topology information must be re-broadcast

92

Wait on resource
change

Send
MAP Update

Send
MAP Request

Update local data.

Address AddedAddress Removed

<<iterative>>

Dissemination Interfaces

No Internet
Connectivity

Address Added

No Internet
Connectivity

Internet Connectivity

Address Removed

{Exit signal received.}

Figure 4.13: Application flow for the resource handling component of MAP.

to ensure all hosts in the network are updated. If a MAP request is received,

the network component simply serializes the current network data representation

and sends it back to the sending host.

4.2.3.3 Topology Representation

Internally within the software, it would be appropriate to maintain state regarding

the available network resources. This will include, but is not limited to, the

associated IP addresses and subnets, external identifiers, routing information, and

whether or not they are capable of accessing the Internet via the network resource.

This representation of the network topology will need to be updated by both the

received network updates and any changes that take place in local connectivity.

As we wish to treat all network resources as equal, it will be necessary to create

an abstraction that represents network resource as a whole, with realisations that

93

Wait on
network update

Send
MAP Response

<<iterative>>

Dissemination Interfaces

Received RequestReceived Update

Wait on
MAP Message

Update
local data

Send
MAP Update

{Exit signal received.}

Figure 4.14: Application flow for the network component of MAP.

match to either the direct or indirect network resource.

4.2.3.4 Enforcing Routing

It is important to acknowledge that misuse and appropriation of network resource

outside of the MAP advertisements definition is likely, whether malicious or ac-

cidental due to the mis-behaviour of applications. Therefore it will be beneficial

for each host in the mobile network, to drop or ignore erroneous traffic. To ensure

that a hosts network resource is not exploited, each relay should install firewall

rules that block access to a specific network, aside from via the pre-determined

route or subnet as detailed by the MAPs update packet. For example, if MAP

only advertises the Internet connection ppp0, on the subnet wlan0, packets from

wlan1 attempting to reach ppp0 should be dropped.

94

4.2.3.5 MAP API

Providing the host with a simple abstraction which describes the current state

of network resource that has been discovered by MAP, will allow applications

to benefit from the additional multiplicity and diversity; therefore creating more

flexible and resilient network software. At the most basic level, the MAP API

should be able to provide an interface which describes the available network re-

sources and the Internet connectivity they provide. Furthermore, the API should

provide a representation of how packets should be marked, tagged or addressed

in order to be routed properly by the host to reach the destination. While the

MAP software is not responsible for link quality information, each network re-

source should be updatable with a set of associated network metrics, this update

process should be locked to ensure multiple processes do not attempt to write to

the API during the same time period, as this could result in switching between

different measurement approaches. This API can therefore be used by any appli-

cation that wishes to support the use of multiple paths, without support from the

underlying network or transport layers. For example, an application may create

additional sockets, binding them to the network resource that is described by the

MAP API. This could reduce the complexity required to build multipath capable

applications as routing and interface management is already provided.

4.2.3.6 Configuration

Previously we have discussed the need for users to determine how their network

resources are used. Therefore, the MAP software will need to be configurable.

There are two key values that must be stored within the configuration, which

includes the interfaces the user wishes to advertise on (where should updates be

pushed), and the interfaces that shouldn’t be disseminated by the software. For

example, a host may not want to advertise the information for others to use their

expensive cellular link, while they are happy for Ethernet or WiFi to be used

openly.

4.3 User Policy Framework

So far in this chapter, we have focused on the base requirement for establishing a

protocol to enable cooperative resource pooling within the mobile network. Given

95

the protocol implementation presented thus far, all available network resource is

considered to be equal and shared fairly between the hosts in the network. The

aim for this section is to define and justify the need to break this open access

model for capacity sharing, and provide an appropriate design to achieve this

goal. To do this, we propose the use of a User Policy Framework, which allows

the user to specify how the available network connectivity is used, in addition to

increasing access to network resource through the MAP.

In an isolated environment a single entity or individual may be responsible

for all the available Internet access in a mobile network. One of the most pro-

lific realisations of this model, is the usage of smart phones or tablets as a WiFi

hotspot, providing Internet connectivity to the users other devices. This is one

of the simplest use cases for the MAP, and the base cooperative resource pooling

model is likely to provide sufficient support to meet the users needs. This model

becomes more complex when additional users are introduced, as bandwidth lim-

itations, power requirements and the economic cost of use may have a significant

impact on the users decision to share their connectivity with others. The human

factors associated with such sharing issues are considered to be out of scope for

this thesis, however appropriate models in prior research should be applicable

and implementable within the MAP, as discussed in Chapter 3 in [181] [166].

The purpose of the User Policy Framework is to provide fine grained control

over access to the available network resource, and optimally allocate applications

to the best available resource. The framework will be designed to be modular,

extensible and flexible, allowing alternative or additional policies to be integrated

easily. There are two key types of policy that we consider, context policies and

application policies. Context based policies describe a set of factors in which

a network resource may or may not be used, which are derived from the users

device requirements; for example, do they want to maximise battery life, minimise

cost, or aim for the highest possible QoE. Application policies dictate the optimal

QoS required from the network for a specific application. The application policy

and associated specification is used to assist in a path selection process, which

attempts to match each defined application to the most appropriate network

resource.

A partial taxonomy of different contexts is shown in Fig. 4.15 on the next

page. The initial breakdown between types of context, splits between device and

network context. A device context, represents measurable or quantifiable states

96

Context

DeviceNetwork

Short Term
- Throughput
- Delay / Jitter
- Loss
- Signal Strength

Long Term
- Allowance
- Cost

- Battery Life
- CPU Usage
- Signal Strength
- Availability
- Location
- User Application

Figure 4.15: Taxonomy of different types of context for a mobile device.

for the device, such as the remaining battery capacity or the current CPU usage.

The network context for a device, is split into two further categories, consisting

of short term and long term contexts. Long term contexts may have an impact

on the users decision to use specific network resource, such as the remaining

monthly allowance for a cellular network interface. Short term contexts however,

represent the current state of the available network resource, this includes the

path metrics, such as available throughput and delay. The short term context,

may also include lower layer measurements, such as signal strength. The decision

process associated with the device context and long term network contexts, affects

which network resources are available to be used, which will be referred to as the

availability context . The short term network context determines how the

available network resource will be used, referred to as quality context .

4.3.1 Context Policies

To provide a rich description of how a users network resource should be used we

specify context policies , allowing a user to establish precisely when a network

resource can be used. When we discuss context we take this to mean the state of

the device, the active applications and the available network connectivity. The

current state of mobile connectivity policies are purely based on availability and

are insufficient to fully describe the users needs. By specifying context policies

for defining access to the available network resource, a users control over such

decisions is improved. The criteria for managing these device policies, is based

97

on the current context of the device. By leveraging context, we can improve the

current connectivity model, with regards to a users expectations of how network

resource is accessed. Examples of contexts we can support include:

• Battery Capacity - Move traffic away from a cellular link when the devices

power is too low. Or choose to use all available connectivity when the

capacity is high to maximise the QoE.

• Location - Disable WiFi while on the move, re-enabling when arriving at

known locations with stable connectivity. Or prevent the establishment of

redundant short lived WiFi connections when moving at a high speed.

• Bandwidth Allowances - Limit traffic allocated to metered links after a

certain percentage has been used. Alternatively, force WiFi to reconnect to

an alternative access point when available and the bandwidth allowance is

used up.

• Network Quality - Preemptively migrate traffic away from a link with a

degrading signal quality or bandwidth.

This list is not exhaustive, and additional novel contexts can easily be included

in the User Policy Framework due to our flexible policy definition approach. Fur-

thermore any of these contexts could be concatenated to support more complex

user requirements.

4.3.1.1 Configuration

To configure the use of such context policies, we propose a simple policy defi-

nition scheme, which determines the context that the user is interested in and

how the device should react when the context is in a particular state. To avoid

complex decision making processes in the implementation of the context parser,

we consider that the nuances of conflicts between varying policies will be resolved

manually by the user. For example, if one policy states to turn the WiFi inter-

face off in a certain location, while another states it should be turned on in the

same location, the expected behaviour is undefined. Policies however, should be

additive allowing for complex configurations to be supported, such that a policy

may state that a cellular interface is turned on, in a specific location, while an-

other states it should be turned off in the same location, provided the battery is

98

1 policy := [conditions], [actions]

Listing 4.1: Syntax to define a policy.

1 condition := [key_id , link_id , value , comparator]

Listing 4.2: Syntax to define a condition to match.

low. This may be beneficial if the specified location is sufficiently far away from

a point where the user can charge the device.

Policy Definition – Each context policy is described by the user in terms of

conditions and actions. By specifying a set of conditions to be monitored and a

set of actions to be performed when the conditions are met, network resources

can be managed much more efficiently, as opposed to waiting for an interface

to be handed over forcefully, or deferring to user intervention. The number of

policies that can be defined is unlimited; additionally, the set of conditions and

associated actions also have no hard limit as a prerequisite. The proposed policy

definitions are declared as shown in Listing 4.1.

Conditions – Conditions are specified in terms of a context that we can monitor

such as battery capacity reaching 50%. The conditions that a user is able to

specify are highly configurable and the addition of new contexts or conditions

simply requires a library that implements the context interface. The condition

specification is shown in Listing 4.2.

The key id is used to identify which context should be used to monitor for

the condition being met. The value and comparator specify what state the

measured context should be in for the condition to be triggered. The approach

to reading and understanding conditions should be left to the appropriate imple-

mentation of a context, to ensure that the User Policy Framework does as little

work as possible. Minimising the User Policy Frameworks involvement in the

processing of conditions will improve the flexibility and extensibility when imple-

menting additional contexts. Therefore, the User Policy Framework should not

need to have any understanding regarding the condition that is being monitored,

it should only need to know if the condition has been met or not.

99

1 action := [ip , do=[up , down , add , remove],

2 mode=[hard , soft], metadata]

Listing 4.3: Syntax describing an action to execute.

By describing the requirements of a policy as a set of conditions that must all

be met, the policies become additive. For example, a policy to move traffic away

from a local cellular link may have two conditions. The first condition specifies

that the battery capacity has reduced to a pre-determined level, while the second

condition states that an alternative link such as WiFi must be connected, before

traffic is removed from the cellular interface. This approach ensures that a diverse

and rich set of context and users requirements can be met.

Actions – The action specification is more concrete than the condition as the

User Policy Framework is required to understand the content of the configura-

tion, as shown in Listing 4.3. The ip identifies the network resource which the

action must be performed on. The do parameter specifies the behaviour of the

action, such as enabling or disabling access to a network resource. The mode

parameter specifies the degree to which a network resource should be modified, if

the parameter is set to hard, the system state of the network resource is changed.

While setting the mode parameter to soft simply causes the behaviour within the

User Policy Framework to change. This is a lighter approach that will respond

to changes much faster than is required of the hard approach which causes the

network interface to be configured and de-configured. The additional metadata

is required when specifying addition and removal of MPTCP subflows while the

interfaces remain active. For example, if the action specifies a particular applica-

tion is migrated away from the cellular interface, the metadata parameter would

require the identifying tuple for the associated subflows.

4.3.2 Application Policies

Thus far, we have focused on the benefits of resource pooling when a host is

presented with multiple network resources. This focus doesn’t account for the

wide variety of applications that may not benefit from bandwidth aggregation,

such as real time voice and video communications. No matter what the applica-

100

tion, it is still desirable to exploit path diversity to maximise the QoS that each

application receives. Furthermore, there may be a subset of paths that are best

suited for aggregation, preventing poor connections from decreasing the overall

performance of an MPTCP connection.

Application policies define the QoS requirements that a user’s high priority

applications need to function in their optimal state. Application policies are

specified in terms of the transport layer psuedo-header, any of which may be pre-

sented as a wild card. We then define the application requirements in terms of:

bandwidth, latency, jitter and packet loss. To utilize these application descrip-

tions the User Policy Framework is also responsible for monitoring the context

of each network resource, obtaining the current network measurements for each

resource. The combination of network resource measurements and application

policy definition is then processed by a path selection algorithm to determine the

best resource at any given time, a realisation of such an algorithm is presented

in Section. 4.4.

4.3.2.1 Configuration

By configuring policies for specific applications it is possible for hosts to make

routing decisions on a per flow basis. This provides much finer grained control

of the available network resource than has typically been presented in the coop-

erative resource pooling domain, which allocates a host to a gateway. Optimal

application decisions could be made entirely based on network metrics for each

of the available resource, however, to further meet the demands of the user, it

is also important to consider other factors such as energy consumption and eco-

nomic cost. For example, a user may not be interested in using the absolute best

network resource for background activity (such as periodic background updates),

as this may incur significant cost, if the connection is metered, or the links data

allowance is low. Where as, if the user wishes to make a VoIP call, then the QoE

is much more important and the user may be willing to pay more for a better

service. Specifying these criteria allows for a much more fine grained approach

to allocating network resource than alternative solutions which may suggest al-

locating users to fixed price brackets. The work presented in [91], suggests that

users either don’t care about cost and just want the optimal service, or want

the cheapest access possible. Enforcing such price brackets may not accurately

101

QoS Parameters Description Value

Bandwidth The amount of bandwidth that can re-
alistically be provided by the network
resource.

Bits Per Second

Latency Length of time taken for a packet to
reach its destination (and/or return).

Time in milliseconds

Jitter Observed variation in latency measure-
ments.

Time in milliseconds

Packet Loss Estimated number of packets that will
not arrive.

Percentage

Economic Cost Financially, how much will the user
have to spend to use this link.

Pence Per Megabyte

Energy Cost Estimated power consumption for the
host device to use a given network re-
source.

Joules Per Megabyte

Availability The uptime of the network resource,
measuring reliability.

Time in seconds.

Table 4.1: Description of measurable network quality parameters.

represent all users; however, an optimal model could theoretically support these

roles by minimizing or maximizing the importance of a cost based criteria.

When configuring application policies, it is important for the design to remain

extensible as different device and application characteristics and measurements

are considered. In Table 4.1 we present a base set of metrics that describe the

benefit and cost of a particular link. Aside from economic cost, each of these

parameters can be measured by the device, and further disseminated throughout

the mobile network if necessary. In terms of the economic cost of a link, this

could either be manually provided by the user, or retrieved automatically from a

supporting network provider.

4.3.2.2 Network Measurements

In regard to obtaining network measurements there are two key approaches that

can be taken, either passive or active. An active approach requires that a host

injects probe or test traffic onto the network, subsequently monitoring the prop-

erties of the flow. For example, measuring round trip time can be achieved by

sending out Internet Control Message Protocol (ICMP) echo requests and mea-

suring the time taken to receive the response. Alternatively bandwidth could be

actively measured by filling the path with TCP traffic to determine the number of

102

bytes that can be transmitted within a specific time interval. Gathering network

metrics passively, requires the host to monitor and observe the characteristics

of traffic that is already being transmitted. Bandwidth can be calculated by

monitoring the amount of traffic that is sent and received, while round trip time

could be determined by matching the timestamps of transmitted packets to the

associated acknowledgements.

Measuring the quality of a network path both efficiently and accurately is still

an open problem within the research community. While there are a number of

active measurement tools that can provide reliable metrics, they can introduce

significant overhead into the network to obtain accurate results. For example,

tools like iPerf attempt to saturate the link to determine the available bandwidth.

Alternative light weight estimation approaches have taken precedence in recent

years as presented in [66]. Typically, these bandwidth estimation techniques aim

to predict the available bandwidth by measuring the inter-arrival time for a train

of packets with variable sizes.

In terms of collecting network measurements and other link metrics, there

are two key areas to consider. Firstly, where in the network should the metrics

be gathered, and secondly, which of the discussed active or passive approaches

should be used.

Measurement Location

There are two feasible approaches that can be carried out in terms of collecting

the network metrics for the path selection process. The measurements can be

obtained, by either the directly connected host, or the host wishing to use the

network resource. In the case of the directly connected host, the measurements

would then need to be disseminated throughout the network. This could be ac-

complished via an extension to the MAP protocol, or an Remote Procedure Call

(RPC) interface could be exposed, which allows a reactive query to be made,

which is pushed up the network towards the gateway. From these two choices,

we believe a RPC mechanism to be more appropriate, as extending MAP would

unnecessarily increase overhead, pushing metric information to hosts that may

not be interested. Alternatively for the host based solution, each host would

continuously measure the quality of the available network resources, which in

the case of active measurements could lead to a significant increase in overhead.

103

This would however, give each host a better representation of what the quality

of the network resource looks like from their position in the network, addition-

ally accounting for the interior path as well as the exterior Internet path. The

potential improvement in accuracy from this approach could make it much more

appealing, and could additionally provide faster feedback than including it in the

dissemination approach.

Measurement Type

As the most appropriate type of network measurement may change depending

on the connectivity in use and the location chosen, the proposed approach for

the User Policy Framework is for the metric estimation to be implemented as a

pluggable module, such that the appropriate measurement technique can be used

on demand. A thorough evaluation of the advantages and disadvantages of active

and passive measurements is considered out of scope for this thesis. Furthermore,

measuring the quality of network resource in real time and subsequently migrating

applications in real time to the most appropriate link could be detrimental, and

lead to a negative feedback loop as all applications collectively move to the best

link. Therefore, a hybrid approach combining both passive and active techniques

could be of interest, only actively probing the network when there is insufficient

information to determine quality passively.

4.3.2.3 Route Allocation

Given the path selection approach has allocated an application to a network

resource, whether direct or indirect, the host must configure the appropriate

routing decisions to ensure the application uses that path. For applications that

support mobility, this process can be dynamic, actively migrating the traffic to a

better link. If an application or protocol does not support mobility, the framework

should only redirect new flows to use the new path, to avoid actively breaking the

users current applications. As the MAP provides and maintains the appropriate

routes to reach each network resource, route allocation for each application can

be installed on a per host basis requiring no additional signalling within the

network. This is advantageous as updating and maintaining these routes across

the network for each device would incur a significant overhead, and ensuring

consistency between the hosts would create additional problems, likely requiring

104

Context Library

Application
Config

Policy
Config

Resource
Manager

Route
Allocator

MPTCP
Controller

MPTCP - PM

Policy Handler

Bandwidth
Usage Module

Location
Module

Battery Monitor
Module

Policy
Parser

Path Metric
Interface

Application
Parser

Active Modules

Passive
Modules

Driver

Module X

iPerf

ping

abing

Config File Loadable
Module

Kernel Module Software
Component

External
Process

Key

Network
Resource

Representation

Routing
Subsytem

MAPD
Interface

Figure 4.16: The architectural design for the User Policy Framework.

an external entity to regulate the mobile network.

4.3.3 Framework Design

The overall design for the User Policy Framework is presented in Fig. 4.16. To

ensure the extensibility of the framework design, the proposed software should

take an event driven approach, reacting to callbacks from the modules that are

built. While the User Policy Framework should be able to learn about network

resource and routing decisions from the MAP API, the framework is also inde-

pendently a significant contribution, as context and policy routing at the edge

for multihomed devices is still an open-ended problem. Therefore, the proposed

design for the User Policy Framework should work in the same way, either on

its own or with the MAP software running along side it. This means that if

the MAP software is not running, the User Policy Framework should be able to

obtain network resource information through its own component, replacing the

MAP interface. This component can be significantly simpler than is needed by

the MAP, as it only needs to monitor for the addition and deletion of default

105

routes, representing the available Internet connectivity, as opposed to link and

network layer addressing.

In this section we present an overview of the User Policy Framework design,

addressing the integration with MPTCP and subsequently the management of

both context and application policies.

4.3.3.1 MPTCP Integration

In Chapter 2 we provided a detailed description of MPTCP and the available path

managers and configuration that can take place to manage how paths are created

and used. The default path manager builds a full mesh of IP addresses between

the hosts, for each available TCP connection. This model is being augmented as

the MPTCP community introduce multipath socket options for the application,

allowing for more fine grained control. This still however, limits the MPTCP

connection to being turned on or off, and does not allow for the flexibility desired

by the User Policy Framework. To this end, it will be necessary to integrate the

MPTCP implementation with the proposed User Policy Framework, and sub-

sequently provide an interface which allows the users policy based decisions to

have a direct impact on how flows are created and managed by the MPTCP path

manager. In the framework design, the route enforcement and policy component

is signalled by changes in the system and application state, which can lead to

changes in path selection decisions. Therefore the policy routing should also be

able to interact with MPTCP determining how the connection should behave.

Therefore, the MPTCP path manager will need to communicate directly with

the User Policy Framework, to both send and receive information regarding the

current state of the active MPTCP connections. There are four functionality re-

quirements that the proposed MPTCP path manager and User Policy Framework

combination must support:

1. Notify MPTCP connection established.

2. Notify MPTCP connection destroyed.

3. Receive create subflow.

4. Receive destroy subflow.

106

This functionality will allow complete control over the available MPTCP connec-

tions, and furthermore will allow for changes in device and application context

to initiate soft handover.

For the purpose of this framework, we introduce a new naming convention

for multipath hosts and applications. Firstly, we assume all hosts are capable of

supporting MPTCP, however not all applications may find a multipath connec-

tion desirable, short lived connections or delay sensitive applications may prefer

to use a single path. To this end, specific applications may be either Multi-

path Enabled , Multipath Capable , or Multipath Disabled . In the case of

a Multipath Enabled application, the framework will always attempt to use

the complete set of network resources. While a Multipath Capable application

will typically prefer a single path approach, but it is capable of MPTCP func-

tionality, such that the connection can be migrated when necessary, to either a

better path, or to preempt or react to a path being broken. Finally if the flow

is Multipath Disabled , the framework will at no point attempt to leverage

multipath functionality.

4.3.3.2 Callback Events

As previously discussed the User Policy Framework needs to incorporate a series

of callbacks to support and provide the proposed modular structure. Based on

the context and application policies that are defined, the presented framework re-

quires four callbacks that must be serviced appropriately. These callbacks consist

of:

1. A condition is met for a context policy.

2. The state of a network resource changes.

3. Network metrics change significantly.

4. A new MPTCP connection is established.

Condition Callback

The condition callback is presented in Fig. 4.17 on the next page. As discussed

in the previous section, when a set of conditions are met, the action that is

107

Condition Met

Link Set Down

<<iterative>>

Condition Actions

Link Set UpResource Set
Available

Resource Set
Unavailable

Select Routes

Create Subflows Remove Subflows

Soft Action Hard Action

Action Down Action Up

Figure 4.17: Application flow for meeting conditions.

108

Link State Changed

Multipath Enabled

Create New Subflow

Non Multipath

Link Down

No Subflows

Subflows Exist

Link Up

Resource
Unavailable

Select Routes

Remove Old Subflow

Select New Route

Create New Subflow

Multipath Enabled Non Multipath

<<iterative>> <<iterative>>

Resource Available

MPTCP Connections MPTCP Connections

Figure 4.18: Application flow when the system link state changes.

carried out can either be hard or soft. The hard action represents a link that is

being altered at the system level, such as deconfiguring the interface so that it

cannot be used, while the soft action simply takes control of the interface within

the software. A soft action may be useful for a WiFi interface that is actively

scanning for a new AP that is usable, but the previous AP hit a usage limit,

while a hard action may be more useful for a cellular interface to minimise power

consumption by permanently putting it to sleep. A hard action will subsequently

trigger a link state change, which will be handled by the resource monitor, to

avoid duplicating functionality. The soft action however requires that current

application paths, specifically MPTCP connections are modified to stop or start

using the interface specified by the action. Subsequently, to finalize the condition

callback, a new set of paths are selected based on the new availability information.

109

Path Metrics
Changed

Recalculate Routes

Figure 4.19: Application flow for a significant change in path metrics.

Resource Change Callback

When the availability of the set of network resource changes, multipath capa-

ble traffic must react accordingly. This model is presented in the activity diagram

of Fig. 4.18 on the previous page. This callback could be triggered by changes to

either direct or indirect Internet connectivity. In the event that a link goes down,

traffic that is multipath enabled, should simply remove the old subflow as the

complete set of potential subflows will already have been created. For multipath

capable flows the path selection algorithm must first choose the next best path,

and create a new subflow using this network resource, before destroying the old

connection. In both cases, the path selection algorithm must be subsequently

run for each application specification such that new flows will be routed over the

newly chosen network resource.

If a new network resource becomes available, multipath enabled applications

will create a new subflow utilising the new network resource, while multipath

capable flows, will only create a new subflow if there are currently no active

subflows. This effectively presents a hard, break-before-make handover, which is

the worst case scenario in which there was no usable network resource available

for a period of time. A new network resource becoming available will not trigger

paths to be re-selected, as it must first wait on the network metrics being obtained

or measured.

Metric Change Callback

As the path metric interface is continuously monitoring the current state of the

retrieved network metrics, if there is any significant change detected, the path

selection process will be triggered, recalculating the best routes for each applica-

tion, shown in Fig. 4.19. Determining the magnitude of the change is important

as if there are two similar network resources, it could force re-calculation of the

110

routes constantly, consuming unnecessary resource. Furthermore, if applications

are being migrated as the path selection decisions change, this could lead to

degraded performance as the path is altered too frequently. The approach for de-

termining significance is left to the implementation. However there are a number

of design choices to consider. The significance could depend on a single metric

changing, or a composite of all metrics. Furthermore measuring the significance

or magnitude could present a logical problem, as a percentage change in each

network parameter will have a different impact on the perceived QoS or QoE. As

discussed in Section 4.2.2.2, stability is an important factor for maintaining the

best possible performance, oscillating between different paths can have a negative

impact on the perceived quality of the network resource. To this end, when deter-

mining a change in network metrics, availability should also be used as a factor.

Accounting for link availability will help to ensure that more reliable paths are

favoured over ephemeral network resources, which can help in reducing packet

loss, minimising the negative impact on QoS and QoE.

MPTCP Callback

The MPTCP callback is straightforward, as shown in Fig. 4.20 on the next

page. This requires that the MPTCP path manager notifies the User Policy

Framework of any new MPTCP connections that are created or destroyed. When

a connection is created, and it matches a multipath enabled application, the policy

manager initiates the creation of a subflow for each of the available network

resources. The connection is also added to an internal representation of available

MPTCP connections which are used in the previously presented activity diagrams

in Figs. 4.17, 4.18, and 4.19. When an MPTCP connection is closed, the User

Policy Framework simply removes it from its internal representation of flows.

4.4 Path Selection

Optimal path selection at the end host is becoming an increasingly interesting

problem domain as heterogeneity is more pervasive and users and hosts want to

maximise the use of their connectivity. Path selection in the core of the Internet

has been ubiquitous for a long period of time with technologies such as Equal Cost

Multipath Routing (ECMP) [160] and Border Gateway Protocol (BGP) route

111

Multipath
Connection

Callback

Resource
Available

Create New Subflow

Resource
Unavailable

Remove ConnectionNew Connection

<<iterative>>

Network Resources

Add to Connection
List

Remove from
Connection List

Figure 4.20: Application flow when a new MPTCP connection is established.

112

selection [141] dictating how to balance traffic. These types of policies however are

still not typically present at the edge, more recent work [91] is beginning to address

these problems. Historically, path selection solutions have been based on selecting

the optimal link for the host to allocate all its traffic to, under an “always best

connected” model. With the diversity of connectivity available in a MAP enabled

mobile network, selecting the most appropriate network resource for individual

flows or applications becomes more promising. Such a fine grained approach can

improve the QoS for specific, high priority applications, and potentially reduces

cost by preventing over-allocation of delay tolerant, bulk traffic to less expensive

network resources.

The core goal of the path selection algorithm is to choose the most appropriate

network resource that is able to meet the QoS requirements. This may not nec-

essarily be the absolute best network resource, but that which is best suited for

the application. Matching applications to an appropriate network resource can

help to distribute traffic across the set of available paths, as opposed to choos-

ing the same path for every application. Due to the multi-dimensional nature

of appropriate network metrics and QoS criteria, it is non-trivial to determine

the optimal network resource for each individual application. Moreover, the re-

lationships between the specified QoS criteria are typically complex, correlating

with one another, limiting the efficacy of simple utility functions and weighted

averages as have been proposed in other selection domains for some time [90]. To

account for the correlation between measurements, and produce a better estimate

of the overall QoS value of each path, we propose the use of Principal Compo-

nent Analysis (PCA). This approach has been widely used for selecting optimal

services, including web service selection, as presented in [90] and [133]. Principal

component analysis uses an orthogonal transformation to extract a set of linearly

uncorrelated variables (principal components) from the set of original network

resource measurements. Removing the correlation between variables allows more

accurate decisions to be made, as each attribute becomes independent. As we

are not simply looking for the globally optimal resource, we also look to balance

across the available links, to do this, we take into account both the QoS of the

available paths and the desired QoS of the application. This prevents applications

that have minimal QoS requirements from selecting higher quality paths, that are

best reserved for applications with more significant network requirements.

113

4.4.1 Selection Algorithms

The Simple Additive Weighting (SAW) [1] method is a typical selection approach,

which attempts to determine the optimal service from a set of criteria. SAW se-

lection algorithms assume that the QoS criteria that are being evaluated are

independent of one another; this assumption is not accurate for network metrics

as increases in delay, loss or jitter can decrease throughput, especially in the con-

text of a TCP flow. Additionally, relationships may exist between availability,

reliability, performance, and cost; further increasing the complexity required to

determine the most appropriate network resource. Furthermore, the SAW ap-

proach relies on the user or an administrator deciding on a set of weights to

determine how important specific criteria are to the application. The selection

of weights is of pivotal importance to the success of the algorithm; however,

due to the relationship between the proposed criteria, accurately determining the

weights is a hard problem. Subsequently, weighting related criteria may cause a

users preferences to be counted in a computation multiple times, as the poten-

tial correlation is not accounted for. A PCA based approach can eliminate these

issues, by extracting the principal components, converting the set of correlated

metrics, into a set of uncorrelated linear metrics. In Chapter 3, alternative net-

work and path selection approaches were presented. In the context of the ABC

model, the selection approaches typically focused on the allocation of a single

network resource observing a global parameter set to describe the best possible

QoS. Alternatively, path selection schemes for SCTP primarily use bandwidth

as the deciding metric, concentrating on the necessary requirements to extend

SCTP itself; additionally this does not account for the range of transport proto-

cols that users may require. Finally the path selection approach proposed in [91],

may not meet the level of granularity we strive for; users are split into categories

based on how much they are willing to pay for data, however in a pure and flex-

ible path selection approach, the user may be happier to pay varying amounts

for a guaranteed QoS for different services, which should be representable in any

algorithm.

114

Application
Specification

Path Selection Algorithm

Selected
Network Resource

Route Allocation

User Configuration

Network Resource
Measurements

Measurement Tools

Figure 4.21: Overview of the path selection process.

4.4.2 Selection Interface

As with many of the components we have discussed with the User Policy Frame-

work, the path selection algorithm that is used may heavily depend on the context

it is being used. While we propose a PCA based approach in this thesis, to en-

gage with future research and to ease the development of future policy based

heterogeneous access models, the propose framework should support pluggable

and adaptable path selection. Therefore, the path selection approach should ef-

fectively become a black box to the User Policy Framework, in which a set of

inputs are provided relating to the available network, and a single selection is

provided as the output. An overview of the design for this path selection process

is presented in Fig. 4.21. This figure shows the inputs of the system, which is

the set of network resources to be selected from, along with their associated mea-

surements and metrics, and the application specification as previously discussed

which describes what the optimal set of criteria for the application to perform.

4.4.3 Selection Algorithm

The aim of the PCA algorithm is to transform the original set of quality metrics

q = (q1, q2, . . . , qj) into a lower dimensional co-ordinate space, Y = (Y1, Y2, . . . , Ym),

115

Link BW (Mbps) RTT(Ms) Loss (%) Jitter (Ms)

L1 7.15 141.62 0.20 91.83
L2 10.72 65.84 0.03 14.94
L3 15.63 124.64 0.05 50.51
L4 2.72 166.22 0.26 55.52
L5 10.72 46.97 0.20 22.80
L6 12.01 77.31 0.13 21.43
L7 6.49 115.32 0.14 31.06
L8 1.19 328.02 0.27 151.28
L9 18.32 39.92 0.25 16.82
L10 1.85 362.37 0.10 135.28

Table 4.2: Emulated link characteristics for PCA Path Selection Algorithm ex-
ample.

BW (Mbps) RTT(Ms) Loss (%) Jitter (Ms)

1. Voice 0.128 70.000 0.010 30.000
2. Video 8.000 50.000 0.010 30.000
3. Sensor 0.010 300.000 0.00 300.000
4. Unspec - - - -

Table 4.3: Application specifications and the links chosen from Table 4.2 for
communication, according to the PCA algorithm.

while attempting to retain as much information as possible regarding the original

quality metrics. During our explanation of the algorithm we provide an exam-

ple case based on the link metrics in Table 4.2 drawn from work presented in

[24] and the applications specified in Table 4.3. In Table 4.3, we present the

application QoS specifications that we use as the input for the PCA algorithm.

The appropriate criteria for voice and video have been drawn from [23], while

the sensor application requirements have been drafted as a low bandwidth low

priority service; for example, real time tracking of GPS coordinates. The unspec-

ified application may not have known requirements and is simply looking for the

best possible path to be used, therefore the set of application requirements, θ is

∅. We focus on the performance metrics associated with a specific connection,

this could easily be augmented with cost based parameters, such as the price per

megabyte in terms of financial cost or battery consumption. For the remainder

of this section, both links and network resource are used interchangeably.

Firstly, for a given a set of links, l = (l1, l2, . . . , li), each of which possess

a set of network metrics, q = (q1, q2, . . . , qj), we establish the quality matrix Q

116

shown in Eq. 4.1. This matrix must be normalized according to the min-max

function in Eq. 4.2 or Eq. 4.3 as proposed in [90]. The function to be used for

normalisation is dependent on the type of metric being normalized. To this end,

there are two types of metric that must be supported, those which are better

the higher the value, such as bandwidth which are required to use Eq. 4.2, and

those which are better the lower the value, such as latency, which will use Eq. 4.3.

The normalisation process is required to prevent the variable scaling of different

metric measurements from distorting the final result; for example, jitter may

be measured in tens of milliseconds, while latency is measured in hundreds. At

this stage, if the set of application requirements we wish to optimize against

θ = (θ1, θ2, . . . , θj) is not empty, then we begin by calculating the difference

between each value in the sets, qi,j and θj, as shown in both Eq. 4.2 and Eq. 4.3.

The process of normalizing the quality matrix, Q, against Eq. 4.2 and Eq. 4.3

produces the normalized matrix Q′.1

Q =


q11 q12 . . . q1j

q21 q22 . . . q2j
...

...
. . .

...

qli ql2 . . . qlj

 (4.1)

q′i,j =


Qmax(j)− | qi,j − θj |
Qmax(j)−Qmin(j)

, if θ 6= ∅

Qmax(j)− qi,j
Qmax(j)−Qmin(j)

, otherwise
(4.2)

q′i,j =


| qi,j − θj | −Qmin(j)

Qmax(j)−Qmin(j)
, if θ 6= ∅

qi,j −Qmin(j)

Qmax(j)−Qmin(j)
, otherwise

(4.3)

Q′ =


q′11 q′12 . . . q′1j

q′21 q′22 . . . q′2j
...

...
. . .

...

q′i1 q′l2 . . . q′ij

 (4.4)

1An alternative approach to calculating the difference between the required QoS and the
estimated network metrics, would be to weight each of the criteria based on their importance
as proposed in [134]. Weighting however is deemed to be out of scope for this work, as this
requires an in depth understanding of the correlation between metrics and their overall impact
on the QoS received.

117

BW RTT Loss Jitter

BW 1.000 0.231 0.212 0.196
RTT 0.231 1.000 0.169 0.936
Loss 0.212 0.169 1.000 0.235
Jitter 0.196 0.936 0.235 1.000

Table 4.4: Correlation coefficient matrix for QoS metrics, normalized against the
video application requirements.

cov(x, y) =

∑
(x− x̄)(y − ȳ)

n− 1
(4.5)

var(x) =

∑
(x− x)2

n
(4.6)

rl,n =
cov(qi, qj)√

var(qi)
√
var(qj)

(4.7)

R =


r11 r12 . . . r1n

r21 r22 . . . r2n
...

...
. . .

...

rl1 rl2 . . . rln

 (4.8)

Once we have calculated the normalized matrix Q′ (Eq. 4.4), the next step is

to calculate the correlation coefficient matrix R (Eq. 4.8) according to Eq. 4.7.

The correlation coefficient for our example is presented in Table 4.4. Next the

eigenvalues of the matrix R are calculated according to the characteristic equa-

tion, det (R− λI) = 0, the resulting eigenvalues need to be sorted in descending

order such that λ1 ≥ λ2 ≥ λp ≥ 0. For each eigenvalue, λi, the corresponding

eigenvector, ~ei, can be calculated by (R − λiI) · ~ei = 0 and normalized based

on Eq.4.9. For the normalized eigenvectors (referred to as loadings), the larger

the loading the more important the metric is, to that principle component. For

example, in Table 4.5 on the next page, jitter is the most significant metric for

the first principle component.

êi =
~ei
|| ~ei ||

=
~ei√
k∑
j=1

~eij

(4.9)

118

QoS Metric PC1 PC2 PC3 PC4

BW 0.299 0.626 0.719 0.038
RTT 0.641 -0.304 0.036 -0.703
Loss 0.287 0.661 -0.691 -0.059
Jitter 0.646 -0.281 -0.061 0.707

Table 4.5: Loadings for each principal component.

Principal
Component

Eigenvalue CR CCR

1 2.125 0.531 0.531
2 1.023 0.256 0.787
3 0.791 0.198 0.985
4 0.060 0.015 1.000

Table 4.6: Contribution Rates (CR) and Cumulative Contribution Rates (CCR)
for each eigenvalue.

Subsequently we compute the contribution rate (CR) and cumulative con-

tribution rate (CCR) for each principal component according to Eq. 4.10 and

Eq. 4.11, respectively as shown in Table 4.6. Typically the principal components

that account for 85%-95% of the total variance are carried forward as proposed

in [56], [90], and[88]; however, there is no objective function to choose the best

subset of principle components, an alternative approach is to simply select all

eigenvalues greater than one.

CRj =
λj
M∑
j=1

λj

(4.10)

CCRk =

k∑
j=1

λj

M∑
j=1

λj

(4.11)

Finally for each of the selected principal components, we calculate a utility

score based on Eq. 4.12. This score describes the overall quality of each network

resource for the specified application. To choose the optimal network resource

according to the PCA algorithm, the final step simply selects the network resource

with the largest utility score, such that the selected resource is the result of

max(Y). This score describes the overall quality of each network resource for the

119

Path Y1 Y2 Y3 Utility Rank

L1 0.616 0.118 0.102 0.836 5
L2 0.910 0.159 -0.026 1.043 1
L3 0.734 0.080 -0.090 0.725 6
L4 0.580 -0.014 0.065 0.631 7
L5 0.838 0.032 0.070 0.940 5
L6 0.830 0.066 0.010 0.907 4
L7 0.845 0.106 0.052 0.247 2
L8 0.075 0.056 0.053 0.183 10
L9 0.654 -0.126 -0.015 0.512 8
L10 0.224 0.181 -0.036 0.368 9

Table 4.7: Final utility scores for each principal component and the aggregate
score with rankings of the available network resource in relation to the video
application.

Selected Link

1. Voice L2
2. Video L2
3. Sensor L8
4. Unspec L9

Table 4.8: Links chosen for the applications specified Table 4.3 on page 116
and links from Table 4.2 on page 116 for communication, according to the PCA
algorithm.

specified application, the results of which are shown in Table 4.7. To choose the

optimal network resource according to the PCA algorithm, the final step simply

selects the resource with the largest utility score. In Table 4.3 on page 116

we present the best path from Table 4.2 on page 116 as allocated by the PCA

algorithm.

Ym =
M∑
j=1

CRj · (ej1q′1 + ej2q
′
2 . . .+ ejkq

′
k) (4.12)

For each of the Application Specifications presented in Table 4.3 on page 116

the output of the proposed algorithm selects the theoretically optimal link, as

shown in Table 4.8

120

4.5 Summary

In this chapter, we have introduced the Multipath Advertisement Protocol (MAP),

which provides a lightweight and scalable design for cooperative resource pooling

in a mobile network. The MAP protocol is used to build and maintain a rout-

ing overlay on top of the existing network topology, allowing any infrastructure

or ad-hoc protocols to be supported. This protocol provides hosts in a mobile

network with access to any of the available network resource. Furthermore, we

have presented a framework which exploits the additional network resource, by

providing fine-grained context based policies, for both access control and path

selection. The path selection approach is based on PCA, which extracts princi-

pal components from the measurements, helping to remove correlation between

variables and therefore choose the most appropriate paths.

121

CHAPTER 5

Implementation

This chapter discusses the implementation details of the Multipath Advertise-

ment Protocol Daemon (MAPD), User Policy Framework, and path selection

algorithm. The MAPD implementation is a realisation of the MAP described in

the previous chapter. This chapter begins with a description of the core system ar-

chitecture, and implementation specific details not covered by the design. MAPD

has been implemented for the Linux Operating System, and has been trialed on

a number of flavours including Debian and OpenWRT. The implementation of

MAPD has been written entirely in C. Following on from the MAPD implemen-

tation, we introduce the User Policy Framework, with a focus on providing a

flexible and extensible context aware interface for managing network resource.

As with MAPD, the core of the User Policy Framework is written in C with min-

imal use of external libraries. Finally we present the realisation of the PCA based

path selection algorithm. The path selection algorithm has been implemented in

Python, due to the availability and simplicity of linear algebra libraries. The

Python path selection implementation uses the appropriate application bindings

to interface with the C-based User Policy Framework.

5.1 Development Environment

During the development, testing and evaluation of the work, two distinct ap-

proaches were used simultaneously. This includes both the use of a real-world

testbed and a simulation suite, discussed in more detail below.

122

User One

User Two

User ThreeUser Five

User Four

Infrastructure
Ad-Hoc
Internet Connectivity

L4 L5

L7 L8

L10

H1 H2

H3

Figure 5.1: Real world experimental development environment.

5.1.1 Real World

To develop and test the proposed system, a real-world testbed has been estab-

lished. This consists of a set of heterogeneous hosts, ranging from Raspberry

Pi’s, Wireless routers and Desktop PC’s. Each of the hosts in the testbed runs

a variant of the Linux operating system, including Raspbian, Debian, Ubuntu

and OpenWRT. Each of the hosts in the network possesses one or more WiFi

interfaces set in either Infrastructure or Ad-Hoc mode, allowing them to inter-

connect in complex configurations and furthermore interface with real networks.

The typical topology and network configuration used during testing and exper-

imentation is presented in Fig. 5.1. The additional infrastructure access points

create a multi-hop environment, requiring MAP to span multiple different net-

works with different addressing schemes. H1, H2 and H3 run a DHCP server to

provide the users with appropriate IP addresses, while they are statically con-

figured with addresses internally within the Ad-Hoc network. Furthermore each

of the users can be extended with additional local or Internet connectivity in-

creasing the complexity of the topology. The Internet connectivity is emulated

by shaping according to the list of link metrics in Table 4.2 on page 116.

5.1.2 Simulation

To simulate different network topologies with the MAP implementation we use

NS3 [118]. NS3 has been extended with the Direct Code Execution (DCE) mod-

123

ule. The goal of DCE is to provide the user with the ability to easily run existing

Linux implementations of user space and kernel space network protocols within

the NS3 simulator. Furthermore, the DCE module allows nodes within the NS3

environment to run a real Linux network stack. By using DCE for the simulation

portion of the work, it is possible to test and evaluate significantly more complex

topologies using the same MAPD implementation. Additionally, by compiling

and using our own Linux kernel, we can incorporate MPTCP seamlessly into the

NS3 environment.

5.2 Multipath Advertisement Protocol

The MAP Daemon (MAPD) implements the features described in Chapter 4.

In this section, we present the realisation of the proposed protocol in a Linux

environment, discussing the implementation decisions that were made. For the

remainder of this section, both dissemination and advertisement are used when

discussing network resources being announced onto a subnet. To further clarify

the difference between these two terms, dissemination is the process in which

the advertisements traverse multiple hops, spanning the entire network; while

advertisement is determined to be the local broadcast or multicast, on a single

subnet.

5.2.1 Routing Overlay

In this section we will demonstrate how the routing overlay is built and what

this looks like in terms of Linux routing tables and forwarding decisions across

multiple hosts. As described in Chapter 4, in order to enable the host to use

any of the indirect network resource with resource pooling technologies such as

MPTCP, it is necessary to give the host an IP address that it can use to access

the remote network resource. To initiate this process, the host in possession

of an Internet connection must first create a subnet that allows any other host

to route traffic to it. At this stage the host is tasked with allocating a subnet

in the 172.16.0.0/12 range. To minimise the chance of collisions when multiple

MAP-enabled networks merge, the subnet is chosen randomly, as opposed to

incrementally allocating from a base value.

The next step in the process is to ensure all traffic for a given IP address is sent

124

ppp0 wan0

eth0

eth0 eth0

eth1

eth0 eth0

192.168.1.1

192.168.1.2 192.168.1.3

192.168.3.4 192.168.3.5

10.1.1.110.1.2.1

192.168.3.1

10.1.2.254 10.1.1.254

H1

H2 H3

H4 H4

Figure 5.2: Initial addressing routing installed in a simple mobile network.

125

pp
p0

w
an

0

et
h

2

et
h

0
et

h
0

et
h

1

et
h

0
et

h
0

1
9

2.
1

6
8.

1
.1

1
9

2.
1

6
8.

1
.2

1
9

2.
1

6
8.

1
.3

1
9

2.
1

6
8.

3
.4

1
9

2.
1

6
8.

3
.5

1
0.

1
.1

.1
1

0
.1

.2
.1

1
7
2.
1
9.
1
.1

1
7
2.
3
2.
4
.1

1
7
2.
1
9
.1
.3

1
7
2.
3
2
.4
.3

1
7
2.
1
9.
1
.2

1
7
2.
3
2
.4
.2

1
9

2.
1

6
8.

3
.1

1
7
2.
2
0
.6
.1

1
7
2.
4
5
.9
.1

1
7
2.
2
0
.6
.4

1
7
2.
4
5
.9
.4

1
7
2.
2
0
.6
.5

1
7
2.
4
5
.9
.5IP

 R
u

le
s

fr
o

m
 1

7
2.

1
9

.1
.0

/2
4

 lo
o

ku
p

 2
0

0

fr
o

m
 1

7
2.

3
2

.4
.0

/2
4

 lo
o

ku
p

 2
0

1

IP
 R

u
le

s

fr
o

m
 1

7
2.

1
9

.1
.0

/2
4

 lo
o

ku
p

 2
0

0

fr
o

m
 1

7
2.

3
2

.4
.0

/2
4

 lo
o

ku
p

 2
0

1

fr
o

m
 1

7
2.

2
0

.6
.0

/2
4

 lo
o

ku
p

 2
0

0

fr
o

m
 1

7
2.

4
5

.9
.0

/2
4

 lo
o

ku
p

 2
0

1 IP
 R

u
le

s

fr
o

m
 1

7
2.

4
5

.9
.0

/2
4

 lo
o

ku
p

 2
0

0

fr
o

m
 1

7
2.

2
0

.6
.0

/2
4

 lo
o

ku
p

 2
0

1

Ta
b

le
 2

0
0

d
e

fa
u

lt
 v

ia
 1

0
.1

.2
.2

5
4

d
e

v
et

h
0

1
0

.1
.2

.0
/2

4
 d

e
v

et
h

0

Ta
b

le
 2

0
1

1
0

.1
.2

.2
5

4
1

0
.1

.1
.2

5
4

1
7

2.
1

9.
1

.0
/2

4
 d

e
v

et
h

2

d
e

fa
u

lt
 v

ia
 1

0
.1

.1
.2

5
4

d
e

v
et

h
1

1
0

.1
.1

.0
/2

4
 d

e
v

et
h

1

1
7

2.
3

2.
4

.0
/2

4
 d

e
v

et
h

2

D
e

fa
u

lt
 T

a
b

le

d
e

fa
u

lt
 v

ia
 1

0
.1

.2
.2

5
4

d
e

v
et

h
0

d
e

fa
u

lt
 v

ia
 1

0
.1

.1
.2

5
4

d
e

v
et

h
1

1
0

.1
.2

.0
/2

4
 d

e
v

et
h

0

1
7

2.
1

9
.1

.0
/2

4
 d

e
v

et
h

2

1
0

.1
.1

.0
/2

4
 d

e
v

et
h

1

1
7

2.
3

2
.4

.0
/2

4
 d

e
v

et
h

2

Ta
b

le
 2

0
0

d
e

fa
u

lt
 v

ia
 1

7
2.

1
9

.1
.1

 d
e

v
et

h
0

1
7

2.
2

0
.6

.0
/2

4
 d

e
v

et
h

1

Ta
b

le
 2

0
1

1
7

2.
1

9
.1

.0
/2

4
 d

e
v

et
h

1

d
e

fa
u

lt
 v

ia
 1

7
2.

3
2

.4
.1

 d
e

v
et

h
0

1
7

2.
4

5
.9

.0
/2

4
 d

e
v

et
h

1

1
7

2.
3

2
.4

.0
/2

4
 d

e
v

et
h

1

D
e

fa
u

lt
 T

a
b

le

d
e

fa
u

lt
 v

ia
 1

7
2.

1
9

.1
.1

 d
e

v
et

h
0

1
7

2.
1

9
.1

.0
/2

4
 d

e
v

et
h

0

1
7

2.
3

2
.4

.0
/2

4
 d

e
v

et
h

0

1
7

2.
2

0
.6

.0
/2

4
 d

e
v

et
h

1

1
7

2.
4

5
.9

.0
/2

4
 d

e
v

et
h

1

d
e

fa
u

lt
 v

ia
 1

7
2.

3
2

.4
.1

 d
e

v
et

h
0 Ta

b
le

 2
0

0

d
e

fa
u

lt
 v

ia
 1

7
2.

4
5.

9
.1

 d
e

v
et

h
0

1
7

2.
4

5.
9

.0
/2

4
 d

e
v

et
h

0

Ta
b

le
 2

0
1

d
e

fa
u

lt
 v

ia
 1

7
2.

2
0.

6
.1

 d
e

v
et

h
0

1
7

2.
2

0.
6

.0
/2

4
 d

e
v

et
h

0

D
e

fa
u

lt
 T

a
b

le

d
e

fa
u

lt
 v

ia
 1

7
2.

4
5

.9
.1

 d
e

v
et

h
0

1
7

2.
4

5.
9

.0
/2

4
 d

e
v

et
h

0

1
7

2.
2

0.
6

.0
/2

4
 d

e
v

et
h

0

d
e

fa
u

lt
 v

ia
 1

7
2.

2
0.

6
.1

 d
e

v
et

h
0

H
1

H
2

H
3

H
4

H
5

F
ig

u
re

5.
3:

R
ou

ti
n
g

ta
b
le

s
fo

r
F

ig
.

5.
2

af
te

r
M

A
P

h
as

co
n
ve

rg
ed

,
al

lo
w

in
g

al
l

n
et

w
or

k
re

so
u
rc

e
to

b
e

ac
ce

ss
ed

.

126

over the corresponding Internet connection, this is achieved through the use of

IP rules and IP routing tables, as provided by the Linux Kernel. As of Linux 2.2,

up to 255 different routing tables have been supported. These routing tables can

be selected based on predefined routing or forwarding rules. This allows different

types of traffic to be routed in different ways depending on the specified rules.

To ensure this process works across multiple hosts, rules and tables need to be

setup to push traffic from one subnet to another, as well as to the final Internet

connection. To this end, the host is only concerned with the next hop required

to reach an indirect network resource and not the path it takes.

The process of building the overlay is shown in Fig. 5.2 on page 125 and Fig. 5.3

on the previous page. In Fig. 5.2 on page 125, the network has formed allocat-

ing IP addresses in the 192.168.0.0/24 range to allow the hosts to communicate

directly, this process could occur through either DHCP or static configuration as

described in Chapter 4. The only network interfaces offering Internet connectivity

reside at the root host, this means that in this example all routing information is

disseminated downwards, therefore no routes are advertised back up.

In Fig. 5.3 on the previous page, the MAP network has converged, so every

host in the network has a view of the available Internet connectivity in the net-

work, as well as the necessary routing information to reach the gateway. To sup-

port this, it can be seen that H1, has randomly allocated the additional subnets

172.19.1.0/24 and 172.32.4.0/24. The additional subnets and the appropriate

connectivity information is then passed on to hosts, H2 and H3. H2 does not

have any dissemination enabled interfaces, once the update from H1 has been

processed, H2 stops. H3 has an additional dissemination interface so it must

re-broadcast the MAP update. Before H3 performs the broadcast it must first

configure itself according to the update it received. This process includes de-

serialising the update packet, and adding each of the subnets that were provided

by H1 with the addresses and rules for the appropriate routes to access H1’s Inter-

net connectivity, as shown on the right hand side of Fig. 5.3 on the previous page.

The default routing table has all the appropriate routing information included,

for each subnet, while table 200 and table 201 only contain the necessary routes

for the subnet they refer to. As H3 has a dissemination interface, the routing and

rules become slightly more complex as H3 also requires hosts connecting via eth1

(H4 and H5) to be able to access wan0 and ppp0 at H1. To do this, two more

subnets are randomly allocated by H3 for eth1. As H3 has no direct Internet

127

MAPD

send(request, update)U1 Un

Un+1 Un+2

...

modify (address, route, rule)

notify (address, route, rule)

load_config()

Update Queue

Resource
Management

Configuration

Network
Interface

Interface
Handler

libnl-route

Aggregation
Logic

Figure 5.4: The basic architecture for the MAPD implementation.

connectivity, and is relying on H1, the routing tables for these connections are

already available and simply need to be augmented with the additional subnets,

as well as installing the corresponding rules to forward between the two subnets.

A new update packet is then created by H3 and broadcast onto eth1, allowing

H4 and H5 to configure themselves in the same way as H3 in stage one.

Each host implements Network Address Translation to avoid the complexity

of introducing an additional routing protocol over the top of the existing network

infrastructure, this however is not out of the scope of a potential implementa-

tion and could reduce the performance overhead required to forward a packet at

each hop in the MAP network. Furthermore, the MAP based approach could

be incorporated into a routing protocol such as OLSR, however this limits the

deployability of the protocol in real world environments.

5.2.2 Architecture

The core of MAPD is shown in Fig. 5.4, this figure shows the main components of

the implementation and how they are interconnected. The source code structure

that corrseponds to this architecture diagram is presented in Table 5.1 on the

next page.

5.2.2.1 Host Configuration

Considering a multihomed host, the user may only want a single interface to be

configured for multipath or load balancing, alternatively, the user may not want

128

Component Source (.c & .h)

Aggregation Logic map
Resource Management link monitor
Interface Handler interface
Network Interface network
Utility util list queue config

Table 5.1: MAPD implementation components and the corresponding source
code.

to advertise on a particular network interface; for example, if the user connects to

a WiFi access point, by disseminating link information upwards to the gateway,

other MAP capable hosts connecting to the same access point could also access

the users primary network resource, such as their cellular interface. Considering

the economic and energy costs for some network interfaces this behaviour may

not be optimal. To account for this, the initial stage in the setup of MAPD is

configuring the interfaces and their associated properties. The policies described

by the MAPD configuration are applied independently and are not directly re-

lated to those defined by the User Policy Framework. There are two primary

behaviours that are configured before MAPD starts, the first is configuration and

the use of an ignore list, this is the list of local network resources that the user

does not want to be touched or configured by MAPD, this could include expensive

links that the user wants exclusive access to, or if a tunnel is configured, the user

may only want to advertise the tunnel interface as opposed to the raw interface.

The second key configuration property is the dissemination list, this is the list of

interfaces that the user wants to advertise their network connectivity options on

to. This could be the Bluetooth or USB network interfaces on their mobile de-

vices to improve the connectivity options of their own Personal Area Network, or

the WiFi interfaces if the user wants to share their connectivity with others. The

use of the dissemination and ignore lists provides an additional benefit of being

able to change the topology of the overlay network. By default if all interfaces

are included as acceptable for dissemination a mesh topology will form. Previ-

ous research has shown that mesh topologies are not always optimal for mobile

networks [110], this is especially true of larger networks. If the MAP network

is operated by a single entity, such as a fire service, the dissemination interfaces

can be configured such that a tree topology is formed as the route overlay. The

configuration component uses libconfig [80] to provide a simple format for defin-

129

Node
Local Information

Input

Request Update

Physical Resources

Virtual Resources

Local Process

Resource Manger

Aggregation Logic

Network Interface

Receive Send

Output

Update Request

Figure 5.5: The basic flow of data from the network interface and resource monitor
in the MAPD implementation.

ing and processing the required data. The interaction between the configuration

component and the aggregation logic is shown in Fig. 5.4, the configuration is

loaded and imported into the aggregation logic as soon as the daemon starts.

5.2.2.2 Interface Lists

The core data structures for MAPD, consists of two lists, a list for physical inter-

faces such as WiFi (wlan0), Cellular (ppp0) or Ethernet (eth0), and a list for the

virtual interfaces representing the indirect network resources, from hosts offering

Internet access. Fig. 5.5 presents a diagram of how these structures interact with

the components within the MAPD software, furthermore Listing. 5.1 on the next

page presents a minimal representation of the associated data structures which

can be found in src/interface.h . The physical list contains direct network

resource, and is therefore filled with data in the form of the DirectResource

structure, while the virtual list represents indirect network resource, it is pop-

ulated with data in the form of the IndirectResource structure, as shown in

Listing 5.1 on the next page. It is important to note that a network tunnel (either

layer two or three), is still considered to be a physical interface as it is directly

associated with the host.

130

1 struct NetworkResource {

2 int type;

3 uint8_t index;

4 char name[IFNAMSIZ];

5 uint32_t address;

6 uint32_t netmask;

7 uint32_t gateway;

8 uint32_t broadcast;

9 uint32_t metric;

10 uint8_t table;

11 };

12

13 struct DirectResource {

14 struct NetworkResource super;

15 uint8_t advertisement;

16 List* virtual_list;

17 };

18

19 struct IndirectResource {

20 struct NetworkResource super;

21 uint32_t sender;

22 uint8_t depth;

23 struct DirectResource* attach;

24 struct DirectResource* out;

25 struct IndirectResource* linked;

26 };

Listing 5.1: Direct and Indirect network resource data structures that underpin
MAPDs topology representation.

131

To ease the implementation process we leverage polymorphism and inheri-

tance, therefore both DirectResource and IndirectResource data structures

inherit from the NetworkResource parent structure. This allows the different

types of network resource to be handled in the same way when possible, and be

processed differently when necessary. The physical list of DirectResource is

generated at startup, while the virtual list is then subsequently built around it.

Each physical interface has an internal list pointing to the virtual interfaces that

are associated with it. For example in the context of H1 in Fig. 5.3 on page 126,

eth2 is the DirectResource , while 172.19.1.1 and 172.32.4.1 represents

the IndirectResource as it provides the subnet for other hosts to reach ppp0

and wan0 . Therefore eth2 ’s virtual list, would contain both 172.19.1.1 and

172.32.4.1 . In the context of the IndirectResource for 172.19.1.1 , the

sender field would be empty, as the network resource is local. The depth field

would be 0, as there are no hops inbetween eth2 and ppp0 . The attach vari-

able would point to eth2’s DirectResource , while the out variable will point

to ppp0 ’s DirectResource . The linked field is not used, as H1 does not have

access to any indirect network resource. In the case of H3, the linked field for

the indirect resource 172.45.9.1 would point to the structure for 172.32.4.3 .

As before, the attach field would still point to eth1 , while the out field points

to eth0 , the sender field would be set to 192.16.1.1 and the depth would be

incremented to one.

5.2.2.3 Resource Management

The resource management component actively monitors the state of the local

network interfaces on a host. The monitoring process is achieved through the

use of libnl’s route module, which provides a simple interface to the routing sub-

sytem in the Linux kernel. The resource management component is responsible

for initially pre-loading the physical interface list with the local network inter-

faces, if a new Internet connection is added or an old connection is removed the

resource manager captures the change and adds it to a queue to be processed. To

obtain these messages from the Linux routing subsystem, the resource manager

is launched as a thread, registering itself for updates from the libnl-route library.

While the resource manager is running, it actively monitors all of the available

network resource, at each layer, from link layer MAC address, to network layer

132

IP addresses and finally network layer routing, filtering for default routes. The

resource manager focuses on being provided with a new default route to identify

Internet connectivity. If the link address, network address or Internet connection

update was added by MAPD itself, as opposed to an external change in system

state, the update is ignored when it is passed on to the aggregation logic, which

compares all local updates to the current set of known network information.

5.2.2.4 Network Interface

The networking component is responsible for sending and transmitting the con-

nectivity information in the form of MAP update packets. For each interface that

the user is interested in receiving updates on, a request packet is sent out, sub-

sequent request packets are transmitted periodically until a response is received.

Once an update packet is received, a flag is set indicating that MAP capable

hosts exist on the link. The interaction with the network is presented in Fig. 5.5

on page 130, showing how requests and update packets are processed and subse-

quently move through the system. When a request is received, an update packet is

sent back to the requesting host, containing the known network resources. When

an update is received, the data structures containing known information are first

updated, then the update is re-broadcast onto the other available advertisement

interfaces.

5.2.2.5 Aggregation Logic

The aggregation logic essentially provides the glue between the resource man-

agement and networking components. The core of the aggregation logic is built

around a blocking queue, whenever the resource management or network interface

components have an update regarding changes to the available network resource,

this is added to an update queue with the associated information, including the

type of update and an instance of the update object, for example the default

gateway that was added or a copy of a deserialized update packet. The aggrega-

tion logic simply processes the update and passes the information to the interface

handler, which subsequently makes the appropriate requests to libnl-route, which

in turn adds or removes the addresses and routes as is specified by the update.

133

5.2.3 Resource Pooling

In Chapter 2 a wide range of resource pooling and bandwidth aggregation tech-

niques were introduced. To this end, by exposing a set of IP addresses any of

the techniques should theoretically be applicable. In this section we discuss two

approaches that have been implemented and tested within MAPD, including load

balancing and MPTCP.

5.2.3.1 Load Balancing

As MAPD is running on top of the Linux network stack, applications will not

take advantage of the additional links that are exposed, regardless of whether

they are direct or indirect. To support load balancing, it is not enough that

the default routes are added to the default routing table, as well as their own

routing table for the subnet. Load balancing in Linux 3.14 must be explicitly

defined by the user to take advantage of additional routes that are available. If

MAPD is configured to support load balancing at compile-time, this process is

automated. When a default route is added to the host, whether it is a direct

or indirect network resource, MAPD identifies this and creates a load balanced

default route with a zero priority so it will always be used first. If the load

balanced default route already exists, MAPD adds the new default route to the

load balanced route, and for route deletions the reverse happens deleting the

old default route. This process is limited by a race condition, when adding or

deleting a route from the load balanced default route, it is necessary to first delete

it, amend the available next hops and then re-add the route. During this time,

any TCP flows that are created will not be able to use the load balancer and

will fall through to the default route with the next highest priority. As the load

balanced default route uses priority zero, all other local routes configured by the

user must be set with a lower priority metric, so they are only used by the host

when the load balanced route is not present. The limitation of load balancing

however, is that applications are still not made aware of the additional routes

they can use unless they are explicitly probing the routing tables and network

interfaces, this means that the utilisation of all the available network resource is

dependent on the creation of enough TCP flows to saturate the available links.

Creating a single TCP flow can at best only saturate a single link, assuming it is

network limited and not rate limited by the application. This limitation is solved

134

through the realisation of the resource pooling principle, MPTCP.

5.2.3.2 Multipath-TCP

As Multipath-TCP is effectively implemented as a sublayer between the appli-

cations socket and TCP, relying on the available IP addresses to establish new

subflows; integration with MAPD is therefore implicit, given the addresses, rout-

ing, and rules have been setup appropriately. This is a much simpler approach

than was necessary for load balancing to be implemented, with the added ben-

efit that MPTCP will take advantage of all the advertised network resource, no

matter how many connections are created by the application. Furthermore, the

applications don’t need to be modified to see this benefit.

In Chapter 4, we described a limitation of MPTCP regarding the maximimum

number of subflows that can be associated with a single pair of addresses and the

whole connection, which is set to 8 and 31 respectively when using the default “full

mesh” path manager. To address these problems, we have created a patch for the

MPTCP kernel module. This patch increases the core number of subflows that

the MPTCP kernel can support from 31 to 63. In addition to this core increase,

we have also modified the full mesh path manager, increasing the maximum

number of subflows that can be attached to a single pair of IP addresses, from 8

to 63. This patch will allow an end-host within a mobile network, communicating

with a single homed server, to create and use up to 63 subflows with any of the

proposed path managers, which could theoretically provide a significant increase

in performance.

The presented modifications to the MPTCP implementation are simple, based

on the 0.89 MPTCP release. The most significant change required is to the

mptcp.h include file, which contains the function mptcp for each bit set , which

is used to iterate over the set bits in a bitmask, identifying the subflows which

are associated with a connection. This function relies on ffs (find first set), which

returns the index of the first bit set in the provided bitmask. This function will

not work for a bitmask greater than 32 bits (on a 32 bit architecture). Therefore

we split the ffs operation into two components, first the bitmask is compared to

the maximum value for a 32 bit unsigned integer, if it is less than, the ffs func-

tion can safely be used on the lower half, returning the correct answer. If the

lower half of the bitmask is equal to the maximum possible value, we run ffs on

135

the upper half, adding 32 (for the 32 set bits in the lower half) to retrieve the

correct answer. This approach allows MPTCP to use a 64 bit bitmask, without

introducing any significant overhead when searching path indexes. The next step

is to increase the amount of memory allocated to the path manager, so there is

space available to store references to the additional subflows. Finally, in the Full

Mesh Path Manager, we increase the size of the bitmasks used from 8 bits to 64.

As the first bit is used to identify the metasocket for the MPTCP connection, 63

bits are left to identify subflows.

5.2.4 Implementation Decisions

In this section, we will focus on additional implementation specific behaviour

that is included in the MAPD software [175]. These behaviours are a matter of

preference as opposed to mandated functionality.

5.2.4.1 External Link Identifiers

As discussed in the Chapter 4, external identifiers are needed for each Internet

connection, to prevent the formation of loops in the overlay topology. When im-

plementing the protocol with IPv4 there are two options for choosing appropriate

identifiers, either the external IPv4 address or the MAC address, both of which

should be globally unique. There are however advantages and disadvantages to

each, with different use cases. Furthermore, all MAP enabled hosts in the network

should use the same type of external identifier, to ensure conflicts are discovered.

IP Address

When using the external IPv4 address for the interface, this IP may not be made

available to the host, typically WiFi access points and cellular networks offer

addresses in the private ranges, such as 172.16.0.0/16 or 192.168.0.0/24. In order

to obtain the external IP address a remote service is required, which can return

the IP that was used to connect, bypassing any NAT boxes that reside in between

the requesting host and the server.

MAC Address

As the MAC address is available locally, the implementation is much simpler and

the address can be retrieved through the same interface as the local IP addresses.

136

When using the MAC address however, this does not guarantee that the last mile

link is not the same. For example, two hosts at the edge of the MAP network

could connect to the same WiFi access point, which will generate a conflicting

external IP address but distinct MAC addresses. While this still helps remove

loops from the MAP overlay topology, it does not stop routes being advertised

with the same first-hop as a bottleneck, which may not provide any improvements

to bandwidth and add unnecessary congestion to an internal path in the mobile

network.

5.2.4.2 Heartbeats and Link Timeouts

In MAP, there is no strict rule defining hosts or gateways as may typically be

found in an infrastructure or Ad-Hoc network. Looking back to the use-cases

defined in Chapter 1, a number of smart phones may be connected to a Wireless

Access point on public transport. Each of these smart phones has access to

a cellular interface in addition to Internet connections made available by the

Wireless Access Point. In this scenario, if the user has made their cellular interface

available using MAP, all of the MAP capable hosts in the network can also use

this link, in addition to their own links and the links provided by the Wireless

Access Point. As this network topology is blurring the line between the definition

of a host and a gateway in an infrastructure based network, ensuring a link is still

available becomes more challenging. When a client disconnects from a Wireless

Access Point, the client side behaviour is reasonably well defined, typically when

using software such as WPA Supplicant [107] in a Linux environment, this process

will trigger the interface to remove its IP address, which in turn will register an

event with MAPD. On the access point side of the connection, the removal of

the client is not exposed in the same way. In order to detect these events, and

disseminate opaque link losses, MAPD periodically sends out heartbeats to inform

the network that the available links are still active and available to be used.

The heartbeat packets are not disseminated any further than the directly

connected subnets, to ensure that they do not end up flooding the network,

as each host would be replicating that nothing has changed for each hop. If

an update packet is received, this means that the host is still active and the

heartbeat timer is reset. The heartbeat timer is implemented as a thread that

runs when the MAPD process is first started, when the heartbeat time is reached

137

a flag is set, notifying the networking thread that an update must be sent out

on each of the dissemination links. To supplement the heartbeat packets, the

host also needs to react appropriately if they are not received. Handling the loss

of a host, essentially means that the MAP needs to remove all associated links.

Each indirect network resource that is made available to a host is given a link

timeout value, the link timeout thread then decrements this value periodically

and on reaching zero, the link is removed and the change is disseminated to all

other interested hosts. As the MAP is only interested in hosts that have direct or

indirect access to an Internet connection, hosts without any better information

will not send heartbeats, reducing the impact on the network. This lack of better

information is enforced by the fact that network updates are not disseminated

back on to the originating link.

As the MAP is UDP based, if a single heartbeat is not received, this may

not represent the loss of a host, and therefore the link timeout value should be

set to a multiple of the heartbeat time. Additionally the use of heartbeats also

proves to be useful if the internal network links have a high probability of loss,

as the update packets may be lost, allowing the heartbeat to amend for the loss

of an update. The heartbeat and link timeout values are configured by the user,

the optimal values for this process are highly dependent on the context of the

network, if there is a significant amount of churn in the network, such that hosts

are disconnecting and reconnecting regularly, then a high frequency of heartbeats

and a low timeout value would be better to ensure the information is propagated

as quickly as possible, alternatively if the network does not change regularly, then

a lower frequency of heartbeats and a longer link timeout value will be better as

to reduce the overhead on the network. The decision to use heartbeats in the

implementation was to create the most flexible and portable solution, alternative

approaches could have included hooking into the management of the network

interface, or having the hosts indicate that they are likely to leave the network due

to a drop in signal strength or through the user disabling an interface. Providing

hooks into the network interface would require significant implementation across

the technologies that may be used, such as WiFi, Bluetooth or Ethernet. With

some technologies such as WiFi Direct, the disconnection presents as an explicit

event, therefore if an implementation was link layer dependent, heartbeats could

potentially be removed.

138

5.2.4.3 Scalability

As the size of the networks that run MAPD grow it may not always be desirable

to advertise every Internet connection to every host. For example, if a host is

multiple hops away, or if one of the internal paths is of particularly poor quality

the benefit of using the indirect network resource may be negligible and use up

internal and external resource that a different host could make better use of.

Adding hard boundaries to a MAP mobile network would be a coarse grained

solution that could prevent multiple hosts from accessing network resource that

is pivotal to their communication needs. To prevent this, MAPD provides soft,

logical boundaries to network resource advertisement. This means while MAP

will have complete coverage of the entire network, not all links will be pushed

down if a host deems it not to be necessary. Furthermore, logically segmenting the

network will help to reduce traffic internally, for example hosts at opposite ends of

the mobile network will not use up all the bandwidth trying to reach an Internet

connection located at the opposite host. In the MAPD implementation we have

used the hop count to represent the point at which a link stops being advertised,

however this logical boundary is considered to be a pluggable metric. Alternative

metrics could include looking at the total cost of transmission between two hosts

in the network, this could be the bandwidth, signal strength or alternative metrics

such as power cost. Alternatively the metric used could be modified based on the

external connectivity metrics. A number of alternative metrics and measurements

that may be appropriate were presented in Chapter 3.

5.2.4.4 Supporting Multipath Unaware Hosts

A TCP Proxy can be used at each host to transparently add support for Multipath-

TCP. This has potential to break the resource pooling benefits when attempting

to combine multi-hop networks, as each TCP connection is split at a proxy, the

MPTCP connection would also be terminated. This can be circumvented by first

checking that the inbound connection to split is not already multipath enabled.

An example of the approach required to proxy only standard TCP flows is pre-

sented in Listing 5.2 on the next page. This iptables command filters on the TCP

options that are set before deciding to redirect a packet to the implemented TCP

proxy, via the TPROXY chain.

139

1 MPTCP_KIND =30

2 iptables -t mangle -A PREROUTING -p tcp --tcp -option \\

3 ! $(MPTCP_KIND) -j TPROXY --tproxy -mark $(TPROXY_MARK) \\

4 --on -port $(TPROXY_PORT)

Listing 5.2: Transparent redirect to MPTCP proxy for traditional TCP traffic.

5.2.4.5 API

In Chapter 4 the need for an appropriate Application programming interface

(API) was justified which allows any process within the system to understand how

packets should be marked or routed in order to implement policy routing or path

selection functionality. To provide a lightweight API in keeping with the rest of

the protocol implementation, the network resource and the appropriate routing

decisions are presented by the file system, similar to that provided by Linux’s

ProcFS. Given that an application has access to a network resource, a simple

lookup is all that is required to obtain the routing decision that must be applied

to the traffic class to enforce the specific route. The appropriate file structure for

obtaining the information is located at “/tmp/mapd”. From here, the application

checks either the “direct” or “indirect” sub-folders, using the IP address as the

lookup identifier for the network resources file. The file matching the network

resource that is being searched for then contains the appropriate routing table

for packets to be sent to. Using this approach an application can use iproute2 or

iptables to install a routing rule that specifies a certain percentage or a certain

type of traffic should always be routed via that network resource. This approach

while simplistic, removes the complex dependency on RPC-like techniques or

requiring the use of sockets to read and write the minimal information set that

is needed. This file is written as soon as MAPD acquires the routing information

and is subsequently destroyed when the route is removed.

5.3 User Policy Framework

In this section we will present in detail the implementation of the User Policy

Framework. In comparison to MAPD, the User Policy Frameworks base structure

is much more complex (detailed in Table 5.2 on the next page), as it is based

around a flexible and extensible modular interface for context monitoring and

140

Component Source

Main Logic main.c
Resource Management resource manager.c link monitor.c link loader.c
Network Measurements link metrics/ path metrics/*
Context Management conditions/* context library.c action.c
Route Allocation flow manager/* iptables/*
Path Selection path selection/* application rules.c
Utility util.c queue.c list.c

Table 5.2: User Policy Framework implementation components and the corre-
sponding source code.

path selection decisions. The purpose of the User Policy Framework is to provide

a rich and descriptive approach to defining how the available network resources

are used. This includes determining when the available network resources should

be used, and additionally provide a mechanism to optimally allocate traffic to

the best network resource. In the previous Section, MAPD presented a minimal

set of policies for controlling the usage of local network resources. This is limited

to specifying which interfaces can and can’t be used for advertisements. The

User Policy Framework goes beyond the simple nature of an access control list,

dynamically allocating and deallocating network resource for use, based on the

current context of the network and the device.

5.3.1 Resource Management

The Resource Management component has a number of roles that are similar in

terms of functionality to the MAPD resource manager. There are three main

tasks that the Resource Manager should carry out. In the absence of MAPD, it

should be able to identify and load the network resources with Internet connec-

tivity. Otherwise, if MAPD is running, the resource manager should interact ap-

propriately to understand the state of both direct and indirect resource. Finally,

the resource manager is responsible for obtaining current network measurements

regarding the quality of the available network resource.

5.3.1.1 Data Representation

The representation of the available network resource within the User Policy

Framework is simpler than MAPD, as we are only interested in network resource,

141

Context Callbacks
Link Monitor

(link_monitor.c)

Resource Manager
(resource_manager.c)

Network Resource
List *resources

struct network_resource

Main Process Logic
(main.c)

Link Loader
(link_loader.c)

Link Manager
(exec_link_manager.c)

Path Metric Interface
(path_metric_interface.c)

Standard Tools
(standard_tools.c)

Passive Tools
(passive_tools.c)

Link Configuration
File

Routing Subsystem

populate_path_metrics

network_resource_add
network_resource_deleteUpdate Queue

load_link_profiles

set_bandwidth
set_delay
set_jitter
set_loss

metric_change_cb

ifup
ifdown

update_list

Default Route
Added
Removed

modify_link

Figure 5.6: Implementation of the User Policy Frameworks Resource Manager
component.

142

the location is of little concern. However the list data structure used is more

sophisticated by introducing callbacks when network resources are added or re-

moved, which in turn triggers events within the core User Policy Framework and

the Resource Manager. When new resource is added, a thread is created to mon-

itor the quality of the network. The data representation is further augmented

with a configuration file, which describes the set of links that are available, and

how they may be used by the host. For example, when a network resource is iden-

tified, the name is compared to the information in the configuration file, which

specifies if the link layer technology used is cellular, WiFi, WiMax or Ethernet

etc. Furthermore, the configuration also specifies the multipath capability of each

of the links. The default behaviour is for all links to automatically be used by

multipath traffic, however using this configuration file, links can be set to act

permanently as a backup or to disable multipath behaviour entirely.

5.3.1.2 Link Monitor

The behaviour of the link monitor is a minimal implementation of the resource

manager that is provided by MAPD, as the User Policy Framework is only in-

terested in Internet connectivity the additional information regarding associated

subnets and the link layer can be safely ignored. As with MAPD the link monitor

obtains notifications from the kernels routing subsystem through the libn-route

library.

5.3.1.3 Link Manager

The link manager is an additional feature of the Resource Manager that is not

present within MAPD. The link manager has the ability to enable or disable a

link from being used, which is an important function for the context management

component of the User Policy Framework. Unconfiguring a specific link can help

to save additional power, in the case of WiFi the network interface will stop

scanning for access points reducing the cost associated with having the interface

attached.

5.3.1.4 MAP Interaction

The interaction with the MAP API is straightforward, simply requiring the Re-

source Manager to query the file structure that was previously discussed in order

143

to discover the routing table that is used to access a specific network resource.

Once this process has been carried out, the number for the routing table is stored

in the network resources data structure, which is then used by the User Policy

Framework when enforcing path selection decisions.

5.3.1.5 Network Measurements

The network measurement portion of the resource manager is implemented as

a simple interface, therefore the User Policy Framework has no interest in the

implementation of the tools or techniques that are used to obtain the measure-

ments. This approach allows the user or administrator to integrate or implement

the most appropriate approach depending on the context the device is used in.

This could be a combination of both passive and active metrics, or simply de-

termining the expected measurements based on the type of connectivity. For

the actual implementation, we have built interfaces to the iPerf, Abing [114] and

Ping utilities to obtain active measurements. Additionally passive bandwidth

measurements have been implemented monitoring the number of bytes that have

been sent and transmitted on each network interface. The measurements for

each network interface are requested periodically, which results in the previously

mentioned tools running with the output being parsed before being handed back

to the network metric interface. iPerf is heavyweight in terms of the amount of

injected traffic, Abing provides a much lighter estimation approach calculating

the bandwidth by observing the inter-packet arrival time of a small packet train.

Abing however is less accurate than iPerf, especially in the presence of packet

loss. As bandwidth estimation approaches improve, the network measurement

approach can be transparently upgraded without any core changes to the system.

5.3.2 Context Management

The context management component of the User Policy Framework is respon-

sible for controlling access to network resource based on the provided context.

Context is determined by a set of dynamically loaded, pluggable modules. These

context modules are paired with a descriptive policy set, which defines the users

requirements and needs in terms of how network resource should be accessed.

144

5.3.2.1 Context Configuration

An example configuration of contexts that the User Policy Framework can mon-

itor and react to is presented in Listing 5.3 on page 147. The configuration is

defined in JSON, providing a simple and extensible schema, which could be re-

trieved via RPC or AJAX from a context repository, or configured by a local user

interface. Listing 5.3 shows an example with two policies. The first policy de-

fines a set of conditions, when both conditions are true, the action to disable the

WiFi will be carried out. To meet both conditions, the WiFi interface must be

connected to the Access Point with SSID “PayPerMB AP” and have used more

than 250 Megabytes of data. Subsequently, the next policy definition causes the

cellular interface to turn on, when it is detected that the WiFi interface is no

longer in use. This configuration represents a typical model for mobile connectiv-

ity, with the additional factor that the handover process is also concerned with

the cost of the network interfaces and not only the availability. Furthermore, this

model could be extended with any of the proposed contexts such as location or

battery capacity.

5.3.2.2 Context Modules

The context modules are built separately to the User Policy Framework and are

dynamically loaded at run time by the context manager. To create a context

module, the compiled shared library must implement the interface from condi-

tion.h as shown in Listing 5.4 on page 148. The init condition t function is

used to initialise the appropriate data within the context module. The minimum

behaviour required during initialisation of a context module is to call the regis-

ter key cb t function, which passes the list of keys associated with the Context

Module back to the User Policy Framework. Each of the keys that are announced

specify a unique condition that the Context Module is able to monitor. For exam-

ple, in Listing 5.3 the key “ssid” refers to the module that checks which Wireless

Access point wlan0 is currently connected to. After registering all of the keys, the

context configuration specifying the users policies can be loaded. While loading

the context configuration, the parse condition t function is used to convert

the JSON formatted condition into its software representation. By allocating

this functionality to the Context Module instead of the User Policy Framework,

the Context Modules can make the condition definition as complex as required

145

without changing the User Policy Framework. Once the User Policy Framework

finishes the initialisation process, start context lib t can be called for each

Context Module, which is used to initialise the condition monitoring process. Fi-

nally, the condition cb t function is used to provide the context module with

a reference to the User Policy Framework, therefore when a condition is met an

event is triggered inside the framework, matching the condition to the associated

action.

5.3.2.3 Context Manager

The context manager provides the interface for the main program logic to start

and control the contexts that the User Policy Framework is interested in. The

first point of call for the Context Manager, is to load all of the Context Modules

at runtime that the User Policy Framework has been instructed to use. The Con-

text Manager takes each entry in the list of Context Libraries and sequentially

loads them, this process returns a handle for each dynamically loaded library

which is stored in the context library data structure. Given the handle asso-

ciated with the Context Module, the context library structure is populated by

attaching the functions defined in Listing 5.4 on page 148 to the related function

pointer. The list of context libraries is then used when loading the context con-

figuration file, as previously described by allowing each Context Module to parse

the appropriate conditions based on the provided key value.

5.3.3 Policy Handler

The logic within the policy handler represents the core of the path management

and network resource utilisation information. All of the events that the User

Policy Framework reacts to ultimately end up being addressed by this component.

Therefore it is imperative for the logic in this component to be understandable

and easily extensible. In Chapter 4, we presented a number of callback events

including:

• Condition Callback

• Resource Change Callback

• Metric Change Callback

146

1 [

2 {
3 "policy": {
4 "condition":[

5 {
6 "link_id": "wlan0",

7 "key_id": "bandwidth_allowance",

8 "value":"250Mb",

9 "comparator":"<"

10 },
11 {
12 "link_id": "wlan0",

13 "key_id": "ssid",

14 "value":"PayPerMB_AP",

15 "comparator":"=="

16 }
17],

18 "action":[

19 {
20 "do":"disable",

21 "link_id":"wlan0",

22 "mode":"soft"

23 }
24]

25 },
26 "policy": {
27 "condition":[

28 {
29 "link_id": "wlan0",

30 "key_id": "availability",

31 "value":"off",

32 "comparator":"=="

33 }
34],

35 "action":[

36 {
37 "do":"enable",

38 "link_id":"ppp0",

39 "mode":"hard"

40 }
41]

42 }
43 }
44]

Listing 5.3: Example of a policy configuration file specifying the interface wlan0
should stop being used when the bandwidth allowance of 250MB has been ex-
ceeded while connected to the AP with SSID “PayPerMB AP”.

147

1 typedef int (* init_condition_t)

2 (register_key_cb_t reg_cb , void *data);

3

4 typedef int (* register_key_cb_t)(char *key , void *data);

5

6 typedef struct condition* (* parse_condition_t)

7 (void *key , void *value , void *comparator);

8

9 typedef void * (* start_context_lib_t)(void *context);

10

11 typedef void (* condition_cb_t)

12 (struct condition *c, void *data);

Listing 5.4: The interface which context modules must implement in order to be
loaded and used by the User Policy Framework.

• MPTCP Callback

Each of these callbacks culminates in the policy handler providing an overall

network resource management and path selection algorithm. By designing and

implementing these events as a set of callbacks, the exhibited behaviour can be

segmented into a set of logical components, creating a series of simplified sub

algorithms that were presented as activity diagrams in Chapter 4. The overview

of the policy handler and the associated components is presented in Fig. 5.7 on

the next page; this figure presents the interaction between the callbacks triggered

by the User Policy Framework, path selection and route allocation components.

5.3.3.1 Application Configuration

An example configuration for the application context is presented in Listing 5.5 on

page 150, as with the context manager this is represented as JSON, and could be

obtained from an administrator or optimally an application specification repos-

itory. This figure shows the application specification i.e., what the flow should

look like that we are interested in matching against, followed by the requirements

of that application. At present the requirements configuration is based on the

associated network metrics, however cost parameters could easily be integrated.

The additional parameter that is introduced aside from network metrics, is the

multipath capability. This specifies for each application whether or not multiple

paths should be created when possible. This configuration property can therefore

148

Path Selection Interface
(pca_ps.c)

PCA Algorithm
(pca_ps.py)

Application
Specifications

Network
Measurements

Route Allocation
(route_enforcer.c)

Policy Handler
(policy_handler.c)

select_path
 - specification
 - measurements

select_path
 - optimal resource

iptables Interface
(iptables.c)

iptables CLI

iptables rule definition
(iptables_rule.c)

dport, sport
daddr, saddr

rt_table
chain

create_and_run_iptables

run_iptablescreate_rule

From
Resource Manager

Preloaded during init

recalculate_routes
 - metrics changed
 - link state changed
 - condition fired

Policy Framework
Events

Figure 5.7: Overview of the path selection process within the User Policy Frame-
work.

override the proposal for a socket option controlling this behaviour, which would

require all applications to be modified. There are a number of reasons why TCP

based applications may choose to avoid using multiple paths simultaneously, for

example, delay sensitive applications may prefer to use a single low delay path in-

stead of spreading traffic across multiple paths. Additionally application limited

flows that typically gain no benefit from resource pooling may also choose this

option. The User Policy Framework presents a unique use case for this feature, as

bandwidth estimation tools will only want to use a single link to obtain a realistic

representation of the available bandwidth, without having to disable multipath

or the additional links. Moreover, an alternative application may be looking to

estimate the total available bandwidth using similar tools, therefore, modifying

the application may not always be appropriate.

5.3.3.2 Route Enforcement

To allocate and enforce the routes that are chosen by the path selection algorithm

via the policy handler, we use iptables to ensure that packets are routed appropri-

ately. The route enforcement process relies on a simple interface to the iptables

149

1 [

2 {
3 "spec": {
4 "application": {
5 "daddr":"8.8.8.8",

6 "saddr":"",

7 "dport":"80",

8 "sport":"",

9 "proto":"tcp"

10 },
11 "requirements": {
12 "bandwidth":"1Mb",

13 "loss":"0.01",

14 "jitter":"30.00",

15 "latency":"80.00",

16 "multipath":"enabled"

17 }
18

19 }
20 }
21]

Listing 5.5: Example of an application specification configuration file.

1 IPT=$(which iptables)

2 $IPT -A OUTPUT -t mangle -j CONTEXT

3 $IPT -A CONTEXT -t mangle -j CONNMARK --restore -mark

4 $IPT -A CONTEXT -t mangle -m mark ! --mark 0 -j ACCEPT

5 $IPT -A CONTEXT -t mangle -j CONNMARK --save -mark

Listing 5.6: Example of the base iptables rules that are inserted for unspecified
applications.

1 $IPT=$(which iptables)

2 $IPT -I CONTEXT 3 -m mark --mark 0 -s 0.0.0.0 -p TCP \\

3 --dport 80 --daddr 8.8.8.8 -m conntrack --ctstate NEW \\

4 -t mangle j MARK --set -mark 200

Listing 5.7: Example of an iptables rule that allocates a flow to a specific network
resource

150

1 $IPT=$(which iptables)

2 $IPT -t nat -A POSTROUTING -m mark --mark 200 \\

3 -j SNAT --to -source 172.16.1.23

Listing 5.8: Example of iptables rule to implement source NAT to ensure correct
routing.

command line interface. In order for the correct routing to take place using this

approach, there are two key parts to the rules we install. Firstly packets must

be marked to match an IP rule pointing them to the correct routing table that

has been installed by MAPD, if it is running, otherwise the routing table used

matches the interfaces index. This first step pushes the packet into the correct

routing table, however as the source address will be incorrect at this stage in the

routing process, it must be modified to match the associated table. To ensure

this process is extensible with any number of rules, without conflicting with the

users own rules, we create a new iptables chain, appending a set of predefined

rules which are to be used by default flows that don’t have an application speci-

fication as shown in Listing 5.6 on the previous page. The rules in Listing 5.6 on

the previous page specify first that a new chain must be created, then for each

packet restore any mark that has been placed on the associated flow, if the mark

is 0, this means the application is unspecified, and therefore can be routed using

the default behaviour. Listing 5.7 on the previous page presents a specific rule

that will cause a flow to be directed over a specific interface. This rule is inserted

into the CONTEXT chain after line three (–restore-mark), if the packet matches

the configuration loaded from Listing 5.5 on the previous page, all future packets

belonging to that flow will be marked in the same way. We use the connection

tracking module to ensure we don’t break any single path flows that don’t sup-

port mobility, therefore the mark will only be established for the first packet in

a flow. The source NAT rule presented in Listing. 5.8, that circumvents strict

firewalls is created when the associated network resource is added to the User

Policy Framework, and is subsequently destroyed when the network resource is

removed.

151

MPTCP Controller
(mptcp_controller.c)

MPTCP Path Manager
({$KERNEL}/net/mptcp/
mptcp_contextaware.c)

MPTCP State
(mptcp_state.c)

recv_genl_context
 - CMD_CREATE_SUBFLOW
 - CMD_REMOVE_SUBFLOW

new_mptcp_event
 - CMD_REGISTER_SESSION
 - CMD_REMOVE_SESSION

mptcp_state_get_event_cbPolicy Handler
(policy_handler.c)

mptcp_event_cb
 - MPTCP_NEW_CONN
 - MPTCP_REM_CONN

mptcp_connection_remove_subflow
mptcp_connection_add_subflow

Policy Framework
Events

Route Allocation
Path Selection

Figure 5.8: Overview of the MPTCP user space controller and kernel space path
manager implementation and interactions.

5.3.4 MPTCP Controller

The MPTCP controller is essentially made up of two key components, a kernel

space path manager and a user space controller. The user space controller is sub-

sequently called from the User Policy Framework when path management changes

need to be made. Additionally the kernel space component is able to notify the

user space controller of any changes in state to multipath connections, such as

creation or deletion. Our custom implementation of the MPTCP path manager

is located in the MPTCP kernel module under mptcp contextaware.c, while

the user space component resides within the User Policy Framework source under

mptcp controller.c. An overview of how the MPTCP controller communicates

with the path manager and the User Policy Framework is presented in Fig. 5.8.

5.3.4.1 Communication

To enable communication between the user space MPTCP controller and the

kernel space path manager, we use the Generic Netlink protocol. Netlink can

152

be used to exchange information between the kernel space and user space, as

presented by the resource manager in the MAPD implementation, which uses

it to obtain notifications to changes in network addresses and routes. The base

Netlink implementation is limited in the number of applications that can be used

or represented, as each application must define a protocol type in include/lin-

ux/netlink.h , which would require the kernel to be re-compiled to introduce

changes. Generic Netlink provides a controller which dynamically allocates com-

munication channels to applications and services, using strings as an identifier for

registering a new protocol instance. Applications, services and modules can then

obtain a reference to the appropriate channel using the pre-determined string

identifier. Generic Netlink, therefore removes the limitations imposed by Netlink

allowing any application and kernel module to define their own interactions.

When the MPTCP path manager is loaded into the kernel, it registers the

“Context Aware” protocol family with the Generic Netlink controller, along with

the set of associated functions that may be called from the user space controller.

On top of the base path manager functionality, our implementation introduces

three additional functions. These functions include:

• register session with daemon

• remove session from daemon

• recv genl context

The register session function is called when a new MPTCP session is created,

and passes the identifying tuple for the MPTCP connection along with the iden-

tifying token for the session up to the MPTCP controller. The remove session

function performs the opposite action, passing the identifying token for the con-

nection and alerting the MPTCP controller that the socket is now closed. Finally,

the recv genl context function waits on messages from the MPTCP controller.

These messages contain the necessary information to create or delete an MPTCP

subflow. The required information includes the identifying token for the MPTCP

session, the remote hosts IP address and port, and the address of the local inter-

face which the subflow should be associated to. When a modification to the set

of subflows in a session is required, a structure containing the appropriate session

modifications is added to a list in the path managers data structure, which is

then added to a workqueue for processing in the future, when possible.

153

5.3.4.2 User Space

This MPTCP controller contains the appropriate control information for commu-

nicating with the kernel and receiving signals that connections are to be added

or removed. There are three important functions that are present within the

MPTCP controller, the first is the initialisation function that attaches to the

Generic Netlink protocol family that was registered by the kernel space path

manager. This initialisation runs as a thread that then waits to receive notifica-

tions from the path manager. The second is the ability to receive notifications

from the path manager, regarding MPTCP connections to add or remove. Fi-

nally, the third is to provide an interface which allows MPTCP connections to

be dynamically modified, adding or removing subflows on-the-fly. The MPTCP

connection tracking and subflow modification needs to interface with a user space

representation of the current set of MPTCP connections and the active subflows

that are associated with each connection, so the policy manager can react to the

set of proposed callbacks appropriately.

5.3.4.3 Kernel Space Modifications

In the MPTCP kernel module, each session is identified by a unique token. In

order for the user space controller to be able to reference and modify a pre-

existing MPTCP session, the logical approach is to provide the controller with

a copy of the token along with the identifying tuple for the session. Further-

more, the kernel space path manager needs to be able to obtain a reference to a

specific session purely using this token. This behaviour is not possible with the

current stock implementation of the MPTCP kernel module, we introduce this

functionality with a focus on limiting the required changes to the kernel module.

In mptcp ctrl.c, the function (mptcp hash find) provides an MPTCP socket

given the unique identifying token and a reference to the net namespace that is in

use. The standard implementation supports an optimisation in which only sock-

ets for the appropriate namespace are checked, however, when the path manager

is called from the user space module, this reference is not available. Therefore

to obtain the socket, we remove this optimisation, and export the function such

that the socket can be retrieved anytime from anywhere in the MPTCP kernel

module. It is important to note that changes to performance were negligible, in

terms of subflow creation time.

154

The MPTCP kernel module presents a number of signals that the path man-

ager is able to register, and subsequently react to the events when the signal is

fired. These include signals such as a new MPTCP session being created and ad-

dresses being added or removed. There isn’t however, a signal present for when

the MPTCP socket is closed, which is required to alert the MPTCP controller

that the session has finished and can be removed from the list. To accommo-

date this, we add the close sock signal to the mptcp pm ops structure in

mptcp.h . Then during the call to mptcp close in mptcp ctrl.c, if there is a

function registered to the close sock signal, it is fired allowing the path manager

to react appropriately.

5.4 Path Selection

In this section we will present the implementation of the Principal Component

Analysis (PCA) path selection algorithm. The overall goal for this algorithm is to

select the best possible resource for a specific application. The measurements for

each available network resource are normalized with respect to the requirements

of the application, therefore, we add an additional dimension to the selection

procedure, preventing the algorithm from choosing the best network resource,

and instead choosing the network resource that best matches the requirements of

the specified application.

5.4.1 Algorithm Implementation

The PCA approach presented in the design chapter can be summarised as follows:

1. Create quality matrix Q for Network Resources (NR).

2. Normalize Q against normalisation function M .

3. Calculate Correlation Matrix R from Q′.

4. Compute Eigenvalues and Eigenvectors of R.

5. Sort the set of Eigenvalues λ1, λ2, . . . , λn in descending order.

6. Select n-Eigenvalues to form a loadings matrix L.

155

7. Calculate the Contribution Rate (CR) and Cumulative Contribution Rate

(CCR) of each λi.

8. Given CR, Q′ and L, calculate utility scores for each NR.

9. Select NR with the highest utility score.

This process is broken down and presented in psuedocode in Alg. 1 and Alg. 2.

Alg. 2 demonstrates the general process, while Alg. 1 details the calculation of

the contribution rates. This figures illustrates the steps required to choose the

optimal network resource for a single application. Therefore the discussed steps

must be performed for each application that is presented in the application speci-

fication configuration file. The Python path selection algorithm takes two inputs,

a list of the available network resources and the associated metrics using the local

IP address as an identifier, and the application specification used during normal-

isation of the network resource. The path selection algorithm then returns the

IP address that should be used as the source address for routing the application,

which can subsequently be used to determine the appropriate routing table.

Algorithm 1 Algorithm to compute the contribution rates of eigenvalues

Input: E - Sorted list of eigenvalues.
Output: P - List of CR and CCR for each eigenvalue.

1: function calculate cr ccr(E)
2: ccr ← 0
3: cr arr ← []
4: ccr arr ← []
5: ev sum← sum(E)
6: for i; len(E) do
7: cr ← E[i]/ev sum
8: cr arr[i]← cr
9: ccr ← ccr + cr

10: ccr arr[i]← ccr

11: return cr arr, ccr arr

5.4.2 Integration

To implement the path selection algorithm, we use python to take advantage of

the flexible and easy to use linear algebra libraries available. Using the standard

156

Algorithm 2 PCA Path Selection Algorithm.

Input: Q - Quality matrix for the set of network resources.
A - Quality requirements for a specified application.

Output: P - Optimal path for A.
1: function PCA PS(Q, A)
2: Q′ ←normalize(Q, A) . Normalize Q with respect to A
3: R← corr matrix(Q′) . Calculate correlation matrix
4: eigenvalues, eigenvectors←det(R)
5: eigenvalues← sort(eigenvalues)
6: CR, CCR←calculate cr ccr(eigenvalues)
7: loadings←normalize ev(eigenvectors)
8: m← 0
9: while CCR[m] <= θ 1 do

10: m← m+ 1

11: scores← []
12: for i = 0 to len(Q′) do
13: Y ← []
14: for j = 0 to m+ 1 do
15: y ← []
16: for k = 0 to len(Q′[i]) do
17: y[k]← loadings[j][k] ·Q′[i][k]

18: Y [j]← CR[j] · sum(y)

19: scores[i]← sum(Y)

20: P ← max(scores)
21: return P

As discussed in Section 4.4, the principal components that account for 85%-95% of the total
variance are carried forward, this is represented by the variable θ.

157

Python development tools, it is possible to embed Python within the User Pol-

icy Framework’s C selection interface. In order to use a Python function within

the C-based User Policy Framework, it is necessary to create an interface us-

ing the Python development headers, turning the inputs of the algorithm into C

structures that Python can interpret and convert into objects. The real imple-

mentation for the PCA selection algorithm is found in pca ps.py. The presented

algorithm uses the NumPy library [111], to calculate the correlation matrix R

and subsequently calculate and normalize the eigenvalues and eigenvectors, pro-

viding a matrix of loadings that can be used to compute the optimal service. The

interaction between the presented PCA path selection algorithm and the rest of

the User Policy Framework is presented in Fig.5.7, in the previous section.

5.5 Summary

In this chapter we provided an in depth description of the main components of

both MAPD and the User Policy Framework. The MAPD was presented first,

detailing the key components and their interactions, including the resource man-

ager, network interface, interface handler and aggregation logic. These compo-

nents come together to form a realisation of MAP presented in Chapter 4. Subse-

quently, we presented the User Policy Framework, providing a detailed discussion

regarding management of the device and application contexts, specifying how

additional contexts can be easily introduced into the framework. Furthermore

the User Policy Framework required changes to the MPTCP implementation to

support a user space controller, to interact with the kernel space path manager.

Finally, the PCA based path selection algorithm was realized by integrating a

Python module into the C-based User Policy Framework. The available Python

interface will allow for additional path selection algorithms to be introduced eas-

ily.

158

CHAPTER 6

Evaluation

In this chapter, the initial focus is on evaluating the potential and overall im-

provement in network resource utilisation that can be achieved through the com-

bination of MAP and MPTCP. Subsequently we will demonstrate the potential to

further increase the users quality of service and experience through policy based

network resource management and path selection. We break the evaluation down

into seven components; first we investigate the efficacy of Multipath-TCP, ob-

serving how the Linux implementation performs with an increasing number of

subflows, across a set of proposed congestion control algorithms include, cubic

[69], LIA [135], and OLIA [99], we compare this to the current stock TCP imple-

mentation, establishing a standard TCP flow for each available path (6.1).

Following on from the initial evaluation of MPTCP, we begin to investigate

MAP and its associated behaviours within the network. We use NS3 with the

Direct Code Execution to run our real world implementation of MAPD inside a

simulation environment. The simulation is required to observe the time taken

and measure the overhead incurred by MAP as the size of the network increases

(6.2). Furthermore, we present real world results from the perspective of a single

device, investigating the time it takes to process and send an increasing amount

of network resource. We then examine the cost of running MAPD on a host,

with respect to the impact on battery life (6.2.3). Given the initial investiga-

tion of the MAPs overheads, we introduce active TCP traffic into the simulation

environment, comparing the performance of MAP to traditional single-path and

multipath approaches. Introducing traffic helps to demonstrate how the adver-

tisement of additional network resource can benefit the user, by load balancing

to spread traffic and in the case of MPTCP, sharing the available network re-

159

Protocol Congestion Control Flows

TCP CUBIC 1-63
MPTCP CUBIC 1-63
MPTCP LIA 1-63
MPTCP OLIA 1-63

Table 6.1: Experimental configurations for testing the performance and through-
put of TCP and MPTCP with a variety of congestion control algorithms.

source more fairly (6.3). Furthermore, we present a realisation of this experiment

on a physical testbed, using a combination of Raspberry Pi’s and OpenWRT

routers, further corroborating the benefits of our MAP approach (6.4). The final

investigation of the MAP implementation relies on observing and evaluating the

mobility properties. The mobility evaluation looks to demonstrate how MAP

can improve resilience and reduce handover time by giving the hosts access to

additional network resource that would not be traditionally available (6.5).

Continuing from the evaluation of MAP, we introduce the User Policy Frame-

work splitting the evaluation of the work into two components. First we demon-

strate how the resource management aspects can provide a fine grained approach

to controlling and allocating network resource based on the users demands (6.6).

We follow on from the proof of concept in resource management, to demonstrate

how the proposed path selection algorithm can be used to improve the quality of

experience received across a range of applications (6.7).

6.1 Multipath-TCP

Multipath-TCP was initially described in Chapter 2, the use of such protocols

has had a significant impact on the design and implementation of MAP. To

this end, we envisage the combination of MPTCP and MAP as one of the key

usage scenarios, allowing the announced network resource to make effective use

of resource pooling and mobility techniques. The purpose of this experiment is

to validate that the performance of MPTCP does not degrade as the number of

subflows increases. To achieve this we use the MPTCP full mesh path manager,

with the modifications proposed in Chapter 5 in order to use up to 63 subflows

simultaneously.

160

Provider Type Catagory Mb RTT STD Min Max

Three 3G HSPA 3.23 423.240 224.801 323.140 1510.172
Three 3G HSPA+ 7.49 61.939 14.836 43.600 138.000
Three 4G LTE 12.63 60.997 6.875 47.090 86.918
EE 3G HSPA 1.47 613.094 440.792 358.000 2343.000
EE 3G HSPA+ 6.67 107.835 9.525 96.200 127.000
EE 4G LTE 10.51 60.997 7.241 47.090 86.918
Eduroam WiFi 802.11n 24.80 21.227 17.441 2.277 112.697
Openzone WiFi 802.11n 18.22 43.751 29.257 25.431 171.549

Table 6.2: Captured real world network latency, used with NetEm and NS3 to
emulate or simulate real packet re-ordering across different MPTCP subflows.

ServerClient Gateway

Router 0

Router ...

Router N

10Gb

10Mb

10Mb

10Mb

10Mb

10Mb

10Mb

Figure 6.1: Topology for testing the potential throughput for increasing numbers
of MPTCP subflows.

161

6.1.1 Experiment

In Table 6.1 on page 160 we present the base set of configuration parameters for

the investigation of the scalability of MPTCP. For each combination of TCP or

MPTCP and the presented congestion control algorithm, we examine the through-

put achieved by establishing between 1 and 63 TCP flows, or MPTCP subflows,

each with its own dedicated link. The proposed topology for this experiment

is presented in Fig. 6.1 on the previous page, this figure shows a client which

initiates the TCP connection and sends bulk data to the server using iPerf [75],

the connection remains open for 60 seconds attempting to fill each of the network

links. Each of the network links connects to a router from 0 to n, which are

then aggregated at the gateway router. The gateway router, provides the server

with a single network interface, fixing the number of subflows that are created

to be equal to the number of network interfaces available on the client device.

The bandwidth between the gateway router and the server is sufficiently large to

prevent congestion, therefore a bottleneck is not introduced.

For scalability reasons, this evaluation is performed in NS3 with DCE, allowing

the real Linux MPTCP kernel module to be used. In the case of TCP, we use

iPerf, creating a number of parallel single-path TCP flows equal to the number

of gateway routers in the simulation topology. While for MPTCP, iPerf creates

a single TCP connection, allowing MPTCP to create the appropriate number of

subflows (one for each network interface). Regarding the configuration of the

MPTCP environment, we increase the TCP buffer sizes on each node to ensure

that there is enough space to aggregate up to 63 subflows. Furthermore, we

only consider the default MPTCP scheduler (lowest RTT first), which allocates

packets to paths based on latency and available buffer space.

To improve the external validity of the experiment, we introduce variable

network metrics. Firstly we include variable latencies, each of the network links

between the client and the router delays packets according to the network metrics

presented in Table 6.2 on the previous page, with a normal distribution related

to the standard deviation. Subsequently we observe links with heterogeneous

bandwidths, again using the network metrics we obtained in Table 6.2 on the

previous page. Finally, we combine both the latency and bandwidth heterogeneity

metrics, repeating the described experiment.

162

0 10 20 30 40 50 60
Number of Flows

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 in

 M
bp

s MPTCP - CUBIC
MPTCP - LIA

MPTCP - OLIA
MPTCP - BALIA

TCP - CUBIC

Figure 6.2: Throughput for TCP and MPTCP with an increasing number of
flows, each transmitted over an independent path.

1 2 4 8 16 32 63
Number of Subflows

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

bp
s)

MPTCP OLIA MPTCP LIA MPTCP CUBIC SPTCP CUBIC

Figure 6.3: Utilisation of an increasing number of homogeneous paths.

163

6.1.2 Homogenous Results

The initial MPTCP scalability results presented in Fig. 6.2 on the previous page

and Fig. 6.3 on the previous page show a promising foundation for the protocol;

however, initial observations demonstrate that MPTCP does not perform as well

as an equivalent single-path TCP approach in regards to link utilisation. In

Fig. 6.2 on the previous page, both MPTCP and TCP with the cubic congestion

control algorithm, scale linearly with the number of available homogeneous links.

Despite this, MPTCP slightly under-performs the traditional TCP, by a small

percentage. This similarity in performance provides a promising baseline for the

performance of the MPTCP implementation at scale, however, this does assume

that the TCP parameters at the host are tuned appropriately, ensuring the buffers

are large enough to manage a large number of subflows. Additionally, Fig. 6.2 on

the previous page demonstrates that the coupled congestion control algorithms

(LIA and OLIA) are not yet suited to a vast increase in the number of subflows

that are included in the shared calculation. Firstly this can be observed by the

haphazard variability in throughput for both LIA and OLIA in Fig. 6.2. When the

number of subflows established is approximately greater than 32, the congestion

control algorithms become increasingly prone to integer overflow, this prevents

the coupling of flows, causing the algorithm to fall back to uncoupled reno-like

behaviour.

The integer overflow in question occurs due to the shared nature of the cou-

pled congestion control approaches. As discussed in Section. 2.2, the congestion

window is summed for each of the subflows, as shown in Eq. 6.1 and discussed in

more detail in [135]. When the number of subflows associated with an MPTCP

connection increases, the likelihood of overflow increases. In addition to overflow,

this can also lead to imprecision in the calculations, which is amplified as the num-

ber of subflows increases. This is also observable in Fig. 6.3 on the previous page,

when looking at the utilisation of 63 subflows, as the variance in throughput is

greatly reduced. The fall-back to an uncoupled new reno, causes the throughput

of each subflow to increase, however the benefits of a semi-coupled approach to

congestion control, including balanced congestion and fairness at shared bottle-

necks will no longer function as expected. For a single TCP flow, the performance

164

1 2 4 8 16 32 63
Number of Subflows

0

2

4

6

8

10
Th

ro
ug

hp
ut

 (M
bp

s)
MPTCP OLIA MPTCP LIA MPTCP CUBIC SPTCP CUBIC

Figure 6.4: Utilisation of an increasing number of paths with heterogeneous la-
tency.

of all congestion control algorithms are comparable.

total cwnd =

(
i∑
i=1

snd cwnd α
i · best rtt

srtti

)2

(6.1)

6.1.3 Heterogenous Results

From the results presented in Fig. 6.4, it becomes apparent that there is little

impact from introducing heterogeneous latency across the available links, in com-

parison to Fig. 6.3 on page 163. When using the default MPTCP scheduler, the

subflow with the lowest round trip time fills its congestion window first, subse-

quently the subflow with the next highest RTT is used. When heterogeneous

bandwidths are used however, the change in total utilisation is much more signif-

icant as presented in Fig. 6.5 on the next page. When comparing heterogeneous

bandwidths to both bandwidth and delay heterogeneity, shown in Fig. 6.6 on the

next page, the impact is as negligible as the introduction of variable delay in

the homogeneous experiment. The impact of bandwidth heterogeneity degrades

the overall utilisation relative to the number of network interfaces that are used.

Despite the lower level of utilisation, MPTCP with CUBIC and either OLIA or

LIA still performs well for the number of flows created, and additionally provides

165

1 2 4 8 16 32 63
Number of Subflows

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

MPTCP OLIA MPTCP LIA MPTCP CUBIC SPTCP CUBIC

Figure 6.5: Utilisation of an increasing number of paths with heterogeneous band-
widths.

1 2 4 8 16 32 63
Number of Subflows

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

MPTCP OLIA MPTCP LIA MPTCP CUBIC SPTCP CUBIC

Figure 6.6: Utilisation of an increasing number of paths with heterogeneous band-
widths and latencies.

166

more flexibility than is available by default with TCP. Furthermore, iPerf and

other application layer software, is typically not built to support such a connec-

tivity model, therefore, the MPTCP based approach to utilizing the available

links is much more transferable and adaptable to a real world context without

modifications to the application.

Another important factor to note when looking at the result of combining

both heterogeneous latencies and bandwidths, is the impact of the bandwidth-

delay product on the TCP flows and their ability to increase their congestion

windows accordingly. According to the metrics presented in Table. 6.2 some of

the links have significantly large round trip times, in excess of 400 milliseconds

on average. If the round trip time is relatively large, as is the case in some of

the cellular networks, then the 60 seconds allocated for the experiment may not

be sufficient to provide an accurate measure of the available bandwidth. This

is due to the flow spending excessive amounts of time in the slow start phase,

which is designed to quickly estimate the available bandwidth in the network,

before moving into the congestion avoidance phase. For a new TCP flow, an

initial conservative congestion window size is chosen typically consisting of 2, 4

or 10 segments [26], this is doubled for each round trip time while in the Slow

Start phase. Therefore, in the case of the worst performing network path (EE

over HSPA) with a RTT of 613 milliseconds and a 1.47 Mb bandwidth, it will

take approximately 4.5 seconds to reach a congestion window size of 923KB based

on the optimal number of in-flight packets. Given the variable latency that has

been introduced into each path, in the best case scenario, the poorest path will

therefore spend at most 55.5 seconds in the congestion avoidance phase. In the

worst case scenario for the proposed experiments, the initial slow start phase is

estimated to take up to 8.5 seconds, which will still allow the poorest flows to

spend a sufficient amount of time in the congestion avoidance phase.

6.2 MAP Behaviour

For the evaluation of MAP, we first consider the impact that the protocol has on

a variety of different network topologies. The different network topologies we will

investigate are derived from a tree, such that there is always a root node aiming

to disseminate its information, to all the child nodes. In the NS3 environment, we

167

Exp Name Description Nodes Stride Gateways

(a) Flat Network 1-128 128 1
(b) Nested Network 1-128 1 1
(c) Flat Network 128 128 1-128
(d) Nested Network 128 1 1-128
(e) Variable Stride 128 1-128 128

Table 6.3: Network Topologies with an increasing number of Internet enabled
gateways, installed at the root node.

focus on devices with local WiFi connectivity between one another. There are two

key network metrics to investigate, the latency and the overhead. In this context,

latency refers to the total time taken for each node in the network to receive and

process the updates provided by the root node, referred to as convergence time.

The overhead is measured by observing the number of bytes and the number of

packets transmitted, for the network to converge, this is broken down into the

request and update packets that each host sends. Furthermore, we additionally

investigate the impact that MAPD has on a single host, with respect to power

consumption and the time required to process updates.

6.2.1 Overhead Results

In this section, we present the changes in overhead that have been obtained during

the presented behaviour experiment. Fig. 6.7 on the next page demonstrates that

the number of packets required to advertise network resource scales linearly with

respect to the number of hosts in the network. This is evident from Fig. 6.7a

on the next page and Fig. 6.7a on the next page, while the graph is curved the

number of hosts represented on the x-axis increased exponentially, resulting in

a linear relationship. In Fig. 6.7a on the next page, we present a flat network

with all hosts sharing a single link, the number of request packets is equal to the

number of hosts in the network, while the number of updates is approximately

doubled. In Fig. 6.7b on the next page, the number of requests is equal to the

number of network interfaces in the topology, as each host broadcasts on each of

its connected subnets. The number of updates transmitted also corresponds to

the number of network interfaces, as opposed to the number of hosts, this further

corroborates the results in the flat network in Fig. 6.7a on the next page, as the

number of hosts is always equal to the number of network interfaces. The rate of

168

2 4 8 16 32 64 128

Number of hosts

0

100

200

300

400

500

600

700

P
a
ck

e
t

C
o
u
n
t

(a) Flat Network (gateways=1)

2 4 8 16 32 64 128

Number of hosts

0

100

200

300

400

500

600

700

P
a
ck

e
t

C
o
u
n
t

(b) Nested Network (gateways=1)

2 4 8 16 32 64 128

Number of interfaces

0

100

200

300

400

500

600

700

P
a
ck

e
t

C
o
u
n
t

(c) Flat Network (hosts=128)

2 4 8 16 32 64 128

Number of interfaces

0

100

200

300

400

500

600

700
P
a
ck

e
t

C
o
u
n
t

(d) Nested Network (hosts=128)

1 2 4 8 16 32 64 128

Stride

0

100

200

300

400

500

600

700

P
a
ck

e
t

C
o
u
n
t

(e) Variable Stride (gateways=128, hosts=128)

Total Packets
Request Packets
Update Packets

Figure 6.7: Overhead of running MAPD on various network topologies.

169

growth in terms of overhead shown in Fig. 6.7c on the previous page and Fig. 6.7d

on the previous page, as the number of network interfaces rises is much lower in

comparison to increasing the number of interior network interfaces (inferred by

an increased number of hosts). By increasing the number of network resources

advertised, the number of packets required to represent this information slowly

increases. There are a number of reasons for such an increase, such as hitting the

MTU of the network requiring multiple packets for a single update, which in turn

may increase the number of collisions and subsequently retransmissions. This

however does not account for the slow increase that is presented, which suggests

improvements to MAPD could be made. Finally we present the variable stride

topology in Fig. 6.7e on the previous page, this figure effectively demonstrates

that the number of hops in the network (again, interior network interfaces) has

a more significant role than the number of advertised network resources, but

is secondary to the number of network interfaces due to the slower growth, in

comparison to Fig. 6.7a on the previous page and Fig. 6.7b on the previous page.

6.2.2 Latency Results

In Fig. 6.8 on the next page we present the results of measuring total convergence

time for varying networks. In Fig. 6.8a on the next page the stride of the tree

is larger than the maximum number of hosts, leading to a single subnet being

created for all communications. To this end, the time taken to converge is con-

stant no matter how many hosts are introduced into the network. It is expected

however that a significant raise in the number of hosts would slowly start to in-

crease the time required for a flat network, due to packet collisions. In the case of

Fig. 6.8b on the next page, including both transmission and processing, the time

required scales with the number of hops in the network taking approximately 2ms

per host, with no interference or cross traffic in the WiFi environment. When

the amount of announced network resource is increased in Fig. 6.8c and Fig. 6.8d

on the next page, there is still a linear increase for a constant number of hosts.

As the amount of network resource increases, the amount of time to process and

transmit grows. Firstly the number of packets required to transfer the entire

MAP update increases as the MTU is reached, secondly each host must spend

more time processing the update, creating the appropriate address, routes and

rules. As expected, the impact of increasing the number of announced network

170

2 4 8 16 32 64 128
Number of hosts

1.90

1.95

2.00

2.05

2.10

2.15

Ti
m

e
ta

ke
n

(m
s)

1e 3

(a) Flat Network (gateways=1)

2 4 8 16 32 64 128
Number of hosts

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
ta

ke
n

(m
s)

1e 1

(b) Nested Network (gateways=1)

2 4 8 16 32 64 128
Number of interfaces

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
ta

ke
n

(m
s)

1e 2

(c) Flat Network (hosts=128)

2 4 8 16 32 64 128
Number of interfaces

0.0

0.5

1.0

1.5

2.0

2.5
Ti

m
e

ta
ke

n
(m

s)

(d) Nested Network (hosts=128)

1 2 4 8 16 32 64 128
Stride

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e
ta

ke
n

(m
s)

1e 1

(e) Variable Stride (gateways=128, hosts=128)

Figure 6.8: Time taken for dissemination of MAPD to complete for various net-
work topologies.

171

Resources 1 2 4 8 16 32 64

Time 0.005 0.014 0.023 0.048 0.103 0.363 1.117

Table 6.4: Time taken in seconds for MAP to process an increasing number of
network resources from a single update.

HBPM 240 120 60 30 15 0 Base

Send 30.30 30.17 30.08 29.96 29.97 29.89 22.84
Recv 30.58 30.67 31.88 31.73 31.16 29.90 22.84

Table 6.5: Energy (Joules) expended by a Raspberry Pi 2 with WiFi connectiv-
ity, at different frequencies of heart beats per minute (HPBM). The base value
represents a device with no network connectivity.

resources has a more significant impact on the nested topology as opposed to

the flat topology. The convergence time for the variable stride topology is shown

in Fig. 6.8e on the previous page, we begin with the smallest stride of one, and

increase at a rate of 2n, as expected at each incremental value of n the number

of hops decreases significantly, leading to a large drop in convergence time.

6.2.3 Device Impact

When measuring the impact that MAPD has on a device, we focus our experi-

ments on the Raspberry Pi 2. Our first local view of MAPD, looks at how long

it takes the MAP implementation to process varying sizes of network updates.

For this experiment, shown in Table 6.4, we consider a single host that receives a

network update, with a pre-determined number of advertised network resources.

The time taken for each number of announced resources is measured ten times

and the mean value is presented. As we verify both additions and deletions of

network resource against the current state, we incur a computational complexity

of O(n2), which can be seen in Table 6.4. It is likely that in most real world mo-

bile networks, the number of advertised links would remain fairly small, limiting

the computational impact of the current algorithm. Furthermore, as the resource

advertisements are processed sequentially, even with a significantly larger number

of network resources being announced, the host will be able to use each successive

resource as soon as the individual entry in the advertisement has been handled.

The second device specific experiment presents the power consumption im-

plications for transmitting the additional MAP packets, which are necessary to

172

Raspberry Pi USB Hub
Network

Interfaces

Power Supply
DS2438 Circuit

(Battery Monitor)

USB PowerUSB DataGPIO Data

Figure 6.9: Topology for testing the potential throughput for increasing numbers
of MPTCP subflows.

maintain the appropriate routing tables to allow mobile devices to use any avail-

able Internet connection. The setup and topology of this experiment is the same

as the previous experiment; a single Raspberry Pi 2 is used, with a 2.4GHZ

802.11n USB WiFi adapter (TP-Link WN722N). A controlled MAP host is then

used to automatically send updates at the specified rates, and alternatively re-

ceive them when the Raspberry Pi is transmitting its own information. The power

consumption is averaged using the mean value over the course of five minutes,

and repeated ten times for each frequency of heartbeat. To obtain the informa-

tion regarding current draw and voltage, we use a bespoke monitoring solution

using the DS2438 Smart Battery Monitor [82], the setup of which is shown in

Fig. 6.9. The results of the power consumption experiment are shown in Ta-

ble 6.5. This table, shows the energy expended in Joules, for different frequencies

of heart beats per minute (HBPM), for both sending and receiving MAP updates.

Receiving and processing updates is more computationally expensive, increasing

the overhead on the CPU and slightly increasing the power consumption. At the

higher frequencies (120 and 240 HBPM) a small percentage of updates were lost,

reducing the CPU overhead and therefore slightly reducing the power consump-

tion. Assuming a conservative 2000mAh battery at constant load, at the highest

power draw, the user would lose approximately 12 minutes of battery life, from a

total of fours hours if the device and wireless were idle while not running MAPD,

as presented by the base value.

173

Scenario Name Transport Protocol Load Balancing MAPD

SP TCP No No
LB TCP Yes No
LB MAP TCP Yes Yes
MP MPTCP No No
MP MAP MPTCP No Yes

Table 6.6: TCP/MPTCP configurations used for each simulation scenario.

6.3 MAP Network Utilisation

In this section of the evaluation we will focus on the throughput that a mobile

network is able to achieve given a set of different approaches to Internet connec-

tivity, ultimately focusing on the benefits of MAP. To this end, there are five

key scenarios that are accounted for, which are shown in Table 6.6. Firstly we

observe the behaviour of standard TCP (SP) in the proposed network topolo-

gies. The case of TCP operating on its own is considered to be the current

default state, that we aim to improve on. The second scenario (LB) incorporates

load balanced routing in each of the hosts, still running standard TCP, this is

the optimal case for a single host, that is not currently supported by default in

mobile devices and requires advanced configuration in Linux operating systems.

In this experiment, load balancing refers to hosts spreading their traffic across

the set of available network resources, on a per flow basis. The third scenario

(LB MAP) combines TCP with both load balancing and MAP. In this case

the MAPD implementation is responsible for the configuration of load balancing

as opposed to being statically configured in the simulation; indirect connectivity

is advertised as described in Chapter 5. Therefore the load balancing achieved

spreads traffic across the local and remote external connectivity, as additional

network resource has been advertised by the MAP. The fourth scenario (MP)

focuses on MPTCP, the necessary routing and rules are configured manually in

the simulation configuration, allowing each host to use each of the directly con-

nected links incorporating them into an MPTCP connection. Finally in the last

scenario (MP MAP), MPTCP is combined with MAP, such that subflows are

created for each of the known Internet connections whether they are local or re-

mote, providing cooperative resource pooling throughout the mobile network. As

in Section 6.1 we tune the TCP buffers to ensure that they are large enough to

174

100

50

0

-50

-100

150100500-50-100-150

Figure 6.10: Visulisation of nested tree topology for MAP simulations.

handle aggregating multiple MPTCP subflows. Additionally, in this section we

exclusively use CUBIC, as it represents the closest match between single-path

TCP and MPTCP, as demonstrated in Section 6.1.

In this experiment, the base singlepath TCP (SP) scenario considers the cur-

rent use case when two or more hosts form a mobile network. In this context,

a single default route is used remaining constant for each connection. The Load

Balanced scenario (LB), refers to the closest current optimal real world imple-

mentation, in which the hosts are able to load balance over their available network

connections. This scenario represents a mobile network, which may be supported

by Ad-Hoc protocols such as BATMAN 1 or OLSR and the hosts are configured to

load balance across the set of locally available network interfaces . Subsequently

the addition of MAP (LB MAP) demonstrates the improvements that can be

achieved through the advertisement of additional network resource, and therefore

the benefits of sharing. This is augmented further when combining MPTCP with

MAP (MP MAP), which aims to show how resource pooling can increase the

utilization of the available network resource.

6.3.1 Topology

In the previous experiment in Section 6.2, describing the behaviour of the MAP

protocol, we focused on two distinct network topologies, nested trees with mul-

1In the case of BATMAN, hosts are able to annouce their intention to act as a gateway,
each host allocates a single egress network resource which may change over time, leading to a
simple load balanced solution.

175

40

20

0

-20

-40

6040200-20-40-60

Figure 6.11: Visulisation of flat topology for MAP simulations.

tiple hops shown in Fig. 6.10 on the previous page, and a flat network with a

single sharing link presented in Fig. 6.11. In terms of network connectivity, both

of these network topologies have been defined and used in multiple contexts. The

tree topology has been proposed by the MANEMO community [110], and has

recently been used in the context of sharing network resource [4]. The flat “shar-

ing link” approach was presented by Stiemerling et al. in [163]; which is used

to cooperatively stream live P2P video and retrieve web content. One of the

benefits of the MAPD implementation is the flexibility and configurability that

is enabled regardless of the network topology or infrastructure that it is deployed

upon. Each of these topologies has advantages and disadvantages in a mobile

scenario; for example, the flat network may simplify routing, reducing overhead

and convergence times as previously demonstrated. The tree (or mesh) based ap-

proach is more complex from a routing perspective, however it can also increase

the range of connectivity and provide flexibility in terms of connectivity options,

through multiple network access mediums, i.e. WLAN, Bluetooth, or USB.

Firstly we ensure that there is free network resource available, by limiting the

number of hosts that generate TCP traffic to 50%. To create traffic, we use a

patched iPerf3 for DCE, which allows multiple TCP connections to run sequen-

tially without blocking. Each designated host creates two parallel threads, each

of which creates ten flows sequentially of varying sizes including: 64KB, 512KB,

4MB and 32MB. A variety of flow sizes are necessary in order to demonstrate

the behaviour of TCP and MPTCP with both mouse and elephant flows, better

representing real world behaviour. The choice of sizes was informed by previous

176

2 4 8 16
Number of Devices

0.28
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure 6.12: Throughput from simulation of the tree based topology for 64KB
flows using iPerf.

work on MPTCP by Paasch in [121]. Furthermore, within each of the discussed

scenarios, we test small to medium size networks ranging between two and six-

teen hosts. The upper bound in terms of network size is limited by the simulation

environment. The local connectivity between hosts is limited to WLAN (802.11)

as with the previous experiments, while the Internet connections are dedicated

Point to Point links. Similarly to the previous MPTCP scalability experiment,

each of the Point to Point Internet connections is shaped according to the metrics

provided in Table 6.2 on page 161.

6.3.2 Results

In Figs. 6.12, 6.13, 6.14 and 6.15, we present the utilisation of the tree network

for different resource sharing approaches for the discussed set of flow sizes. Across

the presented figures, the primary observation is that the introduction of MAP

performs better with an increased size of flow.

For the 64KB flows size shown in Fig. 6.12, MAP with MPTCP performs

better than the alternatives when there are between 2 and 8 devices in the net-

work. When the number of devices is increased to 16, the performance of MAP

with MPTCP decreases by 3.3% in comparison to an independent MPTCP and a

decrease of 0.76% in comparison to single-path TCP. For two devices, MAP with

177

2 4 8 16
Number of Devices

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure 6.13: Throughput from simulation of the tree based topology for 512KB
flows using iPerf.

2 4 8 16
Number of Devices

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure 6.14: Throughput from simulation of the tree based topology for 4MB
flows using iPerf.

178

2 4 8 16
Number of Devices

0
10
20
30
40
50
60
70
80

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure 6.15: Throughput from simulation of the tree based topology for 32MB
flows using iPerf.

MPTCP shows a small improvement of 2.2% over the standalone MPTCP. In the

case of the 512KB flows shown in Fig. 6.13 on the previous page, the performance

benefit models that of the 64KB experiment as there is a small benefit between 2

and 8 devices (ranging from 2.29% to 0.4%), with a slight decrease in performance

for 16 devices of approximately 2.9%. While there is a small decrease in perfor-

mance under MAP when considering 16 devices for 64KB and 512KB flows, this

provides a strong argument for the proposed User Policy Framework combined

with the user space MPTCP controller, as subsets of high quality paths could

be selected, ensuring that MPTCP with MAP always outperforms standalone

MPTCP or single-path TCP.

When the file size is increased to 4MB as illustrated in Fig. 6.14 on the previ-

ous page, the benefits of using MAP with MPTCP become evident. Considering

the mean value, for each number of devices tested, MAP and MPTCP outper-

forms the independent MPTCP test by 8.5% for 2 devices, 31.2% for 4, 25.6%

for 8, and finally by 72% for 16 devices; this presents a phenomenal improvement

in performance compared to the 64KB and 512KB experiments. Observing the

32MB flows, the mean improvement of MPTCP with MAP compared to pure

MPTCP, is 17.5%, 5.1%, 3.7%, and 34.2%, with respect to 2, 4, 8, and 16 de-

vices. While these performance benefits are not as significant as demonstrated

by the 4MB flow experiment, this may be an artifact of the decrease in MPTCP

179

2 4 8 16
Number of Devices

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Th
ro

ug
hp

ut
 (M

bp
s)

LB Tree LB Mesh MP Tree MP Mesh

Figure 6.16: Throughput from simulation of the mesh based tree topology for
64KB flows using iPerf.

performance in a heterogeneous environment as shown in Section 6.1.

In regard to MAP with load balancing, the measured utilisation is generally

poor across all the simulated experiments, in comparison to the alternative con-

nectivity approaches. There are two factors attributing to this problem, first

the load balancing approach is a simple round robin, so slow links will become

heavily congested as flows are added to them. Secondly, due to the nature of the

topology, using MAP ensures that all the poor quality links and paths will also

be used, degrading the overall throughput per host. This is exacerbated as load

balancing without MAP ignores a number of interfaces, and due to the topology

and distribution of links and flows, leads to it favouring the higher quality links.

Enforcing the tree topology with the MAP protocol, appears to be detri-

mental and does not maintain a fair and altruistic approach to accessing network

resource; each additional hop away from the root node increases the total amount

of network resource available to a given host. For example, in our topology each

host has its own Internet capable gateway, therefore the root node will only have

access to its own resource, while sharing it with all child nodes. This could vastly

hamper the incentive for users to share their connectivity, and provides a justifi-

cation for the MAP to break the tree model. Disseminating the network resource

advertisements downwards as well as up towards the root of the tree, gives each

host in the network equal access to the available network resource.

180

2 4 8 16
Number of Devices

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Th
ro

ug
hp

ut
 (M

bp
s)

LB Tree LB Mesh MP Tree MP Mesh

Figure 6.17: Throughput from simulation of the mesh based tree topology for
512KB flows using iPerf.

2 4 8 16
Number of Devices

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

bp
s)

LB Tree LB Mesh MP Tree MP Mesh

Figure 6.18: Throughput from simulation of the mesh based tree topology for
4MB flows using iPerf.

181

2 4 8 16
Number of Devices

0
20
40
60
80

100
120
140
160
180

Th
ro

ug
hp

ut
 (M

bp
s)

LB Tree LB Mesh MP Tree MP Mesh

Figure 6.19: Throughput from simulation of the mesh based tree topology for
32MB flows using iPerf.

Due to our observations regarding the state of altruism in the tree topology,

we repeated the previous experiments comparing the traditional tree in which

network resource is exclusively pushed downwards, to a mesh model, in which

the resource is pushed to all hosts. As forming a mesh with MAPD provides

no benefits to the SPTCP, SPTCP-LB, or MPTCP modes of connectivity, they

will not be included in the comparison. The graphs presented in Figs. 6.16,

6.17, 6.18 on the previous page, and 6.19, demonstrates that enabling MAPD to

access any network resource in the tree topology, not only that belonging to the

parents, amplifies the previous results. For example, in the case of small 64KB

flows, increasing the number of network resources available decreases the mean

performance by 7.1% for 16 devices. On the contrary, for larger flows including

4MB and 32MB, increasing the amount of network resources presents a large

increase in the mean throughput achieved. Specifically in the case of testing

32MB flows, the mean throughput for 16 devices is increased from 31.47 Mbps

to 73.192 Mbps, leading to a total improvement of 132%.

For the flat “sharing-link approach”, the resulting graphs are provided in

Appendix B.2 on page 242, demonstrating similar improvements and behaviour

to the nested topology that has been presented. As the results from the sharing

link experiments corroborate those of the tree, this presents additional proof that

MAP is flexible and adaptable to variable topologies. Additionally, we include

182

Link Type Catagory BW (Mbps) RTT(MS) Loss (%) Jitter (MS)

L1 4G LTE 7.15 141.62 0.20 91.83
L2 4G LTE 10.72 65.84 0.03 14.94
L3 4G LTE 15.63 124.64 0.05 50.51
L4 4G WiMax 2.72 166.22 0.26 55.52
L5 WLAN 802.11 10.72 46.97 0.20 22.80
L6 4G LTE 12.01 77.31 0.13 21.43
L7 3G HSPA+ 6.49 115.32 0.14 31.06
L8 3G EVDO 1.19 328.02 0.27 151.28
L9 WLAN 802.11 18.32 39.92 0.25 16.82
L10 3G eHRPD 1.85 362.37 0.10 135.28

Table 6.7: Emulated link characteristics applied to network links in real world
deployment.

results for the nested topology, in which a single user initiates an iPerf session as

opposed to a set of users. This demonstrates that when using MAP, as the amount

of free network resource increases the net benefit to the user also increases.

6.4 MAP Real World

To evaluate the real world impact that our implementation has on the utilisation

of the network, we consider the testbed setup shown in Fig. 6.20. This topology

has been derived from the Fire Service use case presented in Chapter 1. The mo-

bile network is established using a range of 2.4Ghz and 5Ghz WiFi. Each Internet

connection in the mobile network is emulated based on a link in Table 6.7, which

have been drawn from real world measurements of a set of heterogeneous access

technologies in [24]. The difference in topology from the previously discussed

simulations instantly provides an alternative perspective regarding the benefits

of introducing MAP into a network. While the number of network interfaces is

kept fairly small, at only five, the hosts do not have direct access to their own

network connectivity, and are instead relying on access via the Ad-Hoc mesh net-

work. Initially we look at the throughput achieved by each host, with and without

MAPD running, presented in Table 6.8 on the next page. For each experiment,

iPerf runs 5 times over 30 seconds and the results are averaged; furthermore, we

compare each host establishing an independent MPTCP connection with each

host competing for network resource simultaneously. The presented network has

an aggregate mean throughput of 22.97Mbps, based on the links chosen from Ta-

183

User One

User Two

User ThreeUser Five

User Four

Infrastructure
Ad-Hoc
Internet Connectivity

L4 L5

L7 L8

L10

H1 H2

H3

Figure 6.20: Real world network topology for evaluating the benefits of MAP.

Single Shared

Host MP MAP MP MAP

U1 10.268 21.180 10.208 4.398
U2 1.736 14.948 1.466 2.920
U3 2.010 10.682 1.428 4.070
U4 1.746 15.640 1.462 3.846
U5 1.944 10.545 0.659 4.004

Total 15.228 19.238

Table 6.8: Host centric comparison of MPTCP with and without MAP in the
presented real world network.

ble 6.7. When the hosts are competing for bandwidth, this leads to a utilisation

of 66% without MAPD running, and 84% with MAPD. When each of the hosts

has open access to all the network resource using MAPD, the total utilisation

increases significantly compared to the MPTCP only approach, from 15.4% for

an independent MPTCP to 63.5% using MAPD.

Following on from the initial perspective on utilisation with MAP, we repeat

the previous NS3 simulations, analysing the behaviour for varying connectivity

approaches. For the SPTCP approach, each host will simply use the default route

of the gateway they are connected to, which has been underlined in Fig. 6.20.

When load balancing, each of the gateways will spread flows across their own

184

64K 512K 4M 32M
0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure 6.21: Throughput for the real world network, transferring a variety of file
sizes.

network interfaces. For MPTCP, as each of the hosts initiating the connection

do not possess multiple default routes, they will be unable to leverage the power

of multipath. When introducing MAP into the network, all of the hosts and

gateways are made aware of all the available Internet connectivity, increasing the

amount of network resource that can be accessed by both the load balancing and

MPTCP approaches. In keeping with the simulations, as before we observe TCP

flows of the following sizes: 64KB, 512KB, 4MB and 32MB. From the results

of this experiment, shown in Fig. 6.21, it is immediately obvious that the total

network utilisation is inadequate when the hosts are unaware of the additional

Internet connectivity that is available to them. Moreover, even without multipath

resource pooling, allowing the hosts to load balance over all the available Internet

connectivity improves utilisation in comparison to unaware load balancing of each

host. Due to the topology of the network, host based resource pooling technologies

provide no benefit to the traditional single-path approach. If the user devices

were to be extended with their own Internet connectivity, while utilisation would

increase it would be unlikely to surpass the presented load balancing approach,

as indirect Internet connectivity is ignored. When load balancing with MAP, the

total network resource utilisation was hampered as each host still attempted to

use the poor quality links. This leads to the high capacity links being neglected

as the hosts compete for bandwidth on the lower capacity links. Therefore, to

185

Time Event Hosts

0 Data Start U1, U2, U3, U4, U5
40 Connection H1, H3
70 Connection H1, H2, H3
90 Connection U6 (L1), H1
90 Data Start U6
130 Link Down H1 (L4)
150 Migrate U4 (H2 to H1)
190 Link Up H3 (L7)

Table 6.9: Description of mobility events, for users, hosts, and links.

optimally utilize the available connectivity in a mobile network, combining MAP

with MPTCP provides the best solution. This is evident as the benefit of load

balancing both with and without MAP will always be dependent on the number

of active flows and the ability to optimally allocate those flows.

6.5 MAP Mobility

When looking at the mobility aspects of the MAP implementation, the proto-

col itself does not provide any mobility management; however, each host in the

mobile network is provided with an improved view of the available connectivity.

Therefore, MAP puts the impetus on the host to take control of the additional

information, taking advantage of the additional resource advertised. Throughout

this thesis we have focused on MPTCP to provide the host with both resource

pooling, in this section we will demonstrate the benefits to host mobility that can

be gained from augmenting MPTCP with MAP. To this end, we will analyse and

evaluate the improved flexibility that MAP can provide in regards to MPTCP

mobility.

In this experiment we reuse the previous real world topology shown in Fig. 6.20

on page 184, however we extend the topology by introducing an additional user

device (U6), with additional network resource shaped according to L1 in Ta-

ble 6.7 on page 183. MAPD is configured to transmit heartbeats every second

(60 HBPM), while link timeouts are scheduled every two seconds. Each host

creates two long-lived TCP connections using iPerf, attempting to maximize util-

isation of the available bandwidth. In Table 6.9, we present the set of events

that occur during this mobility scenario. At T0, each of the user devices from

186

U1 to U5 initiate an iPerf connection to their own remote server, at this point

in time, the Ad-Hoc mesh supporting communications between H1, H2, and H3

is not connected. At time T40, H1 and H3 are able to connect establishing the

first network link in the mesh. At T70, H1, H2, and H3 are all able to com-

municate via the mesh network. Subsequently at time T90, U6 associates with

H1’s access point, including the network resource L1 into the mobile network,

before establishing its own iPerf connection. At T130, connectivity to L4 is lost

by H3. T150 sees U4 disassociate from H2, performing a hard handover, subse-

quently associating with H1. Finally H3 establishes a network connection via L7

at T190 adding additional resource to the mobile network. Finally at T210, the

experiment finishes.

6.5.1 Results

The outcome of the mobility scenario is presented in Fig. 6.22 on the next page.

The mobility events and the resulting MAP advertisements demonstrate the addi-

tional flexibility that is introduced through the dissemination of network resource.

In the case of U3 and U5 at T40, both devices are informed and subsequently es-

tablish MPTCP subflows across both L4 and L5, within two seconds of the mesh

link being brought up. This is mirrored by U1 creating a subflow for L8 which is

also announced on the mesh link; however, the throughput for U1 over this sub-

flow remains low. The same behaviour is seen for U2 and U4 at T70, both users

quickly react to the update creating the appropriate additional subflows. U1, U3

and U5 are slower to initialise an additional subflow after H2’s announcement of

L10, which is likely caused by the poor quality of the link and an increase in con-

gestion delaying the handshake. When U6 associates with H1 at T90, all other

user devices are quick to establish new subflows, with a sub second delay for U1 to

U5 to create subflows over L1. At time T130, H1 loses connectivity to L4, while

this action would force all flows using this network resource to stop, the removal

via MAP will force the flows to be closed faster than simply waiting for them to

time out. When U4 performs the hard handover from H3 to H1 at T150, new

subflows are re-created quickly using the new IP addresses provided by MAP, the

association with H1 itself takes an average of 5 seconds, from the disconnection

being triggered. After association, U4 first performs a DHCP request to obtain

an IP address for internal communications, which must occur before the MAP

187

0.0
0.5
1.0
1.5
2.0

T40 T70 T90 T130 T150 T190User 1

0.0

0.5

1.0

1.5

User 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

User 3

0.0
0.5
1.0
1.5
2.0
2.5

User 4

0.0

0.5

1.0

1.5

User 5

0 50 100 150 200
Time (Seconds)

0.0
0.5
1.0
1.5
2.0
2.5

User 6

Th
ro

ug
hp

ut
 (M

bp
s)

L1 L4 L5 L7 L8 L10

Figure 6.22: Network resource usage during the mobility scenario for each indi-
vidual host.

188

request is transmitted. In this case, MAP adds a small sub second delay before

the new TCP connections are created. Finally at T190, L7 is advertised by H3;

due to the lower delay and higher bandwidth, it is quickly incorporated into the

users MPTCP connection, increasing total throughput for each user.

It is interesting to note that the hosts in the mobile scenario, typically prefer

the connectivity that is closer to them, as demonstrated by U6 which utilizes

L1 much more than the faster L5. This is not always the case, and interesting

behaviours have emerged; for example, both U3 and U5 utilize L4 much more than

U1, despite it being an additional hop away. Furthermore, in this experiment,

H5 presented the most inconsistent throughput; which is likely to be caused by

the increased number of hops and subsequently increased internal congestion.

This experiment has shown that the benefits of MAP are not only limited to

increasing network throughput, but through advertisement of additional network

resource, hosts and their associated flows become more flexible. This additional

flexibility allows hosts to adapt more quickly to changes in the network; for exam-

ple, a gateway may change its point of attachment to the Internet. Typically, with

both TCP and MPTCP this would result in the connection breaking. With MAP

however, if a host or gateway in the mobile network changes its point of attach-

ment, the new resource is announced and subsequently triggers a new MPTCP

subflow to be created leading to a soft handover of indirect network resource. In

the context of a mobile network, this is incredibly valuable functionality as hosts

may change their point of attachment to the Internet regularly.

6.6 User Policy Framework

In this section we will present the benefits that can be drawn from both the

context awareness and the resource management components of the User Policy

Framework implementation. This functionality allows the user to describe exactly

how and when their available network resource should be used. The use of context

enables novel management approaches to be used such as preempting handovers.

We demonstrate that the User Policy Framework provides an enhanced approach

to resource management, improving on the simple schemes that are typically seen

today.

189

6.6.1 Preempting Disconnections

In Fig. 6.23 on the next page, a context module has been implemented to monitor

the signal strength associated with a WLAN connection. The context configu-

ration file for this event is presented in Listing 6.1 on page 192. This example

relies on the extended MPTCP user space path manager presented in Chapter 5,

allowing the User Policy Framework to dictate establishment of subflows.

In the results shown in Fig. 6.23 on the next page, the cellular interface is set

to act as a backup to be used when the WiFi interface disconnects. To determine

disconnection, we emulate signal strength using the model proposed in [40], with

the user moving at 1.4 Meters per second away from the WiFi access point.

When the signal strength reaches approximately -88dBm, the WiFi interface is

disabled. In Fig. 6.23a, the behaviour of the stock MPTCP implementation is

shown. When the WiFi interface disconnects it takes up to two seconds for the

cellular subflow to start transmitting data, leading to the throughput dropping

to zero for these two seconds, corroborating the results presented in [122]. In

Fig. 6.23b, the signal strength module is monitoring the connectivity information

for wlan0, as the quality drops, approaching the point of disconnection, a new

subflow is preemptively created over the cellular interface. As the cellular subflow

is created before the WiFi disconnects the throughput does not drop to zero,

improving the seamless nature of the handover and therefore the users experience.

6.6.2 Adapting to battery capacity

Mobile devices are limited in terms of battery capacity, therefore it is important

to not only maximize battery life, but to also effectively balance this while trying

to maximize the users quality of experience. Listing 6.2 on page 194 presents

the User Policy Framework configuration to adapt resource allocation based on

battery capacity. In the results shown in Fig. 6.24 on page 193, the user is

assumed to be watching a movie using Adaptive HTTP Streaming while mobile.

As the amount of bandwidth changes the quality of video that the user receives

adapts to minimize re-buffering. Both the WiFi and cellular interfaces have been

enabled to maximize the quality of the video stream that is being viewed. This

increases the total energy consumption required to view the video, and depending

on the length, the battery capacity could be run down prematurely. When using

190

0 10 20 30 40 50 60
Time (Seconds)

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (M

bp
s)

90

85

80

75

70

65

60

Si
gn

al
 S

tr
en

gt
h

(d
Bm

)Cellular WiFi Signal Strength

(a)

0 10 20 30 40 50 60
Time (Seconds)

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (M

bp
s)

90

85

80

75

70

65

60

Si
gn

al
 S

tr
en

gt
h

(d
Bm

)Cellular WiFi Signal Strength

(b)

Figure 6.23: Handover of WiFi to Cellular with (a) MPTCP and (b) Context
Driven MPTCP

191

1 [

2 {
3 "policy": {
4 "condition":[

5 {
6 "link_id": "wlan0",

7 "key_id": "wlan_rssi",

8 "value":"-88.00",

9 "comparator":"<="

10 }
11],

12 "action":[

13 {
14 "do":"enable",

15 "link_id":"ppp0",

16 "mode":"hard"

17 }
18]

19 }
20 }
21]

Listing 6.1: Policy file configuration to preemptively migrate traffic to the cellular
network interface before the WLAN interface disconnects.

192

0 20 40 60 80 100
Time (Seconds)

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (M

bp
s)

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Es
tim

at
ed

 B
at

te
ry

 L
ife

 (H
ou

rs
)

Cellular WiFi Current

(a)

0 20 40 60 80 100
Time (Seconds)

0
1
2
3
4
5
6
7
8

Th
ro

ug
hp

ut
 (M

bp
s)

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

Es
tim

at
ed

 B
at

te
ry

 L
ife

 (H
ou

rs
)

Cellular WiFi Current

(b)

Figure 6.24: Energy consumption while streaming video for (a) MPTCP and (b)
Context Driven MPTCP

193

1 [

2 {
3 "policy": {
4 "condition":[

5 {
6 "link_id": "any",

7 "key_id": "battery_capacity",

8 "value":"50%",

9 "comparator":"<="

10 }
11],

12 "action":[

13 {
14 "do":"disable",

15 "link_id":"ppp0",

16 "mode":"hard"

17 }
18]

19 }
20 }
21]

Listing 6.2: Policy file configuration to migrate traffic away from the ceullar
network interface when power consumption drops below 50%.

194

the full mesh path manager as shown in Fig. 6.24a, both interfaces are used

indefinitely for the duration of the video. In this state, the total current draw for

the Raspberry Pi, including WiFi and Cellular is approximately 0.96 Amps. At

this rate the device would only remain turned on for a little over 2 hours, given

the 2000mAh battery used. In Fig. 6.24b, the User Policy Frameworks context

modules identify that the battery capacity is too low and the current draw is

too high to maintain, this subsequently triggers an event causing the Cellular

subflow to be closed, allowing the network interface to fall into a sleep state,

dropping the average current draw from 0.96 Amps to 0.73 Amps, extending the

lifespan of the battery, from approximately 1.6 hours to 2.2 hours by the end of

the experiment. Due to the adaptive application context, reducing the available

bandwidth leads to a lower video quality as opposed to significant levels buffering

or broken connections. Decreasing video quality in order to increase battery life

may be beneficial to the user, especially if it enables the device to stay powered

until the next charge is available.

6.6.3 Migrating traffic based on priority

The core concept of this context is based on traffic priority, a user device may

decide that a specific application, or the application they are currently interacting

with should receive a higher proportion of the available bandwidth, in comparison

to the background applications. The User Policy Framework configuration for this

context is presented in Listing 6.3 on the next page.

In the results shown in Fig. 6.25 on page 197, an initial application (App One)

is in the background actively downloading content, this could represent receiving

software updates or syncing files with cloud storage. After 20 seconds the user

starts a second application (App Two), App Two then proceeds to download a

small 10MB file that the user is interested in, so should be downloaded as quickly

as possible. In Fig. 6.25a on page 197, both App One and App Two establish

MPTCP connections, creating subflows for both the WiFi and cellular network

interfaces. When App Two becomes active, both applications share the available

bandwidth equally, leading to App Two taking 18 seconds to download its content.

In Fig. 6.25b on page 197, a policy has been defined that states App Two should

receive priority over App One in terms of bandwidth. When App One starts, the

User Policy Framework is aware that both network interfaces are free to be used,

195

1 [

2 {
3 "policy": {
4 "condition":[

5 {
6 "link_id": "any",

7 "key_id": "prioritize",

8 "value":"current_application",

9 "comparator":"=="

10 }
11],

12 "action":[

13 {
14 "do":"handover",

15 "link_id":"ppp0",

16 "mode":"soft"

17 }
18]

19 }
20 }
21]

Listing 6.3: Policy file configuration to prioritise the users current traffic over
background traffic.

and subsequently creates subflows for each path. When App Two starts, the User

Policy Framework gives App Two priority by removing App One’s WiFi subflow.

This forces App One to only use the cellular interface, giving App Two exclusive

access to the higher bandwidth WiFi interface. This reduces the time taken to

download the users file to 11 seconds, an improvement of 38%.

6.6.4 Collaborative Policy Results

We now present a combination of policies that are applied to the devices in the

mobile network in Fig. 6.20 on page 184. The first contribution of this evalua-

tion is to show how sophisticated resource usage policies can be used to better

meet the needs of the user, by quickly adapting to the state of the device. The

second contribution illustrates how MAP can be leveraged alongside the policy

framework as the user devices react to changes in network resource based on the

dissemination approach. To this end we present three policies. H1’s first policy

196

0 10 20 30 40 50
Time (Seconds)

0

2

4

6

8

10

12

Th
ro

ug
hp

ut
 (M

bp
s) Cellular WiFi App One App Two

(a)

0 10 20 30 40 50
Time (Seconds)

0
2
4
6
8

10
12
14

Th
ro

ug
hp

ut
 (M

bp
s) Cellular WiFi App One App Two

(b)

Figure 6.25: TCP flows competing for network resource for (a) MPTCP and (b)
Context Driven MPTCP. App One represents background activity and App Two
represents the users active application.

197

0.75
1.00 Current (Amps)

65
85

RSSI (dBm)

10

50 Bandwidth Allowance (MB)

0 20 40 60 80
Time (Seconds)

2

6

10

Th
ro

ug
hp

ut
 (M

bp
s) L4 L5 L7 L8 L10

Figure 6.26: Context modules triggering policy decisions in a cooperative mobile
environment.

(P1) states that battery life should be extended, therefore when the capacity

drops to 50%, traffic should be moved away from the cellular interface if an alter-

native is available. H1’s second policy (P2) states that when the signal strength

of the WiFi connection degrades to -89dBm the backup connection should be

brought up. Finally H3 specifies an allowance policy, (P3), only wanting to send

50MB of data over the WiFi interface if the SSID is equal to DEMO AP TWO.

To show the impact of these policies each user device loads the network with a

single TCP flow, using iPerf. To ensure repeatability, the context modules read

emulated values for the battery capacity and signal strength. The results of this

experiment are shown in Fig. 6.26, with the values of the contexts being illus-

trated in the upper three plots and the trigger activation is represented by the

red vertical line. When the policy framework identifies that the link is no longer

available to be used, based on policies P1 and P3 (low battery and allowance

used), the update is disseminated to all hosts in the network. P3 then indicates

that the cellular link can be used again, as handover is preempted, the policy

framework at each host initiates a call to the MPTCP kernel module, indicating

that a new subflow should be created. In this evaluation we have shown how ex-

198

ploiting context to create descriptive resource management policies can improve

the potential for a mobile device to meet the users needs; enabling power saving,

resource pooling and pre-emptive handover on demand.

6.7 Path Selection

In this final evaluation, we present the quality of service and experience benefits

that can be drawn from the proposed path selection algorithm. Continuing with

the same real world testbed shown in Fig. 6.20 on page 184, making all connec-

tivity available using MAP. Furthermore, each of the users in the local network

runs an instance of the User Policy Framework implementation with the proposed

PCA path selection algorithm enabled. Initially we begin the path selection eval-

uation with a static analysis of the algorithm, subsequently we observe a real

time experiment with cross traffic and multiple applications.

During the static analysis of the path selection algorithm, the primary goal

is to compare the quality of service and quality of experience that an application

receives over each of the available network links. Then given this comparison,

demonstrate that for each of the applications and links, the PCA algorithm has

made an optimal selection improving the QoE or QoS the user receives.

In keeping with the evaluation thus far, the analysis of path selection and the

QoS and QoE results are derived using the same real network topology shown in

Fig. 6.20 on page 184. User Three specifies an application policy for a live RTP

video stream (A1) according to Table 6.10 on the next page. The RTP video

transmission is built on gstreamer [62], streaming the Big Buck Bunny stock

video in 480P. We run the policy framework with the PCA selection algorithm,

which selects L5 for A1 . This selection was tested and proven by calculating

the self similarity (SSIM) [152] of the video transmitted over all available paths,

which is shown in Table 6.11 on page 201, alongside the PCA utility score. In

this case, the link that provides the highest quality video stream according to the

SSIM measurement is L5, with a value of 0.704. With the presented context, this

demonstrates the optimal path selection decision. Subsequently, the second best

path in terms of QoE also represents the second choice from the PCA algorithm.

This pattern of successful ranking continues for the third best link, however the

fourth and fifth are switched in regards to the QoE against the path selection

199

Type BW (Mbps) RTT(Ms) Loss (%) Jitter (Ms)

A1 Video 8.000 50.000 0.010 30.000
A2 Sensor 0.010 300.000 0.00 300.000
A3 Unspec - - - -

Table 6.10: Application specifications and the links chosen from Table 6.7 on
page 183 for communication, according to the PCA algorithm.

ranking. This demonstrates that the PCA approach may not always provide

optimal and flawless results.

For the second experiment, User Two specifies a real time sensor application

(A2) according to Table 6.10. For this application the inter-arrival time of pack-

ets should be low, with each of the packets arriving within a second of the last, all

links are deemed to be suitable by the metric estimation, so a lower quality path

can be used. To measure quality of service we simply look at the percentage of

packets that arrive on time (AT). The application used as the model for A3, is a

bespoke lightweight UDP client, that transmits a small JSON packet containing

current GPS coordinates, a unique device identifier, and the current time stamp.

To determine the quality of service, in terms of packet arrival, we transmit 1000

packets.

In the final experiment, User One defines the need for the best overall path

for application (A3) i.e. the application requirements are left empty; however,

there is significant cross traffic from another application using L5 , introduced by

iPerf, reducing the perceived quality. The PCA algorithm subsequently allocates

application A3 to L7 . The quality of service received is defined in terms of the

bandwidth that application A3 receives. As L7 is limited by the introduction

of cross traffic, the estimated quality of each of the network metrics is reduced.

This helps to demonstrate that obtaining accurate and up to date network mea-

surements can help to determine the most appropriate network resource, ensuring

the success of the PCA path selection algorithm.

6.8 Summary

In this chapter, we have presented a range of evaluation and experimentation in

the mobile network domain. Initially we focused on the scalability implications

of the Linux MPTCP implementation. The scalability experiment demonstrated

200

Network Resources
App Value L4 L5 L7 L8 L10 Default Selected Best

A1
SSIM 0.384 0.704 0.610 0.334 0.378

L8 L5 L5
US 1.033 1.584 1.506 0.754 0.00

A2
AT 100 100 100 100 100

L8 L10 Any
US 0.565 0.255 0.026 0.816 1.384

A3
Mbps 2.683 5.73 7.267 1.828 2.080

L5 L7 L7
US 0.977 1,488 1.564 0.695 0.00

Table 6.11: Quality of service and experience ratings for a set of applications and
the calculated PCA utility scores (US), with the default and selected links.

that MPTCP is still limited in comparison to single-path TCP, with coupled

congestion control suffering from decreased throughput in comparison to CU-

BIC. Despite this, the flexibility and adaptability that can be achieved through

MPTCP in comparison to single-path TCP is significant; in many cases, single-

path TCP will not be able to utilise the same number of paths as the multipath

variant, without explicit intervention by the user or through modifying appli-

cations, negating the gap in performance. Subsequently, we presented the be-

havioural aspects of MAPD, specifically looking at packet overhead, convergence

time, power requirements, and processing time. While improvements could be

made to the performance aspects, as a prototype the negative impact appears

negligible, and the convergence time is minimal in comparison to the benefit

gained from access to the additional network resource.

We then proceeded to analyse the performance benefits of MAPD in compar-

ison to other connectivity approaches, in small to medium size mobile networks,

from two to sixteen hosts. This demonstrated that MAPD with MPTCP provides

sufficient gains in throughput in the proposed topologies, the more free network

resource that is available the more a host can gain from using MAPD. Despite

this, with small sizes of TCP connection, the overhead of using MPTCP over

8 to 16 links, outweighed the benefit of increased capacity. We then presented

the same problem in the real world, analysing the behaviour for a mobile net-

work based on the fire service use case presented in Chapter 1. The results of

the real world network corroborated our findings in the simulation environment,

demonstrating that MAPD with MPTCP becomes more useful as the size of the

TCP connection increases. We then proceeded to analyse the mobile network

under mobility conditions, in which hosts connect and reconnect to different ac-

201

cess points, and link state changes. We compared MAP and MPTCP to a tunnel

based network mobility model, this demonstrates that MAP provides more flex-

ibility, however it adds additional delay to a handover while the MAPD request

and update process occurs.

Finally, the evaluation perspective moved on from MAP, to observe how net-

work resource usage could be improved from the perspective of a single host,

evaluating the implemented User Policy Framework and path selection algorithm.

To this end, we demonstrated a variety of contexts that are supported by the ex-

tensible framework, which can help a user dictate and control how their network

resource is used, helping their device to meet their specific needs. The evaluation

concluded demonstrating the ability for our proposed PCA based path selection

algorithm to allocate applications described in terms of network requirements to

a specific link, in all cases, the PCA algorithm predicted the best possible route

based on network metric estimations.

202

CHAPTER 7

Conclusion

This thesis has presented the case for cooperative resource pooling in mobile

networks. The state of the art in resource pooling was surveyed presenting a

wide range of tools, techniques, and protocols that can be used to support a

cooperative approach. Furthermore, we presented the current state of the art

in terms of collaboration and cooperation approaches for both users and mobile

networks, which fundamentally did not address the problem domain, that can be

solved using resource pooling. We established a network resource sharing proto-

col, with a focus on facilitating cooperation, which combines with the MPTCP

resource pooling approach. This concept led to the design and implementation

of the Multipath Advertisement Protocol. The protocol implementation aims

to leverage multiplicity and diversity available in a multihomed mobile network,

bridging the gap between the single user resource pooling approaches and collabo-

rative Internet access that is currently of interest within the research community.

Furthermore, we augmented the MAP protocol with a policy framework and path

selection algorithm, in an effort to improve the utilisation of the available network

resource.

7.1 Summary

Looking back at the initial aims of this thesis, there were three core contributions

which included: a routing overlay to enable resource sharing in a mobile network;

an extensible policy framework to improve management of network resource; and

a path selection algorithm to improve the quality of experience. For the remainder

of this section, we present an overview from design to evaluation, of each of the

203

three core contributions:

1. Multipath Advertisement Protocol - The underlying focus for this

thesis has been to support the sharing of network resource between mobile

hosts. To facilitate this sharing, we designed and implemented a prototype

of the Multipath Advertisement Protocol (MAP). The implementation of

MAP (MAPD), provides each host with additional addresses allowing them

to communicate via overlay routes on top of the existing network. Therefore

MAPD is able to seamlessly support hybrid networks, bridging ad-hoc and

infrastructure, which may be using a diverse set of underlying routing proto-

cols such as AODV or OLSR. Given this implementation, we have evaluated

the overhead of MAPD, showing that the overhead scales linearly, with the

number of hosts, and to a lesser extent the number of network resources

in the network. Furthermore, we have demonstrated how MAPD can be

combined with MPTCP to enable cooperative resource pooling in a mobile

network. Initially we focused on evaluating the benefits of MPTCP at scale,

using different congestion control algorithms, in comparison to single path

TCP. The scalability of MPTCP, showed that there are still improvements

that can be made, to both scheduling and congestion control components,

as single path TCP consistently outperformed MPTCP, without competing

subflows. The following evaluation measured the throughput achieved in a

mobile network using a collection of different resource pooling approaches.

As the size of the TCP flows increased, the benefits of cooperative resource

pooling increased.

2. User Policy Framework - Typically hosts are not able to optimize or ap-

propriately manage the available network resource. Smart devices capture

a wealth of information, that can be used to better establish a model for

users connectivity, based on the users and the devices context. The policy

framework provides an extensible approach to the management and control

of network resource for a Linux based host. The policy framework sup-

ports the dynamic loading of context modules. These modules are able to

monitor and process specific contexts regarding the user, host, or network.

The ability to easily model, monitor, and subsequently respond to specific

contexts will provide an effective grounding for future research, facilitating

improved network management schemes. To provide improved management

204

of network resource, a bespoke MPTCP path manager was designed and

implemented that interfaces with the policy framework to determine how

subflows should be created. Using the policy framework, we presented a

proof of concept evaluation, showing the value of an extensible framework

using a subset of demonstrable contexts.

3. Path Selection Algorithm - As each of the hosts in a cooperative mobile

network are able to access additional network resource, the ability to select

the optimal path (or set of paths) for any specific application can improve

the quality of experience for the user. The path selection algorithm is

based on the concept of Principal Component Analysis (PCA), which is

able to reduce the dimensionality of the metrics an application may be

interested in. Additionally, PCA is able to remove the correlation between

variables. Disregarding the correlation between variables is of significant

importance, as it may distort and provide skewed results when determining

the most appropriate path for pre-specified application. We presented a

proof of concept evaluation, demonstrating that path selection can improve

the quality of experience or quality of service with respect to choosing the

default link in the network. Using the PCA based approach provides a more

sophisticated approach to path selection in comparison to more recent work

in the mobile network domain as presented in [4].

7.2 Future Work

In this section we reflect on the output and completeness of the presented work;

furthermore, as the concept of cooperative resource pooling, in the proposed

context is still in its infancy, we detail the future areas that will be of importance

when continuing to implement and improve on the presented cooperative resource

pooling approach. We will consider future work, looking at individual components

of the three main contributions: MAP, the User Policy Framework, and path

selection.

205

7.2.1 IPv6

The proposed design and implementation of MAP has focused completely on an

IPv4 testbed, the initial reasoning for this was testing and observing the perfor-

mance of the cooperative resource pooling approach using real world networks,

which have limited IPv6 support, especially in the mobile domain. While all

of the proposed techniques can be directly translated from IPv4 to IPv6, the

differences between the two protocols could lead to a more appropriate model

existing for IPv6. Our prototype implementation relies on using NAT at each

hop to ensure the routability of each of the additional network resources. The

use of NAT in an IPv6 context however is controversial, as it breaks the goal of

pure end to end connectivity. Making each host globally routable, via each of the

network interfaces in a multihomed mobile network could have a significant and

negative impact, and could require standardisation of subnet provision to reduce

the potential overhead. The alternative would be to take a tag based approach

[16], marking packets to be routed, relying on a bespoke MPTCP path manager

to manage the creation and deletion of MPTCP subflows, as opposed to being

able to transparently use an appropriate MPTCP path manager.

7.2.2 Coupled Congestion Control

One of the key observations made during the evaluation of MPTCP and MAP

showed the current inadequacies of using coupled congestion control in the pro-

posed scenario. Primarily without any competing traffic in the first experiment,

and more specifically without a shared bottleneck, MPTCP with CUBIC and

either OLIA or LIA both consistently underperformed in comparison to single

path TCP with CUBIC. As specified in [135], the goal of MPTCP is to obtain

at least the bandwidth of singlepath TCP over the best path. In the absence

of competing TCP flows this goal has been met, however it is also very conser-

vative, improving utilisation further should be possible increasing the benefits

of a multipath transport layer. When comparing CUBIC to OLIA across each

of the hosts, we anticipated CUBIC to consistently perform better, providing a

higher throughput, with OLIA demonstrating the power of coupled congestion

control by decreasing the range of throughputs achieved across the set of hosts.

The benefits of shared bottleneck detection however, was not consistently proved

206

and the hosts with access to more network resource typically obtained more than

their fair share of bandwidth, limiting the hosts with access to less. If the aim is

to allows multiple hosts to share network resource, this could open an avenue of

research to further improve congestion control algorithms for such a scenario.

7.2.3 Policy Definition

While the current policy definition is simple and descriptive enough to support a

wide range of user and device policies, managing conflict and policy prioritisation

has effectively been left as an exercise to the user. Building a system that is

able to intelligently prevent and resolve policy conflicts could be of significant

interest to the research community, with external applicability to a number of

areas. The first step to improving policy management in this regard is to in-

troduce a prioritisation system, such that, if two policies conflict simultaneously,

the higher priority policy will always succeed. Furthermore, an advanced pol-

icy definition should additionally have the ability to detect and prevent circular

dependencies of policies, in which a set of policies may continuously trigger one

another, preventing the system from stabilizing.

7.2.4 Path Selection

The design and implementation of the path selection approach, demonstrates

that selecting paths for applications can improve the quality of service, or qual-

ity of experience received. The pluggable approach to path selection algorithms

presented in the policy framework provides a good grounding for future research

in this area, allowing researchers to use the underlying implementation to easily

evaluate alternative approaches. Our evaluation while demonstrating the bene-

fits of our approach, did not provide results comparing to other path selection

approaches such as SAW as presented in [4]. Furthermore, path selection could

be used to better inform more choices about resource usage, instead of simply al-

locating applications to a single path; for example, the path selection could infer

the best subset of paths to use for an MPTCP connection, or identify which re-

sources are redundant in the current context. Finally extending the path selection

approach to include additional metrics such as availability, reliability, and cost

could further improve the users quality of experience beyond looking at the direct

207

quality of the network. Such an evaluation could help to cement the concept of

path selection for multihomed network resource.

7.3 Final Words

The overarching aim of this thesis has been to prove and demonstrate that an en-

hanced approach to allocating and managing network resource in a cooperative

environment can improve the quality of service for users in the network. This

problem domain has become more important as the demand for high bandwidth

applications, including serving media and providing cloud storage, has continu-

ously increased. The core infrastructure facilitating this demand is continually

improving, while at the edge, users typically rely on hardware upgrades to move

to the next generation technology, which may leave a gap between supply and

demand. To this end, it is becoming evermore important to make better use of

the network resource that is available, through cooperation, resource pooling, and

improved path management and selection.

208

Bibliography

[1] L. Abdullah and C. R. Adawiyah. Simple Additive Weighting Methods
of Multi criteria Decision Making and Applications: A Decade Review.
International Journal of Information Processing and Management, 5(1):39–
49, 2014.

[2] H. Adhari, T. Dreibholz, M. Becke, E. Rathgeb, and M. Tuxen. Evalu-
ation of Concurrent Multipath Transfer over Dissimilar Paths. In IEEE
Workshops of International Conference on Advanced Information Network-
ing and Applications, WAINA, pages 708–714, March 2011.

[3] B. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle. EIRGP - A
Fast Routing Protocol Based On Distance Vectors. In Proceedings of Net-
world/Interop, 1994.

[4] I. Alsukayti and C. Edwards. Multihomed Mobile Network Architecture.
In IFIP Networking Conference, pages 195–203. IFIP, 2015.

[5] G. Ananthanarayanan, V. Padmanabhan, C. Thekkath, and L. Ravin-
dranath. Collaborative Downloading for Multi-homed Wireless Devices.
In Proceedings of the 8th IEEE Workshop on Mobile Computing Systems
and Applications, HotMobile, pages 79–84, March 2007.

[6] Apple. iOS: Multipath TCP Support in iOS 7. https://support.apple.

com/en-us/HT201373. [Online; Accessed: 2015-07-31].

[7] U. Ashraf, S. Abdellatif, and G. Juanole. Gateway Selection in Backbone
Wireless Mesh Networks. In Proceedings of the IEEE Wireless Communi-
cations and Networking Conference, WCNC, pages 1–6, April 2009.

[8] R. Atkinson and S. Bhatti. Identifier-Locator Network Protocol (ILNP)
Architectural Description. RFC 6740 (Experimental), November 2012.

[9] B4RN. Broadband For the Rural North (B4RN). http://b4rn.org.uk/.
[Online; Accessed: 2015-07-31].

[10] A. Baird and N. Wright. Poor Access to Care: Rural Health Deprivation?
volume 56, pages 567–568. British Journal of General Practice, 2006.

209

https://support.apple.com/en-us/HT201373
https://support.apple.com/en-us/HT201373

[11] A. Balasubramanian, R. Mahajan, and A. Venkataramani. Augmenting
Mobile 3G Using WiFi. In Proceedings of the 8th International Conference
on Mobile Systems, Applications, and Services, MobiSys, pages 209–222,
New York, NY, USA, 2010. ACM.

[12] R. Bellman. A Markovian Decision Process. Indiana Univ. Math. J., 6:679–
684, 1957.

[13] M. Benoliel, S. Shalunov, and G. Hazel. Open Garden. www.opengarden.

net. [Online; Accessed: 2015-07-31].

[14] M. Benzaid, P. Minet, K. Agha, C. Adjih, and G. Allard. Integration
of Mobile-IP and OLSR for a Universal Mobility. Wireless Networks,
10(4):377–388, Jul 2004.

[15] G. Biczók, L. Toka, A. Vidacs, and T. Trinh. On Incentives in Global
Wireless Communities. In Proceedings of the 1st ACM Workshop on User-
provided Networking: Challenges and Opportunities, U-NET, pages 1–6,
New York, NY, USA, 2009. ACM.

[16] J. Boite, V. Conan, G. Nguengang, A. Ploix, and D. Gaiti. Lightweight
Tag-Based Forwarding Among Competing Gateways in Wireless Mesh Net-
works. In IEEE Wireless Communications and Networking Conference,
WCNC, pages 2157–2162, April 2012.

[17] C. Boldrini, M. Conti, F. Delmastro, and A. Passarella. Context- and
social-aware middleware for opportunistic networks. Journal of Network
and Computer Applications, 33(5):525 – 541, 2010.

[18] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
Techniques for Congestion Detection and Avoidance. SIGCOMM Comput.
Commun. Rev., 24(4):24–35, Oct 1994.

[19] J. Broch, D. Maltz, and D. Johnson. Supporting Hierarchy and Heteroge-
neous Interfaces in Multi-Hop Wireless Ad Hoc Networks. In Proceedings
of the International Symposium on Parallel Architectures, Algorithms and
Networks, ISPAN, pages 370–, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[20] L. Buttyán and J.-P. Hubaux. Stimulating Cooperation in Self-organizing
Mobile Ad Hoc Networks. Mob. Netw. Appl., 8(5):579–592, Oct 2003.

[21] Y. Cao, M. Xu, and X. Fu. Delay-based congestion control for multipath
TCP. In 20th IEEE International Conference on Network Protocols, ICNP,
pages 1–10, Oct 2012.

210

www.opengarden.net
www.opengarden.net

[22] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Pocket
Switched Networks: Real-world mobility and its consequences for oppor-
tunistic forwarding. Technical Report UCAM-CL-TR-617, University of
Cambridge Computer Laboratory, August 2005.

[23] Y. Chen, T. Farley, and N. Ye. QoS Requirements of Network Applications
on the Internet. Inf. Knowl. Syst. Manag., 4(1):55–76, Jan 2004.

[24] Y. Chen, E. Nahum, R. Gibbens, D. Towsley, and Y. Lim. Characterizing
4G and 3G Networks: Supporting Mobility with Multi-Path TCP. Technical
report, University of Massachusetts Amherst, University of Massachusetts,
Amherst, Massachusetts, U.S.A, Sep 2012. [Online; Accessed: 2015-07-31.

[25] J. Chroboczek. The Babel Routing Protocol. RFC 6126 (Experimental),
April 2011. Updated by RFCs 7298, 7557.

[26] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. Increasing TCP’s Initial
Window. RFC 6928 (Experimental), April 2013.

[27] Y. Chuang and K.-J. Lin. Cellular Traffic Offloading Through Community-
based Opportunistic Dissemination. In IEEE Wireless Communications
and Networking Conference, WCNC, pages 3188–3193, April 2012.

[28] S. Chupisanyarote, S. Kouyoumdjieva, O. Helgason, and G. Karlsson.
Caching in opportunistic networks with churn. In 9th Annual Conference on
Wireless On-demand Network Systems and Services, WONS, pages 39–42,
Jan 2012.

[29] Cisco. Cisco Visual Networking Index: Forecast and Methodology,
20142019, May 2015. Accessed: 2015-07-31.

[30] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 20142019, February 2015. Accessed: 2015-07-31.

[31] T. Clausen, C. Dearlove, and J. Dean. Mobile Ad Hoc Network (MANET)
Neighborhood Discovery Protocol (NHDP). RFC 6130 (Proposed Stan-
dard), April 2011. Updated by RFCs 7183, 7188, 7466.

[32] T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg. The Optimized Link
State Routing Protocol Version 2. RFC 7181 (Proposed Standard), April
2014. Updated by RFCs 7183, 7187, 7188, 7466.

[33] Connectify. Speedify. http://speedify.com/. [Online; Accessed: 2015-
07-31].

[34] M. Conti and M. Kumar. Opportunities in Opportunistic Computing. Com-
puter, 43(1):42–50, Jan 2010.

211

http://speedify.com/

[35] M. Coudron, S. Secci, G. Pujolle, P. Raad, and P. Gallard. Cross-layer
cooperation to boost multipath TCP performance in cloud networks. In
IEEE 2nd International Conference on Cloud Networking, CloudNet, pages
58–66, Nov 2013.

[36] J. Crowcroft, R. Gibbens, F. Kelly, and S. Östring. Modelling Incentives for
Collaboration in Mobile Ad Hoc Networks. Perform. Eval., 57(4):427–439,
Aug 2004.

[37] T. Davis, W. Tarreau, C. Gavrilov, C. Tindel, J. Girouard, and
J. Vosburgh. Linux Bonding. http://www.linuxfoundation.org/

collaborate/workgroups/networking/bonding. [Online; Accessed:
2015-07-31].

[38] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High-throughput
Path Metric for Multi-hop Wireless Routing. In Proceedings of the 9th
Annual International Conference on Mobile Computing and Networking,
MobiCom, pages 134–146, New York, NY, USA, 2003. ACM.

[39] N. Do, C. Hsu, and N. Venkatasubramanian. CrowdMAC: A Crowdsourcing
System for Mobile Access. In Proceedings of the 13th International Mid-
dleware Conference, Middleware, pages 1–20, New York, NY, USA, 2012.
Springer-Verlag New York, Inc.

[40] Q. Dong and W. Dargie. Evaluation of the Reliability of RSSI for Indoor
Localization. In International Conference on Wireless Communications in
Unusual and Confined Areas, ICWCUCA, pages 1–6, Aug 2012.

[41] Y. Dong, D. Wang, N. Pissinou, and J. Wang. Multi-Path Load Balancing in
Transport Layer. In 3rd Conference on Next Generation Internet Networks,
EuroNGI, pages 135–142, May 2007.

[42] T. Dreibholz, M. Becke, E. Rathgeb, and M. Tuxen. On the Use of Concur-
rent Multipath Transfer over Asymmetric Paths. In IEEE Global Telecom-
munications Conference, GLOBECOM, pages 1–6, Dec 2010.

[43] T. Dreibholz, R. Seggelmann, M. Txen, and E. P. Rathgeb. Transmission
Scheduling Optimizations for Concurrent Multipath Transfer. In Proceed-
ings of the 8th International Workshop on Protocols for Future, Large-Scale
and Diverse Network Transports, volume 8 of PFLDNeT, Lancaster, Penn-
sylvania/U.S.A., nov 2010.

[44] A. Dul. Global IP Network Mobility using Border Gateway Protocol. White
Paper, Boeing, 2006. [Online; Accessed: 2015-07-31].

212

http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding
http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding

[45] A. Dutta, S. Madhani, W. Chen, O. Altintas, and H. Schulzrinne. Fast-
handoff schemes for application layer mobility management. In 15th IEEE
International Symposium on Personal, Indoor and Mobile Radio Commu-
nications, volume 3 of PIMRC, pages 1527–1532 Vol.3, Sept 2004.

[46] A. H. Eden. Three Paradigms of Computer Science. Minds Mach.,
17(2):135–167, July 2007.

[47] P. Edwards. Trusted Mobile Platform. http://www.trump-india-uk.org/.
[Online; Accessed: 2015-07-31].

[48] E. Efstathiou, P. Frangoudis, and G. Polyzos. Controlled Wi-Fi Sharing in
Cities: A Decentralized Approach Relying on Indirect Reciprocity. IEEE
Transactions on Mobile Computing, 9(8):1147–1160, Aug 2010.

[49] P. Engelstad, A. Tonnesen, A. Hafslund, and G. Egeland. Internet Connec-
tivity for Multi-homed Proactive Ad-Hoc Networks. In IEEE International
Conference on Communications, volume 7, pages 4050–4056, June 2004.

[50] M. Ergen and A. Puri. MEWLANA-Mobile IP Enriched Wireless Local
Area Network Architecture. In Proceedings of the 56th IEEE Conference
on Vehicular Technology, volume 4 of VTC-Fall, pages 2449–2453, 2002.

[51] C. A. EU. Tasker: Total Automation for Android.
http://tasker.dinglisch.net/. [Online; Accessed: 2015-11-11].

[52] K. Evensen. Aggregating the Bandwidth of Multiple Network Interfaces to
Increase the Performance of Networked Applications. PhD thesis, Univer-
sity of Oslo, 2012.

[53] K. Evensen, D. Kaspar, P. Engelstad, A. Hansen, C. Griwodz, and
P. Halvorsen. A network-layer proxy for bandwidth aggregation and reduc-
tion of IP packet reordering. In IEEE 34th Conference on Local Computer
Networks., LCN, pages 585–592, Oct 2009.

[54] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. Hansen, and P. En-
gelstad. Improving the Performance of Quality-adaptive Video Streaming
over Multiple Heterogeneous Access Networks. In Proceedings of the 2nd
Annual ACM Conference on Multimedia Systems, MMSys, pages 57–68,
New York, NY, USA, 2011. ACM.

[55] K. Evensen, D. Kaspar, A. Hansen, C. Griwodz, and P. Halvorsen. Using
Multiple Links to Increase the Performance of Bandwidth-Intensive UDP-
based Applications. In IEEE Symposium on Computers and Communica-
tions, ISCC, pages 1117–1122, June 2011.

213

[56] X. Fan, H. Feng, and M. Yuan. PCA based on mutual information for
acoustic environment classification. In Audio, Language and Image Pro-
cessing (ICALIP), 2012 International Conference on, pages 270–275, July
2012.

[57] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID Separation
Protocol (LISP). RFC 6830 (Experimental), January 2013.

[58] D. Farinacci, D. Lewis, D. Meyer, and C. White. LISP Mobile Node. IETF
- Draft, January 2015.

[59] L. Fon Wireless. Fon. https://corp.fon.com/en. [Online; Accessed:
2015-07-31].

[60] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824 (Experimental),
January 2013.

[61] R. Fracchia, C. Casetti, C. Chiasserini, and M. Meo. WiSE: Best-Path
Selection in Wireless Multihoming Environments. IEEE Transactions on
Mobile Computing, 6(10):1130–1141, Oct 2007.

[62] Freedesktop.org. gstreamer: Open Source Multimedia Framework.
http://gstreamer.freedesktop.org/. [Online; Accessed: 2015-11-11].

[63] V. Fuller and D. Farinacci. Locator/ID Separation Protocol (LISP) Map-
Server Interface. RFC 6833 (Experimental), January 2013.

[64] L. Gao, G. Iosifidis, J. Huang, and L. Tassiulas. Hybrid Data Pricing
for Network-assisted User-provided Connectivity. In Proceedings of the
31st IEEE International Conference on Computer Communications, IN-
FOCOM, pages 682–690, April 2014.

[65] P. Georgopoulos, B. McCarthy, and C. Edwards. A Collaborative AAA Ar-
chitecture to Enable Secure Real-World Network Mobility. In J. Domingo-
Pascual, P. Manzoni, S. Palazzo, A. Pont, and C. Scoglio, editors, NET-
WORKING, volume 6640 of Lecture Notes in Computer Science, pages
212–226. Springer Berlin Heidelberg, 2011.

[66] E. Goldoni and M. Schivi. End-to-End Available Bandwidth Estimation
Tools, An Experimental Comparison. In F. Ricciato, M. Mellia, and E. Bier-
sack, editors, Traffic Monitoring and Analysis, volume 6003 of Lecture Notes
in Computer Science, pages 171–182. Springer Berlin Heidelberg, 2010.

[67] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil. Proxy
Mobile IPv6. RFC 5213 (Proposed Standard), August 2008. Updated by
RFC 6543.

214

https://corp.fon.com/en

[68] E. Gustafsson and A. Jonsson. Always best connected. IEEE Wireless
Communications, 10(1):49–55, Feb 2003.

[69] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-friendly High-speed TCP
Variant. SIGOPS Oper. Syst. Rev., 42(5):64–74, Jul 2008.

[70] K. Habak, M. Youssef, and K. Harras. An Optimal Deployable Bandwidth
Aggregation System. Computer Networks, 57(15):3067–3080, 2013.

[71] B. Han, P. Hui, V. Kumar, M. Marathe, J. Shao, and A. Srinivasan. Mobile
Data Offloading Through Opportunistic Communications and Social Par-
ticipation. IEEE Transactions on Mobile Computing, 11(5):821–834, May
2012.

[72] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srini-
vasan. Cellular Traffic Offloading Through Opportunistic Communications:
A Case Study. In Proceedings of the 5th ACM Workshop on Challenged Net-
works, CHANTS, pages 31–38, New York, NY, USA, 2010. ACM.

[73] O. Helgason, E. Yavuz, S. Kouyoumdjieva, L. Pajevic, and G. Karlsson. A
Mobile Peer-to-peer System for Opportunistic Content-centric Networking.
In Proceedings of the 2nd ACM SIGCOMM Workshop on Networking, Sys-
tems, and Applications on Mobile Handhelds, MobiHeld, pages 21–26, New
York, NY, USA, 2010. ACM.

[74] H. Hsieh and R. Sivakumar. A Transport Layer Approach for Achieving
Aggregate Bandwidths on Multi-homed Mobile Hosts. In Proceedings of the
8th Annual International Conference on Mobile Computing and Networking,
MobiCom, pages 83–94, New York, NY, USA, 2002. ACM.

[75] C. Hsu and U. Kremer. IPERF: A Framework for Automatic Construction
of Performance Prediction Models. In IN WORKSHOP ON PROFILE
AND FEEDBACK-DIRECTED COMPILATION, PFDC, 1998.

[76] N. Hu and P. Steenkiste. Evaluation and Characterization of Available
Bandwidth Probing Techniques. IEEE J.Sel. A. Commun., 21(6):879–894,
Sep 2006.

[77] W. Hu and G. Cao. Energy Optimization Through Traffic Aggregation in
Wireless Networks. In Proceedings of the IEEE Conference on Computer
Communications, INFOCOM, pages 916–924, April 2014.

[78] X. Hu, L. Li, Z. Mao, and Y. Yang. Wide-Area IP Network Mobility. In
27th IEEE International Conference on Computer Communications, INFO-
COM, April 2008.

215

[79] C. Huang, K. Lan, and C. Tsai. A Survey of Opportunistic Networks. In
22nd International Conference on Advanced Information Networking and
Applications - Workshops, AINAW, pages 1672–1677, March 2008.

[80] hyperrealm. libconfig. http://www.hyperrealm.com/libconfig/. [Online;
Accessed: 2015-11-11].

[81] IEEE Standard for Local and Metropolitan Area Networks–Link Aggrega-
tion. IEEE Std 802.1AX-2008, pages 1–163, Nov 2008.

[82] M. Integrated. DS2438 Smart Battery Monitor - Data Sheet.
http://datasheets.maximintegrated.com/en/ds/DS2438.pdf. [Online; Ac-
cessed: 2015-11-11].

[83] J. Ioannidis, D. Duchamp, and G. Maguire, Jr. IP-based Protocols for Mo-
bile Internetworking. In Proceedings of the Conference on Communications
Architecture & Protocols, SIGCOMM, pages 235–245, New York, NY, USA,
1991. ACM.

[84] G. Iosifidis and I. Koutsopoulos. Double auction mechanisms for resource
allocation in autonomous networks. IEEE Journal on Selected Areas in
Communications, 28(1):95–102, January 2010.

[85] iPass. Q3 iPass Mobile Workforce Report, September 2013. Accessed:
2015-07-31.

[86] D. Johansen, H. Johansen, T. Aarflot, J. Hurley, Å. Kvalnes, C. Gur-
rin, S. Zav, B. Olstad, E. Aaberg, H. R. T. Endestad, C. Griwidz, and
P. Halvorsen. DAVVI: A Prototype for the Next Generation Multime-
dia Entertainment Platform. In Proceedings of the 17th ACM International
Conference on Multimedia, MM, pages 989–990, New York, NY, USA, 2009.
ACM.

[87] D. Johnson, C. Perkins, and J. Arkko. Mobility Support in IPv6. RFC
3775 (Proposed Standard), June 2004. Obsoleted by RFC 6275.

[88] I. T. Jolliffe. Principal component analysis. Hardcover, October 2002.

[89] E. Jung, Y. Wang, I. Prilepov, F. Maker, X. Liu, and V. Akella. User-profile-
driven Collaborative Bandwidth Sharing on Mobile Phones. In Proceedings
of the 1st ACM Workshop on Mobile Cloud Computing; Services: Social
Networks and Beyond, MCS, pages 2:1–2:9, New York, NY, USA, 2010.
ACM.

[90] G. Kang, J. Liu, M. Tang, and B. Cao. Web Service Selection Algorithm
Based on Principal Component Analysis. Journal of Electronics, 30(2):204–
212, 2013.

216

[91] S. Kang and J. Kim. QoS-Aware Path Selection for Multi-Homed Mobile
Terminals in Heterogeneous Wireless Networks. In 7th IEEE Conference on
Consumer Communications and Networking, CCNC, pages 1–2, Jan 2010.

[92] I. Karma Mobility. Karma. http://www.yourkarma.com. [Online; Ac-
cessed: 2015-07-31].

[93] S. Kashihara, T. Nishiyama, K. Iida, H. Koga, Y. Kadobayashi, and S. Ya-
maguchi. Path selection using active measurement in multi-homed wireless
networks. In Proceedings of the International Symposium on Applications
and the Internet., pages 273–276, 2004.

[94] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou.
MicroCast: Cooperative Video Streaming on Smartphones. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and
Services, MobiSys, pages 57–70, New York, NY, USA, 2012. ACM.

[95] M. Keller-Ressel. Lyapunov Function. http://mathworld.wolfram.com/

LyapunovFunction.html. [Online; Accessed: 2015-07-31].

[96] F. Kelly, A. Maulloo, and D. Tan. Rate Control in Communication Net-
works: Shadow Prices, Proportional Fairness and Stability. In Journal of
the Operational Research Society, volume 49, 1998.

[97] F. Kelly and T. Voice. Stability of End-to-end Algorithms for Joint Routing
and Rate Control. SIGCOMM Comput. Commun. Rev., 35(2):5–12, Apr
2005.

[98] M. Khalili, L. Gao, J. Huang, and B. Khalaj. Incentive Design and Market
Evolution of Mobile User-Provided Networks. CoRR, abs/1502.06327, 2015.

[99] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec. MPTCP Is Not
Pareto-Optimal: Performance Issues and a Possible Solution. IEEE/ACM
Transactions on Networking, 21(5):1651–1665, Oct 2013.

[100] Q. Le-Trung, P. Engelstad, T. Skeie, and A. Taherkordi. Load-balance of
Intra/inter-MANET Traffic over Multiple Internet Gateways. In Proceed-
ings of the 6th International Conference on Advances in Mobile Computing
and Multimedia, MoMM, pages 50–57, New York, NY, USA, 2008. ACM.

[101] K. Leung, G. Dommety, V. Narayanan, and A. Petrescu. Network Mobility
(NEMO) Extensions for Mobile IPv4. RFC 5177 (Proposed Standard),
April 2008. Updated by RFC 6626.

[102] D. Lewis, D. Meyer, D. Farinacci, and V. Fuller. Interworking between
Locator/ID Separation Protocol (LISP) and Non-LISP Sites. RFC 6832
(Experimental), January 2013.

217

http://www.yourkarma.com
http://mathworld.wolfram.com/LyapunovFunction.html
http://mathworld.wolfram.com/LyapunovFunction.html

[103] J. Liao, J. Wang, and X. Zhu. cmpSCTP: An Extension of SCTP to Support
Concurrent Multi-Path Transfer. In IEEE International Conference on
Communications, ICC, pages 5762–5766, May 2008.

[104] J. Liu and S. Chung. An Efficient Load Balancing Scheme for Multi-
Gateways in Wireless Mesh Networks. Journal of Information Processing
Systems, 9(3):365–378, 2011.

[105] I. M87. M87. http://www.m-87.com. [Online; Accessed: 2015-07-31].

[106] M. Mace. The Truth about the Wireless Bandwidth Cri-
sis. http://mobileopportunity.blogspot.co.uk/2011/06/

truth-about-wireless-bandwidth-crisis.html. [Online; Accessed:
2015-07-31].

[107] J. Malinen. WPA Supplicant. https://w1.fi/wpa_supplicant/. [Online;
Accessed: 2015-11-11].

[108] G. Mathews. On the Partition of Numbers. Proceedings of the London
Mathematical Society, s1-28(1):486–490, 1896.

[109] P. McCann. Make-Before-Break Handoffs with Mobile IPv4. IETF - Draft,
April 2008.

[110] B. McCarthy, M. Jakeman, and C. Edwards. Supporting Nested NEMO
networks with the Unified MANEMO Architecture. In IEEE 34th Confer-
ence on Local Computer Networks, LCN, pages 609–616. IEEE, 2009.

[111] J. Millman. NumPy. http://github.com/numpy/numpy. [Online; Ac-
cessed: 2015-11-11].

[112] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. Host Identity
Protocol. RFC 5201 (Experimental), April 2008. Obsoleted by RFC 7401,
updated by RFC 6253.

[113] P. Natarajan, N. Ekiz, P. Amer, J. Iyengar, and R. Stewart. Concurrent
Multipath Transfer Using SCTP Multihoming: Introducing the Potentially-
Failed Destination State. In Networking, pages 727–734. Springer, 2008.

[114] J. Navratil and R. Cottrell. ABwE: A Practical Approach to Available
Bandwidth Estimation. In Proceedings of the Workshop on Passive and
Active Measurement, PAM, 2003.

[115] A. Neumann, C. Aichele, M. Lindner, and S. Wunderlich. Better Approach
To Mobile Ad-hoc Networking (B.A.T.M.A.N.). IETF - Draft, April 2008.

218

http://www.m-87.com
http://mobileopportunity.blogspot.co.uk/2011/06/truth-about-wireless-bandwidth-crisis.html
http://mobileopportunity.blogspot.co.uk/2011/06/truth-about-wireless-bandwidth-crisis.html
https://w1.fi/wpa_supplicant/
http://github.com/numpy/numpy

[116] Q. Nguyen-Vuong, N. Agoulmine, and Y. Ghamri-Doudane. A User-centric
and Context-aware Solution to Interface Management and Access Network
Selection in Heterogeneous Wireless Environments. Computer Networks,
52(18):3358–3372, Dec 2008.

[117] E. Nordmark and M. Bagnulo. Shim6: Level 3 Multihoming Shim Protocol
for IPv6. RFC 5533 (Proposed Standard), June 2009.

[118] ns 3 developers. Network Simulator 3. https://www.nsnam.org/. [Online;
Accessed: 2015-11-11].

[119] Ofcom. Implementing TV White Spaces, February 2015. Accessed: 2015-
07-31.

[120] E. Ong, J. Kneckt, O. Alanen, C. Zheng, T. Huovinen, and T. Nihtila.
IEEE 802.11ac: Enhancements for Very High Throughput WLANs. In
IEEE 22nd International Symposium on Personal Indoor and Mobile Radio
Communications, PIMRC, pages 849–853, Sept 2011.

[121] C. Paasch. Improving Multipath TCP. PhD thesis, UCLouvain / ICTEAM
/ EPL, November 2014.

[122] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring
Mobile/WiFi Handover with Multipath TCP. In Proceedings of the ACM
SIGCOMM workshop on Cellular Networks: Operations, Challenges, and
Future Design, CellNet, pages 31–36, New York, NY, USA, 2012. IEE.

[123] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. Exploring
Mobile/WiFi Handover with Multipath TCP. In Proceedings of the ACM
SIGCOMM Workshop on Cellular Networks: Operations, Challenges, and
Future Design, CellNet, pages 31–36, New York, NY, USA, 2012. ACM.

[124] C. Paasch, R. Khalili, and O. Bonaventure. On the Benefits of Applying Ex-
perimental Design to Improve Multipath TCP. In Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT, pages 393–398, New York, NY, USA, 2013. ACM.

[125] C. Perkins. IP Mobility Support for IPv4. RFC 3344 (Proposed Standard),
August 2002. Obsoleted by RFC 5944, updated by RFCs 4636, 4721.

[126] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944 (Proposed
Standard), November 2010.

[127] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance
Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.

219

[128] C. Perkins and D. B. Johnson. Route Optimization in Mobile IP. IETF -
Draft, September 2001.

[129] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers. SIGCOMM Com-
put. Commun. Rev., 24(4):234–244, October 1994.

[130] A. Petz, A. Lindgren, P. Hui, and C. Julien. MADServer: A Server Archi-
tecture for Mobile Advanced Delivery. In Proceedings of the Seventh ACM
International Workshop on Challenged Networks, CHANTS, pages 17–22,
New York, NY, USA, 2012. ACM.

[131] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado. The
Design and Implementation of Open vSwitch. In Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
NSDI, pages 117–130, Berkeley, CA, USA, 2015. USENIX Association.

[132] D. S. Phatak, T. Goff, and J. Plusquellic. IP-in-IP Tunneling to Enable the
Simultaneous Use of Multiple IP Interfaces for Network Level Connection
Striping. Comput. Netw., 43(6):787–804, Dec 2003.

[133] L. Qi, W. Dou, and J. Chen. Weighted Principal Component Analysis-
Based Service Selection Method for Multimedia Services in Cloud. Springer,
Journal of Computing, pages 1–20, 2014.

[134] L. Qi, W. Dou, and J. Chen. Weighted Principal Component Analysis-
based Service Selection Method for Multimedia Services in Cloud. Springer
Journal of Computing, pages 1–20, 2014.

[135] C. Raiciu, M. Handley, and D. Wischik. Coupled Congestion Control for
Multipath Transport Protocols. RFC 6356 (Experimental), October 2011.

[136] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley. How Hard Can It Be? Designing and
Implementing a Deployable Multipath TCP. In 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI, pages 399–412,
San Jose, CA, 2012. USENIX.

[137] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley. Opportunistic
Mobility with Multipath TCP. In Proceedings of the Sixth International
Workshop on Mobility in the Evolving Internet Architecture, MobiArch,
pages 7–12, New York, NY, USA, 2011. ACM.

[138] K. Ramachandran. Mobile IP Deployment After a Decade. White Paper,
2006.

220

[139] R. Ramjee, K. Varadhan, L. Salgarelli, S. Thuel, S. Wang, and T. La Porta.
HAWAII: A Domain-based Approach for Supporting Mobility in Wide Area
Wireless Networks. IEEE/ACM Transactions on Networking, 10(3):396–
410, Jun 2002.

[140] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). RFC 1654
(Proposed Standard), July 1994. Obsoleted by RFC 1771.

[141] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard), January 2006. Updated by RFCs 6286, 6608,
6793, 7606, 7607.

[142] P. Rodriguez, R. Chakravorty, J. Chesterfield, I. Pratt, and S. Banerjee.
MAR: A Commuter Router Infrastructure for the Mobile Internet. In Pro-
ceedings of the 2nd International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys, pages 217–230, New York, NY, USA, 2004.
ACM.

[143] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Proto-
col. RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265,
3853, 4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141, 6665,
6878, 7462, 7463.

[144] P. Ruiz and A. Gmez-Skarmeta. Adaptive Gateway Discovery Mechanisms
to Enhance Internet Connectivity for Mobile Ad Hoc Networks. Ad Hoc
and Sensor Wireless Networks, 1(1-2), 2005.

[145] M. Santos, B. De Oliveira, C. Margi, B. Nunes, T. Turletti, and
K. Obraczka. Software-Defined Networking Based Capacity Sharing in Hy-
brid Networks. In 21st IEEE International Conference on Network Proto-
cols, ICNP, pages 1–6, Oct 2013.

[146] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Trans-
port Protocol for Real-Time Applications. RFC 3550 (INTERNET STAN-
DARD), July 2003. Updated by RFCs 5506, 5761, 6051, 6222, 7022, 7160,
7164.

[147] S. Sevilla and J. Garcia-Luna-Aceves. HIDRA: Hiding Mobility, Multiplex-
ing, and Multi-homing from Internet Applications. In 33rd IEEE Confer-
ence on Computer Communications, Workshops, INFOCOM, pages 73–78,
April 2014.

[148] R. Shacham, H. Schulzrinne, S. Thakolsri, and W. Kellerer. Session Initia-
tion Protocol (SIP) Session Mobility. RFC 5631 (Informational), October
2009.

221

[149] A. Shahid and K. Humayun. Hybrid Scheme for Discovering and Selecting
Internet Gateway in Mobile Ad-Hoc Network. International Journal of
Wireless and Mobile Networks, 3(4), August 2011.

[150] C. Shannon. Communication In The Presence Of Noise. volume 86, pages
447–457, Feb 1998.

[151] P. Sharma, S. Lee, J. Brassil, and K. Shin. Handheld Routers: Intelli-
gent Bandwidth Aggregation for Mobile Collaborative Communities. In
Proceedings of the 1st International Conference on Broadband Networks,
BroadNets, pages 537–547, Oct 2004.

[152] E. Shechtman and M. Irani. Matching Local Self-Similarities across Im-
ages and Videos. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages 1–8, June 2007.

[153] J. Shin, H. Lee, J. Na, A. Park, and S. Kim. Load Balancing Among In-
ternet Gateways in Ad-Hoc Networks. In 62nd IEEE Vehicular Technology
Conference, volume 3 of VTC, pages 1677–1680, Sept 2005.

[154] A. Singh, S. Chakraborty, and T. K. Roy. Village Size in India. volume 4,
pages 111–134, 2008.

[155] V. Singh, S. Ahsan, and J. Ott. MPRTP: Multipath Considerations for
Real-time Media. In Proceedings of the 4th ACM Multimedia Systems Con-
ference, MMSys, pages 190–201, New York, NY, USA, 2013. ACM.

[156] H. Sivakumar, S. Bailey, and R. Grossman. PSockets: The Case for
Application-level Network Striping for Data Intensive Applications using
High Speed Wide Area Networks. In ACM/IEEE Conference on Super-
computing, pages 38–38, Nov 2000.

[157] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti. The PPP
Multilink Protocol (MP). RFC 1990 (Draft Standard), August 1996.

[158] A. Snoeren. Adaptive Inverse Multiplexing for Wide-Area Wireless Net-
works. In Global Telecommunications Conference, volume 3 of GLOBE-
COM, pages 1665–1672 vol.3, 1999.

[159] Q. Song and A. Jamalipour. Network selection in an Integrated Wireless
LAN and UMTS Environment Using Mathematical Modeling and Comput-
ing Techniques. Wireless Communications, IEEE, 12(3):42–48, June 2005.

[160] W. Stevens and M. Thomas. Advanced Sockets API for IPv6. RFC 2292
(Informational), February 1998. Obsoleted by RFC 3542.

222

[161] R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard), September 2007. Updated by RFCs 6096, 6335, 7053.

[162] M. Stiemerling. A System for Peer-to-Peer Video Streaming in Resource
Constrained Mobile Environments. In Proceedings of the ACM Workshop
on User-provided Networking, U-NET, 2009.

[163] M. Stiemerling. Cooperative Internet Access in Resource Constrained En-
vironments. PhD thesis, University of Gttingen, 2011.

[164] R. Suoranta and A. Lappetelinen. Operators Dilemma - How to take ad-
vantage of the growing mobile Internet. http://owni.fr/files/2011/09/
Internet_growth_V10.pdf. [Online; Accessed: 2015-07-31].

[165] Y. sup Lim, Y.-C. Chen, E. Nahum, D. Towsley, and K.-W. Lee. Cross-layer
Path Management in Multi-path Transport Protocol for Mobile Devices. In
IEEE Conference on Computer Communications, INFOCOM, pages 1815–
1823, April 2014.

[166] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis, and
L. Tassiulas. Bits and Coins Supporting Collaborative Consumption of
Mobile Internet. In Proceedings of the 34th IEEE International Conference
on Computer Communications, INFOCOM, April 2015.

[167] C. Taylor. Cisco: The Future of Mobile Networks, Feb 2013.

[168] G. Tsirtsis, H. Soliman, N. Montavont, G. Giaretta, and K. Kuladinithi.
Flow Bindings in Mobile IPv6 and Network Mobility (NEMO) Basic Sup-
port. RFC 6089 (Proposed Standard), January 2011.

[169] A. Walid, Q. Peng, J. Hwang, and S. Low. Balanced Linked Adaptation
Congestion Control Algorithm for MPTCP. IETF - Draft, January 2016.

[170] B. Wang, W. Wei, J. Kurose, D. Towsley, K. R. Pattipati, Z. Guo, and
Z. Peng. Application-Layer Multipath Data Transfer via TCP: Schemes
and Performance Tradeoffs. Performance Evaluation, 64:965–977, 2007.

[171] J. Wannstrom. LTE-Advanced, June 2013. Accessed: 2015-07-31.

[172] A. Wilson, A. Lenaghan, and R. Malyan. Optimising Wireless Access
Network Selection to Maintain QoS in Heterogeneous Wireless Environ-
ments. In L. Heinzl and N. Prasad, editors, 8th International Symposium
on Wireless Personal Multimedia Communications, WPMC, pages 1236–
1240, Tokyo, Japan, Sep 2005. NICT.

[173] R. Winter and A. Ripke. Multipath TCP Support for Single-homed End-
systems. IETF - Draft RFC, February 2013. http://tools.ietf.org/

html/draft-wr-mptcp-single-homed-05.

223

http://owni.fr/files/2011/09/Internet_growth_V10.pdf
http://owni.fr/files/2011/09/Internet_growth_V10.pdf
http://tools.ietf.org/html/draft-wr-mptcp-single-homed-05
http://tools.ietf.org/html/draft-wr-mptcp-single-homed-05

[174] D. Wischik, M. Handley, and M. B. Braun. The Resource Pooling Principle.
SIGCOMM Comput. Commun. Rev., 38(5):47–52, Sep 2008.

[175] R. Withnell. GitHub Repository. http://github.com/richardwithnell/.
[Online; Accessed: 2015-07-31].

[176] R. Withnell and C. Edwards. Multipath Dissemination for Collaborative
Mobile Internet Access. In Workshop on Cellular Offloading to Oppor-
tunistic Networks, CARTOON, IEEE International Conference on Mobile
Ad hoc and Sensor Systems, MASS. IEEE, 2014.

[177] R. Withnell and C. Edwards. Towards a Context Aware Multipath-TCP. In
IEEE 40th Conference on Local Computer Networks, LCN, pages 434–437,
October 2015.

[178] Z. Ye, S. Krishnamurthy, and S. Tripathi. Effects of multipath routing on
TCP performance in ad hoc networks. In IEEE Global Telecommunications
Conference, volume 6 of GLOBECOM, pages 4125–4131, Nov 2004.

[179] A. Yi Ding, P. Hui, M. Kojo, and S. Tarkoma. Enabling Energy-aware
Mobile Data Offloading for Smartphones Through Vertical Collaboration.
In Proceedings of the ACM Conference on CoNEXT Student Workshop,
CoNEXT Student, pages 27–28, New York, NY, USA, 2012. ACM.

[180] H. Yokota, A. Idoue, T. Hasegawa, and T. Kato. Link Layer Assisted Mobile
IP Fast Handoff Method over Wireless LAN Networks. In Proceedings of the
8th Annual International Conference on Mobile Computing and Networking,
MobiCom, pages 131–139, New York, NY, USA, 2002. ACM.

[181] T. Yu, Z. Zhou, D. Zhang, X. Wang, Y. Liu, and S. Lu. INDAPSON: An
Incentive Data Plan Sharing System Based on Self-Organizing Network.
In Proceedings of the 33rd IEEE International Conference on Computer
Communications, INFOCOM, pages 1545–1553, April 2014.

[182] D. Zhang, R. Shinkuma, and N. B. Mandayam. Bandwidth Exchange: An
Energy Conserving Incentive Mechanism for Cooperation. IEEE Transac-
tions on Wireless Communications, 9(6):2055–2065, June 2010.

[183] M. Zhang, J. Lai, A. Krishnamurthy, L. Peterson, and R. Wang. A Trans-
port Layer Approach for Improving End-to-end Performance and Robust-
ness Using Redundant Paths. In Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ATEC, pages 8–8, Berkeley, CA,
USA, 2004. USENIX Association.

[184] W. Zhang, Q. Wu, W. Yang, and H. Li. Reliable Multipath Transfer
Scheduling Algorithm Research and Prototype Implementation. In Pro-
ceedings of the Asia-Pacific Advanced Network, pages 45–52. APAN, 2010.

224

http://github.com/richardwithnell/

[185] Z. Zhu, R. Wakikawa, and L. Zhang. A Survey of Mobility Support in the
Internet. RFC 6301 (Informational), July 2011.

225

APPENDIX A

Mobile Connectivity

The Internet Protocol Suite has not fundamentally changed since its inception,

and it is ingrained into current infrastructure and user devices. Originally nei-

ther end-host mobility nor multihoming were considered during the definition of

IP and TCP. Due to the pervasive and dependable nature of the current pro-

tocols, introducing change at the core layers in the stack understandably meets

resistance. This has made the necessary deployment of innovative mobile con-

nectivity models more challenging, this resistance to change is evident in the lack

of real world IPv6 usage. Pragmatically the goal of any new protocol proposal

should be widespread adoption within its domain, therefore despite the numerous

benefits that new and innovative protocols may bring, the real measurement of

success is deployment, which will become evident throughout the remainder of

this chapter and will be carried through to the design. Therefore protocols that

are incrementally deployable and don’t require substantial change to the current

infrastructure, are more likely to see extensive uptake. The focus for this section,

will be on the protocols and technologies that provide devices with connectivity

while mobile, both globally and locally.

A.1 Terminology

There are a number of new terms that are exclusive to the mobility domain that

will be used throughout the remainder of this section and are as follows:

Handover – Migration from one point of attachment to another.

Horizontal Handover – A handoff between two network access points that

226

use the same access technology (homogenous).

Vertical Handover – A handoff between two network access points that use

different access technologies (heterogeneous).

Hard Handover – A handoff is forced by breaking the physical connection,

for instance by moving out of range of an access point. (Break before make)

Soft Handover – A handoff utilizes multiple channels or access technologies

in parallel, establishing the new connection before the old connection breaks.

(Make before break)

Fast Handover – An approach to reducing handover delay when changing

points of attachment.

Intradomain Mobility – Mobility (handover) between points of attachment

within the same subnet.

Interdomain Mobility – Mobility (handover) between points of attachment

across different networks.

A.2 Mobility

This section describes, protocols and technologies that enable the mobility of both

hosts and networks. In this context, mobility is defined as the ability for a mobile

device to move from one network to another, changing its point of attachment

to the Internet, while seamlessly maintaining any connections or flows. Mobility

protocols have been a significant area of research for a number of years. The core

aim of this research has been to reduce the impact when a host moves from one

network to another, this process is known as handover. The key measurement

of handover is the length of time it takes for the connections to migrate from

one point of attachment to another. The shorter the time frame, the smaller the

impact the handover will have on the active applications. This can be measured

not only in terms of time but additional metrics such as packet loss or the required

number of packets that need to be retransmitted.

Mobility protocols have seen a significant level of interest since their incep-

tion. First proposed in [83], approaches have been revised and revisited countless

227

Internet

Mobile Node

Foreign Agent

Correspondent Node

Home Agent
IP Link

IP Tunnel

Figure A.1: An example of the architecure for Mobile IP.

times. Ranging from improving the speed of the handover using link layer infor-

mation [180], to application layer intelligence aiming to minimise the impact that

handover has on the user [45]. For the remainder of this section, key mobility

protocols are first categorised, regarding the different types of mobility that exist.

There are two fundamental types of approach to supporting host mobility,

firstly there are routing based approaches, in which a mobile host keeps its IP

address and the routing system in the network accommodates for any changes in

the point of attachment. Examples of route based mobility include, HAWAII [139]

and Connexion [44]. The second approach relies on mapping, as described in [185],

all mapping based mobility protocols rely on three components: an identifier

for the mobile host, a locator for where the mobile host current resides and

finally a mapping between these two components. Examples of mapping based

mobility solutions include [126], [57], [8]. This mapping based approach typically

introduces a layer of indirection as with Mobile IP [126], leading to inefficient

triangular routing, an example of Mobile IP is illustrated in Fig. A.1. Due to

the scalability issues with routing based mobility approaches as discussed in [185]

for the remainder of this chapter we will only consider technologies that rely on

mapping. Typically mapping based solutions possess the following components,

while the terminology may change between implementations the functionality

remains the same:

Mobile Node (MN) – The Mobile Node (mobile host) changes its point of

attachment to the Internet, from the Home Network to a Foreign Network.

228

The Mobile Node sends all packets to the Home Agent, while Correspondent

Nodes, send all packets destined for the Mobile Node to the Home IP.

Home Network (HN) – The Mobile Node has a permanent bidirectional

tunnel to the home network.

Home Agent (HA) – The Home Agent is the host residing in the Home

Network that is responsible for ensuring the reachability of the Mobile Node.

This works by allocating the Mobile Node a fixed IP address that the Home

Agent can use to communicate.

Foreign Network (FN) – The Foreign Network is any network aside from

the Home Network, which the Mobile Node may connect to.

Foreign Agent (FA) – The Foreign Agent is the router or access point that

provides the Mobile Node with connectivity while connected to a Foreign Net-

work.

Care-of-Address (CoA) – The Care of Address, is provided to the Mobile

Node by the foreign agent. This address is used by the Mobile Node to com-

municate with the Home Agent and setup the tunnelling and routing required.

Correspondent Node (CN) – The correspondent node is the destination

that the Mobile Node wishes to communicate with via IP.

A.2.1 Network Layer

Mobile IP [126] is one of the earliest and standardized approaches to provide

global host mobility. First proposed in 1994, it relies on all the previously dis-

cussed components the architecture of which can be seen in Fig. A.1. As a Mobile

Node roams from the Home Network across a number of Foreign Networks, the

Mobile Node retains the address provided by the Home Network. When the Mo-

bile Node changes its point of attachment, connecting to a Foreign Network, the

Foreign Agent provides the Mobile Node with a Care-of-Address which the Mobile

Node subsequently registers with the Home Agent. To this end, the Home Agent

is always able to route packets between the Mobile Node and any Correspondent

Node. Routing all packets via the Home Agent introduces inefficient triangular

routing, as all communication takes an indirect path. Triangular routing raises

229

a number of concerns in some mobile environments, if the Mobile Node resides a

significant distance from the Home Agent the overhead incurred due to indirection

can become significant, especially if attempting to support real time communica-

tions. For this reason, Route Optimization was proposed as an extension to Mo-

bile IP [128]. Route Optimization allows a Correspondent Node or Mobile Node

to tunnel their packets directly between one another, bypassing the Home Agent,

improving the efficiency of routing. If the Correspondent Node is unaware of the

Mobile Nodes current location packets are simply routed as normal via the Home

Agent. The specification for Mobile IP was transformed for IPv6 [87], with inher-

ent support for Route Optimization. Despite the functionality and performance

optimizations provided by Mobile IP, it is still yet to see significant uptake or wide

spread deployment. In [138] a number of deployment issues are discussed with the

Mobile IP specification, which are undoubtedly significant as the protocol is still

underutilized after 20 years. From a performance perspective, triangular routing

is a significant limiting factor of the Mobile IP specification. Addressing this with

Route Optimization requires significant change to all communicating hosts, need-

ing to support both the tunnelling and mapping. Eliminating performance as a

fundamental issue of the protocol still leaves economic and bureaucratic factors

that make deployment challenging. For example, if a mobile user has a different

service plan for both WiFi and Cellular connectivity, determining the provider

responsible for the Home Agent and the subsequent agreements needed between

providers is non-trivial and is typically not addressed by protocol implementa-

tions. If the Home Agent is created as a third party service, issues of trust and

service layer agreements between providers can be simplified however it is likely

that the user would be required to pay for an additional mobility plan to sup-

port this feature. Despite the lack of wide-spread Mobile IP deployment, it has

been adopted within cellular networks. Proxy Mobile IPv6 (PMIP) is a popular

extension to MIP, especially in cellular networks. PMIP enhances the mobility

model by masking the address management from the Mobile Node, such that the

entire handover process is handled by the network. To this end, a Mobile Access

Gateway signals the binding update to the Home Agent (referred to as the Local

Mobility Anchor)

Since the establishment of Mobile IP, a number of alternative network layer

protocols have been proposed to support mobility [112] [57] [8] [67], as previ-

ously mentioned the architectures and approaches to all of these solutions remain

230

similar in terms of the required infrastructure and mapping between locators

and identifiers. The Host Identity Protocol (HIP) specified in [112], attempts

to bridge the gap between locators (IP addresses) and identifiers (Domain Name

Service). HIP requires that cryptographic keys are used as host identifiers in-

stead of IP addresses, therefore applications need to be modified to support this

new paradigm. The use of cryptographic keys as an identifier allows hosts to

authenticate changes in the locator, for improved security. To introduce nam-

ing into the HIP protocol, extensions have been proposed to the Domain Name

System, which includes introducing a new Resource Record containing additional

information including the hosts public key, which is required for authentication.

The Identifier-Locator Network Protocol (ILNP) [8] splits an IP address into

a locator and an identifier. In the case of ILNPv6, the upper 64 bits are allo-

cated to the Locator while the lower 64 bits are allocated as the Node Identifier.

Therefore, end-to-end protocols such as TCP and UDP are expected to only use

the Node Identifier, while the network layer subsequently uses the Locator. In

comparison to IPv6 the ILNPv6 Locator matches the network prefix, while the

Node Identifier matches the interface identifier. To further support multihom-

ing aspects, a host may choose to use multiple Network Identifiers and Locators

simultaneously. In ILNP dynamic mappings between the Node Identifier and

Locator are supported, moreover a single Node Identifier can be mapped to mul-

tiple Locators, allowing a single transport layer end-point to be reachable over

multiple networks at the same time. By updating these mappings handover is in-

herently supported. Furthermore, the ability to map multiple Locators to a single

Node Identifier enables soft handover, allowing a make-before-break connectivity

model. To support ILNP, as with HIP, new DNS Resource Records are needed.

The new Resource Records includes an Identifier Record and a Locator Record.

During communication with a Mobile Node, the Correspondent Node queries the

DNS to obtain the current Locator. Additionally, the Mobile Node updates the

DNS with new Locators as it changes its point of attachment. Finally the Mobile

Node will send Locator Updates to the Correspondent Nodes, to update the set

of current Locators. ILNP removes the need for triangular routing, simply rely-

ing on DNS updates and queries to enable the seamless communication between

Mobile and Correspondent Nodes, which can provide a more efficient mobility

model, than the previously discussed MIP implementations.

The Locator/Identifier Separation Protocol (LISP) [57] is fundamentally dif-

231

ferent to the Loc/ID split protocols discussed so far (HIP and ILNP). HIP and

ILNP both introduce new name spaces, while LISP changes the underlying rout-

ing and addressing while being able to maintain IP addresses (either IPv4 or

IPv6) which enables incremental deployment, as previously discussed this can

be incredibly beneficial. The core contributions of LISP are to simplify routing

and improve scalability. To this end, LISP defines two new name spaces to split

the locators and identifiers, Endpoint Identifiers (EIDs) and Routing Locators

(RLOCs). LISP uses a distributed database service to map between EIDs and

RLOCs. In the context of LISP, EIDs are assumed not to be globally routable,

while RLOCs are; therefore, to forward a packet to the appropriate end-host LISP

routers are expected to encapsulate packets that use an EID, with a header con-

taining the corresponding RLOC. Consequently LISP is in fact better described as

a map-and-encapsulate protocol. LISP Mobile Node (LISP-MN) is a specification

for host mobility using LISP [58]. To support host mobility LISP-MN requires

an implementation of LISP on the mobile host, a mapping server to update the

RLOC [63] as the mobiles hosts point of attachment changes and Internetworking

infrastructure to communicate with non-LISP hosts or networks[102].

A.2.2 Transport Layer

In the previous section, we introduced a number of resource pooling and band-

width aggregation approaches that rely on hosts being multihomed to exploit

path diversity in the Internet. This model can also be applied to mobility, as

shown in [60] [147]. These novel techniques still rely on a mapping based ap-

proach as previously discussed, however as the mapping between the locator and

identifier is stored at the end-hosts for a connection, additional infrastructure, in

the way of the Home Agent or Mapping Server is not required. Typically these

solutions reside above the network layer, relying on the connection between the

two hosts to store the associated metadata, mapping multiple IP addresses to a

single end-point. Mobile SCTP was first proposed in 2002, proposing that mul-

tihomed hosts could communicate with SCTP servers, while supporting seamless

handover across any access technologies. Mobile SCTP exploits the ability for

a connection to manage multiple IP addresses, when the connection is created

the mobile host signals all of its available IP addresses to the server. As the

list of IP addresses available to the mobile host changes, the server is signalled

232

with the corresponding updates. This end-host oriented model for mobile con-

nectivity presented by Freeze TCP, TCP-Migrate and Mobile SCTP has become

increasingly common among novel mobility models at the transport layer, such

as MPTCP.

One of the implicit benefits of the MPTCP proposal is the inherent support

for mobility [137]. As multiple subflows must be supported for a single connection

end-point the identifiers and locators that are used are split. This split allows new

MPTCP subflows to associate with the initial connection regardless of whether

or not there is an active subflow. This decoupling between the subflows and the

connections provides a number of benefits on top of Mobile IP and comparable

network layer solutions. Typically Mobile IP requires the physical or link layer

connectivity to change before a handover can occur from one network interface

to another, known as break-before-make. With MPTCP it is no longer neces-

sary to wait for a connection to break, as data for the same end-point can be

transmitted simultaneously over multiple paths; a make-before-break model can

be established, providing truly seamless handover as packets are shifted to a new

path before the old path fails. Novel extensions and implementations to MIPv6

attempt to address these multihomed issues, by introducing Multiple Care-of-

Addresses (MCoA) [168] and make-before-break connectivity [109]. Despite this,

I believe that make-before-break is better suited to the transport layer, as the

best the network layer can offer is redundancy, replicating packets across the set

of available addresses during handover which must be handled before handing

the packets up. One of the main drawbacks associated with MPTCP and this

make-before-break model, it the increased power consumption that is required to

constantly maintain flows over all available interfaces. As discussed in the previ-

ous section, MPTCP is flexible allowing links to be set to active or backup modes,

additional handover modes have also been investigated [137]. Setting an inter-

face to act as a backup or for single path can minimise the power consumption

issues at the expense of a slight increase in handover delay. The key differen-

tiator between single path and backup modes is when the subflows are created.

For backup mode, backup subflows are created for each interface but data is not

transmitted until all active subflows are no longer usable. While in single path

mode, the subflows are only created once no other active subflows are available.

The difference between full, backup and single path modes is presented in [123],

in terms of throughput the full MPTCP mode performs best dropping from the

233

speed of WiFi to the speed of the 3G network, the backup mode experiences a

larger drop (still not dropping to zero), while traffic migrates to the 3G path and

the single path mode experiences the worst performance as throughput drops to

zero, taking a few seconds for the interface to become active.

A.2.3 Application Layer

The Session Initiation Protocol (SIP) [143], is an application layer protocol de-

scribing how sessions are created, maintained and destroyed between two or more

hosts. SIP is typically used for media applications, ranging from voice communi-

cations, to video conferencing. As users and devices became mobile, extensions

were proposed to SIP to provide mobility, allowing the voice and video applica-

tions to maintain connectivity, supporting session migration between end-points.

In [148] the authors present application layer mobility using SIP, this doesn’t

just include a device changing its IP address but also a user changing device or

service provider. In this domain, application layer mobility is much better suited

to meet the needs of the user than network or transport layer solutions, as a user

may want to seamlessly migrate a call from a desktop or laptop, to a smart phone

or tablet as the environment changes. Voice calls are arguably one of the most

sensitive applications, in terms of the impact incurred by network latency and

handover time. To this end, global solutions such as Mobile IP can limit the po-

tential performance through triangular routing, the need for encapsulation, and

the time required to update the home agent. SIP still retains a home agent like

concept, referred to as the registrar which is updated as the host changes its IP

address. Furthermore, during a SIP session, the mobile host simply informs the

hosts associated with a session of any changes in IP address, minimizing handover

delay.

HIDRA (Hidden Identifiers for Demultiplexing and Resolution Architecture)

[147] is a recent novel proposal that changes how identifiers and locators are

mapped. Effectively all of the discussed technologies thus far use what the authors

describe as “open identifiers”. Even though the identifiers are split or mapped

to the appropriate locator, they still represent an attribute that is known out-

side of the end-hosts. The use of “open identifiers” is a fundamental problem in

supporting the efficient and seamless evolution of the Internet as discussed in the

start of this section. To this end, the author proposes “hidden identifiers” that

234

are agnostic of any network or transport technologies, allowing applications to

remove their dependency on specific protocols. HIDRA is essentially an applica-

tion layer solution to multihoming and mobility that changes the socket interface

that an application uses, masking the complexity of the underlying networking.

By introducing an additional layer of abstraction between the application and

the network, mobility can be seamlessly supported as changes in IP address or

TCP connections is transparent. Moreover, this abstraction can additionally al-

low new network and transport layer protocols to be deployed and tested without

breaking or modifying applications that support HIDRA.

A.3 Mobile Networks

Individual hosts are not the only concern for mobility protocols, as mobile routers

and co-located devices form mobile networks. In this scenario, host based mobility

solutions may no longer be the most appropriate, as complex routes are formed

at the edge, providing and extending connectivity. This area can be split into

two parts; communication between these devices, typically supported by mobile

ad-hoc protocols, and communication with remote hosts, provided by network

mobility protocols. While these two areas can focus on fundamentally different

goals, there is significant overlap between the two when considering real world

deployments, as both challeneges need to be solved simultaneously.

A.3.1 Mobile Ad-Hoc

A Mobile Ad-Hoc Network (MANET) [31] is an infrastructure-less network con-

nected by wireless links, in which the connected hosts are able to move indepen-

dently and arbitrarily while dynamically routing data between one another. The

mobility properties lead hosts to connect and reconnect to other hosts chang-

ing routes as links are removed or become available, automatically reconfiguring

based on the current context. All the hosts in the MANET are expected to route

traffic between one another, as well as out towards a gateway if available. There

are a number of routing protocols that can be used in a MANET such as OLSR

[32] or AODV[127]; the routing protocol chosen to implement a MANET is piv-

otal to the performance and functionality of the network. The IETF MANET

working group [31] identified two key approaches, reactive (AODV) and proac-

235

tive (OLSR) routing to be considered in the mobile domain. Proactive MANET

protocols periodically updates the routing tables of the hosts in the network even

if no change has occurred, while reactive protocols only acquire current routing

information as it is needed (when a packet needs to be routed). The reactive

approach offers a reduced overhead in comparison to proactive protocols, but can

take longer to obtain the required routes.

Ad hoc On-Demand Distance Vector (AODV) is one of the earliest standard-

ised reactive MANET routing protocols. Directly connected hosts find neigh-

bours through HELLO messages. If communication is needed between two non-

neighbours, a Route Request is broadcast; if the recipients of the broadcast know

the route it replies with a Route Reply, otherwise the Route Request is broad-

cast again. Optimized Link State Routing Protocol (OLSR) on the other hand,

maintains routes as the state of the network changes, making sure they are avail-

able for use on demand. Similarly to AODV, OLSR uses HELLO messages to

determine one-hop neighbours, and subsequently two-hop neighbours via the re-

sponses, however the HELLO messages are transmitted periodically as opposed

to on-demand. OLSR then becomes more complex, as based on the set of two-hop

neighbours, the hosts in the MANET elect a set of multipoint relays, responsible

for relaying messages between hosts. Topology Control (TC) messages are then

used to disseminate information about available neighbours to the rest of the

hosts in the network. To ensure that all hosts have the same view of the network,

OLSR frequently floods the network with the current topology. The Better Ap-

proach To Mobile Adhoc Networking (BATMAN) protocol [115] takes a different

approach to both OLSR and AODV. While it is still a proactive protocol, the

developers have proposed that the MANET functionality should be implemented

at the link layer, as opposed to the network layer. Designing the protocol at

the link layer creates a flat network topology, similar to that of a switch. BAT-

MAN differs from the proactive OLSR by adopting a Distance Vector routing

algorithm, instead of Link State, which reduces the amount of information each

node is required to store about the topology. The Babel routing protocol [25] is a

more recent attempt to address the problems of MANET deployments. Babel is

based on other distance vector routing protocols, such as DSDV [129] and EIGRP

[3]. Babel performs more intelligent route selection than the previously discussed

protocols, by not only taking into account the number of hops, but also historical

information, preferring routes that have been previously observed. Combining

236

the enhanced link selection with an improved implementation of the Estimated

Transmission Count (ETX) algorithm [38], Babel is able to build a robust and

efficient mesh network.

A.3.2 Network Mobility

Network mobility differs from the ad-hoc approach, typically considering how

a set of connected hosts move together, maintaining connectivity as the mobile

network as a whole changes it’s point of attachment to the Internet. Typically

solutions to this problem are similar to those proposed in the previous mobility

section; focusing on routing based approaches, or using a mapping between a

hosts location and its identifier. This problem becomes slightly more complex as

it is effectively no longer the host that is mobile but the network. Connexion [44]

was a proposal by Boeing, attempting to enable seamless connectivity to users

travelling by air or sea. The authors propose the use of BGP for mobility, having

a mobile gateway announce its prefix as it moves. This requires the network to

be globally routable at all times, for a single aircraft, without frequent changes,

this is potentially a feasible solution; however, the proposal lacks scalability and

would have a significant impact on global routing tables. Wide-Area IP Network

Mobility (WINMO) [78] is a more recent network mobility proposal, which uses a

combination of routing and mapping. WINMO attempts to reduce the overhead

of updating BGP to improve the scalability of the protocol. Similar to Mobile IP,

WINMO extends the BGP updates with the concept of a home network and home

agent, limiting and reducing the number of changes that must be made. The Net-

work Mobility (NEMO) Working Group [101], have proposed a mobile network

solution that is based on Mobile IP. For this to work, a Mobile Router is required

which connects via a home agent through which all traffic is sent, as with Mobile

IP while roaming the Mobile Router obtains a care of address which is used to

keep the home agent up to date with its current location. If the Mobile Router is

then required to route packets for the mobile network it informs the Home Agent

by setting a flag in the binding update, this allows the home agent to forward

packets destined for hosts within the network instead of just the Mobile Router.

It is also possible for nesting to occur, allowing Mobile Routers to connect via

another Mobile Router. This however leads to greater inefficiencies, each level of

nesting can add an extra level of indirection through a new home agent leading to

237

“ping pong” routing between Home Agents. Similarly to Mobile IP, the NEMO

protocol has been extended in recent years, introducing support for multihoming

at different points in the mobile network. This multihomed connectivity model

begins to adapt well to the problem domain, described in the previous chapter.

As multiple users inter-connecting will often have additional ways of accessing

the Internet. When a NEMO is multihomed, additional complexity is introduced

as with nesting, as multiple Home Agents can be introduced, along with multi-

ple Care-of-Addresses. Moreover, the NEMO may be multihomed from different

hosts within the network. In addition to multihoming, NEMO can still encounter

connectivity problems that are solved through the use of MANET protocols. To

this end, the combination of both MANET and NEMO has been of significant

interest to the Mobile community. This combination of technologies is typically

referred to as MANEMO, which merges the flexible Ad-Hoc nature of MANET

with the persistent global reachability of NEMO in order to take advantage of

the beneficial characteristics that exist within both protocols. MANET proto-

cols provide a flexible approach allowing Mobile Routers to communicate locally,

while NEMO provides IP mobility enabling hosts to maintain their connections

irrespective of any horizontal or vertical handover. A MANEMO is formed when

multiple NEMO Mobile Routers connect together in an Ad-Hoc configuration,

allowing Mobile Routers to route packets between one another using MANET

routing. This MANEMO connectivity model can allow Mobile Routers to remain

connected via a Home Agent, even in the event that the MANET separates lo-

cally. Despite the feature rich world of Network Mobility and specifically NEMO

and MANEMO, the fundamental concept is based on Mobile IP, mapping and

tunnelling, which as previously discussed has failed to become a core component

in the world of mobile connectivity. While Network Mobility obviously still has

a place in niche domains, such as Air travel, for the same reasons as the failure

of Mobile IP, it does not present itself as the most appropriate technology for

supporting cooperative and collaborative Internet access.

A.4 Summary

In this section, we have presented an overview of the current state of mobile

connectivity models and architectures; including hosts, networks, interdomain

238

and intradomain mobility. As previously discussed, efficient and seamless mobility

for both hosts and networks is still an open-ended problem, as standardised and

accepted solutions do not encompass all necessary use cases for a mobile device.

For example, Proxy Mobile IP is used within Cellular networks to maintain IP

addresses, however this does not extend to vertical handover as users migrate

to third-party WiFi access points. To this end, we believe mobility should be

supported at each of the end-hosts, which are capable of establishing a complete

view of available paths and connectivity options. This focus on end-host mobility

fits well with transport and application layer mobility models, such as MPTCP

and potentially HIDRA, which we believe to be much more appropriate for the

future development of mobile network stacks, as they can additionally incorporate

bandwidth aggregation, leveraging multihoming and resource pooling at the heart

of the protocol.

239

APPENDIX B

Additional Evaluation

In this section of the Appendix, we present additional results and graphs from

the evaluation in Chapter 6.

240

B.1 MAP Behaviour

2 4 8 16 32 64 128
Number of hosts

0
500

1000
1500
2000
2500
3000
3500
4000

Ov
er

he
ad

 in
 B

yt
es

(a) Flat Network (gateways=1)

2 4 8 16 32 64 128
Number of hosts

0
1000
2000
3000
4000
5000
6000
7000
8000

Ov
er

he
ad

 in
 B

yt
es

(b) Nested Network (gateways=1)

2 4 8 16 32 64 128
Number of interfaces

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Ov
er

he
ad

 in
 B

yt
es

(c) Flat Network (hosts=128)

2 4 8 16 32 64 128
Number of interfaces

0
1000
2000
3000
4000
5000
6000
7000
8000

Ov
er

he
ad

 in
 B

yt
es

(d) Nested Network (hosts=128)

1 2 4 8 16 32 64 128
Stride

0
1000
2000
3000
4000
5000
6000
7000
8000

Ov
er

he
ad

 in
 B

yt
es

(e) Variable Stride (gateways=128, hosts=128)

Total Packets
Request Packets
Update Packets

Figure B.1: Overhead of running MAPD on various network topologies.

241

B.2 MAP Utilization

B.2.1 Flat Network

2 4 8 16
Number of Devices

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.2: Throughput from simulation of the flat topology for 64KB flows
using iPerf.

2 4 8 16
Number of Devices

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.3: Throughput from simulation of the flat topology for transferring
512KB flows using iPerf.

242

2 4 8 16
Number of Devices

0

5

10

15

20

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.4: Throughput from simulation of the flat topology for transferring
4MB flows using iPerf.

2 4 8 16
Number of Devices

0
10
20
30
40
50
60
70
80

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.5: Throughput from simulation of the flat topology for 32MB flows
using iPerf.

243

B.2.2 Single Host Access

2 4 8 16
Number of Devices

0.36

0.38

0.40

0.42

0.44

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.6: Throughput from simulation of the nested topology, a single host
creates 64KB flows using iPerf.

2 4 8 16
Number of Devices

1.0

1.5

2.0

2.5

3.0

3.5

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.7: Throughput from simulation of the nested topology, a single host
creates 512KB flows using iPerf.

244

2 4 8 16
Number of Devices

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.8: Throughput from simulation of the nested topology, a single host
creates 4MB flows using iPerf.

2 4 8 16
Number of Devices

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (M

bp
s)

SP LB MP LB MAP MP MAP

Figure B.9: Throughput from simulation of the nested topology, a single host
creates 32MB flows using iPerf.

245

	Introduction
	Motivation
	Contributions
	Thesis Outline

	Background
	Resource Pooling
	Challenge
	Link Layer
	Network Layer
	Transport Layer
	TCP
	SCTP
	RTP

	Application Layer
	Summary

	Multipath-TCP
	Signalling
	Congestion Control
	Path Management
	Scheduling
	Mobility
	Summary

	Crowdsourcing Connectivity
	Multihomed Mobile Networks
	Interior Routing
	Gateway Discovery
	Gateway Selection

	User Cooperation
	Cooperative Internet Connectivity
	Modelling Incentive
	Opportunistic Networks

	Network Resource Management
	Always Best Connected
	Policy Based Network Management
	Path selection

	Requirements
	Terminology
	System Requirements
	Multipath Advertisement Protocol
	User Policy Framework

	Research Context and Methodology

	Summary

	Design
	Overview
	System Example

	Multipath Advertisement Protocol
	Operation
	Header
	Requests
	Updates

	MAP Behaviour
	Loop Avoidance
	Stablility
	Link Backup List
	Subnet Collision Detection
	Accounting and Authentication
	Security
	MPTCP Integration

	Software Design
	Resource Monitor
	Network Interface
	Topology Representation
	Enforcing Routing
	MAP API
	Configuration

	User Policy Framework
	Context Policies
	Configuration

	Application Policies
	Configuration
	Network Measurements
	Route Allocation

	Framework Design
	MPTCP Integration
	Callback Events

	Path Selection
	Selection Algorithms
	Selection Interface
	Selection Algorithm

	Summary

	Implementation
	Development Environment
	Real World
	Simulation

	Multipath Advertisement Protocol
	Routing Overlay
	Architecture
	Host Configuration
	Interface Lists
	Resource Management
	Network Interface
	Aggregation Logic

	Resource Pooling
	Load Balancing
	Multipath-TCP

	Implementation Decisions
	External Link Identifiers
	Heartbeats and Link Timeouts
	Scalability
	Supporting Multipath Unaware Hosts
	API

	User Policy Framework
	Resource Management
	Data Representation
	Link Monitor
	Link Manager
	MAP Interaction
	Network Measurements

	Context Management
	Context Configuration
	Context Modules
	Context Manager

	Policy Handler
	Application Configuration
	Route Enforcement

	MPTCP Controller
	Communication
	User Space
	Kernel Space Modifications

	Path Selection
	Algorithm Implementation
	Integration

	Summary

	Evaluation
	Multipath-TCP
	Experiment
	Homogenous Results
	Heterogenous Results

	MAP Behaviour
	Overhead Results
	Latency Results
	Device Impact

	MAP Network Utilisation
	Topology
	Results

	MAP Real World
	MAP Mobility
	Results

	User Policy Framework
	Preempting Disconnections
	Adapting to battery capacity
	Migrating traffic based on priority
	Collaborative Policy Results

	Path Selection
	Summary

	Conclusion
	Summary
	Future Work
	IPv6
	Coupled Congestion Control
	Policy Definition
	Path Selection

	Final Words

	Bibliography
	Mobile Connectivity
	Terminology
	Mobility
	Network Layer
	Transport Layer
	Application Layer

	Mobile Networks
	Mobile Ad-Hoc
	Network Mobility

	Summary

	Additional Evaluation
	MAP Behaviour
	MAP Utilization
	Flat Network
	Single Host Access

