C.30

PROCEEDING

The 6th International Conference on Green Technology

Malang, 18-19 September 2015

Innovation in Islamic Perspective for Sustainable Development Action Toward International Challenges

Science and Technology Faculty Maulana Malik Ibrahim Statae Islamic University Jalan Gajayana 50 Malang, Jawa Timur, Indonesia

PROCEEDING

The 6th International Conference on Green Technology

Innovation in Islamic Perspective for Sustainable Development Action Toward International Challenges

Malang, 18-19 September 2015 ISSN 2301-4490

Science and Technology Faculty

Maulana Malik Ibrahim Statae Islamic University

Jalan Gajayana 50 Malang, Jawa Timur, Indonesia

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

Committee

Steering Committee:

Dr. drh. Hj. Bayyinatul Muchtaromah, M.Si Dr. Sri Harini, M. Si Aldrin Yusuf Firmansyah, MT Linda Salma Anggreani, S.Si, MT Mohammad Nafie Jauhari, M.Si

Editor

Prof. Toshifumi Sakaguchi Dr. Nor Atiah Ismail Assoc Prof. Dr. Akira Kikuchi Prof. Madya Dr. Mohamad Shanudin Zakariya Prof. Drs. Ec. Ir. Riyanarto Sarno, M.Sc., Ph.D. Priyantono Rudito Ph.D Dr. Cahyo Crysdian Dr. Suhartono, M.Kom Dr. Muhammad Faisal, MT Dr. Mokhamad Amin Haryadi, MT Dr. H. Imam Sujarwo, M.Pd Dr. Abdussakir, M.Pd Dr. Drs. Usman Pagalay, M.Si Dr. Agus Mulyono, M.Kes Dr. Ulfah Utami, M. Si Dr. Dra. Retno Susilowati, M.Si Dr. Evika Sandi Savitri, MP

Scientific Committee:

Yulia Eka Putrie, MT

Elok Kamilah Hayati, M. Si

Supriyono, M.Kom Fachrur Rozi, M.Si Erna Hastuti, M.Si Dr. Agung Sedayu, MT Tri Kustono Adi, M.Sc Dwi Suheriyanto, S.Si., M.P Begum Fauziyah, M.Farm

Organizing Committe

Dr. Eko Budi Minarno, M.Pd Citra Fidya Atmalia, SH Muhammad Ismail Marzuki, SE Tuti Indayani, SE Mujahidin Ahmad, S.Pt., M.Sc Roro Indah Melani, MT, M.Sc Ririen Kusumawati, M.Kom Ainatul Mardiyah, M.Cs Rusianah, S.Kom Nur Farida, S.Psi Abidin, S.Pd Hendri Cahyo Gunawan, S.Kom Eka Arif Santoso Aan Fuad Subarkah, S.Kom Weni Susilowati, S.AB Irjatul Wardah, S.Kom Oktarina Eka Hartanti, SE Muhammad Hatif, S.Pd I Ernaning Setiyowati, MT Ivana Varita, S.Kom Prima Kurniawaty, ST., M.Si Deny Zainal Arifin, S.Kom Anton Prasetvo, S.Si Ahmad Latif Qosim, S.Kom Tarranita Kusumadewi, MT Sri Winarni, MT Gianto Widodo, S.Kom Aziz Mustofa, S.Kom

FOREWORD

Sustainable development is development which meets the needs of the present without comprising the ability of future generations to meet their own needs. Sustainability is important because all the choices we pursue and all the actions that we make today will affect everything in the future. We need to make careful decisions at present in order to avoid limiting choices of the next generations at the future.

Sustainable development implies the fulfillment of several conditions: preserving the balance of the environment, preventing the exhaustion of natural resources, and optimizing the energy consumption. In the sustainable development action, there are many major challenges to be addressed. It requires us to re-think our growth in terms of social live that is more economical in its use of raw materials and energy. In this context, sustainable developments are now become an essential obligation.

Within the concept of rahmatan lil alamin, Islam considers it essential to preserve the environment and that the environmental management relies heavily on our actions today. To accommodate the above issues, the Faculty of Science and Technology of Maulana Malik Ibrahim State Islamic University dedicates an international seminar on science and technology "Innovation in Islamic perspective for sustainable development action toward international challenges".

We are delighted to invite the academicians, researchers, and practitioners to participate in this international seminar of

- 1. Natural science
- 2. Mathematics and Modeling
- 3. Computational Technology
- 4. Applied Science and Technology
- 5. Architecture
- 6. Pharmacy and Medical Technology

Best Regards

Committee

Table of Content

Committe	ii
Foreword	iii
Table of Content	iv
Natural Science	
An Exploratory Study of Tomato Marketing in East Java Kuntoro Boga Andri, Tiago Wandschneider, Teddy Kristedy	01
Antibacterial Activity of Awar-Awar Leaves (Ficus septica Burm F) Against Staphylococcus aureus ATCC 29523 and Escherichia coli ATCC 35218 Arifah Khusnuryani, Zainatul Fuad	14
Biodiversity and Relationship Rose Apple (Syzgium aqueum Burm.F.Alston) Morphological Approach Through Nature in Plantation Bhakti, Pasuruan Hamidah, Junairiah, Devi Mardiastuti	20
Characteristics and Performance of Shalot Industry in Indonesia Kuntoro Boga Andri, Tiago Wandschneider, Teddy Kristedy	28
Characteristic Morphology on Seeds of Four Collection Plant That Have Been Cultivated in Purwodadi Botanical Garden Firda Asmaul Husna, Agung Sri Darmayanti, Eko Sri Sulasmi	36
Clarification of Protein Sub Unit Pili And Outer Membrane Protein (Omp) Shigella flexneri As Adhesion Protein With Hem Agglutination Test Avin Ainur Fitrianingsih	41
Composition and Abundance Of Crustacea and Polychaeta In Mangrove Stands At Bulalo Kwandang District North Gorontalo Regency Abubakar Sidik Katili, Ramli Utina, Susantika Kurapu	48
Control of Fusarium Wilt Disease in Onion Plants (Allium Ascolonicum) Using Trichoderma Biofungicide Diding Rachmawati, Eli Korlina, Baswarsiati	52
Detection Terpenoid of Fern Genus Dryopteris, Asplenium, and Davalia in Taman Hutan Raya Raden Soerjo Ajeng Wijarprasidya, Firda Asmaul Husna, Istamaya Ariani, Eko Sri Sulasmi	58
Effect of Sargassum Filipendula Fucozanthin Against Hela Cell And Lymphocyte Proliferation Kartini Zailanie, Umi Kalsum	62

Effect of Plant Population Some Variety of Soybean in Upland Zainal Arifin, Indriana RD	71
Heritability and Growth of Four Shallot Varieties at Off Season in Bojonegoro Fuad Nur Azis, Kuntoro Boga Andri	77
Identification of Bioactive Compounds of the Moss Leucobryum aduncum Dozy and Molk Junairiah, Tri Nurhariyati, Suaibah, Ni'matuzahroh, Lilis Sulistyorini	84
Identification Tannin Compound of Three Genus Pterodophytes in Taman Hutan Raya Raden Soerjo Eko Sri Sulasmi, Sitoresmi Prabaningtyas, Murni Sapta Sari	89
Isolation and Characterization of Nitrogen Fixing Bacteria From Post-Mining Soil of Limestone Quarry: Bacterial Sreening For Eco-Fertilizer Mashudi, Nisa Rachmania Mubarik, Ratih Dewi Hastuti	93
Krokot (<i>Portulaca Oleracea</i> . L) As a Natural Sensitizer For Tio2 Dye-Sensitized Solar Cells: The Effect Of Temperature Extract Reyza Anni Mufiidah, Khamidinal, Endaruji Sedyadi, Didik Krisdiyanto	99
Occurrence of Important Pest and Disease on <i>Polianthes tuberosa</i> in East Java Wahyu Handayati	106
Potency of Tropical Fruit Juices as Natural Antioxidant Source L.H. Mukminin, P.M. Al Asna, S. Sundari, B. Lukiati	112
Potential Development of Dioscorea composita L. and Dioscorea bulbifera L Sri Hutami, Ragapadmi Purnamaningsih, Surya Diantina	117
Rutin Compound From Malus Domesctica Against Colon Cancer Based On In Silico Arindra Trisna Widiansyah, Ardini Pangastuti, Rizka Elan Fadilah	125
Seedlings Growth of a Critically Endangered Species, Hopea sangal, on Various Growing Media Soejono	131
Study of Microbiological at Coastal Water in Port Dickson, Malaysia Prima Aswirna	139
Study of Various Factors For Hairy Root Growth of Artemisia Annua Ragapadmi Purnamaningsih, Sri Hutami, Ireng Darwati	148
Synthesis of <i>I-menthyl</i> Acetate by Esterification <i>I-menthol</i> and Acetate Anhydride with Variation of Time Novia Suryani, A. Ghanaim Fasya, Rurini Retnowati, Akyunul Jannah	155

The Influence of Media Osmotic on Characters of <i>Celosia</i> in Vitro Callus <i>Retno Mastuti, Nunung Harijati</i>	162
The Periphyton Community Structure In The Habitat Of Lawar (Perinereis cf. cultrifera) At Wearlilir Waters In The Southeast Maluku Martha Rettob	168
The Use of Plant as a Natural Larvacide to the Mortality Aedes Aegypti Larvae Aseptianova	173
Applied Science & Technology	
Attack Shoot Borers Scirpophaga excerptalis Walker (Lepidoptera; Pyralidae) Planting System In Multiple Sugarcane (Saccharum officinarum L.) Andi Muhammad Amir	178
Application Technology of Post-Harvest Sweet Corn in the Tawangargo Village, Karangploso District, Malang Lailatul Isnaini, Baswarsiati	190
Bioecology Pest Rodents on Mung Bean Plant Fore Belu East Nusa Tenggara and Control Riza Ulil Fitria	201
Effect of Complementary Liquid Fertilizer on Quality Parameters and Physico-chemical Characteristics of Cabbage (Bassica oleraceae L.) During Preservation Ita Yustina, Sri Zunaini Sa'adah, Rohmad Budiono, Farid R. Abadi	206
Effect of Grafting and Variety on Disease Development and Production of Tomato Eli Korlina, Evy Latifah, Kuntoro Boga Andri, Joko Mariyono	213
Feed Efficincy and Body Weight Gain of Fat Tailed Sheep Fed Dry Vagetable Waste as Substitution of Concentrates Siti Istiana, Dini Hardini, Eni Fidiyawati	221
Greenhouse Dryer Performance for Drying Thin Slices of Potato Tuber Farid R. Abadi, Ita Yustina	225
Introduction of 4 New Superior Varieties of Inpari Paddy in Scholl Field-Integrated Crops Management (ICM) Sugiono, Amik Krismawati	232
Lawar Nutritional Content and Lawar Pellets Martha Rettob, Cenny Putnarubun, Nally Erbabley, Santy Rahantoknam	239
Mechanical Properties of Brass Metal Matrix Composite (MMC) reinforced with Fly Ash Aminnudin, Heru Suryanto	243

Preference Test of Sustainable Food Household area (KRPL)'S Produsts in Sukorejo Village,	
Ponorogo Sri Satya Antarlina, Aniswatul Khamidah	24
57) Sutya Antaruna, Amswatar Khamaaan 	
Respons of New Varieties Rice to Important Pests in Bangkalan Rainfed	\vdash
Donald Sihombing, Wahyu Handayati	25
Sago Palm (Metroxylon sagu rottb.) as potential Genetic Resource For Food and	17.
Environmental Conservation	20
Study on the Ash Composition of Albazia Falcataria	
Mokh. Hairul Bahri	27
The Assessment of Field Usage on Productive Age Podang Mango Plantation For Intercrops Sri Yuniastuti	27
The Assesment of NSV's Role in Increasing Wetland Rice Productivity at Kediri Regency Sri Yuniastuti, Sri Satya Antarlina	28
The Combustion of Hydrogen on Reaction Jathropa Oil and Water Agus Wibowo, I.N.G Wardana, Slamet Wahyudi, Denny Widhiyanuriyawan	28
The Effectiveness of Inorganic Fertilizer Usage on Growth and Yield of Field Rice Amik Krismawati, Sugiono	29
Thermal Degradation Of Mendong Fiber Heru Suryanto	30
Mathematics and Modelling	
Analysis of Torque Vertical on String Model	
Ari Kusumastuti, Sri Sasi Yuni Nurhayati	31
Assimilation and Accomodation Description of The Eighth Grade Students with Low Ability	
n Learning Phytagoras Theorem Herfa MD Soewardini	31
he Effectiveness of Calculus Based on Contextual Learning Model	
lana Sepriyanti, Ahmad Fauzan	.32

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

Computational Technology	
Monitoring on the Development of Small and Middle Business in Malang Based on Geographic Information System (GIS) and Fuzzy Sugeno Gianto Widodo, Novta Dany'el Irawan, Mustamin Hamid, Soleh Hadi Purnomo	32
White Box Testing on the Learning Assesment Software Development Muhammad Nuris, Fatchurrochman, Zainal Abidin	334
Architecture	1
Emerging Landscape Visual Quality Assessment for Rural Spatial Planning in Bumiaji District, Batu City Dina Poerwoningsih, Antariksa, Amin Setyo Leksono, Abdul Wahid Hasyim	341
Performance Attributes Determination of Tawang Alun Terminal in Jember Agung Sedayu	3 54
Strategy on Green Building to Reduce Overall Thermal Transfer Value in the Orthopedic Hospital in the Tropics Hendro trilistyo, Erni Setyowati	362
Sustainable Pedestrian Ways in Central Business District of Tunjungan Surabaya Ardy Maulidy Navastara Veronica Mandasari	369
The Quality Evaluation of Regional Structure of Ijen Area in Malang City Towards Sustainable Urban Development Aldrin Yusuf Firmansyah	377
Pharmacy and Medical Technology	
Alstonia Scholaris : Alkaloids Isolation, And Potency Toward Toxoplasmosis Identification Begum Fauziyah, Ali Abraham, Qodia Rahmawati, Roudlotul Nadhifah, Fadhilatul Ismiyah	388
Can Miswak Extract Be Topical Antimicrobial? Atina Yuliandari, Faiqotul Choiroh, Abdul Syakur	393
Comparison The Anticancer Effect Of Extract And Fraction Calotropis Gigantea Radix On Human Colon Cancer Widr And Breast Cancer T47D Cell Lines Roihatul Mutiah, Sukardiman, Aty Widyawaruyanti	398
Date Fruit as a Potential Pharmaceutical Product Rich in Antioxidants Neneng Fadi'ah Idzni	407

Effect of Polysaccharide Krestin From <i>Coriolus Versicolor</i> on Antibody Titer Mice Exposure Due Pseudomonas Aeruginosa Sri Puji Astuti Wahyuningsih, Nadyatul Ilma Indah Savira, Win Darmanto	412
Performance Analysis of General Hospital Pharmacy of University Muhammadiyah Malang With Customer Perspective Approachment Ika Ratna Hidayati	418
Reverse Docking Reveals Annona Muricata's Muricatocin C As A Candidate Of Ppary Inhibitor (A New Alternative Drug For Osteoporosis' Therapeutic) Ahmad Fauzi, Agung Pambudiono, Erna Wijayanti	424
Sanguinarine Chloride as a Result of Virtual Screening For Candidate of Egfr Inhibitor Agung Pambudionő, Wasiatus Sa'diyah, Yulya Fatma, Diandara Oryza	429
The Characteristic Feature Of Type 2 Diabetic Animal Models Induced By High Fructose Die Ang Multiple Low Dose Streptozocotin Nurlaili Susanti	434
The Optimization Of Eluent Chromatography Thin Layer 2-D For The Purification Of Isola Alkaloid Of Pulai Having Potention As Anti-Toxoplasma Arief Suryadinata, Begum Fauziyah, Fitria Rahmawati	440

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

STRATEGY ON GREEN BUILDING TO REDUCE OVERALL THERMAL TRANSFER VALUE IN THE ORTHOPEDIC HOSPITAL IN THE TROPICS

Hendro Trilistyo¹, Erni Setyowati²

Building Science Laboratory, Architecture Department, Engineering Faculty, University of Diponegoro, 50275, Semarang, Indonesia

ABSTRACT

This research is focused on the design of the Wijaya Kusuma Building at Orthopedic Hospital of Prof. Dr. Soeharso, Surakarta, Indonesia as a center of medical rehabilitation services and Orthopedic Medicine which should provide comfort for patients, visitors and medical occupants of the hospital. Although the position of the building extends in East-West to reduce radiation, but tropical conditions inside the building was still less convenient. This study will review the OTTV (Overall Thermal Transfer Value) of the building in accordance with the principle of energy conservation. The research method used was simulation using Excel and sketch-up software. The facade redesign effort was only able to reduce the value of OTTV at about 6.03%, while a windows replacement, the effort was able to reduce the value of OTTV at about 19.56 – 21.19%. The combination efforts of the windows replacement and facade redesign could decrease OTTV up to 31.63 – 33.11%.

Keywords

Overall Thermal Transfer Value (OTTV), facade redesign, windows replacement

INTRODUCTION

Located in the centre of hospital complex, the Wijaya Kusuma building as the executive wing of Orthopedic Hospital of Professor Dr R. Soeharso (OHPSS), is a building that serves patients for medical rehabilitation, outpatient, inpatient, ICU, and Central of Operating Theatre (COT). The first floor is an executive outpatient service of OHPSS. The inpatient facilities are on the second floor. The third floor are ICU (Intensive Care Unit) and Central of Operating Theatre [1, 2, 3].

In the preliminary assessment, it was found that the OTTV was 41.16 Watt/m². The very high conductivity value became the researcher judgment that the building envelope was high enough in radiation, and it was considered by researchers in providing suggestions and reducing radiation by facade redesign. In the

previous study, researcher was describing and providing an alternative proposal wall material that construction environmentally friendly of foam-brick, the new waste based environmental friendly material. [4,5] Meanwhile, the factor of comfort and healing atmosphere must be created to achieve the concept of Green Hospital [6]. Unlike the previous research, this research was focused on how the efforts to reduce OTTV of building which high. According to SNI was quite (Indonesian National Standardization) that buildings OTTV in Indonesia should not exceed 35 watt/m².[7]

LITERATURE REVIEW

The concept of the Green Hospital Sustainability requires integration consists of several multi disciplinary professionals. The integration of the whole called by the

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

Integrated Design Process is starting from planning, implementation to operational buildings. [8] The Integrated Design Process makes a sustainable, green and high performance building designed. constructed, and operated to make the world a better place by improving the environment through nurturing restoring environmental assets. offering inspiration by drawing on the collaborative experience of a disciplinary team of professionals. Furthermore, the Integrated Design Process generates sustainable concepts that aim to minimize the impact of building on the global, regional and local environment. The integrated Building process is an achieving good design for long term sustainability and it must start at the beginning of a project and should continue throughout the building operation.

In addition, not all of the construction process will have a positive impact in terms of human resources comfort in hospital of both patient and medical staff. Some cases even lead that conduciveness of occupants reduced during wards renovation. Conduciveness of patients and medical staff is more comfortable on the old wards than in the new wards. [9] Therefore, the level of satisfaction of users is a very important aspect and can shorten the patients healing process. The shortened healing process can save the cost of hospital in the treatment of patients and positively impact the overall cost savings.

METHODOLOGY

This research was focused on the exploration of the simulation and facades redesign to reduce building OTTV which was very high. Research methodology used OTTV's simulation method which used Sketch-Up and Excel computer's software. Sketch-Up model was used to determine shading on all facades: North, South, West,

East facades. While in conducting simulation and optimization of the building OTTV, researchers used Excel software. The conductivity value of building envelope in both solid and transparent was approached by using the formula of the conductivity, whereas for calculating thermal caused by the use of transparent materials in buildings, researchers used the radiation formula.

Conservation on the Building Envelope

Control heat internally affected by thermal conditions outside the building. So the value of the difference between the outside temperature and the frigid temperature in the building is expected to comfortably be a very important factor. Level of thermal comfort standards have temperatures between 26° C - 27° C, and the humidity between 60% - 65%.[10].

Meanwhile, a tropical climate that tends to heat causes the heat transfer, because of the temperature difference between inside and outside the building. With this temperature difference there will be a heat gain to the building due to heat transfer from the hot temperatures to the cold temperatures. There are three kinds of heat recovery can occur in buildings: radiation, conduction and convection.

Quantity shadowing on the building envelope will affect the heat gain in the building. This research will be limited to the OTTV of the building envelope. The largest component in the OTTV is the radiation of transparent walls in building facade. Solid wall radiation is the second influential components against OTTV of building envelope. Radiation on the wall is affected by the type of the wall elements and finishing materials of building facade. [12] Conductivity value of the building envelope is formulated as follows: [11]:

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

$$Q_c = A \times U \times \Delta t$$
 (in Watt) (1)

Whereas A is element area (m²), U is transmittance of element (W/m²°C), Δt is temperature difference between outdoor and indoor (°C). If the space is covered by a number of different elements (floors, walls, windows, roofs), total conduction heat flow is:

$$Q_{c} = \Sigma \quad (A \quad x \quad U) \quad x \quad \Delta t$$
(2)

that is, the sum of all the components of the heat flow. Formula A x U can be summarized only for elements exposed to the same differential temperature. This term (AxUx Δ t) for a complete building referred to as the flow rate of heat conduction unit: q (in W / °C). Thus:[11]

$$Q_{c} = q_{c} \times \Delta t$$
(3)

Where q_c is building parameter and Δ t is the environmental parameter. Building parameter (q_c) depends on two factors: area (A) expose and transmittance (U-value) of each element.

Overall Thermal Transfer Value (OTTV) of Building Envelope

Control heat internally affected by thermal conditions outside the building. So the value of the temperature difference between the outside temperature and the temperature inside the building is expected to be comfortable is a very important factor. Standard of comfort level has a temperature between 26 $^{\circ}$ C - 27 $^{\circ}$ C, and the humidity between 60% - 65% .[9] To calculate the OTTV, researcher used OTTV formulation as belows:[10]

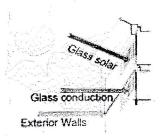


Figure 1: The formulation of OTTV in building

and the equation of OTTV is:

 $OTTV = \alpha [U_W \times (1 - WWR)] \times TD_{EK} + (U_F \times WWR \times \Delta T) + (SC \times WWR \times S)$

(3)

With OTTV is Overall Thermal Transfer Value on the building envelope that has a direction or certain orientation (W/m^2) , α is absorbance of solar radiation, Uw is thermal transmittance of solid wall (W/m².K), WWR is the comparison of square field of window with total external facade on the specified orientation. TD_{EK} is equivalent temperature difference (K), SF is solar radiation factor (W/m2), SC is sunshading coefficient of building's fenestration system, U_F is thermal transmittance of building fenestration (W/m².K), ΔT is The difference in temperature between the outside and inside of the building (5K).

RESULTS AND DISCUSSION

Based on OTTV calculations on existing building, then the obtained values of OTTV was 41.16 Watt/m². This value does not meet the standards of building OTTV,

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

because the value permitted 35 watts/m2.[7]

Therefore, the redesign of the building shoul be made and facade of glass material should be replaced with certain glasses which have low-shading coefficient.

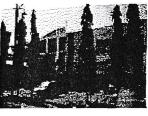


Figure 2: (a) Front or Southern facade of hospital (b) Rear or Northern facade of hospital

Two alternative ways to reduce OTTV are:

- 1. The addition of shading on building facades Shading system is an attempt at reducing solar radiation enters through the transparent areas of building facade.
- 2. Replacement of the glass on the facade with glass material that has a low SC (Shading Coefficient).

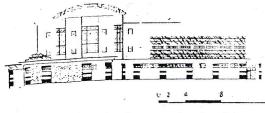


Figure 3: Sample of eastern facade of the hospital

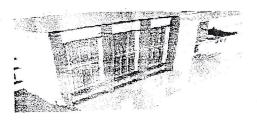


Figure 4: Sample of Facade Re-design efforts to reduce OTTV in the hospital

It is known from OTTV calculations that building OTTV of the existing condition is 41.16 watts/m2. Then after a redesign on the building facade with the addition of sun shading, the value of OTTV of buildings dropped to 38.68 Watt/m2. If the redesign was not conducted, then the glass of windows must be replaced with lowradiation glass which has low shading coefficient. Calculations showed that by the replacement of glass with 8 mm stop sol glass, OTTV will drop to 32.44 watts/m2. While, if the glass replaced with stop sol classic green 5 mm, then the OTTV will drop to 33.1064 watts/m2. See table 2.

From the table 2, it is known that the replacement of glass with dark blue and stopsol green was very effective in lowering OTTV on building's facade. The value of allowable OTTV is 35 Watts/m2 [7]. The value of OTTV dropped to 32.44 Watt/m² by using dark blue stopsol glass, thickness 8 mm. While the value of OTTV will be dropped to 33.11 Watt/m² by using glass stopsol classic green 5 mm thick.

From table 4, it is noted that the efforts to decrease OTTV values can be done in two ways: (1) by facade redesign effort; (2) by windows replacement effort. Facade redesigns in this research are sunshading devices addition. Sunshading device not only lowers the value of OTTV but also conserve the use of electricity in building. [13, 14]. According to a study about the ratio between the length of the sunshading and dimensions of the window, [15] this research refers on the dimensions of research sunshading mentioned in conducted by W.K. Chow and K.T. Chan. However, the most effective effort is by combining both of these efforts. The combination of facade redesign and windows replacement that used dark blue stopsol glass 8 mm was capable of lowering the OTTV of 24.59%. Meanwhile, the merger of the facade redesign and windows replacement that used glass stopsol classic

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

green 5 mm would reduce OTTV until

4 34 1

23.15%.

Tabel 4: OTTV Comparation with windows replacement between Existing and redesign

	n			

Condition					CI	C 1 l	CL	Total	Doncort
Condition	Buildin	Heat	Sub	Heat	Sub	Solar heat	Sub	Total	Percent
41 3 34	g	Conduction	Total	Conduction	Total	gain through	Total	OTTV	age of
2.40	Facade	through	(1)	through	(2)	windows	(3)	(Watt	OTTV
		walls	W/m ²	windows	W/m ²	(W/m²)	W/m ²	/m ²)	decreas
	4.1	(W/m^2)		(W/m²)		11 14 -	A. C. D. E.	197 - 6	е
V			. 1						(%)
Facade	South	9.509		11.245		19.569			
Redesign with	North	9.959	12.00	11.435	8.33	21.675	17.36	38.68	6.03
additional	West	14.578	12.99	3.556	0.33	15.343	17.50	30.00	0.05
sunshading	East	17.907		7.100	1 81 1	12.844		2 - 1	*
Windows	South	9.509		11.114	1.0	11.061	N	11 14	8
replacement	North	9.959		11.301		12.251	. 6		
Stopsol dark	West	14.578		3.514		8.672			9
blue	East	17.907	12.99	7.017	8.24	7.8 59	9.811	31.04	24.59
8 mm SC=0,39		and the same	1,31						* *-
+ facade	1,11	a				all graphs	1	- 7	15 IS
redesign	a grade								
Windows	South	9.509		11.114		1 1.628		1.5	. 1 1
replacement	North	9.959		11.301		1 2.8 79	100		
Stopsol classic	West	14.578	12.00	3.514	8.24	9.117	10.31	31.63	23.15
green 5 mm	East	17.907	12.99	7.017	8.24	7.601	4	31.03	23.13
SC=0,41 +	Dase	2.150.				for any and a second			,
facade				2 3					
redesign	4.0	100		, a					

From table 4, it is noted that the efforts to decrease OTTV values can be done in two ways: (1) by facade redesign effort; (2) by windows replacement effort. Facade redesigns in this research are sunshading devices addition. Sunshading device not only lowers the value of OTTV but also conserve the use of electricity in building. [13, 14]. According to a study about the ratio between the length of the sunshading and dimensions of the window, [15] this research refers on the dimensions of sunshading mentioned in research conducted by W.K. Chow and K.T. Chan. However, the most effective effort is by combining both of these efforts. The combination of facade redesign and windows replacement that used dark blue stopsol glass 8 mm was capable of lowering the OTTV of 24.59%. Meanwhile, the merger of the facade redesign and windows replacement that used glass stopsol classic

green 5 mm would reduce OTTV until 23.15%.

CONCLUSION

The decrease of building OTTV was influenced by efforts to redesign of the facade and glass replacement of windows. Indirectly, the longer the length of a shading (overhang or sidefin) in a building glass facade, the lower the value of building OTTV. This is because the value of the resulting effective shading coefficient will be lower too. And if the glass material glass is replaced with other low SC glass materials, the value of building OTTV will be lower effectively and significantly.

According to Vale, B (1991) that In the Green building concept requires some ratios consist of building layout design (10 percent), consumption and water management (10 percent), electrical energy

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

needs (30 percent), building materials (15 percent), air quality (20 percent), and the breakthrough of innovation (technology, operations) at about 15 percent. Hence the effort to redesign the building included on one of the percentage of all the efforts in the green concept.[10]

ACKNOWLEDGEMENT

The author would like to thank for the student team who collaborated with author in this research. And unforgetable thanks for Ministry of Education and Culture that gives research grant within two years in related topic with this publication. The opinions and analyses presented in this paper are all of the authors.

REFERENCES

- [1] Final Report of Master Plan of Prof. Dr. R. Soeharso Orthopedic Hospital in Surakarta 2010-2020, an unpublished report conducted by PT. Widha Consultant, Semarang, 2010
- [2] Prof. Dr. R. Soeharso Orthopedic Hospital in Surakarta, Strategic Business Plan Report, an unpublished report, 2008.
- [3] Aretas, CV, Consultant. Basic of Planning & Design Concept, Green Hospital, Prof. Dr. R. Soeharso Surakarta. An unpublished report of Green Hospital Competition of Orthopedic Hospital, Professor Dr. R. Soeharso Surakarta, 2012.
- [4] Setyowati, E., Eco-Building Material of Styrofoam Waste and Sugar Industry Flyash Based on Nano-Technology, Proceeding of 4th International Conference on Sustainable Future for Human Security, Sustain 2013
- Wilda Nova,A., Akmal Hasani,F., Wijayanti,T.,LKTIN (2012), Bata Beton Ringan Styrofoam dari Abu Ampas Tebu Sebagai Inovasi Eco-Material Dinding Akustik Berkualitas Ramah Lingkungan, Hemat Energi (Light-weight Concrete

- from Fly-ash/Baggase Ash as Innovation of Environmental Friendly Qualified and Eco-Acoustical Wall Material), author was a supervisor, unpublished
- [6] Setyowati, E., Rochma H, A., Nurul, F. Y., Green Building Design Concepts of Healthcare Facilities on the Orthopedic Hospital in the Tropics. Procedia - Social and Behavioral Sciences Vo. 101, p. 189-199.
- [7] SNI 03-6389-2011, Konservasi Energi Selubung Bangunan pada Bangunan Gedung, (Building Envelope Energy Conservation on the Building) BSN (Badan Standardisasi Nasional)
- [8] Malkin, J (2002). Medical and Dental Space Planning- A Comprehensive Guide to Design, Equipment and Clinical Procedures, John Wiley & Sons, Inc. New York ISBN 0-471-38574-3 (p. 147-180).
- [9] Ghazali, R & Abbas, M. Y. (2012). Newly Built Public Paediatrics Ward Increase Length of Stay (LOS)?", Procedia Social and Behavioral Sciences Journal, Vol.50 p.623-632.
- [10] Szokolay, Steven V, Introduction to Architectural Science - The Basis of Sustainable Design, Architectural Press is an imprint of Elsevier Linacre House, Oxford, 2008.
- [II] Vale, B, Green Architecture: Design for A Sustainable Future, Themes and Hudson, London, 1991.
- [12] Somboonwit, N, & Sahachaisaeree, N. (2012), Healthcare Building: Modelling the Impacts of local Factors for Building Energy Performance Improvement in Thailand, Procedia Social and Behavioral Sciences Journal, Vol.50 p.549-562.
- [13] D.H.W. Li*, J.C. Lam, S.L. Wong, 2002, Daylighting and its implications to overall thermal transfer value (OTTV) determinations, J. of Energy Vol. 27 Issue 2, Pergamon Publisher.
- [14] Al-Tamimi, N.A and Fadzil, S.F.S, (2011), The potential of shading devices for temperature reduction in high-rise

Maulana Malik Ibrahim State Islamic University / Malang, 18-19 September 2015

residential buildings in the tropics, proceeding of 2011 International Conference on Green Buildings and Sustainable Cities, Procedia Engineering, Vol. 21, p. 278 – 282.

[15] W.K. Chow dan K.T. Chan, 2011, Parameterization Study of The Overall Thermal Transfer Value Equation for Building, J. Applied Energy, Elsevier, Vol. 50. Issue 2, halaman 247-268.