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Abstract The work presented in this paper is motivated by a 
complex multivariate engineering problem associated with 
engine mapping experiments, which require efficient Design 
of Experiment (DoE) strategies to minimise expensive testing. 
The paper describes the development and evaluation of a 
Permutation Genetic Algorithm (PermGA) to support an 
exploration-based sequential DoE strategy for complex real-
life engineering problems. A known PermGA was 
implemented to generate uniform OLH DoEs, and 
substantially extended to support generation of Model 
Building–Model Validation (MB-MV) sequences, by 
generating optimal infill sets of test points as OLH DoEs, that 
preserve good space filling and projection properties for the 
merged MB + MV test plan. The algorithm was further 
extended to address issues with non-orthogonal design spaces, 
which is a common problem in engineering applications. The 
effectiveness of the PermGA algorithm for the MB-MV OLH 
DoE sequence was evaluated through a theoretical benchmark 
problem based on the Six-Hump-Camel-Back (SHCB) 
function, as well as the Gasoline Direct Injection (GDI) engine 
steady state engine mapping problem that motivated this 
research. The case studies show that the algorithm is effective 
at delivering quasi-orthogonal space-filling DoEs with good 
properties even after several MB-MV iterations, while the 
improvement in model adequacy and accuracy can be 
monitored by the engineering analyst. The practical 
importance of this work, demonstrated through the engine case 
study, also is that significant reduction in the effort and cost of 
testing can be achieved. 

Keywords  Design of Experiments, Optimal Latin Hypercube, 
Permutation Genetic Algorithm, model based engine 
calibration 

1 Introduction 

The driving factor for the work presented in this paper stems 
from an engineering problem associated with efficient engine 
test planning for calibration development. The ever increasing 
complexity of engine technologies towards improving 
performance, fuel economy, and drivability while meeting 
increasingly stringent emissions legislation, has resulted in a 
complex and time consuming process of calibrating the 
controllable engine parameters (e.g. fuel rail pressure and start 

of injection). To address this challenge, model based 
calibration strategies have been utilised (Roepke 2009; Kruse 
et al. 2010), commonly underpinned by statistical 
methodologies for planning physical engine tests (on engine 
dynamometers) and developing behavioural models for an 
engine based on response surface methodology. Specifically, 
steady-state engine mapping is based on statistical modelling of 
the engine responses of interest using test data collected at 
fixed speed/load operating points (Roepke 2009). The choice 
of location of test points in the design space associated with the 
actuators ranges at each engine operating point has a key role 
in ensuring the adequacy and accuracy of engine response 
models, as the basis for subsequent calibration optimisation 
studies (Kruse et al. 2010). Design of Experiments (Fuerle & 
Sienz 2011) strategies have been adopted for engine test 
planning. In general, an efficient DoE strategy aims to 
minimise the cost of testing while maximising the information 
content, such that response surface models of specified 
approximation accuracy can be developed (Bates et al. 2003).  

The practical importance of choosing an efficient DoE strategy 
is associated with the high cost of engine testing. Given that 
modern engine calibration problems involve an increasing 
number of calibration variables (often more than 10), so 
conventional (factorial based) DoE strategies are generally not 
feasible or economical. A further complication of engine 
experiments is that the design space is often not orthogonal 
with respect to one or more variables (i.e. linear or nonlinear 
constraints limit the actuator space in one or more dimensions), 
which further limits the applicability of classical DoEs. The 
DoE methods commonly used for engine mapping experiments 
include D-Optimal and V-Optimal DoEs and space filling 
DoEs (Seabrook et al. 2003; Grove et al. 2004; Sacks et al. 
1989; McKay et al. 2000). Space filling DoEs, in particular 
those based on Optimal Latin Hypercubes (OLH), have been 
increasingly used for engine model based calibration problems, 
given that they enable more flexible models to describe the 
engine behaviour over a wider design space (e.g. ‘global’ 
models over the whole engine speed-load space), with no prior 
knowledge required regarding the type of model that would 
adequately represent the trends (Seabrook et al. 2005). The 
OLH DoEs have the advantage that the number of test points 
can be set by the analyst, based on experience and resource 
limitations. However, this raises the risk of test plans that 
generate an insufficient amount of information due to under-
sampling, with the implication that the required model 



 

accuracy is not achieved. Conversely, if a larger OLH DoE test 
plan is selected, this raises the possibility of over-sampling, 
wasting time and energy by collecting more tests than needed. 

Recent research work in fields dealing with similar testing cost 
issues (e.g. electronics, chemistry, and aerodynamics) has 
focused on the development of sequential DoE approaches that 
iteratively augment an initial DoE with further test points until 
the desired model quality is reached (Crombecq et al. 2012; 
Geest et al. 1999; Provost et al. 1999). This strategy can 
facilitate a higher testing efficiency compared to the fixed size 
tests commonly used in practice, and has the advantage that it 
can flexibly adapt to modelling complexity requirements of 
different engine responses. In general, sequential DoEs can be 
divided into two main categories: 

1) Optimal sequential design: for this type of sequential 
DoE, the model type and its parameters are known in advance 
(e.g. polynomial). This allows the algorithms to use the 
behaviour of the set model type to guide the sampling points 
into the right direction within the design space; e.g. the D-
optimal designs minimise the covariance of the model 
parameters estimates (Draguljić et al. 2012). The main issue 
with these DoEs is that if the assumed model type is not 
suitable for the response, the DoE plan is not efficient and the 
enhancement in model accuracy through collecting more data 
is not guaranteed. 

2) Evolutionary sequential design: given that the type of 
model may not be known in advance for many engineering 
problems, and therefore a nonparametric model is required, 
justifies the need for a generic sequential DoE that makes no 
assumptions about the model type, number of sample points or 
system behaviour. Such DoEs use the information from 
previous iterations to decide where to select the next test point 
(Crombecq et al. 2009). These evolutionary sequential DoEs 
can be further classified into:  

(i) Exploitation-based sequential design (Geest et al. 1999; 
Forrester et al. 2008): Exploitation-based DoEs use an error 
measure from the previous steps to guide the sampling points 
to the interesting parts of design space, e.g. areas with 
discontinuous system behaviour or areas containing optima. 
The main problem with exploitation-based DoEs is the 
tendency to over-focus on specific areas, which could leave 
some part of design space under-sampled.  

(ii) Exploration-based sequential design methods (Provost 
et al. 1999; Crombecq & Dhaene 2010; Crombecq et al. 2011; 
Crombecq et al. 2009): Exploration-based sequential DoEs, 
give equal importance to all regions of design space and aim to 
fill it up as evenly as possible at each sequence. In this method, 
the location of the test points from the previous iteration is used 
as feedback for sampling new test point, ensuring that not too 
many or too few samples are collected from the same regions 
of design space. These DoEs are not specifically linked with 
any response models and aim to distribute the points evenly 
through the design space. 

Considering the fact that the engine calibration is a complex 
nonlinear multivariate engineering problem with high level of 
uncertainty associated with the behavior of responses, an 
optimal sequential DoE will not always be a useful DoE option 

given that knowledge or specification of the model type is 
required in advance. Additionally, an exploitation based 
sequential DoE may result in early dismissal of potential 
calibration solutions given that some parts of the high 
dimensional design space could be left unexplored.  

The approach proposed by the authors (Kianifar et al. 2013; 
Kianifar et al. 2014) is to use an exploration-based sequential 
DoE strategy based on optimal space filling designs (OLH 
DoEs), deployed as a Model Building–Model Validation (MB-
MV) DoE sequence (Narayanan et al. 2007). A key feature of 
the approach is that each DoE (i.e. both MB and MV) in the 
sequence is an OLH DoE, however, the merged MB-MV DoE, 
while it is optimized for space-fillingness, it does not strictly 
follow the latin hypercube rule, being instead made up of 
interlaced levels in the individual OLH DoEs. This addresses 
the limitation of the approach proposed by Narayanan et al 
(2007) which requires the number of MV iterations and the 
number of tests in each MV design to be known a priori. It also 
addresses the limitations of other sequential DoE strategies 
used in engine mapping problems based on Sobol Sequences 
(Lam 2008), which are not adaptive with respect to ‘learning’ 
from previous stages and the selection of new test points is 
quasi random from any subset of design space where the 
discrepancy is low. 

Generating OLH designs as individuals; or as a subset of larger 
designs to have an exploration-based optimisation strategy is a 
complex optimisation problem since the aim is to preserve the 
whole system space-fillingness within subsequent sequences of 
generating OLH designs. It is not practical to build an Optimal 
Latin Hypercube (OLH) design through enumeration, since 
considering all possible combinations of variables is expensive 
and time consuming. For example, for a simple problem of 10 
sample points and 5 variables, there are 6×1032 possible 
combinations. If each solution takes one nanosecond (1 × 10-9 
s) to evaluate, the whole evaluation process would take 
approximately 2×1016 years (Fuerle & Sienz 2011), which is 
clearly impractical. Different global optimisation algorithms 
have been proposed in the literature for generating OLH 
designs, such as column-wise-pairwise, simulated annealing, 
and Permutation Genetic Algorithm (PermGA) (Bates et al. 
2004; Bates et al. 2003; Liefvendahl & Stocki 2006; Audze & 
Eglais 1977).  

Genetic optimisation algorithm is a population-based stochastic 
search method inspired from genes behaviour, which is one of 
the most robust random search methods due to the element of 
directed-search (Shukla & Deb 2007). GA has been broadly 
used as an alternative to the classical optimisation algorithms 
for solving complex engineering optimisation problems 
(Bertram 2014; Dhingra et al. 2014; Deb et al. 2014). PermGA 
is working based on the same principles as the standard GA 
algorithm, however, the PermGA’s optimisation operators (e.g. 
crossover and mutation) are modified to work with permuted 
numbers in order to solve discrete optimisation problems, as 
discussed by Bates (Bates et al. 2003). However, in order to 
support the proposed exploration-based sequential DoE 
strategy the PermGA algorithm needs to be further developed, 
and the its performance evaluated in relation to the type of 
engineering problems that have motivated this work – which is 
the aim of the work presented in this paper. 



 

The paper first outlines the statistical requirements needed to 
design an efficient exploration-based sequential DoE strategy, 
and then describes in detail the proposed MB-MV DoE 
approach, including the choice space filling metrics. The 
implementation of the proposed DoE strategy using a modified 
PermGA algorithm for generalized infill OLH DoEs is 
presented next, illustrated with simple theoretical examples. 
The proposed approach of PermGA based exploration-based 
sequential OLH DoEs then validated theoretically through 
application on a mathematical test-case, and empirically 
through application to an industrial problem of steady state 
mapping of a gasoline direct injection engine. The paper ends 
with a discussion of the results and opportunities for further 
work. 

2 Problem Definition 

Applying a sequential exploration-based DoE strategy has the 
potential to improve the testing methodology by achieving the 
model accuracy of target accuracy through less data points, 
particularly when the testing process is time-consuming and 
expensive. However, efficiency of a sequential space-filling 
DoE strategy is highly dependent on the quality of the design 
augmentation technique to fulfil several statistical 
requirements. Accordingly, in order to design an efficient 
space-filling augmentation strategy there is a need to consider 
four important criteria: 

i. Non-collapsingness: a non-collapsing design (i.e. with 
good projective property (Dam et al. 2007)) guarantees 
that no two sample points project onto each other along 
any of the axes when the K-dimensional sample points 
are projected into the (K-1)-dimensional space. In other 
words, in a non-collapsing design each sample point 
has a unique value along any of the axes (Dam et al. 
2007). In effect, the projection criterion ensures that 
every parameter is represented over its domain, even if 
the response is only dominated by a few of the 
parameters. 

ii. Granularity: granularity is an important requirement 
for sequential designs (Crombecq et al. 2011). 
Granularity indicates the proficiency of the DoE 
strategy to augment the initial experimental design by 
small batches of additional test points. Accordingly, a 
fine-grained sequential strategy is flexible regarding 
the total size of DoE samples, despite the number of 
design variables and levels, which consequently results 
in avoiding over- or under-sampling (Hartmann & 
Nelles 2013; Klein et al. 2013). 

iii. Space-fillingness: this is the fundamental principle for 
an exploration-based sequential DoE technique, which 
requires to distribute the sample points (i.e. collect 
information) evenly within the design space regardless 
of the problem dimension and sample size (Dam et al. 
2007; Ye et al. 2000; Joseph & Hung 2008; Morris & 
Mitchell 1995; Johnson et al. 1990). 

iv. Orthogonality: this criterion ensures that there is no 
correlation between each combination of input 
parameters (Tang 1993; Owen 1992), thus ensuring 
that the experimental design is a good representative of 
the real variability (Khan 2011). Taking into the 
consideration that only a few existing experimental 
designs are orthogonal (e.g. factorial designs) most of 
the existing space-filling strategies try to reasonably 
satisfy the orthogonality criterion.  

In this research, a Model Building–Model Validation (MB-
MV) sequential DoE strategy is proposed to efficiently fulfill 
the four above statistical requirements. 

3 Model Building- Model Validation DoE Framework 

3.1   MB-MV DoE Strategy 

The strategy adopted in this research uses Optimal Latin 
Hypercube (OLH) space filling DoEs (Fuerle & Sienz 2011; 
Bates et al. 2003; Liefvendahl & Stocki 2006) as the basis for 
both Model Building (MB) and Model Validation (MV) DoEs. 
Within the proposed algorithm additional infill test points 
(generated as OLH DoE) are iteratively added to an initial 
model building OLH DoE, until the required modelling 
accuracy is achieved. At each iteration, the additional infill 
points generated are treated as an external validation set, used 
to evaluate the model quality. If modelling accuracy is not 
satisfactory, the MB and MV OLH DoEs are merged into a 
new model building set and a further MV set is collected for 
the next iteration.  

The proposed strategy provides a good fit with the practical 
requirements of engineering problems such as the steady-state 
engine testing problem. By using the MB-MV strategy, a 
smaller MB OLH DoE experiment can be planned (e.g. m=50 
test points), followed by a validation (MV) DoE experiment 
(e.g. v =15 test points). The MV is also an OLH but the 
optimality criterion is to minimise the space filling metric 
across the union of the MB and MV sets (m+v = 65 test points). 
Engine response models are fitted based on the MB DoE data, 
typically, using non-parametric or semi-parametric models 
(such as Kriging or Radial Basis Function (RBF)), and the 
quality of the models is evaluated via the prediction error (e.g. 
using the Root Mean Squared Error, RMSE) for the validation 
set, i.e. the MV DoE test data (Narayanan et al. 2007). If the 
model accuracy requirements are not met, a further validation 
DoE test (MV2) is planned with v2 test points, using the same 
principle of a OLH MV DoE in which the space filling metric 
is minimised across the combined MB + MV + MV2 set. A 
new model is fitted using the MB + MV set, and validated 
against the MV2 set. This process is repeated iteratively until 
the model accuracy requirement is met. The principle of the 
approach is illustrated in Fig. 1. 



 

 
Fig. 1 MB-MV Strategy Flowchart 

The computational challenge is to develop an efficient 
algorithm to support the implementation of the proposed MB-
MV strategy, and satisfying the four requirements to have an 
efficient sequential DoE strategy (i.e. non-collapsingness, 
granularity, space-fillingness, and orthogonality).  

3.2   MB-MV DoE Implementation 

The proposed MB-MV DoE strategy uses the Latin Hypercube 
(LH) principle. A LH design is generated by gridding the 
design space of each parameter into N (i.e. sample size) 
equidistant levels, and selecting only one test point on each 
level. Therefore, a LH design ensures that all levels of each 
parameter are represented over its range by maintaining non-
collapsingness (Sacks et al. 1989). A LH design can be defined 
as: 

𝐿 = �

𝑥11

𝑥21
𝑥12 … 𝑥1𝐾

𝑥22 … 𝑥2𝐾
⋮
𝑥𝑁1

⋮ ⋮ ⋮
𝑥𝑁2 … 𝑥𝑁𝐾

�  

𝐿 is a LH design where K denotes the number of dimensions. 
In this matrix each row represents a design point while each 
column shows the design points in one dimension. LH based 
DoEs are popular space-filling DoE techniques due to their 
unique ability to generate non-collapsing designs, which is 
essential in ensuring uniformity of space exploration in all 
dimensions (Dam et al. 2007). 

Unlike the other sequential DoE strategies based on OLH 
designs, such as the sequential Nested Latin Hypercube DoE 

method (Crombecq et al. 2011), MB-MV design is fine-
grained. In this design the number of additional MV points at 
each sequence is arbitrary, e.g. small batches of OLH test 
points, whereas the nested LH design doubles the number of 
test points at each iteration. 

In order to maintain a LH design with good space-filling 
properties, the Optimal Latin Hypercube (OLH) DoEs are 
generated by minimising a chosen metric for space filling or 
uniformity metric. The distribution of the test points for a OLH 
design is regarded as a discrete optimisation problem (Bates et 
al. 2004).  

The main challenges with this optimisation problem are:  

i. Formulation of the optimisation objective function to 
maintain space-fillingness.  

ii. Development of an effective algorithm for the discrete 
optimisation problem. 

3.2.1 Optimisation Objective Function 

Several uniformity metrics for OLH DoEs have been described 
in literature. Table 1 gives an overview of the frequently 
employed optimality criteria to generate an OLH design with a 
good space-filling property. 

Table 1 Summary of common space-filling criteria 
Optimality Criterion Formula 
Manhattan 
(Dam et al. 2007; Ye et al. 
2000) 

𝑚𝑖𝑛𝐱𝐢,𝐱𝐣∈𝑁  ∑ �𝑥𝑖𝑘 − 𝑥𝑗𝑘�𝐾
𝑘=1   

Maximin  
(Dam et al. 2007; Ye et al. 
2000; Joseph & Hung 2008; 
Morris & Mitchell 1995; 
Johnson et al. 1990) 

𝑚𝑖𝑛𝐱𝐢,𝐱𝐣∈𝑁 �∑ �𝑥𝑖𝑘 − 𝑥𝑗𝑘�
2𝐾

𝑘=1   

Audze Eglais (AELH) 
(Audze & Eglais 1977) ∑ �∑ �𝑥𝑖𝑘 − 𝑥𝑗𝑘�

2𝐾
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𝑘=1

𝑝
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1/𝑝

  

Of the optimality criteria shown in Table 1, both Maximin 
(Dam et al. 2007; Ye et al. 2000; Joseph & Hung 2008; Morris 
& Mitchell 1995; Johnson et al. 1990) (i.e. maximising the 
minimum distance between every two samples) and Audze 
Eglais (Audze & Eglais 1977) functions have been proven to 
maintain a good inter-site distance. Maximin criteria tends to 
generate more sample points around the corners, especially for 
high dimensional problems (Draguljić et al. 2012), 
consequently this strategy might not preserve good space-
filling properties at the centre of the design space, particularly 
for a small sample size (N). Draguljić (Draguljić et al. 2012) 
discussed that the Audze-Eglais criterion performs better for 
high dimensional problems (K).  

The requirements for the MB-MV DoE strategy are to (i) 
generate OLH MB DoEs with good space filling properties; (ii) 



 

generate an infill set of validation points as an OLH DoE that 
would project good space filling properties in conjunction with 
the initial DoE; and (iii) the algorithm must also be robust to 
generate an infill set of validation points within a non-
orthogonal variables design spaces. 

On this basis, the uniformity metric chosen for the OLH DoEs 
is the Audze-Eglais Latin Hypercube (AELH) potential energy 
concept, given its superior robustness in dealing with variable 
dimensionality and sample size (Bates et al. 2004). The AELH 
function is based on the fact that the magnitude of the repulsive 
forces is inversely proportional to the square of the distance 
between the points in the system. Thus, the AELH objective 
function can be presented as follows (Bates et al. 2004; Bates 
et al. 2003):  

𝑈 =  ∑ ∑ 1
𝐿𝑖𝑗2

𝑁
𝑗=𝑖+1

𝑁
𝑖=1           (1) 

U is the potential energy, N denotes the total number of DoE 
points, and Lij is the distance between any 2 points i and j, i ≠ j. 
Minimising the potential energy ensures a uniform distribution 
of the sample points within the design space. 

In order to generate an optimal sequence of DoEs according to 
the MB-MV principle, it is proposed that the space filling 
criteria is maintained throughout the MB-MV sequence. What 
this means is that MB and MV DoEs are generated as an OLH, 
but the optimality criterion for the MV DoE is defined in 
relation to the space filling metric for the overall DoE 
sequence (i.e. including all MB and MV DoE test points). The 
joint DoE created by the union of the MB DoE (based on N 
levels) and MV DoE (based on M levels) test points will not 
strictly fulfil the LH principle as it is based on N+M interlaced 
and, in general, unevenly distributed levels. Therefore, for the 
optimal augmentation of the DoE, i.e. by generating optimal 
‘infill’ points for the MV set, the same uniformity metric (i.e. 
the AELH function) is used. The main challenge for this step 
is to modify the AELH objective function to take into account 
the position of the MB points already fixed in the design 
space. This means that the fitness function should include both 
the M new test points and the existing N test points from the 
MB OLH DoE. The fitness function is modified accordingly, 
shown in equation (2).  

𝑈 =  (∑ ∑ 1
𝐿𝑖𝑗2

𝑀
𝑗=𝑖+1

𝑀
𝑖=1 + ∑ ∑ 1

𝐿𝑖𝑛2
𝑁
𝑛=1

𝑀
𝑖=1 )               (2) 

U is the potential energy, Lij is the distance between any two 
points i and j, (i ≠ j) in the MV OLH DoE, and Lin is the 
distance between each new point i and the exiting points n. The 
outcome of the MB-MV design step will be an OLH design 
with an optimal uniform distribution of points across the design 
space, with the new MV points optimally filling the under-
sampled areas in the original design. 

Equations (1) and (2) are capable of generating the OLH test 
points within a symmetric design space in each of the 
dimensions. For many engineering problems the design space 
might be severely constrained in relation to some design 
variables (i.e. asymmetric design space). This could impair the 
ability of the search algorithm to generate enough valid points 

for the MB, or any of the subsequent MVs, and affect the space 
filling quality of the generated design (Fuerle & Sienz 2011).  

A variety of constraint-handling methods for evolutionary 
algorithm have been proposed, as summarised by Michalewicz 
and Schoenauer (Michalewicz & Schoenauer 1996), and 
Mezura & Coello (Mezura-Montes & Coello Coello 2011). The 
commonly used strategies are:  

1) Repair strategy: the idea of this strategy is that an infeasible 
individual is repaired to a feasible individual (Liepins & 
Vose 1990). 

2) Sudden Dead strategy (also called Death penalty), in which 
an infeasible individual is removed immediately from the 
population (Schwefel 1993). 

3) Penalty functions, the basic idea of this strategy is to refine 
the fitness functions by extending the objective function 
with a penalty term. Penalty functions are the most 
commonly used approaches for evolutionary algorithm, in 
particular for handling inequality constraints (Barbosa et al. 
2015).  

In this work the latter strategy was adopted, by implementing 
the sequential unconstrained minimization technique (SUMT) 
to generate OLH designs with constrained design spaces 
(Byrne 2012). This technique is based on adding an increasing 
penalty function to the objective function in order to avoid 
unnecessary computational costs by generating test points that 
are not feasible or do not have a physical meaning. 
Accordingly, the objective function in equation (2) was 
modified as shown in equation (3). 

𝑈 = ��∑ ∑ 1
𝐿𝑖𝑗2

𝑀
𝑗=𝑖+1

𝑀
𝑖=1 + 𝑐𝑡 × 𝑃(𝑥)� + �∑ ∑ 1

𝐿𝑖𝑛2
𝑁
𝑛=1

𝑀
𝑖=1 ��    (3) 

𝑃(𝑥) = 1
2
∑ ∑ (max {0,𝑔𝑗(𝑥𝑖)})2𝐺

𝑗=1
𝑀
𝑖=1             (4) 

In equation (3), 𝑐𝑡 denotes the monotonically increasing 
penalty parameter: 𝑐𝑡+1 = 𝜂 × 𝑐𝑡 where 𝜂 > 1. Therefore, the 
penalty parameter is increasing iteratively during the PermGA 
process until all the infeasible points are directed into the 
feasible area. Also, 𝑃(𝑥) is a function of the inequality design 
constraints ( 𝑔𝑗(𝑥) < 0, where j = 1,…, G), as given in 
equation (4). Noteworthy, all the G constraints in equation (4) 
are scaled, in order to ensure that the penalty term generated by 
each constraint is about the same magnitude. 

3.2.2 PermGA Optimisation Algorithm 

The distribution of the test points for a OLH design can be 
conducted as a discrete optimisation problem (Bates et al. 
2004). Table 2 summarises some examples of the optimality 
criteria and optimisation algorithms employed to develop an 
OLH design.  

 

 



 

Table 2 Examples of the introduced optimisation techniques 
in literature to construct an OLH design  

Author Optimisation Algorithm  
Audze & Eglais (1977) Coordinates exchange algorithm 
Morris & Mitchel (1995) Simulated annealing 
Ye et al. (2000) Column-wise-Pairwise 
Bates et al. (2003) PermGA 
Bates et al. (2004) PermGA / Simulated annealing 
Liefvendahl et al. (2006) PermGA / Column-wise-Pairwise 
Van Dam et al.(2007) Branch-and-bound algorithm 

It has been argued in the literature that PermGA can be more 
efficient for higher-dimensional OLH DoE problems due to a 
convergence rate corresponding to the varying number of 
actuators (Bates et al. 2004; Liefvendahl & Stocki 2006). In 
other words, PermGA can generate better distributed points for 
high dimensional DoEs while reducing the computational 
costs.  

Therefore, a PermGA algorithm was developed and 
implemented in this paper to generate the MB-MV designs. 
Another reason to select the PermGA is that it is a population-
based stochastic optimiser, thus; it is expected that the 
algorithm generates a number of random permuted populations 
for each dimension with no particular correlation among the 
generated points. So, it is expected that the final DoE generated 
by PermGA preserves a good orthogonality properties.  

I. PermGA Development 

The pseudocode for the PermGA algorithm implemented in 
Matlab environment is provided in Algorithm 1. 

Algorithm 1. PermGA 
begin 
i = 0 
1. Generate a number of random LH designs (i.e. based on GA 

population size) using permuted numbers 
2. While the termination conditions are not met do 

begin 
3. Evaluate the individual’s fitness function (i.e. for MB 

DoE using equation (1), for MV DoE with symmetric 
design space of variables using equation (2), and for MV 
DoE with asymmetric design space of variables using 
equation (3)) 

4. Store a number of individuals with the best fitness values 
(i.e. elites) 

5. While the number of new LH designs (i.e. children) is less 
than the set population size do 
begin 
6. Select two of the individuals (i.e. parents) 
7. Apply Cycle and Inversion crossover operators 

considering the crossover rate 
8. Apply mutation operator considering the mutation rate 
end 

i = i +1 

Update penalty parameter (c) if the design space of variables 
is asymmetric  
end 

end 

To enhance the exposition of developed PermGA algorithm, 
the extended design structure matrix (XDSM), which is an 
extension of a common diagram in system engineering (Lambe 
& Martins 2012), was employed to visualize the 
interconnections among the PermGA components, as shown in 
Fig. 2. 

Following the XDSM convention for architectural 
decomposition (Lambe & Martins 2012), PermGA algorithm 
components are represented by rectangles, special components 
which control the iterations (known as drivers) are shown by 
rounded rectangles, and data is represented by parallelograms. 
The function of components is to process data. The thick grey 
lines are used to show the data flow, while the thin black lines 
illustrate the process flow. The input data transfers to the 
components from the vertical direction and departs the 
components from the horizontal direction. The convention for 
the data flow is that connections above the diagonal flow from 
left to right and top to bottom, and connections below the 
diagonal flow from right to left and bottom to top. 
Accordingly, parallelograms at the column above and below 
the components define the input data, and parallelograms along 
the row define the output data. Moreover, external inputs and 
outputs are placed on the outer edges of the diagram, in the top 
row and leftmost column, respectively (Lambe & Martins 
2012). Another XDSM architecture convention is that any 
block referring to component i represents a repeated pattern. In 
addition, a numbering system is used to illustrate the order of 
components execution, i.e. it starts from zero and proceeds in 
numerical order. In this numbering system the loops are shown 
by j→k for k < j, which denotes that the algorithm returns to 
step k until the required termination condition by the driver is 
met. For further details see Lambe and Martins (2012). 

For implementation, the external inputs at level 0 (shown as X) 
are N populations of RLH designs which have been generated 
using the ‘Permutation’ encoding (Michalewicz 1996) in 
Matlab. Also, if the design space of variables is constrained, an 
initial value for penalty parameter (c) is another external input 
at this level. At level 1 the optimisation objective function is 
calculated for each input population Xi (𝑖 =  1, … ,𝑁). This 
iterative analysis component is shown as ‘Fitness Analysis’ in 
Fig. 2. The fitness function for the MB points is calculated 
using equation (2) for MV points within a symmetric design 
space, and equation (3) for MV points within an asymmetric 
design space (i.e. constrained design spaces). Given that each 
DoE parameter might have a different range of units, the 
variables have each been normalised to the interval [0 1] in 
order to calculate the Lpq. Next, the fitness value for each 
population fi is transferred to level 2 (shown as ‘Evolve 
populations’), along with the initial populations X. In this level, 
GA operators were applied to the initial population (parents) to 
evolve the new population (children). In this implementation, 
‘selection’, ‘crossover’ and ‘mutation’ GA operators are 
utilised, shown as level 2.1, level 2.2, and level 2.3, 
respectively, in Fig. 2. 



 

Fig. 2 Illustration of Permutation GA algorithm process using the XDSM graph

•  ‘Selection’ operator (Level 2.1): This operator defines 
the method of selecting the parent populations to be 
evolved. Several selection methods have been discussed 
in literature, including ‘Tournament’ and ‘Biased Roulette 
Wheel’ (Coley 1999). In this work the ‘Biased Roulette 
Wheel’ operator was implemented to increase the 
convergence rate, by giving individuals with better fitness 
values fi proportionally more chance to be selected as 
parents. R1 and R2 external inputs are two random 
numbers which define the parent populations (Xi and Xj). 

• ‘Crossover’ operator (Level 2.2): This operator 
combines parts of input parent populations (Xi and Xj) 
and generate two new individuals (Xi

c and Xj
c). There are 

different crossover methods used for PermGA, such as: 
simple crossover, cycle crossover and inversion (Bates et 
al. 2004). Bates (Bates et al. 2004) has shown that either 
cycle crossover or inversion work well for a PermGA 
algorithm. However, given that the interactions among 
GA parameters are complex and dependent on the fitness 
function (Deb & Agrawal 1999), it was decided to employ 
both crossover functions, i.e. cycle crossover followed by 
inversion. The Cycle crossover preserves the absolute 
position of the elements in the parent sequence (Fig. 3), 
while using Inversion crossover the points are inverted 
between two sets of points (Narayanan et al. 2007) (Fig. 
4). The aim was to introduce extra variability into the 
children populations in order to reduce the chance of the 
search algorithm being trapped in a local optima. 

 
Fig. 3 Cycle crossover 

 
Fig. 4 Inversion crossover 

• ‘Mutation’ operator (Level 2.3): A simple mutation 
technique (Liefvendahl & Stocki 2006), (Michalewicz 
1996) was used to swap two randomly selected elements 
of the transferred individuals, from the crossover level 
(Xi

c and Xj
c), and evolve them into new child populations 

(Xi
m and Xj

m), as shown in Fig. 5. 



 

 
Fig. 5 Mutation operator 

The output of the iterative process at level 2 is N new 
populations which are transferred to level 3 to evaluate the 
fitness of evolved populations. Finally, the convergence 
requirements are checked at level 4. If the convergence 
requirements are met, the optimum solution (X*), which is the 
final OLH design, is delivered. Otherwise, the new population, 
along with the updated penalty parameter (c), if the design 
space is asymmetric, will be transferred to level 1 for another 
iteration of program. 

Additionally, some PermGA parameters, shown as external 
inputs in Fig. 2, require tuning due to their significant 
influence on the algorithm performance (Grefenstette 1986); 
specifically: 

• Elite Size (E): defines how many individuals with the 
best fitness value fi should transfer to the next iteration of 
the algorithm without evolving. Thus, the best individuals 
are not lost during subsequent generations, which can 
accordingly assure a smoother convergence.  

• Crossover Rate (Cr): determines the number of 
individuals that are evolved through the crossover 
operation. 

• Mutation Rate (Mr): determines the number of 
individuals that are evolved through the mutation 
operation. 

• Population Number (N): denotes the population size for 
the input design X.  

 

II.  PermGA Preliminary Results 

For illustration, Fig. 6 shows the result of a MB DoE sequence 
for a 2 dimensional problem, with 60 DoE points generated 
using equation (1), where 𝑥1& 𝑥2 ∈ [−1 1]. 

Fig. 7 illustrates the space filling properties of the MB DoE, in 
terms of the minimum Euclidean distance from the nearest 
point (Morris & Mitchell 1995), for each of the test points. The 
Euclidian distance for each sample point is calculated with 
equation (5) (Crombecq et al. 2011):  

𝐷𝑖 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝐱𝐢,𝐱𝐣∈𝑁 �∑ �𝑥𝑖𝑘 − 𝑥𝑗𝑘�
2𝐾

𝑘=1             

                                                             where  𝑖 ≠ 𝑗 

 
 

(5) 

N is the sample size and K denotes the number of design 
parameters. The graph in Fig. 7 shows a uniform distribution of 
the minimum distance to the nearest test point, with a mean of 
0.106 and standard deviation of 0.015.  

To study the orthogonality properties of the designs generated 
by PermGA, the correlation (r) between the vectors of 
variables were calculated using equation (6) (Joseph & Hung 
2008): 

𝑟 =  
∑ (𝑥𝑖

𝑘−𝑥𝑘����)(𝑥𝑖
𝑗−𝑥𝚥����𝑁

𝑖 )

�∑ (𝑥𝑖
𝑘−𝑥𝑘����)2𝑁

𝑖 �∑ (𝑥𝑖
𝑗−𝑥𝚥����)2𝑁

𝑖

         

where  𝑘 ≠ 𝑗  

 
 
 

(6) 

where 𝑥𝑖𝑘 indicates the sample i for the design parameter k and 
𝑥𝑘��� gives the samples’ average for the design parameter k. The 
correlation between vectors of variables for 60 OLH DoE 
points is -0.019, which means that the MB OLH design is 
quasi-orthogonal.  

 
Fig. 6 MB Sequence (60 test points) 

 

 
Fig. 7 Euclidean minimum distance for all MB DoE points 

Fig. 8 illustrates a typical convergence plot in terms of fitness 
for the MB algorithm. The PermGA algorithm was run with the 
following GA settings: ‘Population Size’ = 200; ‘Crossover 
Rate’ = 0.8, ‘Mutation Rate’ = 0.05, and ‘Elite Size’ = 5. 



 

 
Fig. 8 Convergence plot of PermGA for generating the MB 

OLH DoE sequence (60 points in 2 dimensions) 

In order to illustrate the MB-MV DoE algorithm using the 
modified objective functions, i.e. equations (2) and (3), an MV 
DoE of 40 points was generated using the MB DoE shown in 
Fig. 6.  Several boundary conditions have been considered to 
reflect common practical engineering situations, as illustrated 
in the examples discussed below. 

 Example 1: 40 MV DoE test points with no boundary 
constraint, where 𝑥1& 𝑥2 ∈ [−1 1]. 

Given that no boundary conditions are imposed, equation (2) 
was used as the objective function. The PermGA algorithm 
settings used were: ‘Population Size’ = 200; ‘Crossover Rate’ 
= 0.8, ‘Mutation Rate’ = 0.05, and ‘Elite Size’ = 5. Fig. 9 
illustrates the location of 40 MV infill DoE test points (cross-
shaped) among the existing 60 MB points (circle dots). Similar 
statistical analysis was executed on the MV DoE to investigate 
the design space-fillingness and orthogonality. Therefore, 
fig.10 illustrates the Euclidean distance for 100 DoE points (60 
MB + 40 MV points), calculated using equation (5). This graph 
shows a uniform distribution of Euclidean distances, with a 
mean of 0.079 and standard deviation of 0.017. Also, the 
correlation between the vectors of 𝑥1 and 𝑥2 parameters for 
100 DoE points is 0.025, calculated using equation (6), which 
means that the final design is still quasi-orthogonal. 

 
Fig. 9 MB-MV Sequence for symmetric design space 

 

 
Fig. 10 Euclidean minimum distance for MB-MV test points 

Fig. 11 illustrates the convergence plot in terms of fitness for 
the augmented MB-MV algorithm, showing that the 
augmented search algorithm is smoothly converged to the 
optimum solution.  

 
Fig. 11 Convergence plot for PermGA 

 Example 2: 40 MV DoE test points with no boundary 
constraint, where 𝑥1& 𝑥2 ∈ [0 1]. 

For many real-life engineering problems it is the case that after 
the first step of characterizing the response model using the 
initial DoE, there is a need to collect more data from a smaller 
part of design space in order to achieve a better model 
accuracy. One of the advantages of using an efficient 
sequential DoE strategy is that the design space can be 
modified sequentially, which in effect provides the opportunity 
to revise the design space after data analysis at each DoE 
sequence using the same DoE principals. Therefore, in this 
example, the design space for the 2 parameters at the MV stage 
was revised from [−1 1] to [0 1]. The PermGA algorithm was 
run with ‘Population Size’ 200; ‘Crossover Rate’ 0.8, 
‘Mutation Rate’ 0.05, and ‘Elite size’ 5.  

Fig. 12 illustrates the location of 40 MV DoE test points (cross-
shaped) with revised design space, generated using equation 
(2) as the objective function, among the existing 60 MB points 
(circle dots). The square box in fig. 12 shows the revised 
design space, within which the MV test points are generated. 
Fig. 13 shows the Euclidean distances for all the 100 DoE 



 

points, with a mean of 0.149 and standard deviation of 0.062. 
This figure shows that distribution of Euclidean distances (or 
space-fillingness) is not as smooth as example 1, i.e. higher 
standard deviation for Euclidian distances, which was expected 
since the design space of the additional 40 infill points was not 
equal to the design space of the 60 MB test points. 

 
Fig. 12 MB-MV Sequence for revised design space 

 

 
Fig. 13 Euclidean minimum distance for MB-MV test points 

The correlation between vectors of 𝑥1 and 𝑥2  parameters for 
the total design of 100 test points is 0.18, which is still an 
acceptable value for correlation term, i.e. within the [-0.3  0.3] 
limit suggested by Steinberg and Lin (Steinberg & Lin 2006). 
Fig. 14 illustrates the convergence plot in terms of fitness for 
the augmented MB-MV algorithm, showing that the 
augmented search algorithm is smoothly converged to the 
optimum solution.  

 Example 3: 40 MV DoE test points with 1 boundary 
constraint 𝑔(𝑥) = 𝑥2 − 𝑥1 − 1 ≤ 0, where 𝑥1& 𝑥2 ∈
[−1 1]. 

In this example an asymmetric design space was  considered, 
i.e. linearly constrained by the inequality constraint 𝑔(𝑥) =
𝑥2 − 𝑥1 ≤ 1. The augmented infill PermGA algorithm, with 
the fitness function given in equation (3), including an adaptive 
penalty function was used to generate the 40 infill MV test 
points, as illustrated in Fig. 15. The PermGA algorithm was 
run with ‘Population Size’ 200; ‘Crossover Rate’ 0.8, 
‘Mutation Rate’ 0.05, and ‘Elite size’ 5.  

 
Fig. 14 Convergence plot for PermGA 

 

 
Fig. 15 MB-MV Sequence for assymetric design space 

In Fig. 15 the red lines show the feasible design space for the 
MV DoE sequence. The space filling uniformity for the MB-
MV OLH DoE points in the constrained design space is 
illustrated in fig. 16, based on the Euclidean distance to the 
nearest test point. This figure shows that the infill points are 
distributed within the constrained design space, with a mean of 
0.074 and standard deviation of 0.018. The correlation between 
vectors of 𝑥1 and 𝑥2 parameters for the total design of 100 test 
points is 0.13, which is an acceptable value for correlation 
term. 

 
Fig. 16 Euclidean minimum distance for MB-MV test points 



 

Fig. 17 illustrates the convergence plot in terms of fitness for 
the augmented MB-MV algorithm, showing that the 
augmented search algorithm is converged to the optimum 
solution. The figure shows that the fitness value has increased 
for 6 iterations as the GA population with the best fitness value 
(i.e. the solution of the GA process at each iteration) could not 
meet the inequality constraint. In effect the increase in the 
fitness value was due to the sequentially increasing penalty 
term. Then, from the 6th iteration onwards the best population 
was within the linearly constrained design space, thus; the 
fitness value was decreased significantly since no penalty term 
was applied.  

 
Fig. 17 Convergence plot for PermGA 

 

 Example 4: 40 MV DoE test points with 2 boundary 
constraints, 𝑔1(𝑥) = 𝑥2 − 𝑥1 − 1 ≤ 0 & 𝑔2(𝑥) = 𝑥1 −
𝑥2 − 1 ≤ 0, where 𝑥1& 𝑥2 ∈ [−1 1]. 

In this example, the design space is linearly constrained by two 
inequality constraints 𝑔1(𝑥) = 𝑥2 − 𝑥1 ≤ 1 and 𝑔2(𝑥) = 𝑥1 −
𝑥2 ≤ 1. Fig. 18 illustrates the 40 infill MV test points (cross-
shaped), generated using equation (3) as the fitness function, 
among the 60 MB test points (circle dots). In this figure, the 
red lines show the feasible design space for the MV DoE 
sequence. The PermGA algorithm was run with ‘Population 
Size’ 200; ‘Crossover Rate’ 0.8, ‘Mutation Rate’ 0.05, and 
‘Elite size’ 5. 

The space filling uniformity for the MB-MV OLH DoE points 
in the constrained design space is illustrated in Fig. 19, based 
on the Euclidean distance, distributed with a mean of 0.077 and 
standard deviation of 0.02. Also, the correlation between 
vectors of 𝑥1 and 𝑥2 parameters for the total design of 100 test 
points is 0.22, which is still an acceptable value for correlation 
term. 

Fig. 20 illustrates the convergence plot in terms of fitness for 
the augmented MB-MV algorithm. Similar to the previous 
example, this figure shows an exponential increase in the 
fitness value for the initial iterations until iteration 16, until a 
feasible solution within the design space constraints was found.  

 
Fig. 18 MB-MV Sequence for assymetric design space 

 

 

Fig. 19 Euclidean minimum distance for MB-MV test points 
 

 
Fig. 20 Convergence plot for PermGA 

 

4 Validation Case Studies 

In order to validate the application of the MB-MV DoE 
strategy implemented through the developed PermGA 
algorithm, two case studies were considered, illustrating both 
theoretical and empirical (via a real world engineering case 
study) validation of the approach. 



 

4.1  Theoretical validation via Benchmark problem: The 
Six Hump Camel Back (SHCB) Function 

The SHCB function, given in equation (7), is a surrogate 
engineering problem which is a well-known example for 
evaluating the global optimisation plans (Wang et al. 2004). 
This function has a complex shape with six local optima and 
two global optima of -1.0316 at (0.0898,-0.7127) and (-0.0898, 
0.7127). 

𝑓(𝑥) = 4𝑥12 − 2.1𝑥14 + 1
3� 𝑥16 + 𝑥1𝑥2 − 4𝑥22 + 4𝑥24   

                                   where    𝑥1 ∈ [-2,2], 𝑥2 ∈ [-1,1] 

 

(7) 

For purposes of comparing the model accuracy after each 
iteration of MB-MV DoE strategy, the MB-MV DoE was 
planned in four iterations. In the first step, an MB OLH DoE 
with 60 points was generated using equation (1). A MV OLH 
DoE with 15 points was generated as the first Model Validation 
design (MV1) using equation (2). The SHCB function was 
evaluated at both MB and MV1 points, and a response model 
was fitted based on the MB test points in the MATLAB MBC 
ToolboxTM, using Radial Basis Functions (RBF) models (Fang 
& Mark 2005) (i.e. RBF with Thinplate Kernel function 
(Morton & Knott 2002)). In step two, the same type of RBF 
response model was built based on the joint MB+MV1 test 
points (i.e. 75 points). A second Model Validation (MV2) was 
generated based on a 15 points OLH MV DoE. The same 
process of internal and external validation (MV2 points) was 
applied. This process was repeated with two further iterations, 
with MV3 = 15 points and MV4 = 15 points (i.e. in the 4th 
iteration the model building set comprised 
MB+MV1+MV2+MV3 = 105 points, an MV4 = 15 points).  

Fig. 21 illustrates the distribution of points in the DoEs at each 
iteration. Fig. 22 shows the uniformity of the distribution of the 
points in the design space, in terms of the Euclidian distance 
for each of the 120 test points in the joint MB-MV DoEs. This 
histogram indicates that distribution of the Euclidian distance 
for the test points is quasi-uniform and even after 4 
independent steps of testing the distributed points are still 
remote from each other within the design space (i.e. test points 
are not replicated). For better illustration of the uniformity of 
the distributed test points within the design space (i.e. space 
filling properties), the distribution of the minimum Euclidian 
distance of the test points across the subsequent MV DoEs are 
illustrated using boxplots, as shown in Fig. 23. This figure 
indicates that: 

1) The Euclidian distance of test points decreases by adding 
more test points (from MB-MV1 to MB-MV4), which 
was expected since the number of test points within the 
finite design space are increasing over the MV DoE 
sequences.  

2) The variability of the Euclidian distances measured via 
the interquartile range decreases across the subsequent 
DoEs. This trend demonstrates the ability of PermGA 
algorithm to enhance the space filling properties of the 
merged DoEs, by preserving the uniform distribution of 
test points when generating the MV DoEs. 

Fig. 23 shows that a number of outliers detected by collecting 
more data (i.e. ‘MB-MV3’ and ‘MB-MV4’). The main reason 
for appearance of the outliers is that the spread of the Euclidian 
distances is smaller for the ‘MB-MV3’ and ‘MB-MV4’ DoEs, 
due to a more uniform distribution of Euclidian distances. 
Accordingly, the interquartile range, and consequently the 
whiskers, is smaller in these DoEs, which in effect increases 
the possibility of having more test points with Euclidian 
distances out of the whiskers’ range (i.e. outliers). 

Fig. 24 characterises the distribution of the Euclidean distances 
in terms of its standard deviation across the 4 stages. This 
graph shows that the uniform space filling properties of the 
MB-MV DoEs are improving over the subsequent stages of 
DoE. The correlation between x1 and x2 after 4 stages was also 
calculated as r = 0.05, which indicates that the final design is 
quasi-orthogonal. 

Furthermore, Fig. 21 gives a graphical illustration of the 
response surfaces fitted at each stage. These graphs clearly 
show that the accuracy of the model improves through the 
successive MB-MV stages. By looking at the internal model 
validation criterion (PRESS RMSE, given in Fig. 21) and 
external validation (RMSE for the MV test points, shown in 
Fig. 25), it can be concluded that the accuracy of the model 
improves dramatically over the first 3 stages, with only a small 
improvement between the 3rd and 4th stage. 

The main conclusion from this study was that the proposed 
MB-MV sequential DoE framework is successful at generating 
a quasi-orthogonal DoE with good space filling properties. The 
proposed design is also a fine-grained design, augmented 
iteratively with small batches of MV points, with good 
projection properties, since it uses batches of OLH designs to 
cover the whole range of design space for each parameter.  

 

 
 



 

   
Stage 1:      MB=60 points MV1=15 points RBF Model (PRESS RMSE: 0.43) 

   
Stage 2:      MB=75 points MV2=15 points RBF Model (PRESS RMSE: 0.1) 

   
Stage 3:      MB=90 points MV3=15 points RBF Model (PRESS RMSE: 0.05) 

   
Stage 4:      MB=105 points MV4=15 points RBF Model (PRESS RMSE: 0.03) 

Fig. 21 MB-MV DoE projection and response surface modelling for SHCB problem 

 

 

 

 

 

 

 



 

 
Fig. 22 Euclidean ‘Maxi-min’ (Mm) distances of all the sample 

points in four steps 
 

 
Fig 23 Boxplot of Euclidean distances across the subsequent 

validation DoEs 

 
Fig. 24 Standard deviation (σ) of the Mm Distance          

(Stages 1 to 4) 
 

 
Fig. 25 External validation of the built models through MB-

MV sequence (Stages 1 to 4) 

 

4.2  Empirical Validation: Application to a GDI Engine 
Steady State Engine Mapping 

The GDI engine case study described in this paper is based on 
engine dynamometer experiments conducted in the powertrain 
testing facility at the University of Bradford for the part load 
“hot” steady-state calibration of a 5-litre naturally aspirated V8 
GDI engine. This case study was based on the model-based 
steady-state calibration process discussed in (Dwyer et al. 
2013), with testing conducted at a number of engine speed-load 
operating points, to study the effect of calibration variables on 
fuel consumption and emissions.  

The MB-MV DoE strategy, implemented through the 
algorithms described in this paper, was used to generate the test 
plan for the GDI engine mapping experiments, and to develop 
response models of sufficient accuracy for the calibration 
optimisation process. Table 3 and Fig. 26 summarise the 
engine calibration control variables and the engine responses of 
interest at each engine speed / load operating point. 

From a calibration engineering viewpoint, the fuel 
consumption and particulates number (PN) emissions are 
responses that are of interest for calibration optimisation, which 
can be defined as identifying variables settings to minimise fuel 
consumption and PN emissions. However, combustion stability 
and exhaust gases temperature are in fact state variables, which 
act as nonlinear constraints for the calibration optimisation 
problem. From a DoE strategy point of view, collecting test 
points in areas where the engine operation is infeasible from 
the point of view of these state variables would be a waste. 
Thus, combustion stability and exhaust temperature act as 
nonlinear constraints for the DoE problem. 

The approach adopted for the GDI mapping case study was to 
design and run a preliminary screening experiment as an OLH 
DoE. Response models were fitted based on the screening 
experiment and used to define a revised variable space based 
on the evaluation of the combustion stability and exhaust 
temperature responses. For example, it was observed that for 
lower speed / load engine operating points, negative valve 
overlap (valve overlap can be defined as the time that both the 
inlet and exhaust vales are open, i.e. 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =  𝐸𝑉𝐶 −
𝐼𝑉𝑂), results in poor combustion stability. This is consistent 
with engineering judgment where, at part load, high overlap 
results in excessive Exhaust Gas Recirculation (EGR) with 
negative effects upon combustion stability, especially under 
low load conditions such as idle (Hagen & Holiday 1976). 
Based on this analysis, a negative overlap constraint was 
introduced for the design space for IVO and EVC calibration 
variables at low speed / load operating points for the MB-MV 
sequence. 

Table 3 GDI engine calibration parameters 
Name Description Limits Unit 
IVO Inlet Valve Opening -12 50 deg ATDC 
EVC Exhaust Valve Closing -6 44 deg ATDC 
FRP Fuel Rail Pressure 8 15 MPa 
SOI Start of Injection 260 335 deg BTDC 

 



 

 
Fig. 26 GDI engine calibration parameters and responses 

4.2.1 MB-MV DoE Strategy Implementation 

The implementation plan for the sequential DoE generates a 
sequence of MB-MV OLH DoEs using the developed PermGA 
algorithms. Given the constrained design space for IVO and 
EVC parameters at some of the minimap points, equation (3) 
was used as fitness function for the individual OLH designs 
during the MB-MV process. 

Similar to the SHCB case study, the model building DoE was 
planned as an OLH DoE with 50 test points, with each 
subsequent model validation DoE of size 15, i.e. MV1 = 15 
validation test points for the main MB DoE, iteratively 
augmented with subsequent MVs of size 15 (following the 
process outlined in Fig. 2), until engine response models of 
satisfactory quality are achieved. Within the case study, in 
order to validate the sequential DoE methodology, four MB-
MV iterations were planned and run, and the performance of 
the models were evaluated after each iteration. The Matlab 
MBC toolbox (Anon n.d.) was used to fit Radial Basis 
Function (RBF) models (Forrester et al. 2008) for all engine 
responses; preliminary evaluation of RBF models showed that 
the thin-plate kernel provided good models across the engine 
responses of interest. The RBF model selection criterion 
(including the number of basis functions) was based on 
minimising PRESS RMSE. The quality of the model was 
judged based on statistical diagnostics: validation RMSE (i.e. 
RMSE for prediction errors of the new test data in the 
validation set – e.g. MV1), and PRESS RMSE for the MB set 
(i.e. root mean square of prediction sum of squared errors for 
the MB set based on simple cross-validation). The model 
residuals for the MB set were also monitored at each DoE stage 
to ensure that models are not over-fitting. 

4.2.2 Engine Case Study Results and Discussion 

Fig. 27 illustrates the Euclidian distance of the test points at 
each of the model validation stages using boxplots. This figure 
shows that variability of the Euclidian distances decreases by 
adding the subsequent MV DoEs, which in effect shows the 
capability of the developed PermGA algorithm to distribute the 
points evenly within the 4-dimensional design space even after 
4 independent sequences of MV DoEs. Also, 4 outliers were 
seen at ‘MB-MV4’ DoE stage. The Euclidian distance of these 
outliers are not worse (less or more) than the previous DoE 
stage (i.e. ‘MB-MV3’), however; since the variability is less at 
‘MB-MV4’ (i.e. interquartile range is smaller) these test points 
are recognised as outliers. Moreover, Fig. 28 characterises the 
distribution of Euclidian distances in terms of its standard 

deviation across the 4 MB-MV stages. This figure shows that 
the uniformity of the distribution of the test points within the 
design space is improving across the subsequent stages of MV 
DoEs.  

The correlation (r) between each of the two DoE variables was 
also studied for all the 4 stages of the MB-MV strategy. It was 
observed that the correlation between the variables was 
negligible (i.e. −0.05 ≤ 𝑟 ≤ 0.05 ) (Steinberg & Lin 2006), 
thus, the designs are quasi-orthogonal. 

 
Fig. 27 Boxplot of Euclidean distances across the subsequent 

validation DoEs 

 

 
Fig. 28 Standard deviation (σ) of the Mm Distances 

Figs. 29 to 32 illustrate plots of ‘PN’ and ‘Fuel Consumption’ 
responses through stages MV1 and MV4. These figures clarify 
how the shape and trend of the responses, particularly the fuel 
consumption response, are transformed iteratively through 
collecting more infill test points, improving the prediction 
accuracy throughout the design space. As an example, it can be 
seen that the shape of fuel consumption response after 
collecting 4 sets of validation points (Fig. 32) is significantly 
different from the response model at sequence 1 (Fig. 31), 
especially at the extremes of the design space, i.e. the corner 
areas. Given that one of the main shortcomings of rigid OLH 
designs is to collect enough information at the areas around the 
boundary limits, using the sequential DoE method for this case 
study helped to collect more data around the unexplored areas 
next to the boundary limits, and consequently delivered a more 



 

accurate response model. Figs. 33 and 34 illustrate the 
improvement in model accuracy through the MB-MV sequence 
in terms of the model prediction error (expressed as the ratio of 
validation RMSE to mean response, as percentage) for PN and 
Fuel consumption. The decreasing trend in the validation 
RMSE shows that the quality of the response surfaces is 
enhanced, step by step. It can be seen that for the minimap 
point illustrated in Figs. 33 and 34, the relative validation 
RMSE is 1% for ‘Fuel Consumption’ and 8% for ‘PN’ after the 
4th MB-MV iteration. Given the engineering target for model 
quality for fuel and PN responses of 1% and 10%, respectively, 
it could be argued that for this case the engine response models 
were acceptable after the second MB-MV iteration, i.e. based 
on a mapping DoE of only 80 (65 MB + 15 MV) test points. 
This is significantly less than the normal mapping DoEs, which 
typically use 150 test points. 

 
Fig. 29 PN response at MV1 Stage 

 
Fig. 30 PN response at MV4 Stage 

 
Fig.31 Fuel consumption response at MV1 Stage 

 
Fig. 32 Fuel consumption response at MV4 Stage 

 

 
Fig. 33 PN model prediction error 

 

 
Fig. 34 Fuel consumption model prediction error 

 

5 Summary, Conclusions and Future Work 

The aim of this paper was to present the development and 
validation of a permutation genetic algorithm for a sequential 
MB-MV DoE strategy based on OLHs. The motivation for the 
research was the complex engineering problem of a GDI 
engine mapping case study, for which an efficient DoE strategy 
is required to maximise the information gained with minimal 
resource expenditure, in terms of engine testing. Many other 
practical engineering problems, including those requiring 
computer based experimentation, such as aerospace or 
automotive structural design based on finite elements 
simulation, where computation places significant challenges, 
could benefit from the application of the exploration based 



 

sequential DoE methodology and the PermGA algorithm 
described in this paper.  

The PermGA algorithm of Bates et al (2003, 2004) was used as 
the basis for the development presented in this paper. The 
algorithm was modified principally by extensions to the fitness 
function to enable the generation of flexible sequences of infill 
DoEs using the same principles of optimal latin hypercubes, 
and preserving good space fillingness and statistical properties 
of the overall DoE. Significant further modification and 
extension of the PermGA algorithm was required in order to 
deal with non-orthogonal variables spaces. The introduction of 
the adaptive penalty function (SUMT) was proven to be 
effective in dealing with nonlinearly constrained design spaces 
to ensure that uniform space filling DoE sequences can be 
achieved. The paper shows that this can work effectively even 
when the design space is progressively constrained (i.e. 
between MB-MV iterations). This is a very important feature 
as practical problems such as the engine mapping experiments 
reported by Dwyer et al (2013), required revisions of the design 
space after the initial screening OLH DoE, based on both 
feasibility (e.g. combustion stability) and engineering 
preference (e.g. narrowing down of the variable space of 
interest to hone in on areas where optimal solutions appear 
more likely based on the analysis of trends). 

The overall PermGA algorithm was presented in Figure 2 as an 
XDSM graph, which adds clarity to the understanding of the 
flows compared to the conventional pseudocode or flow graph, 
and improves communication between the computation and 
design science communities. 

Given that the motivation for this research is a real world 
engineering problem, the validation of the methodology and 
algorithm developed was underpinned by the rigorous 
framework used in design science known as “the validation 
square” (Pedersen et al. 2000). Accordingly,  

(i) The theoretical structural validity was based on a systematic 
analysis of the problem and the corresponding algorithm 
structural and logical requirements;  

(ii) The empirical structural validity was demonstrated through 
examples 1-4 presented in section 3.2.2, which have 
demonstrated that the algorithm performs well under the range 
of test cases derived from the analysis of practical engineering 
problems; 

(iii) The theoretical performance validity was pursued via a 
theoretical benchmark problem based on the SHCB function. 
The scenario considered included a 4-step MB-MV sequence, 
with performance evaluated both in terms of uniformity of the 
overall DoE – which is directly related to the fitness function of 
the PermGA algorithm (hence validating the performance of 
the PermGA algorithm), and in terms of the improvement in 
the model quality measured in terms of PRESS RMSE – 
validating the MB-MV methodology based on PermGA; 

(iv) The empirical performance validity was completed via the 
GDI engine mapping experiments, where engine dynamometer 
test data was collected based on a DoE plan generated using 
the PermGA algorithm presented in this paper. The case study 
results provided validation evidence for the PermGA based 
MB-MV methodology. Furthermore, this case study has 

emphasized the complexities of real world application of 
computational methodologies; e.g. validation of models must 
include phenomenological reasoning, and the observed 
behaviour along different response dimensions can have 
significantly different intrinsic characteristics (e.g. the 
combustion variability and measurement accuracy has a 
significant impact on the modelling fidelity that can be 
achieved for fuel flow compared to particulate numbers, as 
illustrated by the results in Fig. 33 and Fig. 34).  

As an overall conclusion, the work reported in this paper 
demonstrates that the developed PermGA and Infill PermGA 
algorithms can generate quasi-orthogonal uniformly distributed 
space-filing OLH DoEs, through sequential augmentation of a 
space filling OLH DoE. The validation results have shown that 
a sequential MB-MV strategy is effective in generating models 
of required accuracy with a reduced testing sequence compared 
to the conventional approach used in practice, which is based 
on collecting one large DoE. By monitoring a model’s 
accuracy within the MB-MV iteration, testing can be stopped if 
the models are sufficiently accurate, thus reducing unnecessary 
further testing which adds little additional information. 
Conversely, a further MV OLH DoE can be added if any of the 
response models is insufficiently accurate for prediction 
purposes. 

Thus, it can be summarised that: (i) MB-MV reduces both 
testing and computational effort for achieving specified model 
accuracy (e.g. MB-MV reduced the total number of required 
test points for the GDI engine testing problem by up to 45%, 
compared to the current practice), and (ii) provides robust 
scalable adaptivity to account for insufficient model accuracy. 
On this basis it can be expected that this work will have 
significant impact in application to a broad range of 
engineering problems. 

While the validation approach presented in this paper is 
complete from a design science framework viewpoint in the 
sense that theoretical / empirical and structural / performance 
aspects have been systematically considered, from a 
computational point of view further work is needed to formally 
address the efficiency of the PermGA algorithm.  
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