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Abstract

High flexural-rigid cross beams at the joints of a main beam can function as restraining members to 

prevent rotation during lateral torsional buckling (LTB). With less flexural-rigid members, joint 

rotation results in a decrease of the main beam’s LTB critical moment. This paper elucidates the cross 

beam’s minimum flexural rigidity to prevent the main beam’s joint rotation during torsional buckling. 

It is assumed that material behaves elastically, the beam’s web doesn’t undergo distortions, and shear 

forces effects are neglected. The cross-beam’s flexural rigidity is represented by a spiral spring. Under 

buckling, this spring produces a torque moment, proportional to the joint rotation. The torque will 

disturb the main beam’s LTB equation system. By adjusting the spring constant, the joint rotation is 

minimized, thus reducing the torque’s disturbing effect within the equation. By neglecting this effect, 

the LTB equations at all fields of main beam are identical to the general buckling equations for 

constant moments. For n cross beams, 4 (n+1) integration constants are resulted. By applying the 

boundary conditions at beam ends and utilizing the geometry and natural boundary conditions at the 

joints, 4 (n+1) homogeneous equations for the integration constant are obtained. By conducting the 

trial and error method, the critical moment resulting in a zero determinant for the homogeneous 

equation coefficient matrix is acquired. Then, the LTB first-mode deformation shape can be drawn. 

The analysis shows that to achieve the critical moment, a main beam having a cross beam located at 

mid span needs the most optimum (smallest) flexural rigidity of cross beam than when it is in other 

locations ( L/2). Observing the first-mode shape, for a certain spring constant value, the rotation at 

the joint will approach zero. 

1. Introduction 

The lateral torsional buckling (LTB) moment of a beam is expressed in Eq. (1) (Salmon and 

Johnson, 1996). Cb of  beam with constant moment is equal to 1. The behavior of a main 

beam having cross beam is different from those without cross beam.  A cross beam 

contributes to restrain the beam during the process of LTB. Such restraint will then increase 

the critical moment of the main beam. Due to lack of regulation to deal with LTB on main 

beam having a cross beam, engineers often ignore the influence of cross beam. This will lead 

to a larger dimension of the main beam designed.  

Proc. of the 10th Intl. Conf. on Advances in Steel Concrete Composite and Hybrid Structures
Edited by J Y Richard Liew and Siew Chin Lee
Copyright c© 2012 Research Publishing Services. All rights reserved.
ISBN: 978-981-07-2615-7 :: doi:10.3850/978-981-07-2615-7 133 103



Proc. of the 10th Intl. Conf. on Advances in Steel Concrete Composite and Hybrid Structures

wy

2

ybcr II
L

E
GJEI

L
CM (1) 

In this paper, the influence of cross beam on LTB critical moment of the main beam having a 

constant moment is examined.  To determine LTB critical moment of a main beam having 

cross beam, finite difference and Rayleigh-Ritz methods are generally applied by solving 2 

variables using trial and error process (Chajes, 1970). For finite difference method, the two 

variables are the numbers of main beam’s segments and the LTB critical moment. Whereas 

for Rayleigh-Ritz method, the numbers of sinus functions series and the LTB critical moment 

are the two variables to iterate. In this study, an approach is implemented by reducing the 

variable numbers from two to one, substituting an exact solution into the LTB differential 

equation of a disturbed segment from a cross beam moment. Thus, the trial and error process 

needs to be done for only one variable which is the LTB critical moment. This approach has 

proven to successfully converge for cases of beam with vertical stiffener (Tudjono, 2005) and 

thin rectangular beam with cross beam (Tudjono et al., 2011) and significantly reduce the 

computational time.  

2. Problem 

Two main problems will be discussed herein the paper: 

i. How much is the influence of flexural rigidity of a cross beam on the rise of LTB 

critical moment? 

ii. How much is the minimum flexural rigidity of a cross beam to steadily hold the main 

beam (zero rotation) during the LTB? When this parameter is known, in the design 

process, engineers can decide whether the effect of cross beam(s) needs to be taken 

into account when calculating the critical moment.  

3. Methodology 

3.1 Scope of Study 

The analysis is carried out with assumptions as follows: 

Material is under elastic condition 

Only flexural stiffness is accounted for, that the cross beam is assumed as a spiral 

spring with no shear force. Thus, the spiral spring’s constant is around
2 EICB

LCB
to

EICB

LCB
.

Beam’s web does not undergo distortions 

The main beam is I beam with 2 symmetrical axes. 

Spiral spring works on the centre of gravity of the main beam cross section. 

3.2 Numerical Approach 

3.2.1 Beam Without Cross Beam 

Figure 1: Beam having a constant moment 
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The differential elementary equation of a beam having a constant moment as shown in Fig. 1 

is given as follows:  

EIw ’’’’ - GJ ’’  - 
yEI

M 2

  = 0 (2) 

The general solution of this differential equation is: 

 = C1 sin az + C2 cos az + C3 e
bz

 + C4 e
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 (3) 
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3.2.2 Beam with Cross Beam 

Figure 2: Beam with n cross beams 

The presence of cross beam as in Fig. 2 yields a disturbance to Eq. (2). Weak axis moment 

will be disturbed by i
th

 cross beam moment of  as shown in Fig. 3. The influence of 

this disturbance will be lesser when  approaches 0. When the cross beam flexural rigidity is 

sufficient, the cross section will not rotate as = 0.  

Figure 3: Moment disturbance on strong axis of main beam due to cross beam 

And also, when  is very small, the results from numerical analysis will approach those from 

exact solution. In this case, the interference of such disturbance in moment analysis is 

ignored. In the critical condition, beam in between cross beams has similar differential 

equation to that of without cross beam. However, the solutions are different in terms of 

constants of integration. Each beam has 4 constants of integration. Thus, for n cross beams, 

the total of constants of integration will be 4 (n+1). By applying 4 boundary conditions at 

both ends and 4 at n cross beams, 4 (n+1) homogeneous equations will be obtained. The 

equations are derived using Eqs. (3) to (6). The LTB critical moment can then be obtained 

from a determinant of homogeneous equations’ coefficients matrix which equals to zero. The 

homogeneous equations are governed from natural and geometrical boundary conditions, 

both of which are described as follows. 
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Boundary conditions at both ends: 

for z = 0      = 0, ” = 0

for z = L  = 0, ” = 0

Boundary conditions on cross beams: 

Derivative and functional continuity :  L = R , ’L = ’R

Moment balance  : GJ ’L - EIw ”’L = GJ ’R - EIw ”’R + K R

Flexural web balance  : ”L = ”R

Where K is cross beam’s flexural rigidity. When the homogeneous equations are described in 

more detail in conjunction with cross beams, constants of integrations can be obtained as 

follows: 

2 boundary conditions at left end: 

C2 + C3 + C4 = 0

 - a2 C2 + b2 C3 + b2 C4 = 0 (4) 

4 boundary conditions on i
th

 cross beam: 

C (1+4i) sin az i + C (2+4i) cos az i + C (3+4i) e
 bzi + C (4+4i) e

 –bzi =

      C (1+4(i-1)) sin az i + C (2+4(i-1)) cos az i + C (3+4(i-1)) e
 bzi

 + C (4+4(i-1)) e
 -bzi

aC (1+4i) cos az i  - C (2+4i) sin az i + bC (3+4i) e
 bzi - bC (4+4i) e

 -bzi =

      aC (1+4(i-1)) cos az i  -  aC (2+4(i-1))sin az i + bC (3+4(i-1)) e
 bzi

 – bC 4+4(i-1)) e
 -bzi

(GJa - EIwa3
)C (1+4i) cos az i  - (GJa - EIwa3

)C (2+4i) sin az i + (GJb + EIwb3
)C (3+4i) e

bzi - 

(GJb + EIwb3
)C (4+4i) e

-bzi + KC (1+4i) sin az i +KC (2+4i) cos az i + KC (3+4i) e
bzi + KC (4+4i)

e
bzi

 = (GJa - EIwa
3
) C (1+4(i-1)) cos az i  -  (GJa - EIwa

3
) C (2+4(i-1)) sin az i + (GJb + EIwb

3
)

C (3+4(i-1)) e
 bzi - (GJb + EIwb 3

) C (4+4(i-1)) e
 -bzi      

- a
2
C (1+4i) sin az i  - a

2
C (2+4i) cos az i + b

2
C (3+4i) e

 bzi
 + b

2
C (4+4i) e

 -bzi
 =

- a
2
C (1+4(i 1)) sin az i  - a

2
C (2+4(i 1)) cos az i + b

2
C (3+4(i 1)) e

 bzi
 + b

2
C 4+4(i 1)) e

 -bzi
(5)

2 boundary conditions at right end: 

                     C (1+4n) sin aL  + C (2+4n)) cos aL + C (3+4n) e
 bL + C (4+4n) e

 - bL = 0

 - a 2 C (1+4n) sin aL  - a 2 C (2+4n) cos aL + b 2 C (3+4n) e
 bL + b 2 C (4+4n) e

 - bL = 0  (6) 

a dan b values are function of moment. By applying trial and error method, the LTB critical 

moment is obtained. It is when a determinant of homogeneous equations’ coefficients matrix 

which equals to zero.  

4. Analysis Results 

4.1 n Uniformly Distributed Cross Beams  

Analyses were performed on main beam having uniformly distributed 1, 2 and 3 cross beams. 

For a case with 1 cross beam, it is located at mid span. For 2 cross beams, the locations are at 

L/3 and 2L/3. And for 3 cross beams, the locations are at L/4, L/2 and 3L/4. The trial and 

error method is carried out from smaller to greater number of the beam’s flexural rigidity.  

There will be a point whereby the LTB critical moment is stable at one value as the flexural 
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rigidity increases. The critical moments from the aforementioned analysis are then compared 

to those obtained from Eq. (1) with beam’s length equals to L/(n+1) and presented in Table 1.  

Table 1: Critical moment of IWF 250×125 beam with cross beam(s) 

Cross beam (n)  minimum Mcr real 

(kNm) 

Mcr formula L/(n+1)

(kNm) 

1 0.7099 106.9239 106.9215 

2 1.9127 213.9804 213.9803 

3 4.1770 362.4113 362.4085 

The results from the analysis of main beam with cross beams that have variable flexural 

rigidity are presented in Fig. 4. Mcro is the critical moment of main beam without cross beam 

and CB denotes cross beam. 

Figure 4: Critical moment for various n cross beams’ rigidity 

4.2 One Cross Beam   

Beam with  a cross beam located at L/2 and L/3 from left end are analyzed and compared as 

shown in Fig. 5.  

Figure 5: Critical moment on 1 cross beam of different location 
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The analysis shows that the critical moment’s convergence rate of a case whereby the cross 

beam is at L/2 is faster than that of L/3.  The critical moment of IWF 250×125 beam with a 

length of L having the cross beam at L/3 with KL/EIy = 48.6869 is 79.3488 kNm, yet it is not 

a stable one. Such critical moment is in between the critical moment for a main beam with a 

length equal to 2L/3 (= 68.3842 kNm) and a length equal to L/3 (= 213.9960 kNm). The first 

mode shape of the main beam with 1 cross beam located at L/2 and L/3 from the left end are 

shown in Fig. 6.  

Figure 6: The first Mode Shape of LTB with 1 cross beam 

The LTB modes shapes of beam with 2 cross beams uniformly distributed for various value 

of KL/EIy are shown in Fig. 7. 

Figure 7: The Modes Shapes of LTB with 2 cross beams 

5. Conclusion 

From the analysis results, conclusions can be drawn as follows: 

i. The approach has proven to successfully converge for cases of beam with cross 

beam(s).
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ii. The analysis shows that to achieve LTB critical moment on a case of uniformly 

distributed n cross beams, the higher the n value (numbers of cross beams), the higher 

the minimum flexural rigidity of cross beam is needed.   

iii. In the analysis using only 1 cross beam, the positioning of cross beam at mid span 

provides faster convergence rate than other locations due to its smaller flexural 

rigidity. 

iv. When only 1 cross beam is installed, the positioning of cross beam at mid span shows 

the most optimum (largest) critical moment. 
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