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Abstract 

A numerical method for estimating the curvature, deflection and moment capacity of FRP 

reinforced concrete beams is developed. Force equilibrium and strain compatibility equations 

for a beam section divided into a number of segments are numerically solved due to the non-

linear behaviour of concrete. The deflection is then obtained from the flexural rigidity at mid-

span section using the deflection formaule for various load cases. A proposed modification to 

the mid-span flexural rigidity is also introduced to account for the experimentally observed 

wide cracks over the intermediate support of continuous FRP reinforced concrete beams. 

Comparisons with experimental results show that the proposed numerical technique can 

accurately predict moment capacity, curvature and deflection of FRP reinforced concrete 

beams. The ACI-440.1R-06 equations reasonably predicted the moment capacity of FRP 

reinforced concrete beams but progressively underestimated the deflection of continuous 

ones. On the other hand, the proposed modified formula including a correction factor for the 

beam flexural rigidity reasonably predicted deflections of continuous FRP reinforced concrete 

beams. It was also shown that a large increase in FRP reinforcement slightly increases the 

moment capacity of FRP over-reinforced concrete beams but greatly reduces the defection 

after first cracking. 

Keywords: Concrete, deflection, moment capacity, effective moment of inertia, Fibre 

reinforced polymer 
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1. Introduction 

Many reinforced concrete structures in severe environment are susceptile to steel corrosion 

and structural decay resulting in costly repair and service inconvenience. In order to avoid 

such problems, the use of fiber-reinforced polymer (FRP) bars as internal longitudinal flexural 

reinforcement has emerged as an alternative solution. In addition to their noncorrosive nature, 

FRP bars have a high strength-to-weight ratio making them attractive as reinforcement for 

concrete structures. 

FRP reinforced concrete members behave differently from these reinforced with traditional 

steel. FRP bars have higher strength, but lower modulus of elasticity than steel, and exhibit 

linear stress–strain response up to failure. The lower modulus of elasticity of FRP causes a 

substantial decrease in the stiffness of FRP reinforced concrete beams after cracking and 

consequently higher levels of deflections under service conditions. Hence, the design of FRP 

reinforced concrete members is typically governed by serviceability requirements and 

analytical methods for predicting the service load deflections of FRP reinforced concrete 

members with a reasonable degree of accuracy would be very benefical. In addition, FRP 

reinforced concrete members exhibit poor structural ductility owing to the non ductile 

characteristics of FRP reinforcement and concrete, and, therefore an accurate prediction of 

their moment capacity is essential to avoid such brittle failure. 

Over the last two decades, a number of studies have been carried out to investigate the 

flexural response of FRP reinforced concrete beams [1-21]. In the case of serviceability, and 

specifically for deflection calculations, several researchers have proposed empirical 

modifications to Branson’s equation used in steel design codes [3, 7, 9, 11], while others have 

proposed a modified equivalent moment of inertia obtained from curvatures [22, 23]. On the 

other hand, concrete crushing flexural failure mode is generally preferred to FRP tensile 
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rupture, since it is more progressive and leads to a less catastrophic failure with a higher 

degree of deformability [24-26]. 

Razaqpur et al. [27] proposed an analytical model for computing the deflection of FRP 

reinforced concrete beams based on an assumed tri-linear variation for the moment-curvature 

response. In their model, the deflections of FRP reinforced concrete beams were computed 

assuming the entire beam to be fully cracked, followed by an adjustment for uncracked 

regions. However, the tension stiffening effect is ignored in this approach. In another 

investigation, Gravina and Smith [28] developed an analytical method to analyze the flexural 

behavior of statically indeterminate concrete beams reinforced with FRP bars. Their approach 

is able to model the progressive formation of flexural cracks and their spacings, and was 

found to be highly dependent on the input parameters such as the bond characteristics of FRP 

bars and surrounding concrete. 

In the present study, a numercal technique has been developed to predict the moment-

curavature relationship and hence moment capacity of FRP reinforced concrete beams. In the 

proposed procedure, a sectional analysis is carried out where the cross-section of FRP 

reinforced concrete member is divided into a number of concrete segment. The member 

deflection is then calculated from the moment-curvature relationship. The present study has 

also evaluated the ACI 440.1R-06 [24] equations for moment capacity and deflection against 

the experimental results of continuously and simply supported FRP reinforced concrete 

beams. 

2. Constitutive Laws of Materials 

Figure 1 gives the stress-strain relationships of concrete and FRP reinforcement implemented 

in this investigation. However, the numerical technique proposed can accommodate other 
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material models. The concrete stress-strain model in compression shown in Fig. 1(a) is 

adopted for its simplicity and computational efficiency. It can be written as [29]: 

 𝑓𝑐 = 𝑓𝑐
′ (

2𝜀𝑐

𝜀𝑐𝑜
− (

𝜀𝑐

𝜀𝑐𝑜
)

2

)                       𝜀𝑐 < 𝜀𝑐𝑢        (1) 

where fc and c are the compressive stress and strain in concrete, respectively, '
cf  is the 

cylinder compressive strength of concrete, co ( c
'
c E/f2 ) is the strain in concrete at 

maximum stress, where Ec is the initial tangent modulus of concrete and cu (=0.0035) is the 

ultimate strain of concrete as shown in Figure 1(a). 

A bi-linear stress-strain relationship is adopted to model concrete in tension as shown in Fig. 

1(b) and given below: 

 𝑓𝑡 = 𝐸𝑡𝜀𝑡                                                                           𝜀𝑡 ≤ 𝜀𝑐𝑡 (2(a)) 

 𝑓𝑡 = 𝑓𝑡𝑢 −
𝑓𝑡𝑢

𝜇𝜀𝑐𝑡
(𝜀𝑡 − 𝜀𝑐𝑡)                     𝜀𝑐𝑡(1 + 𝜇) ≥  𝜀𝑡 > 𝜀𝑐𝑡   (2(b)) 

where ft and t are the tensile stress and strain in concrete, respectively, ftu )f0.62( '
c and 

ct are the tensile strength  and corresponding tensile strain of concrete, respectively, Et is the 

tensile modulus of concrete, assumed to be the same as Ec, and  is a factor controlling the 

rate of tensile strength decay. The tension stiffening effect is represented in the above model 

to account for concrete between cracks as it has a significant effect on member stiffness. 

The stress-strain relationship of FRP bars is linear elastic up to rupture and given by: 

 𝑓𝑓 = 𝐸𝑓𝜀𝑓                       𝜀𝑓 ≤ 𝜀𝑓𝑢              (3) 

where ff and f  are the stress and strain in FRP bars, respectively, Ef is the modulus of 

elasticity of FRP bars, and ffu and fu are the ultimate strength and strain of FRP bars, 

respectively, as shown in Figure 1(c). 
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3. Moment-curvature relationship of FRP reinforced concrete sections 

Figure 2 presents a concrete section reinforced with top and bottom FRP bars, that is divided 

into a number of segments, n. The numerical analysis starts by assuming a small value of 

strain at the concrete extreme compression fiber (or tensile FRP bars). For each strain c at the 

top level of concrete section (or strain f in tensile FRP bars), the neutral axis depth, x, is 

initially assumed and the correct value is iteratively obtained when equilibrium of forces is 

satisfied. According to the assumption that plane section before bending remains plane after 

bending, the strain in each concrete segment is linearly proportional to its distance from the 

neutral axis (Figure 2(b)) as expressed below: 

  c
i

i ε
x

xx
ε




                     

(4)

 

where εc is the strain at the top compression level of the reinforced concrete section and εi is 

the concrete compressive or tensile strain at mid-depth of i-th segment. 

Assuming perfect bond between concrete and FRP bars, strains in tensile and compressive 

FRP bars can also be obtained from: 

c

'
'

f ε
x

dx
ε




                     

 (5)

 

  cf ε
x

dx
ε




                      

(6)

 

where εf and εf' indicate the strains in bottom and top FRP bars, respectively, and d and d' are 

the bottom and top FRP reinforcement depths, respectively. 

The corresponding stresses in each concrete segment, and tensile and compressive 

reinforcements can be calculated from the respective stress-strain relationships of concrete 

and FRP presented in Fig. 1. The total concrete force including the contribution of 

compressive and tensile forces is calculated using Eqs. (7) below: 
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  bhfF i

n

1i

cic 




                     

(7) 

where fci is the concrete compressive or tensile stress at the centroid of the i th segment, hi 

(=h/n) is the thickness of the i th segment and b is the beam width. This summation extends 

over all compressive and tensile segments of concrete section. The forces in top and bottom 

FRP bars are estimated from: 

      ffff EAT                                  (8) 

'''

ffff EAC                                        (9) 

where Tf, Af, and Ef are the force, area, and modulus of elasticity of bottom FRP bars, 

respectively, whereas Cf, 
'

fA  and 
'

fE  are the corresponding values of top FRP reinforcement. 

Eqs. (8) and (9) are valid for different types of FRP bars, i.e., GFRP, AFRP and CFRP, 

provided that the appropriate modulus of elasticity, Ef, and tensile rupture, ffu, are used. The 

current analysis is also developed for steel compression reinforcement. In such case, the 

modulus of elasticity and yield strength of compression steel reinforcement are used in 

calculating the force Cf . Considering the equilibrium of forces, the following equation is 

obtained: 

   ffc T = C+F  

fff
'
f

'
f

'
fi

n

i

ci EAEAbhf  
1

      

(10) 

In the above Eq. (10), the neutral axis depth x is in fact the only unknown. The value of x is 

iteratively adjusted using the bi-section method and the procedure is repeated until sufficient 

equilibrium accuracy is attained as given below: 
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810


c

ffc

F

CTF
                              (11) 

The curvature φ of the member can also be determined from the strain distribution as follows 

(see Fig. 2(b)): 

x

c                      (12) 

The applied moment Mf  of the section is then calculated by taking moments of internal forces 

about any horizontal axis; for instance about the neutral axis 

)()()( '

1

dxCdxTxxFM f

n

i

ficif 


                           (13) 

where Fci (=fcihib) is the concrete compressive or tensile force at the centroid of the i-th 

segment. 

The strain in the concrete extreme compression fibre of the section (or tensile FRP bars) is 

incrementally increased and the above procedure is iteratively repeated for each value of 

strain. The analysis is terminated when either the tensile strain in the bottom FRP 

reinforcement reaches the tensile rupture strain of FRP bars (f = fu) or the concrete strain c 

in the extreme compression fibre reaches the ultimate compressive strain cu of concrete 

(concrete crushing). The section moment capacity Mfu is, therefore, the highest moment 

attained by the section for various incremental strain values at the extreme compression 

concrete fibre or bottom FRP bars. 

Based on the aforementioned procedure, a computer program has been developed for the 

section moment capacity and moment-curvature relationship of FRP reinforced concrete 

elements. 
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4 Validation of the numerical technique against experimental results 

4.1 Flexural Moment Capacity 

Test results of 107 FRP reinforced concrete beams are collected from previous experimental 

investigations in the literature [1-21] and used to validate the proposed numerical method. 

Table 1 lists the geometrical and material properties of all beams considered. All the 107 

beams were reported to have failed in flexure; either by concrete crushing or FRP rupture 

failure modes. 

In addition to the developed numerical technique, the ACI 440 equations for moment capacity 

will also be compared against the experimental results in the database collected. The ACI 

440.1R-06 report, based on the balanced FRP reinforcement ratio ρfb obtained from Eq. (14) 

below, predicted the moment capacity Mfu of beams reinforced with FRP bars using Eqs. 15 

and 16 when the reinforcement ratio ρf is greater than ρfb, and by applying Eqs. 17 and 18 

when the reinforcement ratio ρf is less than ρfb. 

fucuf

cuf

fu

'
c

fb
fE

E

f

f
.







 1850                  (14) 

2

'

c
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f

f
59.01(fM
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f
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where ρf (=Af /bd) is the FRP reinforcement ratio, Af is the area of tensile FRP reinforcement, 

ff  is the FRP stress at which concrete crushing failure mode occurs, cb is the neutral axis 

depth for balanced failure as defined by Eq. 18, and β1 is a strength reduction factor taken as 

0.85 for concrete strength up to and including 27.6 MPa. For strength above 27.6 MPa, the 

factor β1 is reduced continuously at a rate of 0.05 for every 6.9 MPa of strength in excess of 

27.6 MPa, but is not taken less than 0.65. 

Table 1 and Figure 3 compare the predictions from the current numerical analysis and ACI 

440 (Eqs. (14) to (18)) against the experimental moment capacities of 107 FRP reinforced 

concrete beams in the database collected. The average and standard deviation of the ratio 

between the present technique and experimental bending capacities are 1.01 and 15%, 

respectively, whereas the corresponding values between ACI predictions and experimental 

moment capacities are 0.91% and 17%, respectively. The predictions obtained from the 

current analysis and ACI 440 are in very good agreement with the experimental results. The 

ACI 440.1R-06 equations have mostly underestimated the load capacity of FRP reinforced 

concrete beams. This may be attributed to the fact that the ACI 440 equation ignores the 

reinforcement in the compression zone. The tensile rupture and concrete crushing failure 

modes are correctly predicted by the the persent technique for 92% of beams considered (98 

beams) as indicated in Table 1. 

4.1.1 Effect of amount of FRP reinforcement on bending capacity 

The present procedure has been employed to study the effect of increasing the area of FRP 

bars, represented by the FRP reinforcement ratio ρf(=100As/bd), on the normalised flexural 

moment capacity μ(=Mfu/bd
2
) as shown in Fig. 4: Fig. 4(a) for GFRP reinforcment and Fig. 

4(b) for CFRP reinforcement. These two figures are produced for three different concrete 

compressive strengths 
'

cf , namely 
'

cf  = 30, 40 and 50 N/mm
2
 and typical mechanical 
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properties of GFRP and CFRP as given in Fig. 4. The transition from under-reinforced to 

over-reinforced case is identified and marked on each curve. While the concrete compressive 

strength has no effect on the normalised flexural moment capacity μ of under-reinforced 

sections, it has a significant influence for over-reinforced case. For the under-reinforced 

sections, the normalised moment capacity μ is linearly proportional to the FRP reinforcement 

ratio ρf. On the other hand, a large increase in FRP reinforcement ratio ρf produces a little 

increase in the normalised moment capacity μ for the over-reinforced case. 

4.2 Moment-curvature relationship 

In this section, the moment-curvature results obtained from the numerical technique are 

compared with the experimental results of B4 and B9 FRP reinforced concrete simply 

supported beams tested by Thiagarajan [21] and presented in Fig. 5. Geometrical dimensions, 

reinforcement details and material properties of B4 and B9 FRP reinforced concrete beams 

considered are given in Table 2.  The numerical results are in good agreement with the 

moment-curvature test results for the applied loads up to failure. The same figure also 

indicates that the proposed technique is able to predict the bending stiffness before and after 

cracking up to the complete failure of the beams considered. 

4.3 Prediction of deflection 

In the current numerical procedure, the flexural rigidity, EIeff, of the member at the location of 

the maximum moment is firstly determined from the moment-curvature relationship at each 

loading as in Eq. 19 below: 



M
EI eff                      (19) 
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The midspan deflection,  of FRP reinforced concrete beams is then calculated using the 

elastic deflection formula, for example; the immediate deflection of simply supported beams 

loaded with two- point loads, each P/2, could be calculated from Eq. 20 below: 

effEI

aLP

24

)43)(2/( 22 
                    (20) 

where a is the shear span and L is the span length or the mid-span deflection of continuously 

supported beams loaded with a mid-span point load, P, could be also computed from equation 

(21) as follows: 

effEI

PL )(

768

7 3

                    (21) 

In addition to the developed numerical technique, the ACI 440 equations for deflection 

calculations will be compared against the experimental results and the developed numerical 

technique. The ACI Committee 440 [24] provides a modified version of Branson’s equation 

that includes a reduction coefficient, βd, related to the reduced tension stiffening exhibited by 

FRP-reinforced concrete members as follows: 

21 1 I
M

M
I

M

M
I

3

cr
d

3

cr
eff































                                        (22) 

)(.
fb

f

d



 20                               (23) 

where Mcr is the flexural cracking moment, M is the applied bending moment, βd is a 

reduction coefficient, I1 is the gross moment of inertia and I2 is the moment of inertia of 

transformed cracked section. 
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In the present study the deflection of several FRP reinforced concrete beams experimentally 

tested elsewhere have been calculated by using the numerical procedure presented above. 

However, for the sake of brevity, only few examples covering simply and continuously 

supported beams are presented below. 

4.3.1 Simply supported FRP reinforced concrete beams 

The mid-span experimental deflections of C1-4, C2-4, G1-6 and G1-8 FRP reinforced 

concrete simply supported beams tested by Kassem et al. [4] are compared with the 

predictions from the numerical technique and ACI 440; see Fig. 6. Geometrical dimensions, 

reinforcement details and material properties of FRP reinforced concrete beams considered 

are given in Table 2. All beams were subjected to two symmetrical point loads and reinforced 

with various types and amounts of FRP bottom longitudinal reinforcement. The deflections 

results obtained from the present numerical technique and ACI 440 are in good agreement 

with the test results for the applied loads up to failure. However, the numerical technique 

gives a better prediction of deflections than the ACI model. Fig. 6 also indicates that the 

present technique is able to predict both the pre and post cracking deflections up to beam 

failure. 

A sensitivity analysis has also been conducted to investigate the effect of FRP reinforcement 

type and amount on the mid-span deflection of FRP reinforced concrete beams as presented 

below. 

4.3.1.1 Effect of amount of FRP on beam deflections 

The influence of tensile reinforcement ratio (ρf) on mid-span deflection of FRP reinforced 

concrete beams as predicted by the current method is presented in Fig. 7: Fig. 7(a) for C1-4, 

C1-6 and C1-8 concrete beams reinforced with CFRP and Fig. 7(b) for G1-6 and G1-8 
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concrete beams reinforced with GFRP. The geometrical dimensions, reinforcement and 

material details of the beams considered are given in Table 2, indicating that the only 

parameter changed was the amount of tensile FRP reinforcement whereas other parameters 

were the same for beams shown in each figure. It can be observed that increasing the tensile 

reinforcement ratio greatly reduces the defection after first cracking, for example the tensile 

reinforcement ratio of beam C1-8, which was twice as that of beam C1-4, has a significant 

effect on the reduction of deflection of this beam in comparison to that of beam C1-4. 

4.3.1.2 Effect of type of FRP on beam deflections 

The deflection of a set of beams having geometrical and mechanical properties similar to 

those of beams tested by Kassem et al. [4] have been calculated for different types of FRP 

reinforcement. Fig. 8 presents the moment-deflection relationships of these beams with 

different types of FRP bars. Fig. 8 indicates that beams reinforced with GFRP bars exhibit a 

significant reduction in stiffness after the initiation of first crack in comparison with these 

reinforced with CFRP reinforcement. This behaviour is attributed to the low elastic modulus 

of GFRP bars compared with that of CFRP bars; that affects the ability of these bars to control 

concrete cracks, leading to a reduced effective moment of inertia and hence large deflections. 

4.3.2 Continuously supported FRP reinforced concrete beams  

Further verification of the proposed technique has been conducted by comparison with the 

results of GcUO, GcOO, GS1 and C-C-3 continuous FRP reinforced concrete beams [19, 20, 

30]. Each continuous beam consisted of two equal spans, was loaded by a single point load at 

the middle of each span and was reinforced with either GFRP or CFRP bars. Geometrical 

dimensions, reinforcement details and materials properties of continuous beams considered 

are given in Table 2. Since the measured displacements at the middle of each span were 
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similar [19, 20, 30], one side mid-span displacement is compared against the predictions 

obtained from the numerical technique for continuous beams. 

In the above experimental investigations [19, 20, 30], it was observed that wide cracks 

occurred over the intermediate support of continuous reinforced concrete beams; 

consequently ACI or present numerical analysis may underestimate the deflection of such 

members. So in addition to the numerical technique presented above, a modified flexural 

rigidity, EIeff, at the cracked mid-span section including a reduction coefficient, , has been 

proposed for the statically indeterminate concrete beams reinforced with FRP bars as below: 





















M

M
)1(5.01

)(EI
cr
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EI                           (24a) 
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




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




fb

f

s

f

E

E




  for GFRP or AFRP beams    (24b) 

65.0)()(12.07.065.0 













fb

f

s

f

E

E




  for CFRP beams                    (24c) 

Fig. 9 provides the comparison between experimental and theoretical results of the load 

versus mid-span deflection response of continuous FRP reinforced concrete beams 

considered. It can be seen from the figure that the numerical method and ACI model 

underestimate the deflections of the continuous beams at loads higher than the cracking load. 

As the load is increased, this underestimation is progressively increased until the end of 

loading. Such discrepancies could be referred to the occurrence of wide cracks over the 

middle support of continuous beams as reported in [19, 20, 30]. However, the proposed 

modified equation (24) which includes the reduction factor  to calculate the effective 

flexural rigidity of continuous FRP reinforced concrete beams gives a better prediction of 

deflections for all continuous beams considered. 



  15 

5. Conclusions 

An iterative numerical method for predicting the flexural behaviour of FRP reinforced 

concrete beams has been presented. The moment-curvature relationship of FRP reinforced 

concrete beams is numerically obtained by considering force equilibrium and strain 

compatibility. The beam deflection is then calculated from the mid-span curvature. 

Comparisons between the predicted deflections and curvatures of FRP reinforced concrete 

beams and experimental results available in the literature show good agreement. In addition, 

the predicted moment capacities of 107 FRP reinforced concrete beams are in very good 

agreement with experimental results. While the ACI model gives reasonable predictions of 

simply supported FRP reinforced concrete beam deflections, it progressively underestimates 

deflections of continuous FRP reinforced concrete beams. However, the proposed modified 

formula including a correction factor for the flexural rigidity gives a closer deflection to 

experimental results of FRP reinforced concrete continuous beams. 

A parametric study concluded that concrete compressive strength has no effect on the moment 

capacity of FRP under-reinforced concrete beams but a significant influence for over-

reinforced ones. On the other hand, a large increase in FRP reinforcement slightly increases 

the moment capacity of FRP over-reinforced concrete beams but greatly reduces the defection 

after first cracking. 
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FIGURE CAPTIONS 

Fig. 1 FRP and concrete stress–strain relationships. 

Fig. 2 Strains, stresses and forces of concrete section reinforced with FRP bars. 

Fig. 3 Experimental versus predicted moment capacities of FRP reinforced concrete 

beams  

Fig. 4. Effect of increasing the area of FRP bars on the flexural moment capacity 

Fig. 5 Comparison of predicted and experimental moment-curvature relationships of 

simply supported FRP reinforced concrete beams 

Fig. 6 Comparison between experimental and predicted deflections of simply supported 

FRP beams. 

Fig. 7 Effect of tensile reinforcement ratio on deflections of FRP reinforced concrete 

beams 

Fig. 8 Effect of different types of FRP on the midspan deflections of FRP reinforced 

beams 

Fig. 9 Comparison between experimental and predicted deflections of continuously 

supported FRP beams. 
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Fig. 1 FRP and concrete stress–strain relationships. 
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Fig. 2 Strains, stresses and forces of concrete section reinforced with FRP bars 
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Fig. 4 Effect of increasing the area of FRP bars on the flexural moment capacity. 
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Fig. 6 Comparison between experimental and predicted deflections of simply supported 
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Fig.7 Effect of tensile reinforcement ratio on deflections of FRP reinforced concrete 

beams 



 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b =200 h =300 ρ f =1.6% f c =39.05
0

20

40

60

80

100

120

0 10 20 30 40 50 60

Midspan deflection(mm)

M
o

m
e
n

t(
k

N
m

)

Ef=114 kN/mm
2
(CFRP) 

Ef=40 kN/mm
2
(GFRP) 

Fig. 8 Effect of different types of FRP on the midspan deflections of FRP reinforced 

beams 



 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

0 5 10 15 20 25 30

Midspan deflection(mm)

M
id

sp
a

n
 l

o
a

d
(k

N
)

Experimental results ACI 440-06

Present numerical results Proposed eq.(24)

(a) Beam GcUO 

0

50

100

150

200

0 5 10 15 20 25

Midspan deflection(mm)

M
id

sp
a

n
 l

o
a

d
(k

N
)

Experimental results ACI 440-06

Present numerical results Proposed eq.(24)

(b) Beam GcOO 



 12 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

0

50

100

150

0 5 10 15 20 25 30 35

Midspan deflection(mm)

M
id

sp
a

n
 l

o
a

d
(k

N
m

)

Experimental results ACI 440-06

Present numerical results Proposed eq.(24)

(c) Beam GS1 

0

20

40

60

80

100

0 5 10 15 20 25 30 35

Midspan deflection(mm)

M
id

sp
a

n
 l

o
a

d
(k

N
)

Experimental results ACI 440-06

Present numerical results Proposed eq.(24)

(d) Beam CC3 

Fig. 9 Comparison between experimental and predicted deflections of continuously 

supported FRP beams. 

 



TABLE CAPTIONS 

Table 1 Comparisons between the theoretical and experimental flexural capacities. 

 
Table 2 Details of simply and continuously supported FRP reinforced concrete beams used in the numerical technique validation. 

 



 

Table 1 Comparisons between the theoretical and experimental flexural capacities. 

Reference 
Beam 

notation 

 

 

Width 

(mm) 

 

 

Overall 

depth 

(mm) 

 

 

 

fc' 

(MPa) 

 

 

ρf 

(%) 

 

 

Mexp 

(kN) 

Mfu / Mexp 

Experimental mode 

of failure 
Current 

technique 

ACI 440 

[24] 

[1] 

 

COMP-00 200 240 35.4 1.33 

 
40.25 1.01 0.92 Concrete Crushing 

COMP-25 200 240 36.4 1.33 40.25 1.02 0.93 Concrete Crushing 

COMP-50 200 240 36.5 1.33 40.25 1.03 0.93 Concrete Crushing 

COMP-75 200 240 37.5 1.33 44.28 0.96 0.86 Concrete Crushing 

[2] 

BC2HA 130 180 57.2 1.24 19.7 0.98 0.80 Concrete Crushing 

BC2HB 130 180 57.2 1.24 20.6 0.94 0.77 Concrete Crushing 

BC2VA 130 180 97.4 1.24 22.7 1.12 0.69 Concrete Crushing
c 

BC4NB 130 180 46.2 2.7 20.6 0.97 0.82 Concrete Crushing 

BC4HA 130 180 53.9 2.7 21 1.04 0.85 Concrete Crushing 

BC4HB 130 180 53.9 2.7 21.4 1.02 0.83 Concrete Crushing 

BC4VA 130 180 93.5 2.7 28.4 1.05 0.65 Concrete Crushing 

BC4VB 130 180 93.5 2.7 29.5 1.01 0.62 Concrete Crushing 

[3] 

GB1-1 180 300 35 0.53 60 0.73 0.72 Concrete Crushing
c 

GB1-2 180 300 35 0.53 59 0.74 0.73 Concrete Crushing
c 

GB2-1 180 300 35 0.79 65 0.94 0.79 Concrete Crushing 

GB2-2 180 300 35 0.79 64.3 0.95 0.80 Concrete Crushing 

GB3-1 180 300 35 1.1 71 0.90 0.75 Concrete Crushing 

GB3-2 180 300 35 1.1 70.5 0.90 0.76 Concrete Crushing 

[4] 
C1-4 200 300 40.4 0.6 71.2 1.00 0.83 Concrete Crushing 

C1-6 200 300 39.3 0.9 83.13 1.09 0.89 Concrete Crushing 

 



Table 1 (continued) 

Reference 
Beam 

notation 

 

 

Width 

(mm) 

 

 

Overall 

depth 

(mm) 

 

 

fc' 

(MPa) 

 

 

ρf 

(%) 

 

 

Mexp 

(kN) 

Mfu / Mexp 

Experimental mode 

of failure 
Current 

technique 

ACI 440 

[24] 

[4] 

C1-8 200 300 39.3 1.2 90.39 1.11 0.91 Concrete Crushing 

C2-4 200 300 39.9 0.5 78.75 0.97 0.80 Concrete Crushing 

C2-6 200 300 40.8 0.8 80.89 1.13 0.92 Concrete Crushing 

C2-8 200 300 40.8 1.1 89.39 1.13 0.92 Concrete Crushing 

G1-6 200 300 39.05 1.6 77.47 0.97 0.81 Concrete Crushing 

G1-8 200 300 39.05 2.2 86.76 0.98 0.80 Concrete Crushing 

G2-6 200 300 39.05 1.4 71 0.96 0.80 Concrete Crushing 

G2-8 200 300 39.05 1.9 84.54 0.91 0.75 Concrete Crushing 

AR-6 200 300 39.05 0.9 70.85 0.92 0.77 Concrete Crushing 

AR-8 200 300 39.05 1.2 71.75 1.03 0.86 Concrete Crushing 

[5] 

ISO30-2 200 300 42 1.06 80.4 1.01 0.90 Concrete Crushing 

KD30-1 200 300 42 1.06 50.6 1.60 1.41 Concrete Crushing 

KD30-2 200 300 42 1.06 63.8 1.27 1.12 Concrete Crushing 

KD45-1 200 450 52 0.68 106.6 1.45 1.44 Concrete Crushing
c 

KD45-2 200 450 52 0.68 113 1.37 1.36 Concrete Crushing
c 

ISO55-1 200 550 42 0.55 181.5 1.06 1.07 FRP rupture 

ISO55-2 200 550 42 0.55 181.5 1.06 1.07 FRP rupture 

KD55-1 200 550 42 0.55 146.9 1.31 1.32 FRP rupture 

KD55-2 200 550 42 0.55 172.5 1.11 1.12 FRP rupture 

[6] 

Beam2 150 200 27.68 0.23 5.886 0.99 0.97 FRP rupture 

Beam4 150 250 27.68 0.17 7.848 0.97 0.95 FRP rupture 

Beam6 150 300 27.68 0.14 10.791 0.90 0.85 FRP rupture 

 



 

Table 1 (continued) 

Reference 
Beam 

notation 

 

 

Width 

(mm) 

 

 

Overall 

depth 

(mm) 

 

 

fc' 

(MPa) 

 

 

ρf 

(%) 

 

 

Mexp 

(kN) 

Mfu / Mexp 

Experimental mode of 

failure 
Current 

technique 

ACI 440 

[24] 

[6] 

beam8 150 200 50.09 0.23 5.886 1.00 0.99 FRP rupture 

beam10 150 250 50.09 0.17 9.483 0.81 0.80 FRP rupture 

beam12 150 300 50.09 0.14 16.75 1.12 1.11 FRP rupture 

[7] 

ISO2 200 300 43 1.13 80.4 0.96 0.84 Concrete Crushing 

ISO3 200 550 43 0.57 181.7 1.02 1.03 FRP rupture 

ISO4 200 550 43 0.57 181.7 1.02 1.03 FRP rupture 

[8] 

1FRP1 381 203 27.6 0.12 11.49 0.99 0.98 FRP rupture 

1FRP2 381 203 27.6 0.12 12.67 0.90 0.89 FRP rupture 

1FRP3 381 203 27.6 0.12 11.49 0.99 0.98 FRP rupture 

2FRP1 318 216 27.6 0.13 13.62 0.90 0.88 FRP rupture 

2FRP2 318 216 27.6 0.13 13.26 0.92 0.91 FRP rupture 

2FRP3 318 216 27.6 0.13 13.06 0.93 0.92 FRP rupture 

4FRP1 203 152 27.6 1.27 15.78 0.91 0.86 Concrete Crushing 

4FRP2 203 152 27.6 1.27 15.58 0.92 0.88 Concrete Crushing 

4FRP3 203 152 27.6 1.27 16.29 0.88 0.84 Concrete Crushing 

5FRP1 191 152 27.6 1.35 16.37 0.84 0.80 Concrete Crushing 

5FRP2 191 152 27.6 1.35 16.65 0.83 0.79 Concrete Crushing 

5FRP3 191 152 27.6 1.35 15.78 0.87 0.83 Concrete Crushing 

[9] 

CB2B-1 200 300 52 0.69 57.9 1.09 0.93 Concrete Crushing
c 

CB2B-2 200 300 52 0.69 59.8 1.05 0.90 Concrete Crushing
c 

CB3B-1 200 300 52 1.04 66 1.22 0.97 Concrete Crushing 

CB3B-2 200 300 52 1.04 64.8 1.24 0.99 Concrete Crushing 



Table 1 (continued) 

Reference 
Beam 

notation 

 

 

Width 

(mm) 

 

 

Overall 

depth 

(mm) 

 

 

fc' 

(MPa) 

 

 

ρf 

(%) 

 

 

Mexp 

(kN) 

Mfu / Mexp 

Experimental mode of 

failure 
Current 

technique 

ACI 440 

[24] 

[9] 

CB4B-1 200 300 45 1.47 75.4 1.01 0.83 Concrete Crushing 

CB4B-2 200 300 45 1.47 71.7 1.07 0.87 Concrete Crushing 

CB6B-1 200 300 45 2.2 84.8 1.06 0.86 Concrete Crushing 

CB6B-2 200 300 45 2.2 85.4 1.06 0.86 Concrete Crushing 

[11] 

1 152 152 35.9 0.38 7.04 1.02 0.99 FRP rupture 

2 152 152 36.9 0.38 6.64 1.09 1.06 FRP rupture 

4 152 152 38.9 0.38 7.23 1.00 1.00 FRP rupture 

5 152 152 39.9 0.38 7.35 0.99 0.99 FRP rupture 

6 152 152 40.9 0.38 6.75 1.07 1.09 FRP rupture 

[12] cb-st 152 350 48.26 0.23 51.91 1.18 1.15 FRP rupture 

[13] 

GB5 150 250 31.2 1.36 40.3 0.86 0.81 Concrete Crushing 

GB9 150 250 39.8 1.36 39.73 1.02 0.91 Concrete Crushing 

GB10 150 250 39.8 1.36 39.5 1.02 0.92 Concrete Crushing 

[14] 
F2 500 185 30 0.7 36.8 1.08 1.03 Concrete Crushing 

F3 500 185 30 1.22 60.7 0.83 0.78 Concrete Crushing 

[15] 
RC2 200 350 34.43 0.36 85.27 0.81 0.78 FRP rupture 

RC4 200 350 34.43 0.72 124.6 1.05 0.98 Concrete Crushing
c 

[16] BRC2 120 200 41.71 0.7 29.19 0.95 0.78 Concrete Crushing 

[17] 

II 200 210 31.3 3.6 34.1875 0.99 0.93 Concrete Crushing 

III 200 260 31.3 1.2 45.125 0.97 0.91 Concrete Crushing 

IV 200 300 40.7 1.15 59.1875 1.09 0.97 Concrete Crushing 

V 200 250 40.7 2.87 57 1.03 0.92 Concrete Crushing 

 



Table 1 (continued) 

Reference 
Beam 

notation 

 

 

Width 

(mm) 

 

 

Overall 

depth 

(mm) 

 

 

fc' 

(MPa) 

 

 

ρf 

(%) 

 

 

Mexp 

(kN) 

Mfu / Mexp 

Experimental mode 

of failure 
Current 

technique 

ACI 440 

[24] 

[18] 

C-212-D1 140 190 59.8 0.99 38.22 0.79 0.62 Concrete Crushing 

C-216-D1 140 190 56.3 1.78 45.06 0.81 0.64 Concrete Crushing 

C-316-D1 140 190 55.2 2.67 49.38 0.84 0.67 Concrete Crushing 

C-212-D2 160 190 39.6 0.99 27.69 0.75 0.65 Concrete Crushing 

C-216-D2 160 190 61.7 1.78 42.15 0.78 0.61 Concrete Crushing 

C-316-D2 160 190 60.1 2.67 43.2 0.88 0.68 Concrete Crushing 

[19] 

C-S-1 200 300 26.9 

 

0.42 64.11 0.88 0.84 FRP rupture 

C-S-2
 200 300 27.5 0.16 44.28 0.97 0.95 FRP rupture 

C-C-3
a 200 300 23.6 0.16 44.76 0.95 0.94 FRP rupture 

C-C-4
a 200 300 27.2 0.42 60.66 0.93 0.89 FRP rupture 

C-C-5
a 200 300 28 0.42 56.03 1.01 0.96 FRP rupture 

[20] 

CS1
a 200 300 26 0.42 51.8 1.10 1.02 Concrete Crushing 

CS1
b 200 300 26 0.28 29 1.55 1.56 Concrete Crushing

c 

GS1
a 200 300 28 1.18 60.2 1.02 0.94 Concrete Crushing 

GS1
b 200 300 28 0.79 49 1.06 0.98 Concrete Crushing 

[21] 

B4 152.4 152.4 51.73 0.34 12.603 1.07 1.01 Concrete Crushing 

B5 152.4 152.4 48.02 0.34 10.151 1.28 1.22 FRP rupture 

B7 152.4 152.4 49.3 0.53 17.104 0.98 0.86 Concrete Crushing 

B8 152.4 152.4 51.1 0.53 16.919 1.01 0.88 FRP rupture 

 

 

 

 



Table 1 (continued) 

Reference 
Beam 

notation 

 

 

Width 

(mm) 

 

 

Overall 

depth 

(mm) 

 

 

fc' 

(MPa) 

 

 

ρf 

(%) 

 

 

Mexp 

(kN) 

Mfu / Mexp 

Experimental mode 

of failure 
Current 

technique 

ACI 440 

[24] 

[21] 
B12 152.4 152.4 43.88 0.76 17.506 1.08 0.92 FRP rupture 

B9 152.4 152.4 53.31 0.53 16.575 1.05 0.91 FRP rupture 

Average       1.01 0.91  
Standart 

deviation 

(%)  

    

 

0.15 0.17 

 

          
Note: f'c is the compressive strength of concrete, ρf is the FRP reinforcement ratio (Af/bd), Mexp is the experimental moment  

capacity and Mfu is the predicted moment capacity of FRP sections. 
a 
Indicates the mid-span section of continuously supported FRP reinforced concrete beams. 

b 
Indicates the middle support section of continuously supported FRP reinforced concrete beams. 

c 
Indicates disagreement between predicted and experimentally observed flexural failure modes. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Table 2 Details of simply and continuously supported FRP reinforced concrete beams used in the numerical technique validation. 

 

Note: b, h and L = beam’s width, depth and span, respectively, Ef is the modulus of elasticity of FRP longitudinal bars. 

 

 

 

 
 

 

 
 

Reference 
Beam 

notation 

Supporting 

condition 

Loading 

type 
b (mm) h (mm) L(mm) 

Reinforcing bars (mm) Ef (kN/mm
2
) 

f'c 

(N/mm
2
) Top Bottom 

[21] B4 Simply supported Two point 152.4 152.4 1524 2Φ12.7 (Steel) 2Φ6.35 (CFRP) 140 51.73 

[21] B9 Simply supported Two point 152.4 152.4 1524 2Φ12.7 (Steel) 2Φ7.94 (CFRP) 140 53.31 

[4] C1-4 Simply supported Two point 200 300 2750 2Φ11.3 (Steel) 4Φ9.5 (CFRP) 114 40.4 

[4] C1-6 Simply supported Two point 200 300 2750 2Φ11.3 (Steel) 6Φ9.5 (CFRP) 114 39.3 

[4] C1-8 Simply supported Two point 200 300 2750 2Φ11.3 (Steel) 8Φ9.5 (CFRP) 114 39.3 

[4] C2-4 Simply supported Two point 200 300 2750 2Φ11.3 (Steel) 4Φ9 (CFRP) 122 39.9 

[4] G1-6 Simply supported Two point 200 300 2750 2Φ11.3 (Steel) 6Φ12.7 (GFRP) 40 39.05 

[4] G1-8 Simply supported Two point 200 300 2750 2Φ11.3 (Steel) 8Φ12.7 (GFRP) 40 39.05 

[30] GcUO 
Continuously 

supported 
Mid-span 200 300 2750 3Φ12.7 (GFRP) 6Φ15.9 (GFRP) 

38.7(for Φ15.9) 

44.2(for Φ12.7) 
29 

[30] GcOO 
Continuously 

supported 
Mid-span 200 300 2750 6Φ15.9 (GFRP) 6Φ15.9 (GFRP) 38.7 25 

[19] C-C-3 
Continuously 

supported 
Mid-span 200 300 2750 2Φ12 (CFRP) 2Φ7.5 (CFRP) 200 23.6 

[20] GS1 
Continuously 

supported 
Mid-span 200 300 2800 2Φ16 (GFRP) 3Φ16 (GFRP) 46 28 


