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The Lateral Torsional Buckling of I Beams with Cross Beams

Sri Tudjono
Civil Engineering Department
Faculty of Engineering, Diponegoro University, Jalan Prof. Soedarto, SH, Tembalang,
Semarang 50235, Indonesia
tudjono@jindosat.net.id

Abstract

High flexural-rigid cross beams at the joints of a main beam can function as restraining members to
prevent rotation during lateral torsional buckling (LTB). With less flexural-rigid members, joint
rotation results in a decrease of the main beam’s LTB critical moment. This paper elucidates the cross
beam’s minimum flexural rigidity to prevent the main beam’s joint rotation during torsional buckling.
It is assumed that material behaves elastically, the beam’s web doesn’t undergo distortions, and shear
forces effects are neglected. The cross-beam’s flexural rigidity is represented by a spiral spring. Under
buckling, this spring produces a torque moment, proportional to the joint rotation. The torque will
disturb the main beam’s LTB equation system. By adjusting the spring constant, the joint rotation is
minimized, thus reducing the torque’s disturbing effect within the equation. By neglecting this effect,
the LTB equations at all fields of main beam are identical to the general buckling equations for
constant moments. For » cross beams, 4 (n+1) integration constants are resulted. By applying the
boundary conditions at beam ends and utilizing the geometry and natural boundary conditions at the
joints, 4 (n+1) homogeneous equations for the integration constant are obtained. By conducting the
trial and error method, the critical moment resulting in a zero determinant for the homogeneous
equation coefficient matrix is acquired. Then, the LTB first-mode deformation shape can be drawn.
The analysis shows that to achieve the critical moment, a main beam having a cross beam located at
mid span needs the most optimum (smallest) flexural rigidity of cross beam than when it is in other
locations (#L/2). Observing the first-mode shape, for a certain spring constant value, the rotation at
the joint will approach zero.

1. Introduction

The lateral torsional buckling (LTB) moment of a beam is expressed in Eq. (1) (Salmon and
Johnson, 1996). C, of beam with constant moment is equal to 1. The behavior of a main
beam having cross beam is different from those without cross beam. A cross beam
contributes to restrain the beam during the process of LTB. Such restraint will then increase
the critical moment of the main beam. Due to lack of regulation to deal with LTB on main
beam having a cross beam, engineers often ignore the influence of cross beam. This will lead
to a larger dimension of the main beam designed.
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In this paper, the influence of cross beam on LTB critical moment of the main beam having a
constant moment is examined. To determine LTB critical moment of a main beam having
cross beam, finite difference and Rayleigh-Ritz methods are generally applied by solving 2
variables using trial and error process (Chajes, 1970). For finite difference method, the two
variables are the numbers of main beam’s segments and the LTB critical moment. Whereas
for Rayleigh-Ritz method, the numbers of sinus functions series and the LTB critical moment
are the two variables to iterate. In this study, an approach is implemented by reducing the
variable numbers from two to one, substituting an exact solution into the LTB differential
equation of a disturbed segment from a cross beam moment. Thus, the trial and error process
needs to be done for only one variable which is the LTB critical moment. This approach has
proven to successfully converge for cases of beam with vertical stiffener (Tudjono, 2005) and
thin rectangular beam with cross beam (Tudjono et al., 2011) and significantly reduce the
computational time.

2. Problem
Two main problems will be discussed herein the paper:

i. How much is the influence of flexural rigidity of a cross beam on the rise of LTB
critical moment?

ii. How much is the minimum flexural rigidity of a cross beam to steadily hold the main
beam (zero rotation) during the LTB? When this parameter is known, in the design
process, engineers can decide whether the effect of cross beam(s) needs to be taken
into account when calculating the critical moment.

3. Methodology
3.1 Scope of Study
The analysis is carried out with assumptions as follows:

e Material is under elastic condition
e Only flexural stiffness is accounted for, that the cross beam is assumed as a spiral
. . . . . 2 El 6 EI
spring with no shear force. Thus, the spiral spring’s constant is around L—CB to L—CB.
CB CB
e Beam’s web does not undergo distortions
The main beam is I beam with 2 symmetrical axes.

Spiral spring works on the centre of gravity of the main beam cross section.
3.2 Numerical Approach
3.2.1 Beam Without Cross Beam

Figure 1: Beam having a constant moment
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The differential elementary equation of a beam having a constant moment as shown in Fig. 1
is given as follows:

M2
Elw g’ -GJ B - B=0 @)
El,
The general solution of this differential equation is:
p=Cisingz + Cycosaz + Cse + Cye ¥ 3)

G/ Y wm? GJ G/ Y M’ GJ
a= +— - b= +— n
2El, ) E*II, 2EI, 2El, ) E*LI, 2E,
3.2.2 Beam with Cross Beam

| 51z | | Bt (Z) L

! Lintl) L LD '/n

| [
M =) C'EB,
x WO N O 01 |04n+1 Tz Ciaz quq

Figure 2: Beam with n cross beams
The presence of cross beam as in Fig. 2 yields a disturbance to Eq. (2). Weak axis moment
will be disturbed by i™ cross beam moment of Kf; Z—Z as shown in Fig. 3. The influence of

this disturbance will be lesser when ; approaches 0. When the cross beam flexural rigidity is
sufficient, the cross section will not rotate as §; = 0.

Figure 3: Moment disturbance on strong axis of main beam due to cross beam

And also, when f; is very small, the results from numerical analysis will approach those from
exact solution. In this case, the interference of such disturbance in moment analysis is
ignored. In the critical condition, beam in between cross beams has similar differential
equation to that of without cross beam. However, the solutions are different in terms of
constants of integration. Each beam has 4 constants of integration. Thus, for #n cross beams,
the total of constants of integration will be 4 (n+1). By applying 4 boundary conditions at
both ends and 4 at »n cross beams, 4 (n+1) homogeneous equations will be obtained. The
equations are derived using Egs. (3) to (6). The LTB critical moment can then be obtained
from a determinant of homogeneous equations’ coefficients matrix which equals to zero. The
homogeneous equations are governed from natural and geometrical boundary conditions,
both of which are described as follows.
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Boundary conditions at both ends:
o forz=0 p=0,"=0
o forz=L f=0,"=0
Boundary conditions on cross beams:
e Derivative and functional continuity : G = Sz, 'L = B'r
e Moment balance : GJpL-Ewp”’, =GJ B'r- EIWB”’r + K Br
e Flexural web balance : "L =pP"r

Where K is cross beam’s flexural rigidity. When the homogeneous equations are described in
more detail in conjunction with cross beams, constants of integrations can be obtained as
follows:

2 boundary conditions at left end:

C2+C3+C4:0
S GG+ C=0 4)

I .th
4 boundary conditions on i~ cross beam:

o Cwysinaz; + Coiaiycos az; + C 34 e + C (4+4i) e =

C 14ty i @z + C @aaginy €08 @z + C gy €%+ Canagny €

o aC (s cos az; - C ey sin az; + bC 3rap €% - bC (aeay e ' =
aC (1+4(i-1)) €OS az; - QC(2+4(i-1))SiIl az;+ QC(3+4(1‘-1)) ebZi -bC 4+4(i-1)) € e

o (GJQ - E[WQS)C(HM) cosaz; - (GJ(,_I - E[WQ3)C(2+4i) sin az i + (GJQ + E]Wé3)C(3+4,') ebZi -
(GJb + E[WQ3)C (4+4i) e_éZi =+ KC(1+4,~) sin az; +KC (2+4i) COS az ; + KC (3+4i) eézj + KC (4+4i)
eézj = (GJa - EIWQ3) C(1+4(1'_1)) cosaz; - (GJa - E]WQ3) C(2+4(i_1)) sin az; + (GJb + EIwb 3)
C (3+4(i-1) e” - (GJb + Elwb®) C (4+4(i-1)) e

o - 22C(1+4i) sinaz; - 6_12 Cpupcosaz; + QZ C 3+4i) e + QZ C (4+4i) et =
-a’c (1va(1)) SIN GZ ;- ac (2+4(-1)) COS @Z ; + b C +agi-n) e +b'c ava(i1)) € b 5

2 boundary conditions at right end:
C(1+4n) sin gL + C(2+4n)) CcOoS QL + C(3+4n) ebL + C(4+4n) C_bL =0
-a’ Cumsingl -a” Coumcosal +b° Ciume? + 07 Cuune ™ =0 (6)

a dan b values are function of moment. By applying trial and error method, the LTB critical
moment is obtained. It is when a determinant of homogeneous equations’ coefficients matrix
which equals to zero.

4. Analysis Results
4.1 n Uniformly Distributed Cross Beams

Analyses were performed on main beam having uniformly distributed 1, 2 and 3 cross beams.
For a case with 1 cross beam, it is located at mid span. For 2 cross beams, the locations are at
L/3 and 2L/3. And for 3 cross beams, the locations are at L/4, L/2 and 3L/4. The trial and
error method is carried out from smaller to greater number of the beam’s flexural rigidity.
There will be a point whereby the LTB critical moment is stable at one value as the flexural
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rigidity increases. The critical moments from the aforementioned analysis are then compared
to those obtained from Eq. (1) with beam’s length equals to L/(n+1) and presented in Table 1.

Table 1: Critical moment of IWF 250x125 beam with cross beam(s)

Cross beam (n) % minimum A([lg\ll;f:;l M. fo(’;;‘:::; Li(n+1)
1 0.7099 106.9239 106.9215
2 1.9127 213.9804 213.9803
3 4.1770 362.4113 362.4085

The results from the analysis of main beam with cross beams that have variable flexural
rigidity are presented in Fig. 4. M., is the critical moment of main beam without cross beam
and CB denotes cross beam.
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8.0 - s
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6.0 - 7’

501 4 o
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3.0 o
2.0
1.0 x ; : . \

M L‘rﬂ” cro

KL/EIy

Figure 4: Critical moment for various » cross beams’ rigidity
4.2 One Cross Beam
Beam with a cross beam located at L/2 and L/3 from left end are analyzed and compared as
shown in Fig. 5.
3.0
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Figure 5: Critical moment on 1 cross beam of different location
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The analysis shows that the critical moment’s convergence rate of a case whereby the cross
beam is at L/2 is faster than that of L/3. The critical moment of IWF 250x125 beam with a
length of L having the cross beam at L/3 with KL/Ely = 48.6869 is 79.3488 kNm, yet it is not
a stable one. Such critical moment is in between the critical moment for a main beam with a
length equal to 2L/3 (= 68.3842 kNm) and a length equal to L/3 (= 213.9960 kNm). The first
mode shape of the main beam with 1 cross beam located at L/2 and L/3 from the left end are
shown in Fig. 6.
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1 4
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Figure 6: The first Mode Shape of LTB with 1 cross beam

The LTB modes shapes of beam with 2 cross beams uniformly distributed for various value
of KL/Ely are shown in Fig. 7.
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Figure 7: The Modes Shapes of LTB with 2 cross beams

5. Conclusion
From the analysis results, conclusions can be drawn as follows:

i. The approach has proven to successfully converge for cases of beam with cross
beam(s).
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ii. The analysis shows that to achieve LTB critical moment on a case of uniformly
distributed 7 cross beams, the higher the » value (numbers of cross beams), the higher
the minimum flexural rigidity of cross beam is needed.

iii. In the analysis using only 1 cross beam, the positioning of cross beam at mid span
provides faster convergence rate than other locations due to its smaller flexural
rigidity.

iv. When only 1 cross beam is installed, the positioning of cross beam at mid span shows
the most optimum (largest) critical moment.
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