
BubbleStorm: Rendezvous
Theory in Unstructured
Peer-to-Peer Search
BubbleStorm: Rendezvous-Theorie in Unstrukturierten Peer-to-Peer Netzwerken
Zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.)
genehmigte Dissertation von B.Sc. Wesley W. Terpstra aus Victoria (Kanada)
2015 — Darmstadt — D 17

Fachbereich Informatik
Databases and Distributed Systems

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by tuprints

https://core.ac.uk/display/76649843?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


BubbleStorm: Rendezvous Theory in Unstructured Peer-to-Peer Search
BubbleStorm: Rendezvous-Theorie in Unstrukturierten Peer-to-Peer Netzwerken

Genehmigte Dissertation von B.Sc. Wesley W. Terpstra aus Victoria (Kanada)

1. Gutachten: Professor Alejandro Buchmann, Ph.D.
2. Gutachten: Professor Dr. Jussi Kangasharju
3. Gutachten: Dr. Ken Moody

Tag der Einreichung: 25. Nov 2014
Tag der Prüfung: 23. Jan 2015

Darmstadt — D 17

Please cite this document as:
URN: urn:nbn:de:tuda-tuprints-46376
URL: http://tuprints.ulb.tu-darmstadt.de/4637

This document is made available by tuprints,
E-Publishing-Service of TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

This work is licensed under the Creative Commons:
Attribution – NonCommercial – NoDerivatives 3.0 Germany
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-46376
http://tuprints.ulb.tu-darmstadt.de/4637
http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
http://creativecommons.org/licenses/by-nc-nd/3.0/de/


Contents

1. Introduction 1

2. Rendezvous Theory 5
2.1. Bandwidth Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Grid Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Poisson Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1. Failure Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2. Limit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Heterogeneous Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5. Heterogeneous Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3. Related Work 27

4. BubbleStorm Overview 33
4.1. Component Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5. Bubble Balancer 39
5.1. Convex Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2. Stability and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3. Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6. Topology Theory 51
6.1. Random walks and expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2. BubbleStorm Topological Model . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3. Broken Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7. Topology Protocol 61
7.1. The Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.1.1. Degree Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.1.2. Location Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2. Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.2.1. Firewalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.2.2. Host Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

i



8. Measurement Protocol 77
8.1. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9. Bubblecast 87
9.1. Topological Dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2. Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.3. Queuing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.4.1. Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.4.2. Homogeneous Congestion Collapse . . . . . . . . . . . . . . . . . . . 103
9.4.3. Heterogeneous Congestion Collapse . . . . . . . . . . . . . . . . . . . 107

10.Outlook 111

A. Notation and Variables 115

ii



1 Introduction
The benefits of peer-to-peer are compelling, but so too are the problems. What de-
veloper wouldn’t prefer a system where resources automatically increase with the user
population? Community projects like Wikipedia or Debian with no clear revenue stream
could benefit from the relief of infrastructure burden. Given these potential advantages,
one must wonder why there are so few successful peer-to-peer applications compared
to the Internet at large.

Still today, implementation of peer-to-peer applications remains the domain of net-
work specialists and researchers. A very likely explanation for this is that existing peer-
to-peer middleware requires immense expertise to use. Until peer-to-peer can abstract
away the details of networking minutiae and provide a clean and reliable interface, it
will remain inaccessible to the larger developer population.

In a way, the recent cloud computing trend targets the same niche: no private infras-
tructure and automatic load scaling. However, unlike existing peer-to-peer systems, the
tech savvy companies backing these projects abstract away the network, aiming for an
interface along the lines of distributed databases. Until peer-to-peer middleware makes
this same leap, cloud computing will continue to dominate this niche and the losers will
be non-profit community-driven projects and those whose content is unpopular among
cloud administrators.

If we want peer-to-peer systems to be as successful as databases, we should look at
what databases provide. First, they allow developers to define rich application-specific
data models in the form of table schemas. Second, they provide a powerful declar-
ative query language. Queries select elements from tables (or even cross-products of
tables) using some predicate. To optimize queries, databases also track statistics used
to plan their evaluation strategy. Finally, databases provide strong consistency guar-
antees. Today’s mainstream peer-to-peer systems have none of these features, despite
some ambitious attempts, like Willow [85], Astrolabe [84], and Minerva [58].

Established peer-to-peer search techniques can be roughly categorized into two mod-
els. The black-box model, followed for example by Gnutella [42] and Gia [17], does not
process queries at the network level; it ignores their contents. Instead it ships the query
to the data in the system for local evaluation. The key-value model, as exemplified by
Chord [75], Pastry [70], and Kademlia [56], attaches to every query a key range which
is used to route the query to only the data which has a matching key.

The problem with the key-value model is that it supposes that all queries are key
lookups. This is obviously not the case and substantial work layers other query types
atop the key-value infrastructure [15, 52, 69, 87]. Unfortunately, this layering trades
away the performance gains from using keys and must be custom built for each new
query type. Furthermore, it is not clear that the performance gained from using keys is
always relevant. While the number of messages in key-value routing schemes is some-
times reduced, the routing depth remains O(log n), like most black-box schemes. As long

1



as the required bandwidth does not over-utilize the network, there is no latency penalty
to the black-box scheme. Indeed, all the above cited approaches, which layer atop the
key-value interface, pay not only a bandwidth penalty, but also a latency penalty for
their added complexity. This trade-off is inappropriate for interactive searches where
response times are critical.

As our goal is to make peer-to-peer applications easier to program, we will need great
flexibility in the queries we support. In databases, a query scans the entire table looking
for matches. While the system might employ optimizations behind the scenes, the ap-
plication developer is in principle isolated from these concerns. To achieve comparable
flexibility, we need to support the scenario where no search optimization is possible. The
black-box model neatly captures this; it requires every query reach every data element.
This has immediate advantages in simplicity and flexibility:

First, the black-box model is a very easy to understand abstraction. The network
promises to ship your query to some peer which stores a copy of the data you seek.
You can now solve your search problem locally, without needing to worry about the
network. Developers don’t need to be network experts; they just need to implement the
semantics of their specific search problem, classically, on a single machine.

The simple black-box promise also allows us great freedom. A developer can re-use
existing libraries to implement his query locally. For example, in some of our lab courses,
the applications students built made heavy use of SQL. However, implementing our own
SQL database engine would be a lot of work. Instead of tackling this task ourselves, we
were able to just leverage the open-source SQLite [64] project. It implements SQL
locally to each peer, but the black-box abstraction easily turns this into a distributed
database1. If we had not been able transform a local solution into a distributed one, we
would have had to re-implement a custom SQL engine.

While the black-box model is very flexible, this comes at a cost. Shipping a query to
all data in the system is more bandwidth intensive than key-based routing schemes. The
simplest approach is to flood the query to all participants, as discussed in any introduc-
tory text [74]. Obviously, this is also the least scalable, a serious problem for Internet-
scale systems. Some approaches, like percolation search [72], restrict themselves to
certain classes of graphs and then exploit properties of those graphs to expedite search.
Unfortunately, these assumptions are very unrealistic and will be rejected in Chapter 3.
Another approach, taken by Gia [17] and Cohen [24], relaxes the requirement of find-
ing all hits to finding only the most popular hits. While cheaper than flooding, neither
of these restricted approaches retain the full flexibility of the black-box model. This
thesis will precisely quantify the bandwidth needed to retain the full flexibility of the
black-box model and find that it is much cheaper than one might expect.

Peer-to-peer systems must not only manage search, but also storage. In the peer-
to-peer model, nodes may crash at any time. Therefore, replication is typically used to
ensure availability of the data. Of course, this raises a host of consistency issues, many of
which remain unresolved. Many existing practical systems, for example Kademlia [56],
republish information periodically to try to restrict the inconsistency window. Other ap-

1 Of course, this trick only supports SELECT statements run over a single table. To support joins, more
advanced techniques are needed; see our plans for full SQL support [50].

2



proaches, like Knežević’s [46], make assumptions which preclude their use in real peer-
to-peer systems. However, as we shall see, in every peer-to-peer replication strategy
strong consistency is impossible, and these approaches fail to provide any guarantees in
real systems.

It has been shown by Gilbert and Lynch [33] that a distributed system cannot simulta-
neously provide consistency and availability while tolerating network partition. In this
context, availability is the ability to respond to queries and updates without blocking
(perhaps indefinitely). Due to their scale, peer-to-peer systems are in a state of continu-
ous failure and must therefore tolerate connectivity disruptions. These disruptions can
partition a peer from the internet at large, violate graph connection transitivity, or even
isolate an entire country. To remain useful, peer-to-peer systems must continue to func-
tion while these partition events (continuously) occur. Therefore, they must trade away
consistency for availability. Nevertheless, this concession does not excuse peer-to-peer
from failing to leverage the lessons learned from database success.

This thesis presents BubbleStorm [79], which attempts to bridge the gap between
peer-to-peer and databases. BubbleStorm is a peer-to-peer search system, which solves
large-scale rendezvous problems over the unreliable global internet. It provides a con-
cept of user-defined bubble types, loosely corresponding to table schemas. Queries
follow the fully general black-box model, allowing powerful queries to be evaluated ex-
haustively. The system tracks usage statistics with a system-wide measurement service
(Chapter 8), both analogous to and useful in implementing a database’s catalogue [50].
These statistics are used to automatically tune search performance. As strong consis-
tency guarantees are impossible, BubbleStorm instead aims for user-controlled proba-
bilistic guarantees.

The key contribution of this thesis is to develop rendezvous theory and reformulate
the black-box query model within this framework. As we shall see, this formulation
allows us to interpret any black-box system as solving a rendezvous problem, first rec-
ognized in my earlier BitZipper work [78]. This realization allows an elegant and tight
lower-bound on any such system [77]. Independent groups [17,28,72] working on ren-
dezvous systems in parallel to the development of BubbleStorm also recognized the need
to relax BitZipper’s strong consistency, but seem unaware of the theoretical underpin-
nings constraining their work. BubbleStorm is the only system leveraging rendezvous
theory to substantially reduce bandwidth consumption (both practically and asymptoti-
cally) while simultaneously improving query latency. The resulting system, which has a
full fledged implementation (Chapter 4), sports a simple to understand interface, which
abstracts away the underlying details, much like the database systems before it.

3





2 Rendezvous Theory
Consider queries of the form “who sells X for under Y dollars?”. If data elements look
like “Z sells X for Y dollars”, then peers can easily match a query against a data element,
given they receive both. This is the heart of rendezvous systems.

We get much of the black box model’s flexibility because the network is blind to the
contents of queries, while the application is not. Queries could be XPath expressions,
SQL select statements, or Java bytecode, but whatever they are, the application knows
how to execute them. When the network is blind to the contents of queries, it cannot
decide which data elements match. Only the local application can decide. As a network
blind to query contents is already unable to match queries to data elements, we lose
nothing by extending the black-box model to also blind the network to data. That data
could be XML documents, SQL tuples, or binary strings, but again the application must
know how to run queries on it.

When both queries and data are black-boxes, the only difference at the network layer
is that the data elements are stored, while queries are processed and discarded. More
generally, however, the query might be persistent as well. In publish-subscribe sys-
tems [27], the query is a subscription which watches for event notifications. Here the
notifications are transient while the query is persistent. As another example, consider
a query that first returns its result and then watches for changes. In this case, both the
query and the data are persistent. Since both query and data are optionally persistent
black-boxes, the network sees them as interchangeable. To reflect this symmetry, we
refer to peers who process a query as having received a replica of the query.

Replication of data elements is already necessary in peer-to-peer systems to provide
availability despite peer crashes. Once data is replicated, however, a natural benefit
is that the load to serve that data is shared. A slightly more subtle point is that this
replication pushes data closer to the peers who initiate queries. We will see much later
(Section 9.4) that this improves query latency, while this chapter will show how this
reduces bottleneck utilization.

Recall that in the black-box model, only the local application can decide if a query
matches a data element. To ensure that a query q finds matching data element d, the
network must guarantee that some peer receives both a replica of q and a replica of
d. Then the application can locally open the boxes to evaluate if there is a match.
For a given query-data pair, peers who can locally test for a match are the rendezvous
peers (Figure 2.1). As the network cannot know which queries will match which data
elements, it must ensure rendezvous for every query-data pair. Let the function R(q) ⊆ U
denote the subset of peers (out of all peers U) who receive a replica of query q and R(d)
the set of peers storing a replica of data element d. Then correctness in rendezvous
systems is,

5



Rendez-
vous
peers

Peers with 
replicas of q

Peers with
replicas of d

Figure 2.1.: Rendezvous of a query and data element

Definition 1 (The Rendezvous Problem). For a given set of documents D and queries Q,
R is a valid replication function only if it guarantees the existence of a rendezvous peer for
each query-data pair. ∀(q, d) ∈Q× D : R(q)∩ R(d) 6= ;

2.1 Bandwidth Metrics

Given a solution to the rendezvous problem, we need to be able to evaluate its band-
width cost. There are a few metrics one might use, and these will be explored in this
section. A perhaps surprising fact is that the bandwidth cost has little to do with the
underlying graph connecting the peers. The underlying graph simply restricts which
replication function R may be chosen.

In a complete rendezvous system, a search goes through three phases. First, the query
is replicated out to peers in the network. Second, the peers locally evaluate the query
for potential results. Finally, those results are returned to the peer initiating the query.
The first and third phases incur a bandwidth cost.

This chapter will focus on the first cost, how many query replicas are required. The
third cost, while important, has nothing to do with the rendezvous system, but every-
thing to do with the specific query. The response traffic required is the query’s result set,
whose size remains the same in every correct algorithm. While reducing this bandwidth
by dynamically selecting only some of the search results is an interesting problem, which
the real BubbleStorm system addresses using Top-K and incremental search techniques,
this thesis leaves these orthogonal issues to others.

When evaluating query replication cost, we need to know the size of both query
and data replicas. Let Sq and Sd denote the size in bytes of a replica of q ∈ Q and
d ∈ D respectively. We must also account for all required intermediate traffic. If a
peer u sends d to v via the peer w, then R(d) must include u, v , and w regardless of
whether or not peer w actually bothers to store d. For convenience, we will define SD :=
∑

d∈D Sd and SQ :=
∑

q∈Q Sq as the total workload injected into the system (counted
before replication).

Probably the most obvious metric is aggregate bandwidth,

6



Definition 2 (Aggregate Bandwidth Metric). Total traffic seen by the system.

Mag gregate(R) =
∑

d∈D

Sd |R(d)|+
∑

q∈Q

Sq|R(q)|

Using this metric we can already see that flooding queries is often, but not always, a
poor choice. The cost of flooding an n-peer system is,

Mag gregate(R) = SD + SQn

If SD is much larger than SQ, flooding may perform quite well. For example, if the data
elements were large multimedia files, then flooding a small search would be reasonable.
Of course, it would probably be wiser to match the queries against the multimedia file’s
meta-data, rather than the entire file.

The problem with flooding is that as n grows, so do both SD and SQ. Usually each
new peer adds his own traffic, so this growth is linear. This means the flooding term
SQn increases aggregate bandwidth quadratically, a clear scalability concern.

Aggregate bandwidth is an inappropriate metric for our work because the optimal
algorithm under this metric is rendezvous at a central server. Set R(q) = R(d) = {u} for
all q and d. Certainly the rendezvous function is correct in the sense of Definition 1,
but this result seems rather underwhelming. On the other hand, if the central server
can handle the entire network’s load, then this is unquestionably the most bandwidth
efficient algorithm.

Given that the problem with the aggregate bandwidth metric is that it fails to capture
the benefit of spreading the load between peers, let’s try again. First, we will need a
concept of peer capacity, Cu. If peer u can serve twice as many requests as v per unit
time, then Cu = 2Cv . For this definition we will need the indicator function Ix which is
1 when x is true and 0 otherwise.

Definition 3 (Bottleneck Metric). Utilization of the most loaded peer.

Mbot t leneck(R) =max
u

1
Cu

 

∑

d∈D

Sd Iu∈R(d) +
∑

q∈Q

Sq Iu∈R(q)

!

Intuitively, in a perfectly load balanced system, the bottleneck metric measures the
network-wide load. When it is 0.5, then the network is half utilized. Once the bottle-
neck metric exceeds 1, the network can no longer process the workload. Decreasing an
implementation’s bottleneck metric thus serves to increase the manageable workload.
An implementation which is optimal with respect to the bottleneck metric can thus pro-
cess the largest possible workload. In comparison, a system optimized for the aggregate
bandwidth metric will probably cap out at a much lower potential workload (because it
placed the entire workload on a few overloaded systems).

Under this new metric the central server scores,

Mbot t leneck(Central-Server) =
1
Cu
(SD + SQ)

7



which can even be worse than flooding if SD is large,

Mbot t leneck(Query-Flooding) =max
u

1
Cu
(SD/n+ SQ)

The bottleneck metric is quite nice and we will use it when proving lower-bounds
(Section 2.4) and analyzing static systems (Section 2.2). However, this thesis is about
BubbleStorm, a probabilistic system. To measure its cost we need a slight variation on
Definition 3 to account for its randomized nature.

The problematic terms in the bottleneck metric are the indicator functions. We cannot
say for certain whether or not a peer receives a replica, so we cannot assign a simple
zero or a one. In our final metric, we substitute the indicator with the probability that
the event is true. This still ranges between zero and one, but captures the probabilistic
nature of the system. In fact, the probability P(X ) of an event X , is equal to the expected
value of the indicator E(IX ). Therefore, this metric expresses the maximum expected
utilization in the network. For a deterministic system, this is exactly the same as the
simple bottleneck metric.

Definition 4 (Bottleneck Expectation Metric). The highest expected utilization amongst
all peers.

Mex pected(R) =max
u

1
Cu

 

∑

d∈D

SdP(u ∈ R(d)) +
∑

q∈Q

SqP(u ∈ R(q))

!

As a final note for those with a more mathematical background, the bottleneck expec-
tation metric is not the expected maximum utilization. When load is injected uniformly
at random into a system, there is an unlucky peer somewhere which receives a traffic
burst, and thus the expected maximum utilization is usually near capacity (1). Fortu-
nately, due to the law of large numbers, these local traffic bursts are always transient.
The metric as formulated avoids these tricky (and uninteresting) details by evaluating
the expectation inside the maximum function. This allows us to meaningfully measure
the overall scalability of a randomized system.

2.2 Grid Formulation

This section presents a grid topology to demonstrate that the black-box rendezvous
problem can be solved much more efficiently than by flooding or utilizing a central
server. Consider the r × c graph in Figure 2.2 containing n= rc peers.

To solve the rendezvous problem on this graph, we must define a replication function.
Assign every data element an identifier in the range [0, r), so that the load is more-or-
less balanced. Similarly, assign every query an identifier from [0, c). We now define R so
that a data element d with identifier i is replicated to all the peers on row i. Similarly,
queries with identifier j are replicated to column j. As every row intersects every column
exactly once, we have |R(q) ∩ R(d)| = 1 for all q, d. Therefore, R is a solution to the
rendezvous problem.

8



c

r

queries

d
a
ta

 e
le

m
e
n
ts

peers

Figure 2.2.: A grid network topology for the rendezvous problem

Given that the data elements are load balanced over the grid rows, each row sees 1
r

of the total traffic. The bottleneck cost in a homogeneous capacity grid is,

Mbot t leneck(Grid) =
1
Cu

�SQ

c
+

SD

r

�

One immediate benefit from using a grid is that we can control its shape. Choose

r =
r

nSD
SQ

and c =
r

n
SQ
SD

. The grid still contains rc = n peers (up to rounding).

However, the cost then becomes,

Mbot t leneck(Grid) =
2
Cu

√

√SQSD

n

As the size of the query and data traffic grow linearly with n, this means that the cost
grows as Θ(

p
n). In other words, it fares one thousand times better than flooding or a

central server on a one million peer network. In fact, we will see in Section 2.4 that with
this choice of r and c, the grid approach uses exactly the minimum possible bandwidth
(under the bottleneck metric).

9



Unfortunately, the grid approach is not practical. The core problem is that it cannot
handle failure or adapt to change. In a peer-to-peer system, any number of peers can fail
at any time; returning a match from exactly one peer is extremely fragile. Furthermore,
as the system grows or shrinks, it would be very difficult to restructure the grid. Finally,
the optimal choice of r and c depend on the ever changing traffic ratio of SD to SQ.

2.3 Poisson Formulation

A perhaps surprising result from probability theory is the Birthday Paradox. This result
states it only takes 23 people to have a 50% chance that two of them share a birthday.
More generally it takes Θ(

p
n) people for n days. Building from this intuition, it hardly

seems surprising that a grid solves the rendezvous problem. Indeed, it seems almost
any scheme creating Θ(

p
n) replicas should work. It is this insight which motivated the

design of BubbleStorm.
The Poisson solution to the Rendezvous Problem simply places replicas uniformly at

random onto peers in the network. Obviously, this is not guaranteed to always succeed.
However, as discussed in the Introduction, it is impossible to build a peer-to-peer sys-
tem which can answer queries both immediately and consistently. The chance that the
Poisson solution fails is essentially the breach in consistency that we traded for queries
which terminate.

Fortunately, as we shall shortly prove, the chance that the Poisson solution fails can
be both calculated and controlled. There is a sharp boundary in the required number of
replicas which takes us from almost certain failure to almost certain success. Unsurpris-
ingly, this boundary is at Θ(

p
n), just like the Grid formulation and the Lower Bound

(Section 2.4). By increasing or decreasing the hidden constant, the success probability
can be controlled according to the application’s needs.

The Poisson formulation is both practical and elegant. It is hard to imagine a sim-
pler procedure for placing replicas than random selection. The approach neatly avoids
sticky issues like graph connectivity; compare to the Grid approach where each grid line
must stay intact for the replication of query/data to succeed. As Theorem 1 will show,
the Poisson approach still provides the best guarantee we could realistically hope for: a
concrete and tunable success probability. There is no difficulty in “reshaping” the graph
as the ratio of SD to SQ changes; we can just add or remove some replicas. For all of
these reasons, the Poisson formulation is a very attractive solution in a peer-to-peer set-
ting. BubbleStorm was designed to follow the heterogeneous version of this formulation
(Section 2.5) very closely.

To analyze the failure probability of the Poisson approach, we use a simple physical
analogy. Let the peers in the network each be a bin. Replicas are balls which are placed
into these bins. A query replica is a blue coloured ball and a data replica is a red coloured
ball. It can happen that one bin contains two red balls if the data was replicated to that
peer twice. With Figure 2.3 in mind, it is easy to see that a search failure occurs when
there is no bin containing both a red ball and a blue ball.

10



Figure 2.3.: Example of filling replicas (balls) into peers (bins)

2.3.1 Failure Probability

We will shortly prove the first main theorem. It is formulated using the definition
g(z) := 1 − e−z. This function safely approximates the concept of combining unlikely
events. Given two independent 1% probability events, the chance of at least one event
happening is almost (but not quite) 2%. For two 50% events, the chance is 75%, quite
a bit below 50% + 50%. g(z) converts a straight-forward sum of event probabilities
(z = 0.5+ 0.5) to a value, g(z), guaranteed to be below the true result.

Theorem 1. Place x blue balls and y red balls uniformly at random into n bins. Let M
be the number of bins containing at least one blue ball and at least one red ball. Then,
P(M = 0)≤ e−λ whenever

g(λ/n)≤ g(x/n)g(y/n)

To understand this relationship, realize that g(z)≈ z for small z. Thus, this restriction
is roughly λn≤ x y , like in the Grid Formulation.

11



To prove this result we will first need two lemmas.

Lemma 2. Let X be a discrete random variable, f a convex function, Y and Z indicator
functions. If,

• X and Z are independent

• P(Y = 1) = P(Z = 1)

• P(Y = 1|X = i) is decreasing in i

Then,

E( f (X + Y ))≤ E( f (X + Z))

Proof. Let qi := P(Y = 1|X = i), and pi := P(X = i). Then q := P(Z = 1) =
∑

i piqi.
Since qi is decreasing, find k such that qk ≥ q ≥ qk+1. Thus,

(q− qi)≤ 0 for i ≤ k

(q− qi)≥ 0 for i > k

f is convex; f (i)− f (i + 1)≥ f (i + 1)− f (i + 2). Induction yields,

f (i)− f (i + 1)≥ f (k)− f (k+ 1) for i ≤ k

f (i)− f (i + 1)≤ f (k)− f (k+ 1) for i > k

Subtracting the lemma’s right-hand side and conditioning on X ,

E(E( f (i + Y )|X = i)− E( f (i + Z)|X = i))

=
∑

i

pi[ f (i)(1− qi) + f (i + 1)qi − f (i)(1− q)− f (i + 1)q]

=
∑

i

pi[ f (i)(q− qi) + f (i + 1)(qi − q)]

=
∑

i

pi(q− qi)[ f (i)− f (i + 1)]

=
∑

i≤k

pi(q− qi)[ f (i)− f (i + 1)] +
∑

i>k

pi(q− qi)[ f (i)− f (i + 1)]

≤
∑

i≤k

pi(q− qi)[ f (k)− f (k+ 1)] +
∑

i>k

pi(q− qi)[ f (k)− f (k+ 1)]

= ( f (k)− f (k+ 1))
∑

i

pi(q− qi)

= ( f (k)− f (k+ 1))× 0

= 0

12



Lemma 3. Let X be the numbers of bins filled by placing x balls uniformly at random into
n bins. Then for any convex function f , E( f (X )) ≤ E( f (X̄ )), where X̄ has a binomial
distribution B(n, h(x)) and

h(x) := 1−
�

1−
1
n

�x

Proof. For every bucket i ∈ [0, n), let Bi indicate whether or not that bucket has been
filled with a ball. Define the partial sum,

S j :=
j−1
∑

i=0

Bi

as the total number of filled buckets out of the first j buckets. Clearly, X = Sn. Set S̄ j to
have a binomial distribution B( j, h(x)).

We will show by induction that E( f (S j)) ≤ E( f (S̄ j)) for all j ∈ [0, n] and convex f ,
thereby showing that E( f (X )) ≤ E( f (X̄ )). The claim for S0 is vacuously true. Assume
the claim for S j.

Create an indicator C independent of all other variables with P(C = 1) = P(B j+1 =
1) = h(x). A bucket is not filled when all x balls failed to land in it. Thus,

P(C = 1) = 1−
�

1−
1
n

�x

We need to show that P(B j+1 = 1|S j = s) is decreasing in s. s balls are already used
to fill the first j buckets. That leaves x − s balls to place into n − j potential buckets.
B j+1 = 0 only if all balls placed fail to land in it. Thus,

P(B j+1 = 1|S j = s) = 1−
�

1−
1

n− j

�x−s

Define fc(x) = f (x + c) and notice that for all c, fc remains convex. Now apply
Lemma 2 followed by the induction hypothesis,

E( f (S j+1)) = E( f (S j + B j+1))≤ E( f (S j + C)) = E(E( fC(S j)|C))
≤ E(E( fC(S̄ j)|C)) = E( f (S̄ j + C)) = E( f (S̄ j+1))

We are now ready to prove the main Theorem.

Proof of Theorem 1. Let X denote how many bins received one (or more) of the x red
balls, respectively Y for the y blue balls. Counting possibilities,

f (X , Y ) := P(M = 0|X , Y ) =
�

n− Y
X

�

/

�

n
X

�

=
Y−1
∏

i=0

�

1−
X

n− i

�

13



Take the second derivative of f (X , Y ) with respect to X ,

∂

∂ X
∂

∂ X
f (X , Y ) =

Y−1
∑

i=0

1
n− i

Y−1
∑

j=0, j 6=i

1
n− j

Y−1
∏

k=0,k 6=i,k 6= j

�

1−
X

n− k

�

≥ 0

Therefore f is convex in X when Y is held fixed.
Apply Lemma 3 to find,

P(M = 0|Y ) = E( f (X , Y )|Y )
≤ E( f (X̄ , Y )|Y )

=
n
∑

i=0

�

n
i

�

h(x)i[1− h(x)]n−i f (i, Y )

=
n
∑

i=0

�

n− Y
i

�

h(x)i[1− h(x)]n−i

= [1− h(x)]Y
n−Y
∑

i=0

�

n− Y
i

�

h(x)i[1− h(x)](n−Y )−i

= [1− h(x)]Y

Take the second derivative of [1− h(x)]Y with respect to Y ,

∂

∂ Y
∂

∂ Y
[1− h(x)]Y = (ln[1− h(x)])2 [1− h(x)]Y ≥ 0

Now complete the bound by applying Lemma 3 again,

P(M = 0) = E(E( f (X , Y )|Y ))
≤ E([1− h(x)]Y )
≤ E([1− h(x)]Ȳ )

=
n
∑

j=0

�

n
j

�

h(y) j[1− h(y)]n− j[1− h(x)] j

=
n
∑

j=0

�

n
j

�

�

h(y)[1− h(x)]
� j
[1− h(y)]n− j

=
�

h(y)[1− h(x)] + [1− h(y)]
�n

= [1− h(x)h(y)]n

To finish the proof, notice that 1− 1
n ≤ e−1/n implies g(z/n) ≤ h(z). Now apply the

Theorem’s assumption that g(λ/n)≤ g(x/n)g(y/n),

1− e−λ/n = g(λ/n)≤ g(x/n)g(y/n)≤ h(x)h(y)

And thus,

P(M = 0)≤ [1− h(x)h(y)]n ≤ e−λ

14



2.3.2 Limit Results

We are interested in how the Poisson approach to the rendezvous problem scales. Here
we let n→∞ and ask interesting questions like:

• How many replicas are needed for a target failure rate e−λ?

• What is the optimal trade-off between data and query replication?

• What is the distribution of the number of matching responses?

Theorem 1 goes a long way towards answering the first two of these questions. Take
the Taylor series approximation to the constraint,

λ

n
−
λ2

2n2
+O

�

1
n3

�

= 1− e−λ/n

≤
�

1− e−x/n
� �

1− e−y/n
�

=
�

x
n
+O

�

1
n2

���

y
n
+O

�

1
n2

��

=
x y
n2
+O

�

1
n3

�

We can thus conclude that as n → ∞, the constraint becomes λn ≤ x y . There-
fore, the number of data and query replicas must grow as O(

p
n), as we had already

anticipated.
Just like the grid formulation, the product x y allows us to trade query replication

against data replication. Recalling the terms SD and SQ, the total data and query work-

load in bytes, we can find the optimal trade-off. Set x =
r

λnSD
SQ

and y =
r

λn
SQ
SD

. Now

the total traffic is SQ x + SD y = 2
Æ

λnSDSQ, and the cost in a homogeneous capacity
network becomes,

Mex pected(Poisson) =
2
Cu

√

√

λ
SQSD

n

Compared to the Grid formulation, we have introduced a factor
p
λ. This factor scales

the cost up while simultaneously scaling the failure probability down. When λ = 1 for
parity with the grid formulation, the failure probability is 36.8%. If we double the cost
as compared to the grid, we achieve λ = 4 and 1.8%. Triple the cost for 0.01% or
99.99% success rate. As should be clear, a relatively small increase in λ rapidly reduces
the failure chance.

To answer the last question, how many times query and data meet, we analyze
P(M = k). As we shall shortly prove, this distribution is Poisson in the limit with
rate λ, justifying my choice to call this approach to the rendezvous problem the Poisson
formulation. What this means in practice is that for λ= 4, one expects 4 peers to receive
both the query and data. For some examples of the Poisson distribution, see Figure 2.4.

We now prove the Poisson nature of the Poisson formulation,

15



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  5  10  15  20

Poisson, lambda=1
Poisson, lambda=4
Poisson, lambda=9

Figure 2.4.: Examples of the Poisson distribution; the x-axis is the number of peers where
data and query meet and the y-axis shows the probability.

Theorem 4. Place x blue balls and y red balls uniformly at random into n bins. Let M
be the number of bins containing at least one blue ball and at least one red ball. When
n→∞, x

n → 0, and y
n → 0, then P(M = k)→ λk

k! e−λ whenever

g(λ/n) = g(x/n)g(y/n)

Proof. Since x
n → 0 and y

n → 0, we will operate under the assumption that n− x− y > 0.
Observe that X ≤ x and Y ≤ y by definition to find,

P(M = k|X , Y ) =
�

Y
k

��

n− Y
X − k

�

/

�

n
X

�

=
1
k!

X !
(X − k)!

Y !
(Y − k)!

(n− X − Y )!
(n− X − Y + k)!

(n− X )!(n− Y )!
n!(n− X − Y )!

=
1
k!

X !
(X − k)!

Y !
(Y − k)!

(n− X − Y )!
(n− X − Y + k)!

P(M = 0|X , Y )

≤
1
k!

�

X Y
n− X − Y

�k

P(M = 0|X , Y )

≤
1
k!

�

x y
n− x − y

�k

P(M = 0|X , Y )

16



We will need a new helper function h, with h(z)→ 1 as z→ 0. By l’Hôpital’s rule,

h(z) :=
z

1− e−z
→

1
e−z
→ 1

Finally, take the expectation and apply Theorem 1,

P(M = k) ≤
1
k!

�

x y
n− x − y

�k

P(M = 0)

≤
1
k!

e−λ
�

x y
n− x − y

�k

=
1
k!

e−λ
�

x y
n− x − y

�k λk

λk

�

1− e−λ/n
�k

(1− e−x/n)k (1− e−y/n)k
nknk

nknk

=
λk

k!
e−λ

�

1
1− x/n− y/n

�k
�

h(x/n)
�k�

h(y/n)
�k 1
�

h(λ/n)
�k

→
λk

k!
e−λ

As we have now bounded P(M = k) in the limit by the Poisson distribution, it follows
that P(M = k)→ λk

k! e−λ. Otherwise, P(M = x)→ λx

x! e−λ−ε for some x and ε > 0 would
contradict that

∑

k P(M = k) = 1.

2.4 Heterogeneous Lower Bound

As promised, we now turn our attention to proving a lower-bound on the complexity
of the rendezvous problem. We call a solution to the rendezvous problem R correct
whenever it satisfies Definition 1, that is R(q) ∩ R(d) 6= ; for all q, d. The bound this
section proves applies only to correct solutions.

As discussed in Section 2.1, the lower-bound also depends on the metric. When we
use the simple aggregate traffic metric, Mag gregate from Definition 2, the best we can
show is that Mag gregate(R) ≥ SD + SQ. The proof below will work exclusively with the
bottleneck metric, Mbot t leneck from Definition 3.

Theorem 5. Any correct solution to the rendezvous problem R must obey,

Mbot t leneck(R)≥ 2

√

√

√

SDSQ
∑

u∈U C2
u

Before we dive into the proof, a high-level intuitive explanation may help. In Fig-
ure 2.5 the grey area represents the pairs of queries and data; like in the Grid formula-
tion the queries are denoted by the x-axis and the data by the y-axis. A given peer can
only match queries against data it has received. In the example figure, peer u down-
loads all the queries in its image on the x-axis and all the data in its image on the y-axis.

17



u

v

Pairs of queries and data region matched
by two nodes

queries download
by the two peers

data downloaded
by the two peers

Figure 2.5.: A visual representation of the lower-bound

For a solution to the rendezvous problem to be correct, all of the grey area (pairs) in the
figure must be covered by some peer.

The amount a peer matches is obviously related to the area it covers. A peer who
downloads twice as many queries and twice as much data can match four times as
many pairs. In this way, the rendezvous processing power of a peer depends on the
square of its capacity. In the figure, this is why peer u covers four times the area of peer
v , despite the fact that it only downloads twice as much. The processing power of the
entire network is thus

∑

u∈U C2
u and it serves to process the workload area of size SQSD,

intuitively justifying the ratio in Theorem 5.
Generally speaking, given a fixed circumference the rectangle which maximizes its

area is a square. The sum of the height and width of a square is twice the square-root of
the square’s area, explaining the outer part of Theorem 5. The proof below shows this
more formally.

Proof of Theorem 5. The correctness constraint assures us that for every pair (q, d) ∈
Q× D the intersection R(q)∩ R(d) is non-empty. Therefore,

∃u ∈ U : u ∈ R(q)∩ R(d)
∃u ∈ U : Iu∈R(d) Iu∈R(q) = 1

∃u ∈ U : Sd Iu∈R(d)Sq Iu∈R(q) = SdSq

18



Summing over all peers in the network,

∑

u∈U

Sd Iu∈R(d)Sq Iu∈R(q) ≥ SdSq

As this relationship holds for all pairs (q, d) ∈Q× D,

∑

u∈U

�

∑

d∈D

Sd Iu∈R(d)

�

 

∑

q∈Q

Sq Iu∈R(q)

!

=
∑

(q,d)∈Q×D

∑

u∈U

Sd Iu∈R(d)Sq Iu∈R(q)

≥
∑

(q,d)∈Q×D

SqSd = SQSD (2.1)

To complete the proof, suppose for contradiction that,

2

√

√

√

SDSQ
∑

u∈U C2
u

> Mbot t leneck(R)

= max
u∈U

1
Cu

 

∑

d∈D

Sd Iu∈R(d) +
∑

q∈Q

Sq Iu∈R(q)

!

It would follow that for every u ∈ U ,

2Cu

√

√

√

SDSQ
∑

u∈U C2
u

>
∑

d∈D

Sd Iu∈R(d) +
∑

q∈Q

Sq Iu∈R(q)

When 2x > a + b with a > 0 and b > 0, the maximum value for ab is x2. Set a =
∑

d∈D Sd Iu∈R(d) and b =
∑

q∈Q Sq Iu∈R(q). Then,

�

∑

d∈D

Sd Iu∈R(d)

�

 

∑

q∈Q

Sq Iu∈R(q)

!

< C2
u

SDSQ
∑

u∈U C2
u

Sum over all peers,

∑

u∈U

�

∑

d∈D

Sd Iu∈R(d)

�

 

∑

q∈Q

Sq Iu∈R(q)

!

<
∑

u∈U

C2
u

SDSQ
∑

u∈U C2
u

= SDSQ

And now we have our contradiction when compared to line 2.1.

19



 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1

(1-g(x)*g(x))**4
1-g(2*x)*g(2*x)

Figure 2.6.: Failure probability of a single double capacity peer as compared to four nor-
mal capacity peers as a function of the expected number of balls received
by the normal capacity peer.

2.5 Heterogeneous Formulation

We have seen in the lower-bound proof that higher capacity peers can be leveraged to
decrease the overall utilization of the network. This section describes a generalization
of the Poisson formulation which can exploit this potential.

Assign every peer u a weight wu = Cu/
∑

v Cv , so that
∑

u wu = 1. Whenever we place
a ball, peer u receives that ball with probability wu. This model can exploit heterogeneity
by making double capacity peers twice as likely to receive work.

Unfortunately, there is a slight wrinkle to this plan, illustrated in Figure 2.6. While
doubling the probability to receive a ball does double the expected number of balls a
peer receives, it does not quite double the probability of non-zero balls. If wu is twice
wv , it is true that u is twice as likely as v to receive a particular ball. However, it does
not follow that when more than one ball is placed, u is twice as likely as v to receive
some ball. This is the same phenomenon, combining unlikely events, that motivated the
definition of g in Theorem 1. As there, we are again on the wrong side of the inequality.

Fortunately, as long as z is small, g(z) is close to z. Therefore, this phenomenon is
only a problem when z is large. This corresponds to the situation where we are placing
so many balls of one particular colour that the chance that a particular bucket receives

20



that ball is high. In other words, it becomes a problem when either (or especially both)
of these conditions are true:

• one peer/bucket is significantly larger than all others

• one colour ball saturates the network, presumably because the other replica type
is rare; presumably because it is significantly larger, skewing SD/SQ

BubbleStorm must still work correctly (i.e., meet e−λ) in these situations, though
perhaps with slightly degraded bandwidth performance. Theorem 1 already handled
the case of skewed SD/SQ by using g(x/n) instead of x/n. Consequently, we must
simply remain vigilant in our handling of heterogeneity. We must ensure that if a sin-
gle peer dominates the network, we keep its influence on the correct side of the g(z)
approximation function.

That said, we can now state the main theorem which we prove later,

Theorem 6. Place x blue balls and y red balls into bins with probability wu for bin u. Let
M be the number of bins containing at least one blue ball and at least one red ball. Then,

P(M = 0)≤
∏

u∈U

�

1− g(wu x)g(wu y)
�

This result is the heterogeneous analogue of Theorem 1. Set wu = 1/n and |U |= n to
derive Theorem 1 from Theorem 6.

The problem with Theorem 6 is that it is not very useful in practice. In a peer-to-peer
setting, it would be very expensive to obtain all values of wu, which requires knowing
the capacity of every peer in the network. This makes solving for x and y in Theorem 6
problematic. Fortunately, there is an easy to compute upper-bound which is also a good
approximation.

We have seen that bigger peers behave slightly worse than a corresponding number
of smaller peers, due to the combination of unlikely events. Thus, we can’t easily pull
the wu out of the protective g(wu x). However, the inequality only prevents us from
extracting large coefficients out of g; we can push a larger value inside. This motivates
us to approximate all terms in Theorem 6 by the equivalent expression for the largest
peer in the network. Since g(z)≈ z for small z, the common case where no peer receives
nearly all the traffic, we expect this approximation will be asymptotically good.

Theorem 7 (The BubbleStorm Balance Equation). Place x blue balls and y red balls into
bins with probability wu for bin u. Let wm be the maximum value of wu for all u ∈ U . Let
M be the number of bins containing at least one blue ball and at least one red ball. Then
P(M = 0)≤ e−λ whenever,

g

�

λ
w2

m
∑

u∈U w2
u

�

≤ g(wm x)g(wm y)

This formula is much easier to work with. It only requires knowing the maximum
capacity peer in the network and the sum of the capacities squared. In Chapter 8 we
will see that both of these quantities are easy to obtain using a peer-to-peer measure-
ment protocol. The approximation in Theorem 7 will be used by BubbleStorm’s convex
optimizer in Chapter 5. The derivation from Theorem 6 is straight-forward,

21



Proof. We first apply Lemma 9 to Theorem 6 with k = wm/wu,

P(M = 0) ≤
∏

u∈U

�

1− g(wu x)g(wu y)
�

=
∏

u∈U

�

1− g(wu x)g(wu y)
�k2 w2

u
w2

m

≤
∏

u∈U

�

1− g(wm x)g(wm y)
�

w2
u

w2
m

=
�

1− g(wm x)g(wm y)
�

∑

u∈U
w2

u
w2

m

Now we apply the Theorem’s assumption,

P(M = 0) ≤
�

1− g(wm x)g(wm y)
�

∑

u∈U
w2

u
w2

m

≤
�

1− g

�

λ
w2

m
∑

u∈U w2
u

��

∑

u∈U w2
u

w2
m

=

 

e
−λ

w2
m

∑

u∈U w2
u

!

∑

u∈U w2
u

w2
m

= e−λ

Since BubbleStorm uses Theorem 7, we will prove that this approximation remains
optimal, rather than proving optimality for Theorem 6. Since Theorem 7 is just an
upper-bound on Theorem 6, we will also have shown optimality for Theorem 6. It
might be surprising that after making so many approximations the utilization remains
optimal. However, in each step, we have only made approximations which are sharp in
large networks.

Theorem 8 (Optimality of BubbleStorm). Whenever wm ∈ o(
q

∑

u∈U w2
u),

Mex pected(BubbleStorm)→ 2

√

√

√

λ
SQSD
∑

u C2
u

Theorem 8 assumes that the contribution of the largest capacity peer vanishes. This
means we assume that as peers are added to the network, the size of the largest peer
grows slower than the combined capacity of the network. When this assumption is
not met, BubbleStorm remains correct (as it satisfies Theorem 7), but fails to meet the
lower-bound for optimal/minimal traffic.

22



This restriction makes a lot of sense. If a single peer is so large that it performs most
of the matching, it is unable to download equal parts query and data. It behaves instead
like a server, downloading everything, and thus the ratio of downloaded query replicas
to data is dictated by the workload. We have seen in the lower-bound that optimality
requires peers to download equal parts data and query replicas. The restriction ensures
that this is possible.

Proof. We have already seen in the proof of Theorem 4 that l’Hôpital’s rule shows g(z)≈
z for small z. Under our assumption that wm ∈ o(

q

∑

u∈U w2
u),

g

�

λ
w2

m
∑

u∈U w2
u

�

→ λ
w2

m
∑

u∈U w2
u

Furthermore, we know that x and y grow as O(1/
q

∑

u∈U w2
u). Thus,

g(wm x) → wm x

g(wm y) → wm y

In the limit, the BubbleStorm correctness constraint (Theorem 7) becomes,

λ
w2

m
∑

u∈U w2
u

≤ wm xwm y

The optimizer (Chapter 5) can do no worse than picking,

x =

√

√

√

λ
SD

SQ

1
∑

u∈U w2
u

y =

√

√

√

λ
SQ

SD

1
∑

u∈U w2
u

Now find the aggregate traffic,

Mag gregate(BubbleStorm) = SQ x + SD y = 2

√

√

√

λ
SQSD

∑

u∈U w2
u

Each peer v receives traffic with probability wv . Therefore, its expected utilization is,

Mex pected(BubbleStorm) =
1
Cv

wv Mag gregate(BubbleStorm) = 2

√

√

√

λ
SQSD

∑

u∈U C2
u

Since this is the same for all peers, the proof is complete.

23



To finish this section, we now prove the two results we needed earlier.

Lemma 9. For k ≥ 1, x ≥ 0, y ≥ 0,

[1− g(x)g(y)]k
2
≤ 1− g(kx)g(k y)

Proof. The Hölder generalized mean inequality states,

1
Æ

(1− z)p1 + zq1 ≤ k
Æ

(1− z)pk + zqk

for k ≥ 1 and 0≤ z ≤ 1. Set p = 1 and q = e−x . Then,
�

1− zg(x)
�k
=

�

(1− z)1+ ze−x
�k

≤ (1− z)1k + ze−kx

= 1− zg(kx)

Apply this inequality twice with z = g(x) and z = g(k y),
�

1− g(x)g(y)
�k2

≤
�

1− g(x)g(k y)
�k

≤ 1− g(kx)g(k y)

Proof Sketch for Theorem 6. To show

P(M = 0)≤
∏

u∈U

�

1− g(wu x)g(wu y)
�

Notice that M = 0 only if no bucket received both a red and blue ball. Let Iu indicate
that peer u did not receive both types of ball. Now, IM=0 =

∏

u Iu. If buckets I1, I2, ..., Ik
have not received both ball types, it implies there are more balls to place in the (k+1)th

bucket; P(Ik+1 = 1|I1 I2...Ik = 1)< P(Ik+1 = 1). Thus,

P(M = 0)≤
∏

u∈U

P(Iu = 1)

The chance that a bucket receives a red ball is,

P(u receives red) = 1− (1−wu)
x ≥ g(wu x)

The chance it receives both ball types is,

P(u receives both)≥ g(wu x)g(wu y)

Therefore,

P(M = 0) ≤
∏

u∈U

P(Iu = 1)

=
∏

u∈U

P(u receives neither)

≤
∏

u∈U

(1− g(wu x)g(wu y))

24



2.6 Summary

Now that all the important rendezvous theory results are proven, this section summa-
rizes them for quick reference:

• Rendezvous systems should be designed to minimize bottleneck utilization.

– This maximizes the workload the network can process.

– This automatically balances the workload amongst peers.

• Peer bandwidth capacity pays off in the square.

– It is critical to leverage high capacity peers.

– If one peer dominates, the system degenerates to a centralized server.

• Rendezvous systems have a simple and elegant lower-bound.

– One can meaningfully discuss an implementation’s optimality.

• Where replicas are placed is relatively unimportant.

– Careful placement can meet the lower-bound exactly, but ...

– Random placement of those replicas already results in one match on average.

• Random placement is very practical for peer-to-peer systems.

– Placing exactly x balls (allowing duplicates in buckets) works.

– Each bucket could also flip a g(x/n)-weighted coin to obtain a ball.

– The resulting number of rendezvous peers is Poisson distributed.

– The failure probability is easily controlled (Theorem 7) and sharply approxi-
mates optimal utilization (Theorem 8).

25





3 Related Work
Some of the earliest work related to rendezvous systems was done on quorum sys-
tems. Quorum systems are used in classical databases to provide consistent replica-
tion [32, 40, 83], mutual exclusion/locking [3, 53], read/write registers [5, 54], and
group communication [4,13]. While these all appear to be very different from the ren-
dezvous problem, the core mathematical principle is the same: find sets which contain
a non-empty intersection.

Originally, quorum systems were studied to ensure that commits in a distributed sys-
tem were well ordered. The first approaches used a majority vote [83] to decide that a
change was committed. Thus, any future update which also achieved a majority would
have to have encountered the previous commit. Of course, all that is required is ex-
istence of what we call a rendezvous peer, a result quickly formalized in [30]. From
there it was an easy step to the grid formulation [19], although there were even earlier
approaches [53] that achieved O(

p
n) complexity.

Just like rendezvous systems, quorum systems have a well defined lower-bound that
applies to any correct quorum algorithm. In [63], the authors even use the same metric
we choose for BubbleStorm, the maximum expected utilization. They conclude, as we
do, that the lower-bound is a square-root.

The CAP principle [33] applies equally to quorum systems. Thus, a quorum system
has to choose at most two of: consistency / correctness, availability / operations that
terminate, or tolerance of network partition. The quorum systems above picked con-
sistency and partition tolerance. However, one can also pick availability and partition
tolerance. This approach is taken by [55].

In peer-to-peer, a randomized approach to quorum has its advantages. In [55], they
follow an approach similar to that of BubbleStorm. Each quorum consists of

p
λn dis-

tinct replicas. They show that in such a scenario, the chance that two quorums fail to
intersect is e−λ. Furthermore, they show that the introduction of probabilistic guaran-
tees allow them to achieve near optimal load and resilience simultaneously. Thus, they
see a probabilistic correctness guarantee as a means to bypass the CAP principle, the
same motivation that drove us to build BubbleStorm after BitZipper.

If one views BubbleStorm as a probabilistic quorum system, then we further the field
in five areas. First, quorum systems do not account for heterogeneity. As we have al-
ready shown in Section 2.4, there are substantial performance improvements available
when one leverages the asymmetric power of participating peers. Concretely, compare
Figure 5.8 to 5.9. Second, we consider placing replicas with potential duplicates and/or
coin-flip (binomial) distribution. Both of these are more realistic models than placing
exactly λ

p
n replicas. This practical concession does cost us the g-approximation. Third,

we consider trading off the size of the intersecting bubbles; quorum systems have con-
sistently concerned themselves with symmetric load. In a rendezvous system, it is quite
certain that query and publish traffic loads will not match. As Section 5.4 and Figure 5.8

27



demonstrate, there are huge gains to be made in this area. Fourth, BubbleStorm con-
siders more than simply read/write-quorums. Intersections between multiple bubble
types are supported, a necessary feature for a rich data schema. Fifth, BubbleStorm is a
complete system, not just a mathematical theory.

Returning our attention to the world of peer-to-peer, there are several other systems
that attempt to solve the rendezvous problem. We will compare these systems with an
eye towards their practicality. For an overview of rendezvous systems in other contexts,
see Section 2.13 of my colleague’s thesis [49].

Especially important for peer-to-peer systems are resilience and adaptability. In partic-
ular, systems must be able to handle crashing peers, packet losses, the inability of some
pairs of peers to communicate, and large scale network outages. On the adaptability
front, the system must adjust to changing network size, peer bandwidth distribution,
and query/data traffic ratio. We consider systems in chronological order.

One of the first peer-to-peer rendezvous systems, Gnutella [42], actually scores very
well on the requirements checklist. This very simple system floods searches to (nearly)
all peers. Thus, it does not take advantage of the query/data traffic distribution. How-
ever, flooding is very resilient to losses. Gnutella continues to operate if a large fraction
of the network is cut. Furthermore, as it is unstructured, it does not depend on com-
plete connectivity. High capacity Gnutella peers simply establish more connections, so
it adapts well to changing peer bandwidth distribution. In fact, Gnutella is pretty much
a perfect peer-to-peer system. The only problem is that flooding queries does not scale.

On the complete opposite end of the spectrum, we have Google Grid [9]. While not a
peer-to-peer system, we include it as it is the first published true rendezvous system. As
it runs in a data center, it chooses availability and consistency, sacrificing the ability to
operate with continuously failing peers. The google grid, as the name suggests, follows
the grid formulation of the rendezvous problem. The entire database is “sharded” into
pieces vertically. All the peers in a column contain between them the complete database.
A single row in the grid duplicates a “shard” of data to all the peers in that row. Thus
database updates are applied to rows and queries are applied to columns. Due to the
static nature of the grid, it cannot easily be adapted to a changing number of member
peers, heterogeneous peer capacities, or query/data traffic ratio. Nevertheless, it is
highly efficient, representing an optimal solution to the rendezvous problem.

To the best of my knowledge, my BitZipper system [78] was the first to tackle the
balanced rendezvous problem in a peer-to-peer setting. As a new researcher in the field
of peer-to-peer, I was enamored with the idea of key-based routing overlays. Thus I
made the mistake of proposing BitZipper on top of Chord [75], a structured peer-to-peer
system. Consequently, BitZipper cannot tolerate incomplete connectivity between peers.
All peers must be able to communicate with their ring neighbours, or routing breaks
down. On the plus side, leveraging Chord did allow BitZipper to tolerate significant
network outages and adapt to changing network size.

BitZipper operates on the principle of alternating bits in the keyspace. Every query
and published data item are assigned a random identifier. In queries, every odd bit is
turned into a wildcard. For published data, every even bit is wildcarded. Thus, for any
given query+data pair, there is a unique key that matches both, corresponding to taking

28



bits from them alternatingly (zipping). Peers store a replica if they are responsible for
a key which matches the wildcarded set. Thus, the node responsible for the zipped key
receives a replica of both the query and data item. It is the rendezvous peer.

In the BitZipper system, due to the uneven responsibility ranges of peers in Chord,
on average a query/publish is replicated to 2

p
n peers. Due to the need to route via

intermediate peers, this grows to 6
p

n. This overhead corresponds to λ= 36, enough to
guarantee fifteen nines of reliability in BubbleStorm. Given that Chord fails with rate of
2% [34] even on a very reliable network with nearly no churn and no NATs, BitZipper
performs far worse than BubbleStorm. BitZipper did offer the ability to statically trade-
off query-data bandwidth via a fixed-length prefix. However, it could neither adapt to
changing query/data ratios, nor leverage heterogeneous peers. All of these problems
motivated us to start work on BubbleStorm.

Before we were finished, however, Ferreira et al. [28] published the first rendezvous
system for unstructured peer-to-peer networks. Thus, they avoid the problems BitZipper
has with incomplete connectivity. They use random walks of length

p
λn to replicate

queries and publish data. Naturally, they concluded that this results in a failure rate of
e−λ. Unfortunately, this is incorrect! However, one cannot fault them too harshly, as we
will see that all other related work repeatedly makes the same error.

The problem with their claim of P(M = 0) ≤ e−λ is that they confuse placing repli-
cas uniformly at random with distinct replicas. Their result would be true for distinct
replicas, as [55] does for quorum systems. The result would even be true if they had
all n peers flip a coin weighted by

p
λn/n, as we do in BubbleStorm’s maintained repli-

cation [51]. The proof techniques used in Theorem 1 demonstrate both these cases
correct. However, placing replicas uniformly at random, as in the Ferreira system, does
not work. An easy to check counter-example: n = 2,λ = 8.

p
nλ = 4. So, consider

placing 4 query and 4 data replicas to avoid a rendezvous. All 4 queries must land on
the same peer, 1/8 likely. All 4 data replicas must land on the other peer, 1/16 likely.
1/128 > e−8, contradicting the claim. Our use of g in the correctness constraint fixes
this problem.

The Ferreira system did not include an actual implementation, nor propose an under-
lying network topology. Therefore, it is impossible to say how it would tolerate crashes,
churn, outages, etc. It is clear from their simulation results that they simply ran a sim-
ulation according to their mathematical model. Unfortunately, in a real network, one
must add a correction factor for topological dependency (Section 9.1), or there will be
a systematic defect in the probability. As discussed, they also did not correctly factor in
the effects of replica collisions, which necessitated the g-factor in Theorem 1. Thus, in
a real system, they would not meet their target probability. Furthermore, random walks
are terribly unreliable as compared to trees for replication (see [79] or Section 9.4). The
system also completely ignores the issue of balancing query/data traffic. Finally, instead
of leveraging heterogeneity to improve performance, they utilize a Metropolis-Hastings
algorithm [6] to stamp it out.

Next up is our first BubbleStorm publication [79]. Designate this system as Bub-
bleStorm0 to distinguish it from the correct BubbleStorm described in this thesis. Bub-
bleStorm0 was the first peer-to-peer system which simultaneously tackled adaptability

29



to network size, bandwidth shape/composition, and query/data traffic balance. Further-
more, it is robust to network outages and incomplete network connectivity. The organi-
zation of the subsystems is quite similar to this thesis. However, we fell into the same
trap as Ferreira et al., believing that random replica placement alone suffices for correct-
ness. While we were aware of the error term in our correctness equation, we thought
that it did not matter, despite that fact that it scaled with the cube; e−λ+λ

3/2ε. In our
defense, the error term matters little when the query/data traffic are near parity and λ
is small, so our first simulator could not measure the defect easily. BubbleStorm0 did, by
virtue of the analysis done in [77], compensate for topological dependency, though not
by name. What it got wrong was missing the g-approximation for collisions and incor-
rectly believing that heterogeneity pays off exactly as in the lower-bound. We explained
in Section 2.5 why this fails to hold. Compared to the prototype BubbleStorm0, Bub-
bleStorm is a complete re-implementation. The bubble balancer (Chapter 5) combined
with Theorem 7 solve the correctness issues with BubbleStorm0, while the performance
of both the topology and measurement protocol are superior.

Shortly after BubbleStorm0, ROAR was published [65–67]. Later versions of ROAR
focus on an implementation for data centers, which we won’t consider here; they are
more related work for Google Grid than BubbleStorm. The version of ROAR proposed to
run on key-based structured peer-to-peer is deterministic. It places data replicas along
an arc of the ring, say r out of n peers. Queries then contact every r-th peer on the ring.
Thus, they contact c = n/r peers. Clearly, this is a slight variant of the grid formulation.

As a follow-up to my BitZipper work, ROAR improves the ability to balance
query/data traffic. While BitZipper had a fractal replication scheme, the much sim-
pler arc-oriented data replication scheme of ROAR allows it to increase/decrease r
fairly easily. However, like BitZipper, ROAR builds on a structured system. This has
the same immediate consequences in terms of robustness and waste.

Like BitZipper, ROAR has a unique rendezvous peer. Should the system fail to reach
that peer or that peer fail, ROAR fails. Given that structured systems do not deliver
reliably and fail to handle incomplete connectivity, these problems cannot be easily
mitigated so long as a structured system underlies ROAR. Furthermore, this probability
cannot be controlled like in BubbleStorm, and will likely be worse than λ= 4.

On the cost front, the key-based routing imposes overhead. While data placement
only costs log n+ r, it involves an r =

p
n random walk. Fortunately, this walk follows

the ring, which typically has redundant edges to ensure integrity. It is unclear if ROAR
leverages this redundancy to route around those edges which cannot be formed (due to
incomplete connectivity) or are broken/crashing. However, ROAR could do something
intelligent here and we give it the benefit of the doubt when compared to random walk
schemes like Ferreira’s. The queries, however, must pay a routing cost to reach the data
replicas, to the tune of c log n. While it might be possible to share the cost of messages
routed over common edges, like BitZipper does, there is a limit as discussed in [78].
Regardless, this log factor will probably exceed BubbleStorm’s homogeneous overhead
at λ = 4. Coupled with BubbleStorm’s use of heterogeneity, BubbleStorm will probably
have orders of magnitude better reliability for the same traffic cost when compared to
this “deterministic” solution.

30



My colleague, Christof Leng’s thesis [49] also covers BubbleStorm. His thesis focuses
on the replication algorithms we used to make data durable, a topic not covered here.
With replication in hand, he is also able to directly compare BubbleStorm to Kadem-
lia [57]. Despite being published first due to life and timing, his thesis builds on the
work published here. In particular, he cites the correctness theorems and the bubble
balancer from this thesis. Now that this thesis has been published, it closes these gaps
in his work. Of necessity, he included a brief overview of the underlying layers de-
scribed in detail here. However, the current topology and measurement protocols and
their analysis only appear in this text. Whenever I refer to BubbleStorm in this thesis,
I am referring to our combined work; it is not possible to compare/contrast these two
versions of BubbleStorm as they are one and the same.

Finally, there have been a few rendezvous systems which snuck through the peer re-
view process. For example, Hautakorpi [38] and Deetoo [20]. These won’t be discussed
here as they bring nothing new to the table. Indeed, both are strictly inferior to at least
one of the prior art systems described here. Also, they both suffer from flawed analysis
concluding that

p
λn replicas suffice to reach e−λ. To find a more forgiving analysis,

please refer to [49].

31





4 BubbleStorm Overview
BubbleStorm is a system which solves the black-box rendezvous problem. It’s implemen-
tation both informed the development of rendezvous theory and followed the theoretical
underpinnings discovered. The project has since evolved beyond this original black-box
goal. However, my work has mostly focussed on the theory and implementation of
rendezvous systems and this thesis chooses to focus on these aspects of BubbleStorm.

At its highest level of rendezvous abstraction, BubbleStorm provides the user with a
concept of bubble types. A bubble type is category of information whose meaning is
known to the user, but remains a black box to the system. As an example, a bubble
type might be video meta-data, perhaps covering authorship, copyright, and length.
Concrete bubbles of this type would correspond to particular videos. One bubble might
describe someone’s birthday video, including the requisite meta-data.

Bubbles take their name from the role they play in the system. A particular bubble
(an instance of a bubble type) contains those peers who store its data. If that birthday
video’s meta-data is stored by five peers in the network, its bubble has size five. Bubble
types are the means by which the user formulates his rendezvous problems and bubbles
the vehicle which drives their operation.

Continuing our example, the home movie programmer might need to be able to locate
videos by a particular author. The query template “find content by X” would comprise
another bubble type, and a concrete search for Fred’s movies a bubble. To ensure that
the search succeeds in finding all of Fred’s movies, we must guarantee rendezvous be-
tween author query and movie meta-data. The programmer thus tells the BubbleStorm
system that meta-data type bubbles must intersect author search type bubbles. If the
programmer has instructed BubbleStorm to intersect two bubble types A and B, then the
system will guarantee rendezvous between all pairs (a, b) ∈ A×B with the programmer-
specified rate λ. Using the notation from Section 2, R(a) ∩ R(b) 6= ;. This concept is
so fundamental to BubbleStorm that both the book cover and first figure in this thesis
(Figure 2.1) depict two bubbles intersecting.

To use BubbleStorm, the programmer must thus do five things. First, he defines his
bubble types, in some sense specifying his application’s data model. Then, he specifies
which pairs of bubble types must intersect, enforcing correctness. He provides callback
functions which are invoked to store bubbles in his application-specific database and
process search requests. Next, he grows a network comprised of peers running his
application. Finally, during the operation of his application, he blows bubbles with
concrete data. These steps will now be covered in detail.

Continuing with our example, suppose that the application also stores blog articles.
Then we have three types of bubble so far: video meta-data, blog articles, and author-
ship searches. Both the video meta-data and blog articles need to be stored persistently,
while the search need only be processed to see if it matches the two persistent bub-
bles. When creating a bubble type, the programmer must select one of four bubble

33



INSTANT Bubbles in this class are not stored persistently. This
is generally only useful for queries.

FADING These bubbles are stored persistently by peers, but no
attempt is made to refresh the bubble as replicas are
lost to churn. This suites data which has a natural
expiration or is constantly changing. Examples might
include the position of a space ship in a game.

MANAGED These bubbles are stored persistently by peers, so long
as their owner remains in the system. Once the owner
leaves the system, the bubble evaporates. Until then,
the bubble size ensures reliable rendezvous.

DURABLE These bubbles are stored persistently by peers, indef-
initely. They are managed by an epidemic protocol
which ensures the stability of their size despite churn
or changing balance.

Figure 4.1.: Bubble classes supported by BubbleStorm

classes from Figure 4.1. For every class except INSTANT, the programmer must specify
a callback to store replicas of that type. For the MANAGED and DURABLE classes, he
must also specify a few methods which can retrieve replicas, so they may be copied to
other peers as the system evolves. For an SQL-backed bubble type, the storage callback
probably just triggers an INSERT statement. In summary, then, the programmer cre-
ates each bubble type he will need, selecting a storage class and providing hooks for
storing/retrieving replicas of this type.

Next, the programmer specifies which bubble types must intersect. In our example,
the authorship search type must intersect both the video meta-data and blog article
bubble types. When the programmer requests intersection, he specifies a desired rate λ
and a processing callback. The system guarantees rendezvous between bubbles of the
intersected type with a probability of at least 1−e−λ and not much higher. In a perfectly
Poisson world, the programmer would also expect λ rendezvous peers. Due to various
complications, the real expectation may be slightly higher (due to a topology-correcting
scale factor in Section 9.1) or lower (due to large single-response-only heterogeneous
peers replacing multiple smaller peers in Section 2.5). As already discussed in the
optimality of BubbleStorm (Theorem 8), λ= 4 costs twice the traffic of λ= 1.

The processing callback for an intersection is run to perform the rendezvous. When
calling the API, intersect(type1, type2, λ, callback), the types are not inter-
changeable. The callback is run when bubbles of type1 arrive, provided with their
type1 content. If a callback should also be run upon the arrival of type2 bubbles (to
build a persistent query, for example), then intersect should be called again with
the types reversed. In our example, when the programmer specifies an intersection
between authorship search and video meta-data, the callback probably runs an SQL SE-
LECT statement over the video meta-data table using the author provided in the search
bubble. When the programmer intersects authorship search with blog articles, he may

34



use a different λ and must provide another callback. This callback presumably runs a
SELECT over the blog table.

There is a good reason intersection callbacks and storage callbacks are distinct. In
our example, there will likely be other query types that should be run over the video
meta-data. Furthermore, the blog articles and video metadata might be replicated to a
different number of peers. Suppose the video meta-data bubbles are larger than blog
article bubbles. Then, not every peer who receives an authorship query should run
that query on its video metadata. Otherwise, the effective λ for the video metadata
and author search would be too high. By specifying a separate match callback for each
intersection, BubbleStorm has the freedom to invoke the blog matching callback and
not the video matching callback when it receives a query replica. Thus BubbleStorm can
freely balance bubble sizes how it likes and still meet the desired match probabilities as
closely as possible.

35



4.1 Component Architecture

In Figure 4.2, the green areas are components which I worked on directly. The very
green components will be covered in this thesis, while the reader is invited to read my
publications for the light green components.

Here is a brief overview of the BubbleStorm stack,

• The Runtime component includes operating system specific hooks to perform task
scheduling and UDP+ICMP messaging.

• The Simulator component simulates a virtual network with many peers running
concurrently and communicating via virtual UDP+ICMP messages.

• The Channel-based Unidirectional Stream Protocol (CUSP) [82] implements a
TCP work-alike on top of UDP+ICMP. It implements cryptography, flow control,
congestion control, and reliable in-order delivery of multiplexed streams. We will
depend on its ability to puncture firewalls in Section 7.2.1.

• The Network Topology layer manages the connections between peers in the net-
work. It will be discussed in Chapter 7. A prototype was first described in [79].

• The Measurement Protocol is responsible for calculating global statistics used by
all higher layers. It can compute sums and maxima and will be covered by Chap-
ter 8. A poorer performing variation was briefly discussed in [79,80].

• The Bubble Balancer is responsible for solving the Bubble Balance Equation (The-
orem 7). It computes the number of replicas needed to ensure successful ren-
dezvous in the network. It appears in Chapter 5.

• Bubblecast is the protocol we use to push replicas into the network. The replica-
tion algorithm is essentially unmodified from [79] and will be covered in Chap-
ter 9, where the first analysis of its dependency correction will appear.

• Maintained Replicas ensure that replicas placed in the network last exactly as long
as their owner, implementing the MANAGED bubble class. It was published in [51]
and will not be covered here.

• Collective Replicas ensure that replicas not tied to a particular peer remain in the
system, implementing the DURABLE bubble class. It also allows for O(1) key-value
lookups, eliminating the need for DHTs when using BubbleStorm. This work was
published in my colleague’s Doctoral thesis [49].

• Incremental and Top-K Search layer more sophisticated query techniques on top
of the basic bubblecast primitive. This work is not yet published.

• The SQL component aims to implement an SQL database on top of BubbleStorm.
It is published in [50], but not yet implemented.

• The full text search component is used for most test scenarios.

36



SQL XPath Text Search

Collective Replicas

Maintained Replicas

Top-K search

Incremental search

Bubblecast

Bubble Balancer

Measurement Protocol

Network Topology

Runtime Simulator

CUSP

Figure 4.2.: Component diagram of the BubbleStorm system

While much of the focus of this thesis was covered in my earlier publications [77,79–
81], this thesis is the first publication to present a complete and correct unstructured
rendezvous system. The development of BubbleStorm went through many false starts
where our incomplete understanding of rendezvous theory led us to make poor design
choices. Furthermore, our experience in developing robust peer-to-peer protocols has
also evolved. While [79] presented a topology and measurement protocol quite similar
to those presented here, the theory was missing and there were devils in the implemen-
tation details. The current BubbleStorm implementation works on real networks with
protocols that provide much greater reliability and can be proven correct.

37





5 Bubble Balancer
The bubble balancer ensures that the rendezvous probability of all bubble-pairs is
met, whilst minimizing the traffic needed. As a simple example, consider a query-
data bubble-type pair. If there are many queries and the data changes rarely, it makes
sense to store the data on many peers. Then the query need not be replicated to many
peers. Thus, we trade a large data bubble for a small query bubble. This makes sense
because the query bubble is used more heavily.

In the previous example, the traffic costs are just the SD and SQ from Section 2.1.
However, in the actual BubbleStorm implementation, we allow many bubble types. Let
T be the set of programmer-defined bubble types. We define St as the traffic (before
replication) of bubble-type t.

As described in the system overview (Section 4), the programmer specifies λ, requir-
ing BubbleStorm to guarantee a rendezvous with probability ≥ 1 − e−λ between any
chosen pair of bubble types s, t ∈ T . These bubble-type rendezvous requirements are,
to borrow database terminology, part of the data model’s schema for this application.
Every peer in the network runs the same end-user application (or at least operates on the
same schema) and was thus initialized with the same types T and the same intersection
requirements {λst}.

The bubble balancer’s job is thus to ensure that the bubble balance equation (Theo-
rem 7) is met for every intersection requirement. Let x t be the size (number of replicas
for each instance) of bubble-type t. Then the correctness requirements can be stated as,

1− e
−λst

w2
m

∑

u∈U w2
u ≤

�

1− e−wm x t
� �

1− e−wm xs
�

for all s, t ∈ T (5.1)

The total system traffic which the balancer seeks to minimize is,
∑

t∈T

St x t (5.2)

The goal of the algorithm is to find the x t which minimize 5.2 subject to 5.1. The
algorithm receives information about the bubble types, and their intersection require-
ments λst , from the programmer. The values wu describing the shape of the network
are obtained from the measurement protocol, which will be covered in Section 8. To
find St , every peer u records the size (in bytes) of locally generated traffic for bubbles
of type t. This is then summed over all peers u ∈ U using the measurement protocol.
The result is St , the traffic bubbles of type t would cost if only replicated once.

With all these inputs in-hand, the bubble balancer is left with an optimization prob-
lem. Luckily1, the constraints in this optimization problem can be formulated convex.
This allows us to leverage the field of convex optimization.
1 By dint of carefully spent sweat-blood-and-approximation.

39



5.1 Convex Formulation

The BubbleStorm implementation includes a simple convex optimizer (Section 5.3).
The optimizer accepts a linear goal function, of the same form as 5.2. The optimizer
only supports constraints in terms of these convex functions,

ax + b y + cz ≥ 0 (5.3)

x ≥ e y for |y|> 1 (5.4)

x ≥ e y − 1 for |y|< 1 (5.5)

I implemented two different exponential functions to handle the two different cases
where the right-hand-side is very small. For y →−∞, e y ≈ 0 and for y ≈ 0, e y−1≈ 0.
These two implementations of the exponential function are numerically stable and very
accurate at these important limit points.

We now reformulate 5.1 in terms of the constraints 5.3 - 5.5. The first thing to notice
is that the left-hand-side (LHS) of 5.1 is a constant. As ln is an increasing function, we
can reformulate 5.1 as,

ln LHS ≤ ln
�

1− e−wm x t
�

+ ln
�

1− e−wm xs
�

(5.6)

The main trick to reformulating the bubble balance problem in terms our simple con-
vex optimizer can handle is the introduction of carefully chosen intermediate variables.
Here we substitute yt for ln(1− e−wm x t ) in 5.6 and add a new requirement,

ln LHS ≤ yt + ys (5.7)

yt ≤ ln(1− ewm x t ) (5.8)

Any solution that meets these two new requirements will also meet the original re-
quirement. The optimal solution is unchanged because yt does not appear in the goal
function and yt can be squeezed between the two new constraints.

Applying this trick repeatedly, 5.6 can be broken down into,

ln LHS ≤ yt + ys yt + ys − ln LHS ≥ 0 (5.9)

yt ≤ ln zt zt ≥ e yt (5.10)

zt ≤ −at −at − zt ≥ 0 (5.11)

−at ≤ 1− ebt at ≥ ebt − 1 (5.12)

bt ≥ −x t wm x t wm + bt ≥ 0 (5.13)

The left-hand column contains the inequalities needed to prove that the original equa-
tion 5.6 is met. The right-hand column contains those same inequalities rewritten in a
form supported by the optimizer.

For every intersection contraint specified in the network-wide schema, the bubble bal-
ancer creates a constraint like 5.9. For every bubble type, it creates a chain of temporary
variables and constraints to get from yt to x t (5.10-5.13).

40



As a practical matter, bubble sizes cannot be fractional, yet convex optimization runs
over the real numbers. We thus add a boundary constraint requiring that bubble sizes
are ≥ 1 and round fractional results up. While rounding up isn’t as accurate as solving
the discrete optimization problem2, the solutions are good enough. However, this makes
the x t ≥ 1 boundary constaint very important to prevent byzantine corner cases. If there
are only 1000 peers, it doesn’t make sense for one bubble size to be 1e6 and the other
1e-3. Best would be 1000 to 1, a result which the optimizer will find since it doesn’t
explore below 1.

5.2 Stability and Uniqueness

Every peer in BubbleStorm runs the optimizer when it obtains new measurement values.
These values will be slightly in error and differ between peers. In order for rendezvous
to work correctly, all peers must (roughly) agree on the bubble sizes. Thus, we need
the optimizer to return the same solution on every peer. Ensuring this consists of two
related problems:

• Is there only one optimal solution to the bubble balance problem?

• Do similar measurement values give similar solutions?

The first question hinges upon uniqueness. To guarantee a unique optimal solution,
it is sufficient to prove that all the constraints are strictly convex. The intermediate
variables we introduced in Section 5.1 will certainly not have unique results; if an opti-
mal solution does not lie on the boundary of a particular intersection constraint, those
intermediate variables may lie anywhere between the two loose bounds. However, we
don’t use these helper variables in the system, so the real question is if the x t solution
is unique. Thus, we need to ask whether the original constraints 5.6 are strictly convex.

Strict convexity is preserved by addition, so it suffices to prove that f (x t) := − ln(1−
e−wm x t ) is strictly convex in x t for x t , wm > 0. The second derivative,

f ′′(x t) =
w2

me−wm x t

(1− e−wm x t )2
> 0

Thus, the solution to the bubble balance optimization problem is unique.
The question of numerical stability is much harder to answer. Small changes in the

input might cause large changes in the output if the problem itself is ill-conditioned
or the optimization algorithm misbehaves. We have good reason to believe that our
optimization problem is well conditioned. Recall from Section 2.5 that the optimal

solution in the limit is simply
r

λ
SD
SQ

. This is only ill-conditioned when the traffic SQ

approaches 0, the case we already excluded with the ≥ 1 size constraint. We do not
attempt to prove this intuition correct. Instead, we will measure the results over a
reasonable range of inputs in Section 5.4.

2 Discrete convex optimization is NP-hard.

41



5.3 Optimizer

BubbleStorm includes an implementation of a very simple convex optimizer, based on
the algorithms presented in Boyd and Vandenberghe’s excellent introductory text [16].
While we could have used an existing convex optimization package, like LOQO [86]
or MOSEK [59], these libraries are generally bulky, complex, and cannot be easily em-
bedded into the final application. Furthermore, due to their complexity, their reliable
behaviour in an autonomous system is hard to guarantee. Since our problem was rela-
tively simple, we opted to write a small custom convex optimizer that is embedded in
the BubbleStorm library.

Our implementation follows classic interior-point barrier techniques [16] quite
closely. Imagine the floor of skatepark for a simple two-bubble problem. At each point
(x , y) on the floor, the height is set to the bandwidth cost of using bubble sizes x and
y . Since the goal function is linear, the floor is thus an inclined plane. Some points in
the skate part represent an invalid solution to the balance problem; these points do not
achieve the desired rendezvous probability. To prevent these invalid points, we build a
half-pipe wall along the constraint.

To find the unique optimal solution, we conceptually let a ball roll to the lowest point
in the skate park. This is implemented using Newton’s method, which, unlike a normal
ball, makes large jumps from point to point. Calculating each successive step of the ball
for the general |T |-bubble-type problem with all of the attendant intermediate variables
requires some higher-dimensional calculus and algebra. To perform these calculations,
BubbleStorm includes basic matrix operations to solve the resulting system of equations.

Since a half-pipe has a quite gentle curve, the ball does not quite reach the optimal
point. If the half-pipe had been a vertical wall, the ball could have come much closer
to the boundary. It is not possible to use a perfectly vertical wall, because this would
not represent a continuous (differentiable) function. Furthermore, a very steep wall
makes the calculation numerically unstable. For these reason, we use a second, outer
loop which steadily increases the steepness of the half-pipe. Eventually, the half-pipe is
so steep that the ball comes to rest very close to the optimal solution.

42



For those who have read Boyd [16], or otherwise have a background in convex opti-
mization, here is a quick design-decision summary of our implementation:

• Logarithmic barrier function added to goal function

• Two-loop interior-point based approach

– Outer loop increases slope of the barrier

– Inner loop finds the solution on the central path

• Newton’s method optimizes the goal function

– Exact Hessian matrix used for all supported boundary constraints

– No support for linear equality constraints

– Backtracking line search guards against over-shooting boundaries

• Relative-error bound determines termination

– Estimated error-bound found from the dual problem

• Cholesky factorization used for Hessian matrix inversion

– Matrices are stored in banded format

– Cuthill-McKee algorithm used to find band permutation

• The library supports automatically finding an initial interior point value using a
“Phase I Method”; however, for bubble balance, a custom initial value is used

– The outer product of 5.6 is met by the square-root of the worst LHS

– Each constructed variable derived by solving inequalities backwards

– A factor of 2 for each inequality is included to keep the initial value away
from the barrier function

43



Population Speed Degree
1% 100 MBit 1600
2% 20 MBit 320
7% 10 MBit 160

30% 2 MBit 32
60% 1 MBit 16

Figure 5.1.: Bandwidth distribution in heterogeneous tests

44



 0

 5e-15

 1e-14

 1.5e-14

 2e-14

 1e-06  0.0001  0.01  1  100  10000  1e+06

R
e

la
ti
v
e

 C
o

n
s
tr

a
in

t 
E

rr
o

r

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100 nodes
10 nodes

Figure 5.2.: Relative constraint error in a Homogeneous network; below 1e-8.

 0

 5e-15

 1e-14

 1.5e-14

 2e-14

 1e-06  0.0001  0.01  1  100  10000  1e+06

R
e

la
ti
v
e

 C
o

n
s
tr

a
in

t 
E

rr
o

r

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100 nodes
10 nodes

Figure 5.3.: Relative constraint error in a Heterogeneous network; below 1e-8.

 0

 5e-15

 1e-14

 1.5e-14

 2e-14

 1e-06  0.0001  0.01  1  100  10000  1e+06

R
e

la
ti
v
e

 C
o

n
s
tr

a
in

t 
E

rr
o

r

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100 nodes
10 nodes

Figure 5.4.: Relative constraint error in a Centralized network; below 1e-8.

45



5.4 Evaluation

This Section examines the relationship of bubble sizes in BubbleStorm. All figures come
from the convex optimizer used to solve the bubble balance equation with λ = 1. The
figures only appear to be smooth as they contain 121 data points per curve. Although
the balancer can solve balance between multiple inter-related bubbles, this Section only
examines the classic query-data case.

We will examine three network scenarios: homogeneous, heterogeneous, and central-
ized. In the homogeneous network, every peer has the minimum degree of 16. In the
heterogeneous network, the population is broken down according to Figure 5.1. The
centralized network has peers of degree 16, except for one peer which has degree equal
to the number of peers in the network. All networks, even the centralized network, use
normal BubbleStorm topology. That means that although the centralized peer could be
connected to every other peer, it is expected to be only connected to 1− e−1 of them.

Before diving into the results of the optimizer, let’s first gain some confidence in
its results. While we can’t easily test the result directly (the reason we use a convex
optimizer is because the solution has no simple analytic form), we can see how closely
the optimizer approached the boundary constraint. Figures 5.2-5.4 plot the error in the
result. Since we configured the optimizer to approach IEEE double accuracy (2−53 ≈
1e-16), the results are pretty good. It is a bit worrisome that the error seems to grow
with network size (from 2e-15 average to 4e-15), a phenomenon we have not deeply
analyzed. Bubble balance better than 1e-8 is perfectly acceptable for our work.

The first question we probably want to answer is: what does the solution look like?
Figures 5.5-5.7 give the answer. The first thing to notice in Figure 5.5 is that query
bubble size decreases as it’s relative traffic contribution increases. The next thing to
notice is that as the network grows, the curve becomes increasing straight—a better fit
to p . Recall from Section 2.5 that BubbleStorm tends towards bubble sizes

Æ

SD/SQ,
which this plot clearly demonstrates.

The curves bend away from the ideal straight line because the constraint terms 1 −
e−wm x are only a good approximation to wm x for small wm x . As x grows larger, each
additional replica contributes less. This is intuitively explained as follows. Initially,
when you place x replicas, you place them on x distinct peers. As you place more,
you start to see collisions. Once you’ve saturated the network, you need to add many
replicas to hit one of the few remaining unreached peers. Thus, it becomes unprofitable
for the balancer to heavily unbalance the solution. Bubbles larger than (or nearly as
large as) the network waste traffic. Thus, we see the curve bend away earlier in smaller
networks.

The heterogeneous curves in Figure 5.6 look quite similar to the homogeneous sce-
nario. However, the bubble sizes of the curves are smaller. This is due to the phe-
nomenon already explained in Section 2.5; bigger peers need fewer messages to do the
same work as comparatively many smaller peers. We’ll come back to this later. The other
thing to notice is that the curves never quite reach 1. This stems from the approximation
we made to cope with heterogeneity (Lemma 9). By moving wm into the exponential
product, we’ve capped our ability to balance bubbles a bit early. However, this only

46



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-06  0.0001  0.01  1  100  10000  1e+06

Q
u

e
ry

 B
u

b
b

le
 S

iz
e

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.5.: Bubble Size as a function of traffic balance in a Homogeneous network.
Bigger networks closely approximate the square-root.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-06  0.0001  0.01  1  100  10000  1e+06

Q
u

e
ry

 B
u

b
b

le
 S

iz
e

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.6.: Bubble Size as a function of traffic balance in a Heterogeneous network.
Leveraging heterogeneity reduces required bubble sizes.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e-06  0.0001  0.01  1  100  10000  1e+06

Q
u

e
ry

 B
u

b
b

le
 S

iz
e

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.7.: Bubble Size as a function of traffic balance in a Centralized network. A single
giant peer causes the system to centralize all traffic.

47



affects very unbalanced bubbles, where the bottleneck expectation metric (Section 2.1)
does not grow with network size3, and we can thus afford some small constant wastage.

Things are very different in the centralized scenario, Figure 5.7. First, recall that
BubbleStorm does not guarantee minimal traffic in this case. The assumption that one
peer does not dominate the network has been violated. BubbleStorm does still guarantee
correctness, even in this very degenerate network topology. The effect of a giant peer
is quite pronounced. Initially, the 10 peer network doesn’t look much different from
the homogeneous case. That’s obviously because the central peer is not larger than the
others in this case. As the network grows, the curve doesn’t change that much, because
a small bubble will still reach the central node with high probability. The only “balance”
possible in this network is related to λ= 1. One bubble is made large enough to ensure
it almost certainly reaches the central peer. The other bubble is made just large enough
to have a 1 − e−λ chance to hit the central peer. As one might expect, that takes just
bubble size 16 (1/16 edges lead to the big peer); this is why the all balanced curves
flatten out to 16 on the right-side of the graph. Essentially, the bubble balancer has
tuned the system to focus on leveraging the centralized server.

The next big question to answer is: how costly are these solutions? The combined
traffic cost xSD + ySQ, is plotted in Figures 5.8-5.10. In our traffic plots, we consider a
system where SD+SQ = 1. Thus, one can interpret the resulting graphs as an amplifica-
tion factor. If you put 1000 bytes of traffic in (split according to the balance ratio), the
y-axis shows how much larger the resulting replica traffic will be.

Certainly, as the network grows, the bubble sizes grow, to the tune of
p

n. The most
expensive situation is when the query and data have the same injection rate. When they
are unbalanced, the optimizer makes the infrequently used bubble larger. However, as
already explained, one cannot push this trade-off much further than the network size.
Thus, the traffic flattens out in the face of extreme imbalance.

While the traffic grows as
p

n, it is important to remember that the traffic is split uni-
formly amongst the peers. Thus, adding more processing peers decreases the traffic that
each peer will see. On the other hand, adding more peers may bring a corresponding
increase to the injected load. In that case, Figure 5.8 faithfully plots the load as the sys-
tem grows. Please keep in mind that this traffic solution is fundamentally the best one
can do. Rendezvous theory dictates the problem requires this many replicas to solve.

As before, the heterogeneous network is cheaper to run than the homogeneous one.
Less replicas are needed to ensure rendezvous. Again, approximation Lemma 9 clips the
potential imbalance of the heterogeneous solution, preventing it from reaching 1. The
centralized network in Figure 5.10 shows the advantage of having a giant peer: traffic

3 Consider two bubble types s, t ∈ T . If the traffic for s (Ss) is much larger than for t, the bubble
balancer will make xs very small. The balancer cannot make bubbles smaller than size 1. Thus,
in such an unbalanced situation, the traffic for s dominates the traffic for t even after balancing
(xs = 1). In this situation, bubble type t is flooded through the network (x t = n). As the network
grows, the aggregate cost of replicating t grows quadratically (St x t ∈ Θ(n2)) and eventually catches
up to the dominating cost of s. At this point, the optimal bubble balance is no longer at xs < 1
and the traffic of s and t are balanced to parity. Before this point, however, aggregate traffic is only
growing linearly (t ’s quadratic growth is dominated by s’s linear growth), and thus the bottleneck
utilization does not grow with n.

48



 1

 10

 100

 1000

 1e-06  0.0001  0.01  1  100  10000  1e+06

T
ra

ff
ic

 m
u

lt
ip

lic
a

ti
o

n
 f

a
c
to

r

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.8.: Traffic as a function of balance in a Homogeneous network. With balanced
traffic, bandwidth grows as

p
n. Unbalanced traffic equals big savings.

 1

 10

 100

 1000

 1e-06  0.0001  0.01  1  100  10000  1e+06

T
ra

ff
ic

 m
u

lt
ip

lic
a

ti
o

n
 f

a
c
to

r

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.9.: Traffic as a function of balance in a Heterogeneous network. Leveraging big
peers for big savings. The wm approximation clips the lower limit.

 1

 10

 100

 1000

 1e-06  0.0001  0.01  1  100  10000  1e+06

T
ra

ff
ic

 m
u

lt
ip

lic
a

ti
o

n
 f

a
c
to

r

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.10.: Traffic as a function of balance in a Centralized network. A single big peer
completely halts bandwidth growth; Cloud services work.

49



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1e-06  0.0001  0.01  1  100  10000  1e+06

H
o
m

o
-H

e
te

ro
 T

ra
ff
ic

 R
a
ti
o
 (

H
o
m

o
/H

e
te

ro
)

Query-Data Traffic Ratio (SQ/SD)

1M nodes
100k nodes
10k nodes

1000 nodes
100 nodes
10 nodes

Figure 5.11.: Traffic improvement from heterogeneous networking. Gains in balanced
scenarios exactly equal the prediction. As imbalance increases, optimal bal-
ance can no longer be attained and ultimatedly the wm approximation pe-
nalizes the heterogeneous network (where the cost is so cheap it hardly
matters).

costs do not grow with network size. Of course, it may be infeasible to have a peer this
powerful, necessitating a peer-to-peer solution.

To explore the gain from heterogeneity more closely, Figure 5.11 plots the ratio of
homogeneous traffic to heterogeneous. As we can see, for the critical scenario where
bubbles are equal sized, there is an improvement of almost factor 2. In truth, the het-
erogeneous system should always be an improvement over the homogeneous system.
However, the approximation we used to simplify automatic bubble balance clips hetero-
geneous imbalance. Thus, as the imbalance grows, the homogeneous solution can carry
the trade-off further than the heterogeneous solution, resulting in a situation where
BubbleStorm would be better off treating all peers as though they had equal capacity.

The gain from heterogeneity can be readily calculated. In the limit, x y → D2
1/D2. For

a homogeneous network D2
1/D2 = n. For our heterogeneous network it is ≈ n/10.73.

Splitting the gain between the two bubbles,
p

10.73 ≈ 3.27 which is what we see in
Figure 5.11.

50



6 Topology Theory
In peer-to-peer networks, peers do not know the addresses of all other peers. Instead,
one peer knows the address of a small subset of the peers in the network. These peers
are called its neighbours. Considered as a whole, the graph of neighbour relationships
is called the network topology.

Designing a good network topology is the focus of much research. Since every system
has its own requirements, there are at least as many proposed topologies as real peer-
to-peer systems. This chapter examines BubbleStorm’s specific requirements, covers
elementary random graph theory, and outlines the principles behind our topology.

BubbleStorm uses a random graph network topology. There are many reasons for this
choice, but the most important stems from rendezvous theory. We want to select peers
at random to place replicas on them. If every neighbour connection is the result of a
random process, then selecting a random peer is naïvely as easy as following an edge.

This high-level idea plays out to our advantage in a number of ways. In a small
area, a random network topology looks a lot like a tree [14]. Thus, peers can replicate
queries to their neighbours without being overly concerned that too many peers will see
a query twice. The second eigenvalue of a random graph (explained in the next section)
is also small. This ensures that short random walks select a random peer independently
from the current topology. Furthermore, it speeds up the mixing time required by our
measurement protocol (Chapter 8).

Random graphs are also especially attractive in a peer-to-peer setting. Even when
a large fraction of the edges are removed, they stay connected [22]. Using a random
graph also gives us a lot of flexibility to deal with the Internet’s incomplete connectivity.
If two peers cannot directly communicate (a fairly common occurrence), we can roll
dice again and connect two different peers1. Finally, constructing a random graph does
not require global knowledge.

6.1 Random walks and expansion

Before diving into random graph models, let’s first review some basic graph theory about
random walks and expansion. A random walk moves from peer to peer by selecting a
neighbour uniformly at random. Let G denote the adjacency matrix of the network’s
graph and V a diagonal matrix with the vertex degrees; see Figure 6.1 for an example.
Then GV−1 is the Stochastic matrix which describes the transition probabilities used to
select the next peer in a random walk.

1 Contrast this with the topology in structured systems like DHTs, where certain connections between
peers are required by the relationship of their keys. If two peers cannot communicate, the system
correctness is compromised.

51



G =











0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 0
0 1 0 0 0











, V =











2 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 1 0
0 0 0 0 1











Figure 6.1.: Adjacency and vertex degree matrixes for an example graph.

Define w to be the vector where wu := deg(u)/
∑

v deg(v ). Direct calculation shows
that GV−1w= w and therefore w is an eigenvector with eigenvalue 1.

Assuming that the network is connected, it is impossible to permute G into upper-
triangular form,

P(GV−1)P−1 6=
�

A B
0 C

�

, for all P, A, B, C

as this would demonstrate a cut of the graph. By the Perron-Frobenius Theorem for
irreducible matrices, it follows that any eigenvector with all positive entries must corre-
spond to the largest magnitude eigenvalue of the matrix. Since w has positive entries,
the largest eigenvalue is thus 1.

Furthermore, since the graph is symmetric, every edge forms a 2-cycle. The existence
of even one odd cycle immediately implies that the graph is aperiodic. For random
graphs, this is almost surely the case [14]. As a consequence, every other eigenvalue
from the Perron-Frobenius Theorem must have magnitude < 1.

Since GV−1 = V 0.5(V−0.5GV−0.5)V−0.5, which is a similarity transform, V−0.5GV−0.5

has the same eigenvalues as GV−1. Furthermore, as G is a symmetric matrix, so too
is V−0.5GV−0.5. By the Spectral Theorem, we can conclude that V−0.5GV−0.5 has real
eigenvalues corresponding to an orthonormal basis of real eigenvectors. Let λi and vi
denote them respectively, so that V−0.5GV−0.5 =

∑

i λi vi v
T
i . Notice that v1 ∝ V−0.5w

and V−0.5v1∝ 1.

Now we are positioned to analyze how a random walk behaves. Suppose we have an
initial probability distribution x for first step of the walk. As an example, if the walk
begins on peer u, then x is 0 at all entries except the uth where it is 1. In any case, the
sum of all elements

∑

i x i = 1T x = 1.

52



Thus the result of an m-step random walk is w plus a remainder term,

(GV−1)m x = V 0.5(V−0.5GV−0.5)mV−0.5 x

= V 0.5(
∑

i

λi vi v
T
i )

mV−0.5 x

= V 0.5(
∑

i

λm
i vi v

T
i )V

−0.5 x

=
∑

i

λm
i (V

0.5vi)(V
−0.5vi)

T x

= 1w1T x +
∑

i>1

λm
i (V

0.5vi)(V
−0.5vi)

T x

= w+ V 0.5(
∑

i>1

λm
i vi v

T
i )V

−0.5 x

.
To bound the remainder term, take the matrix norms of the components,

|(GV−1)m x −w| =

�

�

�

�

�

V 0.5(
∑

i>1

λm
i vi v

T
i )V

−0.5 x

�

�

�

�

�

≤ |V 0.5|

�

�

�

�

�

∑

i>1

λm
i vi v

T
i

�

�

�

�

�

|V−0.5||x |

=
r

max
u

deg(u)λm
2

r

1/min
u

deg(u)1

= λm
2

√

√

√maxu deg(u)
minu deg(u)

Thus, the second largest eigenvalue λ2 clearly plays a critical role in how quickly the
system converges to w. Furthermore, the steady state w has probability proportional to
degree. This suggests an easy way to distribute a rendezvous workload over a graph
with heterogeneous peers; set every peer’s network degree proportional to its capacity.

The second eigenvalue is already of immediate interest to us for random walks (used
to build the topology), our mixing-based measurement protocol, and replica placement
using bubblecast. What’s more, it is deeply related to the concept of edge expansion.
The edge expansion of a graph is defined as,

h(G) := min
S⊂U:0<|S|<|U |/2

|∂ (S)|
|S|

where ∂ (S) is the set of edges with exactly one end-point in S.
The edge expansion is interesting, because useful communication networks tend to

have high expansion. High expansion guarantees a short network diameter and the
ability to reach an exponentially growing number of peers per hop. A high expansion
also makes it very hard to cut the network; the linear increase in connections leading

53



out of small subsets of peers causes the probability to disconnect from the core network
to fall exponentially. Thus, when a large number of network connections are cut, an ex-
pander is very likely to remain connected. If, however, some peers do get disconnected,
they will nearly always be in very small and easily recognizable islands. In practice, this
provides an implementation with an easy hint that disconnected peers must seek further
connections to reestablish connectivity.

The Cheeger inequality [62] relates the edge expansion to the second eigenvalue. If
a network has regular degree d, it states,

1
2
(1− |λ2|)≤

h(G)
d
≤
Æ

2(1− |λ2|)

Recall that we took the eigenvalues of the transition probability matrix GV−1, not G as
used by [62] and [29]. Thus, our |λ2| replaces |λ2/d| in their notation.

At this point it should be painfully obvious that the second eigenvalue is the single
most important property of a peer-to-peer network topology. Fortunately, Joel Friedman
proved Alon’s second eigenvalue conjecture [29], for a random graph model very similar
to the one we use in BubbleStorm2. That result states,

|λ2|< 2

p
d − 1
d

While this result has only been proven for homogeneous random graphs, it seems quite
safe to presume that increasing the degree of some vertices will only serve to decrease
the second eigenvalue further.

6.2 BubbleStorm Topological Model

The BubbleStorm topology is a degree constrained random graph. Every peer selects
an (even) desired degree. This degree should be chosen proportionally to the peer’s
capacity; deg(u)∝ Su. The lowest capacity peers in the BubbleStorm implementation
are defined to have degree=16. The topology protocol (Chapter 7) will ensure that a
peer’s degree stays quite close to its desired degree.

A well known property of graphs with even degree nodes is that they have Euler
tours. An Euler tour traverses every edge in the graph exactly once. For example,
Figure 6.2 shows a graph and a corresponding Euler tour. Notice that the Euler tour is
a cyclic permutation of the vertexes, where a vertex v appears deg(v )/2 times in the
permutation. We call each place it appears in the permutation a location.

Our random graph construction assigns equal probability to every permutation. Ev-
ery vertex (peer) v in the graph chooses its own even degree d = deg(v ). The model
then writes down a list of location symbols. Each vertex is listed with symbol vi for
i ∈ [0, d/2). For example, if peers a, b, and c all want degree 6, then the symbols
a0, a1, a2, b0, b1, b2, c0, c1, c2 are included in the list of symbols. Every permutation of

2 In fact, we intentionally designed the BubbleStorm topology protocol to implement a graph as similar
to Friedman’s theorem as was practical.

54



Figure 6.2.: An Euler tour of an example graph

these symbols is assigned equal probability, and the corresponding graph is drawn.
Given a particular graph, its probability in this model is the sum of the probabilities
of each matching permutation.

There are several reasons this model works well. First, it allows fine-grained control
over the load each peer receives by tuning the degree / number of locations. Second,
it is easy to add and remove nodes from a random permutation; just pick a random
position in the ring and insert a location there. Finally, it makes random sampling for
rendezvous replica placement easy. The first explored edge has (by definition) a wu
chance of reaching peer u as required by Theorem 6. Each subsequently explored edge
has a slightly higher chance of reaching new peers. This tends to make the network
perform slightly better than simple uniform sampling. We can ignore this good news
without impacting correctness.

The only problem is that whenever you reach a given peer twice, you are quite likely
to subsequently rediscover peers you have already seen. This collision chance and the
resultant sampling dependency exists in every network topology that is a strict subset of
the complete graph. Therefore, it is an unavoidable problem for a peer-to-peer network.
Fortunately, this problem is mitigated by two factors. First, given our choice of minimum
degree 16, the bubblecast protocol (which places the replicas; see Chapter 9) expects a
collision to result in < 1 chained collisions. Therefore, when a collision does happen, it
doesn’t cascade too far. Second, collisions above those you’d expect from the Birthday
paradox are relatively rare in random graphs.

Unfortunately, the proof of this last claim is phrased in terms of perfect matchings, a
slightly different model of random graphs used by Bollobás [14]. But fortunately, our
model contains that model as a subgraph. By proving this relationship, we can claim a
number of useful things about our topology.

Under the perfect matching model, one imagines each peer to have one dot per de-
sired degree. Naturally, there must be an even number of total dots for an undirected
graph to be possible. Then, we randomly pair up these dots (a perfect matching) and

55



Figure 6.3.: An example graph constructed using a perfect matching

connect them. For every two connected dots, add an edge between the two peers from
which they came. See Figure 6.3 for an example.

One technical detail is that Bollobás [14] rejects any matching that would result in
double edges or self loops. BubbleStorm allows double edges and self loops by design.
Fortunately, most proofs in [14] actually operate on the perfect matching model without
the rejection step. Only in the last stage of these proofs is the result converted to a model
which rejects double edges and self loops.

To see how the BubbleStorm model includes the perfect matching model, consider
the BubbleStorm locations. Pair up the locations as a perfect matching. Now roll some
extra dice to label one of those locations to come first and then randomly order the pairs
to build a completed permutation. Figure 6.4 shows how the new dashed red edges are
added to the original perfect matching to obtain the containing BubbleStorm topology.
This permutation includes all the edges the perfect matching model would have.

Now we can cite Bollobás [14] and Chung [22] to claim:

• Nearly every small connected subset of the BubbleStorm graph looks like a tree
(and thus collisions before the Birthday Paradox are unlikely)

• There is on average exactly one cycle of each length (up to O(
p

n))

• The network is almost surely connected (despite broken edges in the next section)

• Up to 83% of the edges can be cut and the system will retain a giant-component
(containing a fraction of peers related to the failure percentage)

• Vertexes disconnected from the giant component will be in small islands

56



Figure 6.4.: Half of BubbleStorm edges correspond to a perfect matching

6.3 Broken Edges

In a practical system, it is unavoidable that some peers will crash and some pairs will
be unable to communicate. Both of these effects can lead to broken edges in the cyclic
permutation. Fortunately, this can be easily worked around.

When a peer u leaves, it should normally coordinate the integrity of the Eulerian
cycle. For each location, it connects the two peers on either side of it in the cycle. In
this way, u is removed from the cycle, which remains intact.

If, however, peer u crashes, it cannot tell its neighbours to connect to each other. Thus,
these two peers have their degree reduced by one and the Eulerian cycle is severed.
Peers could gossip about neighbours “near” themselves in the cycle (like Chord [75]
or Pastry [70]). Then they would be able to reconnect when just a few peers crash.
However, this is unnecessary and would not solve the next problem.

In the Internet at large, some peers cannot communicate with others. This might
be a routing problem, a firewall configuration issue, or a packet congestion condition.
Regardless of the cause, some of the edges selected for construction by the random
permutation cannot be formed.

BubbleStorm does not attempt to repair broken edges. When an edge breaks, it stays
broken. However, if a location has two broken edges, it is removed (since this does
not affect the degree). As peers come and go, the size of an unbroken segment in the
permutation constantly fluctuates. Whenever a segment is reduced to one member, it
vanishes. Thus, if the system were run long enough (growing/shrinking the cycle seg-
ments) without breaking any further edges, eventually only a single unbroken segment
would remain. Since this tendency is balanced by freshly created broken edges, the

57



system has steady-state where a stable fraction of edges are broken. The exact ratio
depends on the frequency of crash events to leave events.

Broken edges have two effects. First, the degree of affected peers is reduced. Since
peers must maintain a fixed degree to ensure load-balance, this is something Bub-
bleStorm actively corrects (Section 7.1.1). Correcting peer degrees costs some traffic;
thus BubbleStorm aims to maintain the Eulerian cycle whenever possible. Remember,
peers that leave or join the Eulerian cycle correctly do not affect established peers’ de-
grees. The other problem with broken edges is that the actual graph is a subgraph of
the random graph model.

As long as the broken edges are chosen randomly, the perfect matching model can
be used to demonstrate that BubbleStorm still contains a random graph as a subgraph.
Therefore, it remains connected and the rendezvous continues to work. Crashes happen
independently of a peer’s physical internet connectivity, so they fall into this category
and don’t impact system correctness. However, sometimes the broken edges are corre-
lated. For example, if one of the fiber cables which carry the bulk of international traffic
gets cut, the edges which get broken will be correlated.

Our experiments (Section 9.4) show that as long as the broken edges do not nearly
partition the graph, BubbleStorm works. A true cut of the underlying Internet results in
two independent systems running side-by-side. Naturally, queries in one system cannot
rendezvous with new data in the other.

6.4 Related Work

There are hundreds of proposed peer-to-peer topologies. Roughly speaking, they fall
into two categories: structured and unstructured (Figure 6.5). The exact definition
of (un)structured systems depends upon the person speaking, but everyone agrees
there is a distinction. Many researchers conflate an arbitrary network topology (like
Gnutella [42]) with unstructured networks. However, in the context of this thesis, it
seems more useful to instead categorize based on who picks the network’s connections.
If the system operation requires certain connections between peers, this is what I de-
fine as structured. If, instead, correct system operation only requires that the graph has
certain features, this is unstructured.

For example, Gnutella [42] has an arbitrary graph topology where peers may connect
to any other chosen peer. It only requires graph connectivity to process requests. In
contrast, both Chord [75] and Pastry [70] assign peers an identifier and then sort peers
by identifier into a ring. Here, two peers with adjacent identifiers must be connected in
the topology, or the routing algorithm can reach a dead-end and fail.

Usually, structured systems require connections to facilitate efficient key-based rout-
ing. The ring-based systems [70, 75] use their connections to guarantee routability
along the ring. Typically, ring-based systems include extra far-reaching edges to support
faster routing than walking the entire ring. In this way they are similar to the Tree-based
systems, like P-Grid [1] and Kademlia [56], which organize their routing tables based
on matching identifier prefixes. De Bruijn systems, like Omega [25] or Koorde [41],

58



Figure 6.5.: A catalogue of peer-to-peer topologies

model De Bruijn graphs, using bit-shift semantics to quickly reach a given identifier. All
of these systems can route to a given identifier in O(log n) hops.

Some structured systems do not route to a one-dimensional key. The CAN system [68]
models a k-dimensional Euclidean space, potentially supporting routing to a k-tuple of
keys. Voronoi systems [47,48] connect peers based on a position identifier. Each peer is
responsible for positions closest to it, and it connects to peers responsible for adjacent
positions. This is useful in games where players see other nearby players.

This is only a small sampling of structured systems. At the height of peer-to-peer
popularity, whenever a graduate student saw a new problem, he could be sure of a
few easy publications by inventing a new structure. As long as a structured system
remains a research paper, everything looks good. However, in the real-world, the edges
these systems require may not be possible! The Internet is plagued with incomplete
connectivity. When implemented for use in practice, these systems must work around
this problem. For example, ring systems should not only connect to peers with the
nearest identifier, but also a few more. Both Chord [75] and Pastry [70] do this, but
still a message can reach a dead-end. Their greedy routing protocols move a message
closer to the target identifier with each hop. This can get the message stuck on a peer

59



which is not the target, but is unable to connect to any peer closer to the target. The
connections to reach the target exist, but without back-tracking they are useless.

In contrast, unstructured systems do not depend on specific connections. Instead,
they focus on graph properties. For example, BubbleStorm, Ferreira et al.’s random
walk system [28], and Freenet [23] all rely on graph expansion. No particular edge is
required, but the graph must have high expansion. This property is relatively easy to
guarantee with high probability; just maintain a random graph. Unlike structured sys-
tems, there is no need to work-around troublesome connectivity issues. These systems
were designed to work with the incomplete connectivity the Internet actually provides.

Like expander graphs, power-law graphs can also be used to build peer-to-peer sys-
tems, see for example Percolation Search [72]. However, power-law graphs have, by
their nature, high degree peers which connect most of the network. Power-law graphs
generally appear when a joining peer tends to connect to peers with already high degree.
This was true of the original Gnutella protocol, which works on arbitrary connected
graphs. However, these high degree peers will receive a proportionally high share of
traffic (Section 6.1). It’s hard to call a system which places most of its load on a few
servers a peer-to-peer system. As we have already demonstrated (Chapter 2), these sys-
tems do not approach optimal bottleneck utilization. Power-law graphs are interesting
where they appear naturally, but seem a poor choice for an intentional topology design.

Of final interest are the friend-to-friend networks; for example, Gnunet [10],
Freenet [23], or a survey [21]. These networks form connections between the com-
puters of people who know each other. Due to the small-worlds phenomenon [8, 45],
the resulting graph should have good expansion. Thus, in some sense they are an-
other variation on expander systems, but unlike random graph approaches they do
not enforce/guarantee expansion. It would be quite interesting to find a variation of
BubbleStorm that worked on these networks.

60



7 Topology Protocol
In principle, all the topology protocol must do is insert peer locations into the Eulerian
cycle at random positions on join and remove those locations on leave (compare Fig-
ure 7.1 to Figure 6.2). In practice, it is one of the most complicated components in
BubbleStorm. Although every layer of BubbleStorm assumes that the underlying layers
can fail, the topology layer runs directly atop the Internet. It must deal with potential
timeout or failure at every step of operation. Furthermore, it must be programmed as an
event-driven state machine. While there are some exchanges of message which occur in
sequence, there are many other messages which must be processed in any order. Fortu-
nately, the layers above the topology are much easier to reason about once the topology
has smoothed away most of the underlying complexity of the Internet.

At its simplest, the task of the topology protocol is to interconnect the peers and
ship messages between them. To improve the performance of the rendezvous system,
the topology protocol strives to lose as few messages as possible. Some of our earlier
designs occasionally created black-holes where a peer would receive messages that it
could not route further (ie: it had degree<3 temporarily during join/leave). To prevent
loss, it is also important to cleanly tear a connection down. Thus, we must have two
relationships between peers: client-server for half-duplex transmission and peer-to-peer
for full-duplex. Finally, the topology is responsible for maintaining degree close to the
desired degree for each peer.

The overall architecture is illustrated in Figure 7.2. The degree tuner accepts goals
from the user. These goals include JOIN or LEAVE. As events and state changes occur,
the degree tuner adjusts the goals of each subordinate location appropriately. If the

Figure 7.1.: A new peer (green) has joined the network graph

61



Figure 7.2.: The topology’s event-driven state machine components

Figure 7.3.: The state transitions a location goes through depending on its goal

topology should join, then the degree tuner sets some of the location goals to join. Each
location operates independently of the other locations and seeks to follow Figure 7.3.

7.1 The Ring

As in the BubbleStorm graph model (Section 6.2), each location has a position in the
Eulerian cycle. These locations manage two connections, to the successor and prede-
cessor in the cycle. In the implementation, we designate the predecessor as the master.
Thus, each location acts as a slave to its predecessor and master to its successor.

A location can act as either a client or a peer. Locations in the client state have a
connection to another peer’s location which acts as a server. This peer location has been
randomly selected from the Eulerian cycle. Later, the location can upgrade to peer status
by becoming slave to the server’s location and master to the server’s old slave. Servers

62



do not route messages over their clients. Peers and clients are free to route message to
their neighbours.

It might seem strange that BubbleStorm allows self-loops and double-edges in the
topology. Routing over these edges is certainly wasteful. However, there are three
reasons we made this design decision. First, as the network grows, the proportion of
these ‘wasteful’ edges vanishes. So in large networks, there is no performance lost.
Second, in small networks there are not enough peers to meet the desired degree of
peers. By allowing self-loops and double-edges, we avoid needing special-case code
to handle these situations. This also makes it very simple to bootstrap a new network
(Section 7.2). Finally, double-edges and self-loops are natural consequences of our
permutation graph model. Leaving them unhacked keeps the mathematical analysis
and software implementation much simpler.

7.1.1 Degree Tuning

The degree tuner ensures that the peer joins/leaves the network, maintains its desired
degree, and doesn’t become a routing black hole. To accomplish these feats, it must
know the current peer degree.

Each location contributes to the peer’s overall degree. When fully connected, it con-
tributes degree 2. If it has a broken edge, it contributes degree 1. If it has fully left,
it contributes degree 0. Unfortunately, this contribution cannot be precisely quantified
in practice. Whenever there is an in-progress operation, one cannot know what the
resulting degree will be. Instead, each location provides upper and lower bounds on its
degree based on its current state and goal. If a location is leaving, then it’s minimum
degree is 0. Otherwise it is the current number of functioning connections. Conversely,
the maximum degree assumes that all edges being modified will succeed and contribute
to the degree.

Taken as a whole, the degree tuner obtains an upper-bound (max) and lower-bound
(min) on the peer degree. This state combined with the tuner’s goal dictates how the
tuner adjusts the subordinate location goals. A rough outline of these transitions is
sketched in Table 7.4. Keep in mind that the min degree is only decreased when an

goal condition action
JOIN min < 4 Set 8 locations to JOIN CLIENT
JOIN min ≥ 4 Set every JOIN CLIENT to JOIN PEER

Set exactly deg/2 locations to JOIN PEER
Inform user that the join is complete

JOIN min ≥ maxDeg Change one JOIN PEER to LEAVE QUIT
JOIN max ≤ minDeg Change one LEAVE QUIT to JOIN PEER
LEAVE max > 0 Set every JOIN to LEAVE LINGER
LEAVE max = 0 Set every LEAVE LINGER to LEAVE QUIT

Inform user that the leave is complete

Figure 7.4.: The degree tuner conditionally executes actions based on its goal.

63



edge breaks; a correctly leaving peer does not affect the degree of the remaining peers.
Similarly, the max degree is only increased when an edge breaks (if the last edge at a
location breaks, the location automatically seeks to reconnect—probably obtaining two
neighbours instead of one).

Since adding a new location adds two edges, it is not possible to control the degree
exactly. Instead, the tuner aims to keep the degree between minDeg and maxDeg. While
the most obvious approach might be to set minDeg and maxDeg to ± 1 of the desired
degree, there is an easy optimization to be made. Consider a coin with 1 on one side
and -1 on the other. If after each flip the total is computed, it takes on average m flips
until the total exceeds ±

p
m [36]. Since the coin flips in our scenario correspond to

edge break events, the higher a peer’s degree, the more events it sees. By setting our
tolerance to ±

p

deg/16, we ensure that peers spend the same work tuning their links.
The degree tuning rules take special care not to switch to being a full peer until

the node has at least three servers. This way, when the peer begins receiving routed
messages, it already has two alternative paths to route those message over. Indeed, it
probably has five if the upgrades go well and many more once the other JOIN PEER
locations complete. Similarly, when leaving a peer downgrades all of its connections
to client mode. This way any queued traffic it has yet to process can still be routed.
These two precautions greatly reduce the chance that a joining/leaving peer becomes a
routing blackhole, increasing the robustness of the system.

7.1.2 Location Selection

To find a server (or peer), locations must select a random position in the Eulerian cycle.
To achieve this, BubbleStorm uses a biased random walk. We already saw in Section 6.1
that a random walk selects peers proportionally to their degree. However, if there are
broken edges, selecting a peer proportional to degree is not the same as selecting a
location uniformly at random. This is because half-broken locations do not contribute
two edges and are thus under-represented in the peer degree distribution.

To solve this problem, we bias the random walk using a holding probability. At each
step in the random walk, the forwarding peer roles a die to select the outgoing edge.
However, it also includes phantom broken edges in this die roll. If the die selects a real
edge, the message is forwarded with reduced hop count. If the die selects a phantom
edge, the peer pretends to have sent the message to itself (still reducing the hop count
by one). This holding probability causes the steady state probability to converge to
selecting locations uniformly at random.

To see why this works, fill in a new matrix G which includes values hu in the diagonal
that count the number of broken edges at peer u. Direct calculation will verify that w is
indeed the eigenvector with eigenvalue=1. G is still symmetric so the calculation done
in Section 6.1 still shows that the probability distribution converges to w proportional
to λm

2 after m steps.
Of course, the λ2 here is for this strange graph with self-loops for broken edges.

Nevertheless, in BubbleStorm no more than half the edges can be broken thanks to the
policy that a fully broken location finds a new position in the cycle. Thus, whatever

64



would work for the random graph will work for this graph with a holding probability by
simply doubling the length of the random walk.

To achieve good mixing, we would like to approximate w quite closely. For n peers,
we would like the walk to approach w with proportional error of ±δ. If one reconsiders
the random walk analysis from Section 6.1 to start at a node a, then |V−0.5 x | is actually
bounded by

p

1/deg(a). If one looks at the error in the single term for node b, the
magnification by |V 0.5| is just

p

deg(b). Since all peers joining have at least degree one
(their bootstrap connection), the random walk can neglect the deg(a) term. Also, since
we are interested in relative error, and a square-root is sub-linear, we can neglect the
deg(b) term as well.

We know that |λ2|< 2
p

d − 1/d < 2
p

1/d = 2
p

1/16= 1/2. Therefore after m steps
we would like,

2|λ2|m ≤ 2(1/2)m =
δ

n

Thus,

m :=
log(δ/2n)
log(1/2)

= log2 n+ 1− log2δ

Setting δ = 10−2, this simplifies to,

m≈ 7.64+ log2 n

Since we need to double this to compensate for the holding bias,

2m≈ 15.29+ 2 log2 n

Thus, in BubbleStorm, a location walks 2m steps to pick a position in the Eulerian
cycle. This suffices to approximate true uniform sampling to within 1% relative error.

7.2 Bootstrapping

In order to start a random walk, a location needs to know the identity of at least one
participant in the network. If the peer already has neighbours, it just starts its random
walks via that neighbour. However, if it has no neighbours it must begin the bootstrap
process.

There are four ways a peer can enter a network:

• The peer can create a new network, containing only itself.

• The user can supply the address of a peer known to be in the network.

• The peer can contact peers listed as an entry-point in DNS.

• The peer can probe peers which were previously in the network (Section 7.2.2).

65



Figure 7.5.: The primordial BubbleStorm topology; 16 self-loop edges connect the 8 lo-
cations. Red circles indicate where the edges enter/exit the peer.

Creating a new network should only need to be done once by the application devel-
oper. The founder peer connects to itself, establishing a permutation of its locations; see
Figure 7.5. Subsequently joining peers can partition the self-loops just as they would
split any other edge in the system.

Once the network is up and running, it would partition the user base if a peer founds
another network. As a practical matter, an application developer should probably not
release an application which supports network bootstrapping.

7.2.1 Firewalls

In the modern Internet, firewalls often block unsolicited access to peers. While
CUSP [82], our custom transport protocol, is able to punch a direct connection be-
tween two firewalled peers, this is only possible when those peers have an established
side-channel. Thus, at the time a new peer wants to join the network, it cannot yet
participate in the hole-punching protocol. Therefore, joining peers need to contact a
peer which is not firewalled.

We explored several alternative side-channels in the scope of the BubbleStorm project.
Unfortunately, none of them are wholly satisfactory. At the time of this writing, we have
not finalized our choice; we still hope for a better option.

66



Figure 7.6.: The first peer to transmit is blocked by the other’s firewall. The second peer
to transmit makes it through, using the hole opened by the first.

Not every firewall can be penetrated by CUSP, but most are configured with a pol-
icy that allows the private network to access the external network, but not vice-versa.
Another technology, called Network Address Translation (NAT [73]) causes the same
effect as an artifact of its implementation. Unfortunately, due to the slow roll-out of
IPv6 and paranoid administrators, most networks are now behind either a NAT or a “no
external-to-internal access” firewall. This common setup offers some protection against
hackers who would otherwise be able to connect to services/servers in the internal net-
work. Clients inside the internal network can access servers in the Internet at large.
Meanwhile, servers in the internal network are protected from access by clients in the
Internet at large. Unfortunately, peer-to-peer applications simultaneously act as both
client and server. These policies effectively prevent a peer from full participation.

Before explaining how we subvert this policy, it would be remiss not to discuss the
ethics of this technology. It is my firm belief that the “no external access” policy is in-
tended to protect potentially vulnerable internal services from attack. The policy allows
all outgoing access, so the intention seems to be “let my users do what they please, but
keep those bad guys off my fileserver.” The firewall punching used in BubbleStorm only
allows communication with peers running a BubbleStorm-powered application. Since
an internal user had to start the BubbleStorm application, this seems to be tacit per-
mission to allow that application to communicate with the BubbleStorm network at
large. We never puncture a firewall which limits the access of internal users. If the
policy doesn’t include a “let users access what they please” rule, BubbleStorm applica-
tions will not be able to run, in accordance with the system administrator’s policy. Thus,
we consider penetrating firewalls and NATs a reasonable and ethical technology. If a
system administrator truly intended to prevent peer-to-peer access, he need only forbid
outbound access to the BubbleStorm port.

67



To connect two firewalled peers, both must initiate a connection to the other. After
sending an outgoing message (over UDP) through a supported firewall, the firewall will
accept UDP messages in response; see Figure 7.6. Since both peers sent a message, both
their firewalls will now accept messages from each other. Thereafter CUSP can make
data flow. The only difficulty is the (seemingly) easy task of convincing the two peers
to send a message to each other.

In BubbleStorm, a query is answered by rendezvous peers which may never have
communicated with the source peer before. Thus, they will need to puncture the firewall
of the source peer to answer his query. Unfortunately, the source peer does not know
the rendezvous peers, so he cannot send a message to open his firewall for the response.
This is where we need a side-channel. To our knowledge there are three categories of
IP side-channels: topology, destination-side, and source-forgery.

The first option is using the BubbleStorm topology as a side-channel. Here, the ren-
dezvous peer routes a message back to the source peer over the same topology path
that was used to contact him. Then the source peer and rendezvous peer know of each
other and can directly connect. Aside from the obvious latency penalty, this approach
lacks flexibility. A peer might want to connect to a peer it has learned about through
some other mechanism. For example, it might issue a query to find online chat buddies.
Then it would like to connect to those buddies, but it recovered the address from a ren-
dezvous peer and not the buddy himself. While it might be possible to make this work,
it is not a very clean approach and is likely to be quite failure prone.

The second option is using a helper peer connected to each firewalled destination
peer. Supposing peer u is firewalled, he keeps a connection open to v who is not
firewalled. When w wants to contact u, he asks v to tell u about him. Thereafter, u
and w communicate directly. The problem here is that w needs to know about v . The
address information for u is then (u, v ) instead of just u. Thus, u advertises to everyone
both u and v . Unfortunately, v might quit, causing u to find a new replacement helper
v ′. Now anyone who wants to contact u using the old address (u, v ) is unable to. They
need the address of the new helper v ′. Again, it would be possible to make this work,
but it would be failure prone.

The final option is to forge packets. Here every firewalled peer v contacts a non-
existent, but well-known peer z. Then if u wants to contact v , he forges a message
that appears to come from z. This message can enter v ’s firewall because v has already
sent messages to z. Of all the options, this one has the least complexity. Peers only
need to advertise their own addresses and direct connection establishment is possible.
Unfortunately, forged packets have been abused by hackers in the past. Thus, most ISPs
prevent users from forging the sender address on packets they send. There are two ways
to improve this situation. First, unfiltered peers could provide a “packet forgery service”
to the other peers. Unlike the previous intermediary approach, these helper peers are
source-side and can thus be replaced without needing to propagate any new address
information. Second, forged ICMP error packets are not yet as widely filtered [18] as
simple UDP. While this approach is technically the best, we are unsure how wise it is to
depend on the deficient filtering of ISPs.

68



Probably the best approach would be a packet “forgery” service using a unicast ad-
dress. Connect several introducer systems around the world, all advertising the same
IP block range via BGP/etc. Every new peer sends a message to the unicast address to
open up a back-path. When a peer seeks to contact another peer, he sends his request to
the unicast address, which arrives at the nearest introducer system. That introducer can
then forward the connection request to the actual destination. Because the destination
system already sent a message to the unicast address (though it was probably processed
by a different introducer), the forwarded request from the introducer will penetrate the
target firewall. The advantage of this scheme as compared to packet forgery is that
the introducers actually use their own advertised addresses, the unicast address. Fur-
thermore, because unicast routes to the closest introducer, very little latency penalty is
imposed, less than half a round trip. Unfortunately, there is no installed base of intro-
ducer systems, so this approach can not be used today. It would be quite simple for a
company like google to add this service to their unicast DNS servers, thus solving the
NAT problem for everyone.

7.2.2 Host Cache

In order to rejoin the network, peers need a list of potential peers. The joining peer
then probes several of these candidates to find one online. Our current implementation
probes 6 at once with a 20s timeout before trying 6 more. Once a candidate bootstrap
peer responds, that peer is used as the first step in the random walk to find locations to
split (Section 7.1.2). The host cache provides the list of peers to start this process.

The general idea is that a peer records the addresses of other peers which are not
behind a firewall. It prefers peers which have been online for a long time, assuming
that this predicts that they will be online longer still. We give every peer in the host
cache a score. Every time a peer is seen, its score is linearly increased (+0.1). Every
time a peer is missing, it’s score is multiplicatively decreased (90%). New addresses
start with a score of 0.5. When joining, peers are contacted in decreasing score order.

We fill the host cache using the BubbleStorm API. Every hour peers execute a query
for the addresses of bootstrap peers. Bootstrap peers advertise their availability using a
managed bubble (Section 4).

There was an interesting attack used by Microsoft in their Microsoft Active Response
for Security (MARS) Project. To combat peer-to-peer botnets, they essentially broke
the same bootstrap algorithm used in BubbleStorm. First, they seized control of the
DNS records used as well known points of entry. Then they poisoned the botnet’s host
cache [26]. This attack was effective because the host cache of the botnets was small. If
defense against this sort of take-down is necessary, the host cache should be increased
from the current 1000 to perhaps 1000000; addresses are cheap to store. One million
addresses cost just 6MB.

69



7.3 Evaluation

Now that the components of the BubbleStorm topology have been detailed, we turn our
attention to how well the implementation works.

To analyze the system, we built a simulation framework as part of the BubbleStorm
project. The simulator design and implementation were largely the work of my col-
league, Christof Leng, and are detailed in his thesis [49]. He explores the related work
for network simulators and our design decisions.

To briefly summarize our reasoning, we decided to analyze BubbleStorm two ways.
First, we designed the system such that we could use mathematical analysis to model
and predict the expected behaviour. This work was largely mine, and the resulting
theory is a major topic in this thesis. Second, we decided to simulate the network at
the packet level. While our BubbleStorm implementation could be measured deployed
on a real network, either in the Internet at large or in a small testbed, this is neither
as flexible nor as repeatable as measuring a simulation. Over the years we developed
several different prototypes of BubbleStorm and measured them with many different
simulators, the simulator used here was designed and validated by my colleague in his
thesis [49].

Our simulation approach narrows the system interface needed by BubbleStorm down
to just a delayed event scheduler and UDP messaging. This required our implementation
to build its own reliable transport protocol on top of UDP. This protocol, CUSP, is thus
part of the simulation and captures the effects of timeouts and retransmissions. All
packets are delayed and lost using the delay model outlined in [43], based on real
measurement data of hosts positioned around the globe proportional to global Internet
use. The simulator does consider queuing effects (and resulting packet drops), but only
on the last mile uplink/downlink; there is no cross-traffic inside the network.

Nodes in our simulation stay connected for an average of one hour, distributed as
an exponential random variable. The average uptime is 5%; there are actually 20000
nodes simulated, but only ≈ 1000 are active at a time. 10% of nodes which leave the
network do so by crashing. To control the population during simulated events, there is
an additional mask which can enable/disable nodes on demand. Finally, these nodes
are producing either a search or publish request every 15 seconds, so the network is
quite busy.

Population DownSpeed UpSpeed Degree
2% 50 MBit 10 MBit 1280
3% 25 MBit 5 MBit 640

15% 16 MBit 1 MBit 128
20% 6 MBit 512KBit 64
20% 3 MBit 256KBit 32
20% 2 MBit 192KBit 24
20% 1 MBit 128KBit 16

Figure 7.7.: Bandwidth distribution in heterogeneous simulations

70



 0

 200

 400

 600

 800

 1000

 1200

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

ru
n
n
in

g
 n

o
d
e
s
 (

#
)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

max
min
avg

Figure 7.8.: Simulated node population resulting from exponential join, 50% simultane-
ous leave, 50% simultaneous join, and 50% simultaneous crash events.

The topology protocol’s primary purpose is to support peers joining and leaving, keep
the network connected, and tune node degrees. To examine its effectiveness, we run
BubbleStorm on a network of 1000 peers with bandwidth as outlined in Figure 7.7.
The network is initially grown with exponentially increasing arrival rate until the target
population is reached. The network then runs under steady-state churn until the sec-
ond hour, at which point half of the nodes decide to simultaneously start leaving the
network, without crashing. After another hour, half of the nodes begin rejoining the
network simultaneously. Finally, half of the nodes in the network crash simultaneously.
The sequence of events is illustrated by Figure 7.8.

The join protocol requires the completion of a random walk. This causes the few
seconds of delay in Figure 7.9. Initially, the network is small so the random walk is
short. As the network grows in size, the join times grow logarithmically, which appears
as linear on this graph due to the exponential rate of increase in network size.

Due to message loss from peer crash events, sometimes the random walk gets lost and
must be retransmitted after 240 seconds. The topology protocol initially sets 8 locations
to join and upgrades from client mode to peer mode (signalling join completion) once
the degree reaches 4. In a perfect world, this means that only two walks need to succeed
before the node becomes a full peer. If more than 6 walks go missing, however, then
the peer must await the timeout before it completes joining. This can happen due
to independent chance, but it can also happen when the used bootstrap peer crashes
during the initial dissemination of the random walks. In any case, we can see this effect
during the busiest part of exponential growth, during the peak join and leave events,
and during the network doubling at hour 3. The crash event also causes a large number
of join requests which were inflight to fail, leading to more timeouts.

71



 0

 2

 4

 6

 8

 10

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

jo
in

 t
im

e
 (

s
e
c
o
n
d
s
)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

max
min
avg

Figure 7.9.: Time required for peers to complete the join protocol and become full peers.
The spikes correspond to (rare) unlucky nodes that must retry joining.

Keep in mind that nodes which have not completed the join protocol can still use
the BubbleStorm network. They have client links to at least their initial bootstrap peer.
These client links provide the peer with near immediate access to the rendezvous infras-
tructure. The join times simply measure the point at which the peer is able to contribute
towards the processing of rendezvous workload.

To cleanly tear-down a location, a peer must ask its master to connect to its slave.
After which, the leaving peer has two client links and the master and slave are directly
connected. Of course, the master might be busy injecting a new peer into that location
or be leaving itself, in which case the leaving peer has to wait for his new master before
he can reissue the leave request. The master might also have crashed and thus never
processes the request. Worse, the master might be waiting to insert/remove a different
peer that crashed.

Unfortunately, in contrast to the join protocol, where a few successes are enough to
declare completion, the leave protocol must tear down every location before completion.
This greatly magnifies the chance that something goes wrong. As we see in Figure 7.10,
the 20 second leave timeout plays a significant role. At this point, the peer ceases to
wait for the master, and just resets the link. Sometimes leaving can take even longer
as a peer restarts the 20 second timeout when its master is replaced. As the minimum
shows, when all locations are able to exit cleanly, the process terminates quite quickly.
In fact, one can nearly interpret the average leave time divided by 20 seconds as the
probability that something goes wrong on at least one location while leaving. If an
impatient user kills the slow-exiting BubbleStorm client, it is no worse than crash, i.e.
well tolerated by the network.

These results may seem surprising when one considers how simple it really is to leave
a location: one message to the master, asking to quit. The master (if not busy at this

72



-10

 0

 10

 20

 30

 40

 50

 60

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

le
a
v
e
 t
im

e
 (

s
e
c
o
n
d
s
)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

max
min
avg

Figure 7.10.: Time required for peers to complete the leave protocol. The average delay
corresponds to the chance of a single failure triggering the 20s timeout.

location) immediately confirms by closing the connection, making it half duplex, with-
out waiting to successfully contact its new slave. In this simulation we still have pub-
lish/query rendezvous traffic (detailed in Section 9.4), and any inflight messages still
need to be sent and acknowledged before the close is sent. Packet losses might lead to
retransmissions and further delays. Hopefully, this plot demonstrates just how difficult
it is to cleanly tear down a link, while maintaining a ring structure in an active system.
Fortunately, BubbleStorm does not depend on ring integrity for correct operation, unlike
some structured systems.

Unfortunately, the fun doesn’t stop here. The underlying transport protocol (CUSP)
must still deal with reliably delivering final acknowledgement information to all con-
nection partners. Due to the two armies problem, this has to be achieved by a timeout,
similar to the TIME_WAIT state in TCP. Although CUSP has some optimizations to mini-
mize how often this is necessary, it still happens fairly often that the application cannot
quit until the transport protocol timeout expires, which is mandated by the IETF to take
at least 240s. Normally this would be handled behind the scenes by the operating sys-
tem’s TCP stack. However, since this is implemented as part of BubbleStorm itself, this
can sometimes manifest in an additional 240s delay above and beyond the leave times
shown in the topology plot. For these reasons, when asked to quit, BubbleStorm appli-
cations shut down their GUI and services promptly, and then switch to a background
process with minimal memory footprint until all traffic is finalized. If it were possible to
hand-over the task of final acknowledgement to the operating system’s kernel (as TCP
enjoys), this background process delay could be avoided.

To explore how quickly the topology recovers desired degree, we turn our attention
to the simulation in Figure 7.11 where the peers all have 1MBit instead of the hetero-
geneous distribution ala Figure 7.7. This way, all the peers have the same target degree

73



-5

 0

 5

 10

 15

 20

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

n
o
d
e
 d

e
g
re

e
 (

#
)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

max
min
avg

Figure 7.11.: Node degree in a homogeneous network (including leaving and joining
nodes). Maintenance quickly restores the system to the desired degree.

making the plot a bit easier to interpret (the heterogeneous plot is similar, but with
larger variance due to the different desired degrees).

We can see that the minimum degree is nearly always 0. This is due to churn; there
is almost always at least one peer trying to join the network at any given time. The
maximum degree can briefly exceed the 17 neighbour cap, when a half-broken location
acquires an unexpected new neighbour due to a join. Thereafter, the degree tuner
restores the degree fairly quickly.

When half of the peers leave the network, they steadily reduce their degrees as their
masters honour the leave requests. Figure 7.11 is an average over all running peers, in-
cluding those in the process of leaving. Thus, since it takes time to leave, the plot shows
a dip in average degree. Nevertheless, the topology protocol is working correctly and
all the non-leaving peers retain the correct number of neighbours during this procedure
due to the topology protocol. The same situation is visible on the mass join; nodes can
become peers as soon as they reach degree ≥ 4, temporarily affecting the distribution.
The crash event causes the degree distribution to drop since half of the edges in the sys-
tem are broken. This is not a measurement artefact, as crashed peers are not included
in the average. The reduction in peer degree on crash is due to actual broken edges.
Over time, the non-crashed peers detect the crash and acquire new neighbours via the
random walk protocol.

Finally, we consider the traffic requirements of the topology protocol. This breakdown
considers only the message payload traffic; overhead due to CUSP, UDP, and IP headers,
while simulated, is not measured. Due to the nature of our transport protocol, multiple
messages are packed into a single packet and it is thus not possible to meaningfully
assign these overheads to messages. We split the traffic into four categories: bubblecast,

74



 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

b
y
te

s
/m

in
u
te

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

measurement
join walk

edge maintenance

Figure 7.12.: Traffic breakdown for a heterogeneous network. Measurement traffic
dominates except during major topology changing events.

measurement, join random walk, and edge maintenance. As we will see in Figure 9.9,
bubblecast traffic dominates all others and so we remove it from consideration here.

Comparing Figures 7.12 and 7.13, we see that the heterogeneous network has much
larger fluctuations. This is because the high bandwidth peers have a large effect on
the network when they join or leave. Also, the traffic is about 5 times higher for the
heterogeneous network due to the larger number of edges in the network. The shape
of the graphs in response to the simulated events is the same. There aren’t any major
surprises; the topology traffic is higher when the churn rate is higher. After the crash
event, the dead link timeouts all fire more-or-less at once, causing many peers to execute
walks to refill their missing degree.

75



 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

b
y
te

s
/m

in
u
te

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

measurement
join walk

edge maintenance

Figure 7.13.: Traffic breakdown for a homogeneous network. Less traffic than a hetero-
geneous network, but with a similar proportional breakdown.

76



8 Measurement Protocol
To ensure the correct rendezvous probability, the bubble balancer (Section 5) needs to
ensure Equation 5.1 holds, while minimizing

∑

t∈T St x t (Equation 5.2). This requires
the terms St for every bubble type t ∈ T plus wm and

∑

u∈U w2
u. These last terms can be

rewritten as,

wm = max
u∈U

wu =
maxu∈U Cu
∑

u∈U Cu
=

maxu∈U deg(u)
∑

u∈U deg(u)
=

D∞
D1

∑

u∈U

w2
u =

∑

u∈U C2
u

�∑

u∈U Cu

�2 =

∑

u∈U deg(u)2
�∑

u∈U deg(u)
�2 =

D2

D2
1

using the following definition of Di,

Di :=
∑

u∈U

deg(u)i

D∞ := max
u∈U

deg(u)

Similarly, St can be found by summing the bubble-type-t traffic generated by each peer.
Thus, all the terms needed can be expressed in terms of either the sum or maximum of
values local to each peer.

The measurement protocol is responsible for gathering this global knowledge. In the
measurement protocol, every peer contributes a real-valued number. After the protocol
completes, every peer knows the sum of all the contributed numbers. The goal is to
approximate the true value of the sum as closely as possible, despite the constantly
changing membership of the network.

For BubbleStorm, due to the churn of peers joining and leaving the system, the actual
values of Di are constantly changing. However, the overall population distribution of
a peer-to-peer network changes slower than the raw turnover rate of the peers. Mea-
surements of deployed peer-to-peer systems [37, 71, 76] show the population changes
mostly with a 24-hour rhythm. Therefore, for practical use we just need a slowly moving
approximation; an updated value in the range of every 5 minutes is good enough.

There are several approaches one can take to the measurement problem. Probably
the simplest to understand is an aggregation tree. Each leaf forwards its contribution
to its parent. Once an intermediate node has the contribution of all its children, it too
forwards the result to its parent. Eventually, the root has received all the values, and
then redistributes this information down the tree. It’s fairly obvious that this approach is
asymptotically optimal in both bandwidth O(n) and latency O(log n). However, because
a real network is constantly in flux, one cannot guarantee that any tree stays intact long
enough for the values to be accumulated. Nevertheless, some structured systems do try
this approach, like Cone [11].

77



Gossip protocols [39] take another approach. Here, every peer exchanges information
with its neighbours. In contrast to the tree aggregation approach, every peer speaks in
every round. An easy to understand scenario would be finding the maximum value.
Every peer tells all of its neighbours the largest value it has yet seen. This process is
repeated every round until the result stops changing. In this way, the true largest value
is flooded from its point of origin. Like the tree aggregation protocol, the maximum
reaches all peers after logarithmically many rounds. However, it uses O(n logλ2

n) traffic
as opposed to O(n). In trade for this traffic, the procedure is much more robust; the
algorithm will always succeed as long as the graph stays connected.

Computing sums with gossip is slightly more complicated. There are two approaches,
both interesting for BubbleStorm. The first approach builds on top of the minimum
finding algorithm. Each peer samples an exponential random variable, with a parameter
(the inverse of the mean) equal to its value to contribute. A useful feature of exponential
random variables is that the minimum of the several variables is itself exponentially
distributed, with a parameter equal to the sum of parameters. Thus, if every peer
contributes one sample from an exponential random variable and the global minimum
is found, the result is a sample from a new exponential random variable with parameter
equal to the sum. Unfortunately, just one sample does not give a very good estimate on
the parameter of the resulting distribution. To pin down the actual value, the procedure
must be repeated. A simple variation has each peer sample the distribution multiple
times in parallel [60], thus one execution of the gossip protocol obtains several samples.

While we did not use this randomized algorithm for the measurement protocol, we
have considered using it for some other statistics. For example, suppose one wanted to
calculate the total number of unique files in a network. Just adding up the files at each
host would give the total files, but not the total unique files, because the same file gets
counted once for each peer which stores it. Instead, one could use the hash of a file as a
random seed for an exponential random variable. Each peer locally finds the minimum
of one sample taken per file (using that file’s hash). Once the global minimum is found,
this will be a sample from a distribution with parameter equal to the number of distinct
seeds, or hashes, or files, used.

The other approach to finding sums using gossip is to rely on mixing. Recall from
Section 6.1 that a random walk eventually converges to a stable distribution no matter
where it starts. Identically, if each peer were to divide its value between its neighbours
each round, the steady state would spread the value across the network proportional to
degree. Unfortunately, due to the impracticality of perfectly synchronized rounds and a
perfectly static topology, this approach doesn’t work. The trick to using this in peer-to-
peer comes from Kempe et al. [44]. Instead of mixing a single value, he mixes two. One
value is the value to measure, call it water, while the other value serves as a measuring
stick, call it salt. If you mix both values and stir, the salt will eventually be distributed
uniformly throughout the water. As long as you know the total quantity of salt, you can
extrapolate the total water in the system from the density of the salt in the water you
currently have. This is the approach BubbleStorm takes.

78



Figure 8.1.: Kempe’s water mixing algorithm shown for 5 nodes embedded in a larger
4-regular graph. Divide a peer’s water into smaller jars. Exchange those jars
with neighbours. Then, recombine the jars ready for the next round.

8.1 Approach

In Kempe’s two variable mixing algorithm [44], each peer has a bucket of water1. Ini-
tially, each peer fills its bucket with the value it contributes to the sum. One specially
chosen peer adds 1kg of salt to its bucket. In each step of the algorithm, the peers divide
their water equally between cups, one for each neighbour and one for themselves. They
then send their cups to their neighbours and receive their neighbours cups in return; see
Figure 8.1. All the received cups are dumped back into the bucket and stirred. Kempe
showed that eventually this process will fully mix the salt within the water. When the
algorithm terminates, each peer will have a different local amount of water and salt,
but the ratio of salt to water is the same everywhere. Thus, peers can simply solve the
following equation for the total water in the system (the sum of all initial water),

my salt
my water

=
total salt

total water
=

1kg
total water

We build on Kempe’s algorithm in several ways. Firstly, we remove the unrealistic
assumption of synchronized gossip rounds. For the bubble balancer, salt water is shared
with neighbours once every 90 seconds. Thus, if the peer has 10 neighbours, it sends a

1 The salt water analogy is ours. The original paper is straight-up math.

79



gossip message to one of its neighbours every 9 seconds. The initial order neighbours
are contacted is arbitrary, but we re-contact them in a round-robin fashion. The clocks
of peers need only run at roughly the same speed. No attempt is made to synchronize
the message exchanges; every peer autonomously sends a gossip message according to
its own schedule.

The measurement protocol runs continuously. Once it has calculated a sum, it imme-
diately begins calculating the sum again. Any peer present when the algorithm begins
contributes its value to the calculation. Every peer online during execution participates
in the mixing. To synchronize when the next calculation begins, BubbleStorm gossip
messages include a sequence number. A peer reinitializes its contribution with the next
sequence number when either: a) it received a message with a larger sequence number,
or b) the result has been stable to 64ε (ε is precision of a floating point number) for one
exchange with every neighbour, plus another 16 steps for safety.

To implement Kempe’s special, salt donating, peer, every peer generates a 64-bit pseu-
dorandom number from a seed based on its IP+port and the sequence number. Due to
the hash function chosen, there can be no collisions and there is a unique maximum
somewhere in the network. This random number is included in all gossip messages.
When the measurement begins, every participating peer contributes salt as if it were the
designated special peer. However, peers only accept salt that corresponds to the largest
random number seen. Thus, eventually, only the salt from the peer with the largest
number remains.

Finally, we need to decide how much water and salt to share with our neighbours.
We could stick with Kempe’s algorithm where u sends 1/deg(u) of its salt water. How-
ever, we will see that this is quite slow. This approach only makes sense if there is a
synchronized round switch where all peers exchange a message with all neighbours si-
multaneously. To find the best amount to share, we measure how much the global error
is reduced for a single mixing. We will take the greedy approach of maximizing each
individual mixing.

Consider two quantities u, v of water and a, b of salt to be mixed. Suppose the true av-
erage (total water in the system) is x . We can ask how much these two peers contribute
to the variance from the true mean, weighted by their salt content,

a(u/a− x)2 + b(v/b− x)2 =
(a+ b)(bu2 + av 2)

(a+ b)ab
− 2ux − 2v x + x2(a+ b) (8.1)

After mixing, the new estimate will be (u+ v )/(a + b). Thus the contribution to the
global error is,

(a+ b)((u+ v )/(a+ b)− x)2 =
ab(u+ v )2

(a+ b)ab
− 2ux − 2v x + x2(a+ b) (8.2)

We can now subtract 8.2 from 8.1 to find the improvement,

(a+ b)(bu2 + av 2)− ab(u+ v )2

(a+ b)ab
= (u/a− v/b)

ab
a+ b

(8.3)

80



Inspecting 8.3, we can see that the improvement depends on two things. First, u/a−
v/b is the difference in the salt densities of the waters; so, the improvement in mixing
is proportional to the current mixing. Thus, we can expect that the overall system will
converge exponentially. The second term is more interesting. It relates the improvement
to the relative amount of salt the two peers contribute.

Suppose that you have a fixed amount of salt S to split between the two nodes. Then,
ab/(a+ b) is maximized when a = b = S/2. So, we would like to mix equal amounts of
salt together, to maximize mixing. Indeed, as we will see for a homogeneous network,
this is borne out in practice.

Consider instead the situation where you have different degree peers. The higher
degree peers mix more frequently, so it seems intuitively obvious you would like more
salt mixed on them. To quantify this, imagine one source of salt a mixed x times with x
other sources of salt b. You want to split your S between these x+1 sources, S = a+ x b.
Maximizing ab/(a+b) = (S−x b)b/(S−x b+b) is a job for calculus. Take the derivative
with respect to b and set it equal zero to find the maximum,

(S − 2x b)(S − x b+ b)− (1− x)(S − x b)b
(S − x b+ b)2

= 0

It is easy to verify that b = S/(x +
p

x) is the solution, so a = S
p

x/(x +
p

x).
While this solution looks complicated, if one ignores the denominator, the result actu-

ally just says to weight by the square-root of the mixing rate. This matches our intuitive
expectation that high degree peers should hold more salt to leverage the fact that they
mix more often, although it is admittedly difficult to justify the square-root. Also notice
that this matches the homogeneous result; if the peers all mix with the same rate, then
the salt should be shared evenly.

To achieve this ideal mixing, we need a way to bias how much salt peers hold in the
steady-state. This global steady state can be achieved by carefully choosing our local
mixing rule. Instead of u sending its neighbours 1/deg(u) water, we choose that u sends
v water according to,

p

deg(v )
p

deg(v ) +
p

deg(u)
(8.4)

To verify that this has the desired steady state, consider a simplified scenario
where the water exchanges between two peers are synchronized. If peers u and
v have S

p

deg(u) and S
p

deg(v ) salt respectively, they will both send each other
S
p

deg(u)deg(v )/(
p

deg(u) +
p

deg(v )) salt. Thus their salt content is unchanged,
and S

p

deg(u) for all u is the steady state.

81



1e-05

1

100000

1e+10

1e+15

1e+20

1e+25

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Simulated time (h)

R
u

n
n

in
g

 E
s
ti
m

a
te

 o
n

 n
=

D
0

^{Peer-JoinExpChurn} ^{Leave50} ^{Join50} ^{Crash50}

norm std
max
min
avg

Figure 8.2.: Kempe’s mixing algorithm, run to compute n = D0 on a homogeneous net-
work. The minimum and maximum quickly converge to the correct value,
while the normalized standard deviation falls exponentially.

8.2 Evaluation

In the preceding section, we made two simplifying assumptions. We assumed that op-
timizing each mixing step individually was a good idea. We also modeled our problem
assuming a synchronous water exchange between two peers. Thus, one might argue
that our mixing algorithm is suspect. Fortunately, our experimental results will show
that our mixing equation is good.

Consider again the simulation used in Section 7.3. We will examine first Kempe’s al-
gorithm in a homogeneous network; Figure 8.2. This plot shows BubbleStorm’s running
estimate on D0 = n, the size of the network on a logarithmic scale.

The first thing to notice is that the protocol begins with very different values for the
minimum and maximum estimates in the network. These quickly converge towards
each other. The normalized standard deviation of all peers from the true value is also
shown. This sawtooth curve appears to decrease linearly due to the logarithmic scale;
thus, it is indeed exponentially decreasing as expected in Section 8.1. Because it is
normalized, we can see that when the round switches, the relative error is only 1e-5.
Floating point numbers have ε≈ 1.2e− 07, so the round is switching a bit early. This is
because the round switch rule was tuned for our own much faster converging algorithm.

Also worth noting is that the initial convergence is especially rapid. This corresponds
to the propagation of the salt with the largest pseudo-random value. Until this salt has
fully propagated throughout the network, the total salt in the system is actually greater
than one, which can initially give a wildly overestimated result.

82



1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Simulated time (h)

^{Peer-JoinExpChurn} ^{Leave50} ^{Join50} ^{Crash50}

norm std
max
min
avg

R
u
n
n
in

g
 E

s
ti
m

a
te

 o
n
 n

=
D

0

Figure 8.3.: The 1/2 mixing algorithm on a homogeneous network converges much
more rapidly. The slope of the standard deviation is significantly higher.

The changing size of the network can be seen in the different values to which D0
converges. However, on this logarithmic scale, even a doubling is quite a subtle change.
The initial exponential growth is much easier to see. It is important to note that this
network is undergoing constant churn with node arrivals and departures. Even the
large-scale events where half of the network joins or leaves do not significantly impact
the convergence of the algorithm.

The next plot in Figure 8.3 shows the result of changing the mixing rule. Instead
of 1/deg(u), this graph shows the result of sharing 1/2. Keep in mind that 1/2 is the
degenerate homogeneous form of equation 8.4. The simulations in Figure 8.2 and 8.3
are both run with the same number of gossip messages, water shared once with every
peer every 90 seconds. Nevertheless, the convergence is significantly more rapid. In a
one hour interval, Kempe’s rule terminates two times, whereas this rule terminates ten
times. Furthermore, the final accuracy in our algorithm is near floating point precision.

Consider that in an hour, there are 40 90-second intervals. Since our algorithm com-
pletes 10 times, this means the algorithm only exchanged messages with neighbours
4 times before completion. If we had stuck to synchronous message rounds as in the
original algorithm, this would only have been 4 rounds, nowhere near enough to com-
plete mixing. Thus, our decision to send one message to one neighbour at a time has
greatly improved the efficiency of the measurement protocol, not only its practicality of
implementation.

Next, we turn our attention to a heterogeneous network in Figure 8.4. This mixing
was performed with the 1/2 rule instead of equation 8.4. As there are now peers with
higher degree, there are more gossip messages being exchanged. This accounts for the
17 completed measurements per hour, instead of merely 10. Comparing Figures 7.12
and 7.13, the traffic appears roughly 5 times higher. Unfortunately, convergence is now

83



1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

1e+10

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Simulated time (h)

^{Peer-JoinExpChurn} ^{Leave50} ^{Join50} ^{Crash50}

norm std
max
min
avg

R
u
n
n
in

g
 E

s
ti
m

a
te

 o
n
 n

=
D

0

Figure 8.4.: The 1/2 mixing algorithm, when run on a heterogeneous network, has more
edges in the graph, resulting in more frequent message exchanges.

so rapid that the topology protocol can confuse the results. It takes time for a peer to
join/leave the network and it may be only partly connected during the procedure. In
particular, leaving peers do not receive further gossip messages and so their estimate
does not converge. Furthermore, peers can have a lot more edges and thus leaving
can take even longer. These two effects combine to create rare situations where the
convergence appears to stop. However, in reality, the active participants in the protocol
did converge, else the round switch would not have occurred.

Finally, the result of using the heterogeneous square-root mixing rule, Equation 8.4,
is shown in Figure 8.5. Now there are 22 completed measurements per hour. For
reference, this means that it takes less than two exchanges between neighbours to
achieve floating point accuracy. To put that in perspective, that’s equivalent to just
two broadcasts flooded through the network. While it’s still true that this algorithm
costs O(n logλ2

n) traffic, it’s hard to be particularly concerned about the extra log factor
compared to a structured tree aggregation approach. In exchange, the algorithm is very
simple to implement and continues to work in the face of massive network disruptions.

As a footnote, we have tried other mixing algorithms not shown here. For a homoge-
neous network, values close to 1/2 all seem to perform equally well up to measurement
error. When one deviates too far in either direction, performance decreases. On het-
erogeneous networks, we used to scale salt proportionally to degree. This performs
similarly to the mathematically justified square-root approach. However, its conver-
gence is more heavily affected by the crashes of large peers.

84



Simulated time (h)

1e-08

1e-06

0.0001

0.01

1

100

10000

1e+06

1e+08

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

^{Peer-JoinExpChurn} ^{Leave50} ^{Join50} ^{Crash50}

norm std
max
min
avg

R
u

n
n

in
g

 E
s
ti
m

a
te

 o
n

 n
=

D
0

Figure 8.5.: Our mixing algorithm, based on Equation 8.4, run over a heterogeneous
network converges significantly faster than all competitors.

85





9 Bubblecast
BubbleStorm spends a lot of effort to find the right size of a bubble. As we’ve shown
in Theorem 8, it achieves minimal traffic consumption in large networks when these
sizes are used. The bubblecast protocol is responsible for ensuring the correct number
of replicas are placed in the network. The design goals for bubblecast are:

• Precise replica placement rate

• Balanced network utilization

• Low latency search

• Simple to implement

The simplest unstructured search systems flood using a hop count [42]. Replica place-
ment messages include a counter. When the count is zero, a peer does not forward the
message. If the hop count is positive, it is decremented and forwarded to all neighbours.

Figure 9.1.: Propagation of replicas using flooding on a degree 4 graph

87



Figure 9.2.: Propagation of replicas using a random walk

Unfortunately, this is not very precise. It is only possible to control the logarithm of the
replicas placed. Furthermore, if the network includes heterogeneous degree peers like
BubbleStorm, then the number of replicas placed by the same initial hop count can
differ depending on where the message originated.

An alternative is to use random walks [28,35]. Messages again include a counter, but
this time messages are only forwarded to one other neighbour; see Figure 9.2. This way
the message is forwarded exactly as many times as the initial counter value. This level
of precision is what BubbleStorm needs.

Another benefit of the random walk approach is that it balances traffic. As we have
already seen in Section 6.1, random walks approach a steady-state probability distribu-
tion. The first eigenvector, the steady state, has weight proportional to degree. If one
peer has twice the bandwidth, it has twice the degree and thus twice the steady-state
weight. Thus, a random walk uniformly utilizes the fractional capacity of peers.

Of course, if the traffic all originated on one peer, that peer would have load well
in excess of the steady state. Still, after a few hops, the low second eigenvalue (i.e.
fast mixing) of the BubbleStorm graph will have ensured that the random walks are
well distributed throughout the network. Therefore, the load of the network at large
will be balanced even though local to the traffic source there was some extra load.
Furthermore, in a real system, traffic over time originates from many peers, not just
one. Thus, the initial probability distribution is already very close to the steady state.
Imagine a homogeneous network where peers all inject traffic at the same rate. Then
the initial probability distribution is already the steady state. In a more heterogeneous
system, the situation is probably more skewed, but the low second eigenvalue closes
the gap to ideal load balance quickly. We will measure the simulated traffic balance of
BubbleStorm in Section 9.4.

Traffic balance in flooding is very poor. The core problem is a double-dependency
on degree. High degree peers have more neighbours and thus receive more traffic.
However, they also replicate that traffic to all their neighbours, an O(n2) outgoing traffic
rate. Compare this to a random walk where they receive similar in-bound traffic and
forward to only one peer, O(n). Truthfully, things aren’t quite this simple. With flooding,

88



Figure 9.3.: Propagation of replicas using bubblecast

your neighbours won’t all send you the same amount of traffic. High degree neighbours
send you more. Thus a particular peer’s load depends not only on its degree squared,
but also its neighbours degrees, and their neighbours degrees, etc. Random walks are
simple; load proportional to degree, period.

While flooding has poor traffic balance and imprecise replication count, it has two key
advantages: latency and reliability. To reach 132 peers, it takes a flooding scheme only
2 hops in a homogeneous BubbleStorm network. In contrast, the random walk needs
132 hops. This huge difference in routing depth makes random walk query times much
too slow. We will examine the impact of these choices on delays in Section 9.4.

Not only does random walk replica placement take far longer, but it is also less re-
liable. If a peer crashes after receiving a message, but before forwarding it, not only
is that replica lost, but also any replicas which should have resulted from forwarding.
Suppose that a flooding and random walk algorithm seek to place the same number of
replicas. The chance of any message being lost is the same. However, the impact of that
loss is much worse in a random walk where the average counter value is n/2 compared
to log(n) for the flooding tree.

Bubblecast tries to find a balance between the two extremes of flooding and random
walks. It too includes a counter, which is decremented upon message receipt. Like a
random walk, the initial value of the counter precisely specifies the number of replicas.
Unlike either flooding or walking, bubblecast forwards to two neighbours, regardless of
degree. To maintain precise replication, the remaining value of the counter is divided
by two. Figure 9.3 illustrates this procedure.

Certainly bubblecast is simple to implement and achieves precise replica placement.
As for latency, the tree-like branching ensures that path lengths are short compared to
random walks. They are not as short as flooding, where each level of the tree branches
more widely, but in exchange we gain load balance. When the system is under load, this
improved balance will reduce queuing in the network and thus improve latency. Still,

89



Figure 9.4.: Randomly selected peers have all their edges open to searches

on idle networks we indeed pay a latency cost for this 2-way branching. The reason
2-way branching yields load balance is intuitively simple: the load out only depends on
the degree-in, O(n) like a random walk.

To analyze the balance phenomenon a bit more carefully, we turn again to the mixing
from Section 6.1. Suppose we wanted to measure the expected number of replicas a
peer sees. We could use 2GV−1 to represent each step of bubblecast. The same eigen-
vector analysis will conclude that the resulting steady-state has load balanced according
to degree, just with a factor 2i for depth i routing. While i = log(x) may not be deep
enough to fully mix a single traffic source, we can again argue that since the load is
injected from many places in the network, it is already close to the steady state and
thus few iterations are needed to reach the steady state. In any case, Section 9.4 will
demonstrate this empirically.

9.1 Topological Dependency

An unfortunate side-effect of bubblecast (or any topology-based forwarding scheme) is
that replica placement is not truly random. While we chose a random graph to approx-
imate random placement, problems appear when the same graph is used for both data
and query replication.

Figures 9.4 and 9.5 show one of the problems. Define interior edges as those con-
necting two peers inside the bubblecast tree and exterior edges as incident only on one
peer inside the tree. True random data placement results in more exterior edges. When
a query is executed on the same topology, bubblecast follows edges at random. Because
there are fewer exterior edges on a data bubble than there should be, it is less likely
that a query will select an edge leading to a data replica. This effect is what I’ve termed
topological dependency, and it will affect any scheme which forwards both query and
data replicas from one neighbour to another over a single topology. Flooding, random
walks, bubblecast—all are affected. Figure 9.6 shows that the particular tree does not
matter; both have 16 external edges and 6 internal.

90



Figure 9.5.: Selection by a random walk causes fewer edges facing searches

Figure 9.6.: The situation is not improved by bubblecast

There are a few ways we can avoid this effect. We could use two distinct networks,
one for data and one for query bubblecast replication. Then, the exterior data edges
in the query network are unrelated to initial data bubblecast and there is no excess
of interior edges. Of course, this would be problematic in the real BubbleStorm system
where there are many bubble types, any pair of which can be subjected to an intersection
constraint. Alternately, we could use a different random process for placing replicas. In
the complete BubbleStorm system, it is necessary to maintain replica population despite
peer departure. The algorithms which address this issue (not covered here) do not
forward replicas from neighbour to neighbour. They (eventually) give each peer a truly
independent chance to store a replica. Thus persistent bubbles are not missing exterior
edges. However, fading bubbles (and the initial state of managed bubbles) are both
affected by this phenomenon.

In BubbleStorm, we opt to solve topological dependency (where it occurs) by paying
a bandwidth penalty. When placing persistent replicas with bubblecast, we place a few
extra to compensate for the missing exterior edges, a dependency correction factor F .

91



Over time, our replica maintenance algorithms disperse the replicas more uniformly
throughout the network and the correction factor disappears.

The correction factor inflates the number of replicas in the system. Thus, the ex-
pected number of search results is no longer λ, but Fλ. These extra results are easy to
understand. While the extra interior edges make it hard to find a match, once a match
is found they tend to lead you to more matches. If the query lands on a peer with a
data replica, there are potentially three further edges which lead to another replica;
consider Figure 9.6. This pushes the result distribution from the idealized Poisson to a
distribution shifted somewhat to the right. The minimum degree of BubbleStorm peers
(16) was chosen, in part, to reduce this extra matches effect.

When copying a replica from neighbour to neighbour, you get a replica tree. Random
walks, bubblecast, and flooding all make differently shaped trees, but they are still trees.
In a tree with x nodes, there are x − 1 interior edges, which is ≈ x for large x . As each
edge is incident on two nodes, the exterior edge count is reduced by 2x . Thus, the
correction factor is easy to calculate using the measurement protocol,

F :=
correct exterior edges
actual exterior edge

=

∑

u∈U wu deg u
∑

u∈U wu(deg u− 2)

=

∑

u∈U deg u deg u
∑

u∈U deg u(deg u− 2)

=

∑

u∈U deg u2

∑

u∈U deg u2 − 2
∑

u∈U deg u

=
D2

D2 − 2D1

For a homogeneous network with degree 16, this comes out to 256/224≈ 1.14. Thus,
the dependency correction factor adds a 14% bandwidth overhead. The traffic weights
fed to the bubble balancer consider all traffic costs (including replica maintenance and
the dependency correction factor) so this cost is split between query and data bubbles
for an overall traffic increase of ≈ 6.9%. For a more realistic heterogeneous network,
the cost goes down as there are peers with much higher degree and the missing 2 edges
play a less significant role.

There is yet a further problem caused by our use of graph edges to emulate random
sampling. Within a single bubblecast, it is possible for a node to be reached twice by
two independent paths. This, in itself, is not a problem; the bubble balance equations
already consider the possibility of placing the same replica into a bin/peer twice. How-
ever, once a collision has occurred, further chained collisions are possible. This problem
was alluded to in Section 6.2 and is illustrated by the red dashed edges in Figure 9.7.

Each peer has at least 16 neighbours. If it was already reached by bubblecast, then 3
of those neighbours would be bad choices for forwarding. A second incoming bubblecast
would pick two edges out of the 15 other available edges. It is 12 ∗11/15 ∗14≈ 58.7%

92



Figure 9.7.: A normal collision in bubblecast (black), as compensated for by Lemma 3,
can lead to further chained collisions (red) not captured by our model.

likely that no chained collision occurs. Of course, chained collisions are further reduced
by the chance that there is no collision in the first place.

One could imagine another compensation factor, analogous to the F used to amplify
the exterior edges from data replicas. However, in our testing this effect has never been
very strong. In comparison, the query/data topological dependency had a measurable
effect and thus justified the F -scaling. Keep in mind that BubbleStorm already makes
a number of safe approximations and rounds up in all other calculations. Due to the
Birthday paradox, the balancer tends to avoid saturating the network with a single
bubble, as the larger the bubble, the less replicas are placed per message. Furthermore,
the balancer uses the approximation g, which overestimates the lost replicas when a
bubble becomes large. This means that in exactly the case where chained collisions
become likely, the approximation used by the balancer already tends to create extra
replicas. Empirically, these other approximations appear to drown out the effect of
chained collisions, so much so that in very unbalanced bubbles (where collisions are
most likely), the match probability tends to be much higher than it should, rather than
lower as one would expect from chained collisions. Therefore, we have elected to ignore
this effect in practice.

9.2 Notification

Most of this thesis has ignored the actual delivery of query results. Rendezvous theory
ends at the point a rendezvous peer has received both query and data. However, in
a real system, the rendezvous peer must deliver the results to the query source. This
section details our approach to this vital, if simple, task.

93



First, one must keep in mind that the BubbleStorm system is designed to aim for
λ rendezvous peers in the system. Each of those peers finds that the same document
matches the query. However, if the document is large (in our simulations 20KB), it does
not make sense to have all rendezvous peers deliver the result, but instead only one.

To ensure the document is sent only once, the notification protocol has four stages.
First, a reliable CUSP connection is established. Second, the rendezvous peer reports
the unique ID or hash of the document found. Third, the source peer decides to either
download or stop the session. Finally, the rendezvous peer sends the result.

Building a CUSP connection requires one round-trip to negotiate the channel encryp-
tion and synchronize the sequence numbers used for reliable delivery. Thereafter, the
channel goes through slow-start, exponentially increasing the traffic per round-trip until
congestion is detected. However, CUSP only builds a single channel between two end-
points. Therefore, if two peers are already connected, perhaps as neighbours, then the
existing CUSP connection is reused and this step is skipped. This can have performance
implications as negotiation and slow-start add a significant latency penalty.

While executing a query, the source peer maintains a table of the ID/hashes of all
the documents found. The first rendezvous peer to report a particular ID is told to
send it. All repetitions of the same ID are told to close the connection. The upside
to this approach is that it is quite simple to implement. The downside is that if the
chosen rendezvous peer crashes while transmitting the result, it is lost. Probably a
useful enhancement would be to simply stall the additional rendezvous peers until the
first peer completes transmission.

Typically, a query is ended by a timeout. Until that time, results accumulate. The
exact latency depends on a number of factors, especially network size/shape, retrieved
document size, and network congestion. Nevertheless, results typically arrive in the
ballpark of seconds. We have set the default query timeout at 60 seconds, at which
point further results are not accepted and still downloading results are cancelled.

While there are several ways we could dynamically estimate how long it would take
for a given percentile of results to arrive, we have not yet elected to do so. The interface
BubbleStorm provides will report results as soon as they arrive. We think the right
approach for a search result list is to just update the GUI immediately, as the results
come in. The application can leave the query running until the user closes the window.

Displaying results as they arrive has a few advantages. Mosy significantly, the user
gets the first results quickly, increasing the perceived responsiveness of the system. Also,
if the result the user seeks appears early, the query can be terminated when the user
closes the window. Humans are also good at estimating when progress has ceased; they
will see results arrive and as the list changes less and less, they can decide when not
many more results are likely to appear.

For an automated system, where the complete result set is desired, our current so-
lution is to just use a large timeout, like 60 seconds or more. If a large timeout is
unacceptable, BubbleStorm does not yet offer a solution. Our best suggestion is to in-
clude a query with a known number of matches, and gauge the progress by the arrival
rate of these matches.

94



9.3 Queuing

While BubbleStorm seeks to minimize bandwidth consumption and spread load evenly
between peers, congestion is an unavoidable fact of life. When it happens, peers need
to decide which messages get sent first, and if the congestion persists, which messages
will be discarded. Fortunately, the CUSP transport protocol provides BubbleStorm with
fairly direct control over these choices.

Briefly, in CUSP, every message is assigned a priority. When a peer has multiple mes-
sages ready to be sent, the highest priority message is selected. Then, a packet destined
for this host is prepared. CUSP fills the packet up to a full MTU size, selecting messages
destined for that host in decreasing priority order. This means that the most urgent
message is always sent first, but it may be accompanied by additional messages that do
not have the highest global priority, but have the same destination. Keep in mind that
packet overhead is 16+20+8+24=48 bytes for Ethernet+IP+UDP+CUSP. By compar-
ison, a query of 20 bytes is quite small. Thus, packing many messages into a single
packet can greatly improve network efficiency. However, this not-strictly-priority order
can have surprising results.

Picking correct message priorities in BubbleStorm makes a big difference, as we will
see in Section 9.4. In decreasing order, BubbleStorm prioritizes topology maintenance
traffic first, then gossip/measurement traffic, query response traffic, and finally bubble-
cast traffic. The reasoning is fairly straight-forward. The topology must remain intact,
or the other subsystems will not work. Topology traffic use is also the lowest, and so
has highest priority. Measurements are needed to track the state of the network. If mea-
surements stopped flowing, BubbleStorm might get stuck in a state where the system
could reduce bandwidth consumption using the balancer, but does not. The measure-
ment traffic cost is also constant, and much less than notification and bubblecast traffic
in a congested system. Finally, bubblecast traffic serves to create notification traffic. If
notifications are being dropped, there is little point sending a lot of bubblecast traffic
to find more. As we will see, prioritizing notification traffic above bubblecast traffic
leads to a fairly nice steady state under congestion; high notification traffic leads to a
reduction in bubblecast traffic. Reduced bubblecast traffic leads to less results, leading
to less notification traffic.

Finally, not all bubblecast messages are created equal. Some messages have a higher
counter value; see Figure 9.3. We set the priority of messages with large counter values
higher than those with small counter values. Specifically, the priority is the counter
value divided by the bubble size. This has two effects: improved latency and graceful
decay under congestion.

Prioritized bubblecast improves bubblecast latency, because most rendezvous peers
are leafs in the bubblecast tree. To reach these leaf peers, a message must be forwarded
from the source over intermediate hops till it reaches its final destination. The latency
to the leafs is thus the sum of all these edge latencies. However, peers in the interior of
the tree appear on the path to multiple leafs. Therefore, it makes sense to prioritize the
early interior messages in the tree, at the expense of slower messages near the leafs of

95



the tree. Indeed, the bubblecast counter value indicates exactly how many downstream
peers are reached.

The more important effect of bubblecast priorities is graceful decay under congestion.
When the network is congested, the leafs of the bubblecast trees are dropped first.
Because the number of rendezvous peers is roughly proportional to the product of the
two bubble sizes, we get better results when both bubble sizes are decreased by the
same ratio. By setting the priorities as we have, all bubble types suffer the same relative
reduction in size. This maximizes the match probability, despite the inability of the
congested system to meet the guaranteed success rate.

9.4 Evaluation

To examine how bubblecast and the complete system behave, this section compares
a variety of experiments. The experiments differ in three aspects: peer bandwidth
distribution, scenario, and replication algorithm. As in the previous two evaluation
sections, we consider two different peer populations, a homogeneous population of
1MBit peers and a heterogeneous population of peers (the same used when simulating
the topology; Figure 7.7).

churn static balance
topology parameters
total peers 20000 1000 1000
online peers ≈ 500-1000 1000 1000
average lifetime 1 hour infinite infinite
crash fraction 10 % n/a n/a
rendezvous parameters
query size 20B 20B 20B
document size 20KB 20KB 20KB-20B
document/query ratio 1% 1% 1%
per-peer injection rate (homo) 1/15s 1/60s-60/60s 1/60s
per-peer injection rate (hetero) 1/15s 1/21s-60/21s 1/21s

Figure 9.8.: Simulation scenarios

The scenarios simulated again include the churn scenario with leave, join, and crash
events, ala Figure 7.8. We also consider a scenario where the injected traffic of both
bubble types increases linearly after the first simulated hour, to explore the system under
congestion collapse. Finally, we consider a scenario where only the size of published
documents decreases linearly after the first simulated hour. This will cause the ratio of
SQ/SD to change over time and the bubble balance should then react by changing the
balance between bubble sizes. The scenario parameters are summarized in Table 9.8.

In all scenarios, documents are published as fading bubbles (Figure 4.1). Queries
seek to find documents published between one and five minutes ago. We only query for
recent documents because fading bubbles tend to evaporate in the network due to churn

96



and major topology changing events. Neither managed [51] nor durable [49] bubble
types have this restriction, but they are not covered in this thesis. All publish/search
events occur with a global Poisson arrival rate per node, irrespective of node degree.
Thus, for a homogeneous graph, injected traffic already has the steady-state distribu-
tion. However, because injected traffic is a discrete event handled much more quickly
than the arrival rate, the distribution is still somewhat bursty. In a heterogeneous net-
work, because the traffic is not injected proportionally to degree, it does not match
the steady state. Assuming there is one person using one peer, this usage model is not
completely unrealistic.

The three replication algorithms compared are roughly: random walk, bubblecast,
and flooding. In order to compare apples to apples, we had to modify the flooding
algorithm to be more precise. The flooding algorithm compared here does not use a
hop counter, but rather a replica counter like bubblecast. In some sense, the flooding
we simulate is actually bubblecast with branch factor equal to degree, instead of two.
Similarly, a random walk is just bubblecast with branch factor one. All three algorithms
get their bubble sizes from the bubble balancer. Furthermore, all three algorithms prior-
itize higher count messages. This keeps the three algorithms roughly competitive with
each other and allows us to examine the effects on queuing more precisely. To see a
less fair, but perhaps more representative comparison with related work, see our ear-
lier work [79] where flooding does not use balanced bubbles and random walks do not
leverage heterogeneous peers.

9.4.1 Normal Operation

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

tr
a
ff
ic

 (
b
y
te

s
/m

in
u
te

)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

hetero-notify
homo-notify

homo-bc
hetero-bc

hetero-measure
homo-measure

Figure 9.9.: Per-minute traffic breakdown for the churn scenario

To get a feel for what is happening in the churn simulation, consider the per-minute
traffic graph. Notice that in Figure 9.9 the bubblecast traffic for the homogeneous net-

97



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

re
p
lic

a
s
 (

#
)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

homo-query
hetero-query

homo-data
hetero-data

Figure 9.10.: Bubble sizes for churn scenario over time

work is higher. This is simply due to the fact that the injected load for both homogeneous
and heterogeneous networks is the same and the bubble balancer exploits the gains from
high bandwidth peers to reduce the bubble sizes. The notification traffic in both net-
works is roughly identical because both issue queries at the same rate. Obviously, the
measurement traffic in the heterogeneous network is higher due to the increased num-
ber of edges. However, the payoff in reduced bubble size clearly dominates this cost.

The impact of the churn scenario events is also easy to recognize. Notice the sudden
jump in homogeneous notification and bubblecast traffic at 3:10, ten minutes after the
mass join even. This is due to the time it takes for the measurement protocol to report
the sudden change in network structure to the balancer. For homogeneous networks,
this takes longer because the measurement protocol runs slower (see Section 8.2). The
same delay causes the opposite effect after a massive leave and crash events (4:10); the
bandwidth takes a moment to decrease in response to the reduced network size.

That the homogeneous and heterogeneous notification traffic are not exactly equal
around 3:30 is not a cause for concern; these two curves correspond to two different
simulations. The population fluctuates randomly around the target (see Figure 7.8), due
to churn. Furthermore, the heterogeneous network has a mix of various peer capacities
and after the join event, that mix can be different than it was before the leave event.

Bubblecast traffic ultimately stems from the bubble balancer. The bubble sizes com-
puted by the balancer from the statistics obtained by the measurement protocol are
shown for churn and balance scenarios in Figures 9.10 and 9.11. The churn plot
is fairly straight-forward; the bubble sizes are adjusted in response to the population
changes, delayed by the measurement protocol.

As for balance, when there are 1000 peers, the query bubble size is ≈ 170 and publish
≈ 30. Comparing traffic, that is 170 · 20 · 0.99 = 3366 versus 30 · 20000 · 0.01 = 6000
bytes per bubble. In a balanced system, we would naïvely expect these two to be equal.

98



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

re
p
lic

a
s
 (

#
)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

homo-query
hetero-query

homo-data
hetero-data

Figure 9.11.: Bubble sizes for balance scenario over time

However, the bubble size 170 is large enough to cause diminishing returns due to peers
receiving duplicates. Fortunately, our convex optimizer correctly avoids large inputs to
g and opts for a smaller query bubble size. This also explains why, when the network is
reduced in size, it is the query bubble that shrinks much more than the data bubble.

The bubble sizes in the balance scenario (Figure 9.11) are much more interesting.
In this simulation, we had set document sizes to start decreasing after one hour. This
means that SD decreases and the optimal trade-off between query and publish bubble
sizes shifts. Thus, every time the mesurement protocol terminates, from 1:00 to 2:00,
the system calculates a new trade-off. As expected, the data bubble size grows, as
each data replica now costs less traffic to produce. Meanwhile, the query bubble size
shrinks as the larger data bubbles mean that query bubbles need not be so large. This
same rebalancing effect would also occur if the injected publication rate were to change
instead of the injected document size; both factors affect SD.

To smooth out the measured traffic over time, BubbleStorm uses an exponential mov-
ing average. Peers report their traffic as 20% of their traffic since the last measurement
and 80% of the last reported value. The averaging is applied before the local value is fed
to the measurement protocol. Thus, the system can still respond immediately to large-
scale topology events. If half the nodes crash, the measurement protocol will report
half the traffic when the subsequent measurement completes. By design, the exponen-
tial moving average dampens the reaction of the system to changes in the ratio of SD/SQ,
preventing large swings in response to temporary changes in traffic mix. However, this
also means it slows the reaction of the system to the balance-changing simulation.

For the real-world, this moving average makes sense. We want to respond quickly to
network outages, but we don’t want transient fluctuations in the traffic distribution to
cause radical changes in bubble balance. For persistent bubbles in particular, a changing
bubble size requires maintenance traffic [49,51]. However, in this experiment, it means

99



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  5  10  15  20

p
ro

b
a
b
ili

ty

#

poisson
homo

hetero

Figure 9.12.: Probability distribution of search results for λ=4

that the changing document size affects heterogeneous networks faster. This is because
the measurement rounds complete more swiftly. In turn, this causes the old value to be
multiplied by 80% more frequently, and so the exponential moving average tracks the
changing traffic ratio more closely.

Thus, the faster heterogeneous measurement round switches make the heterogeneous
curves in Figure 9.11 smoother due to smaller and more frequent changes. Furthermore,
their balance shifts more quickly, nearly keeping pace with the actual bandwidth distri-
bution. As a future enhancement, it might make sense to weight the exponential moving
average according to the time between measurement rounds. This would cause both ho-
mogenous and heterogeneous networks to track the traffic ratio at the same speed.

Now, we turn our attention to BubbleStorm’s correctness. Recall from Theorem 4 that
we expect BubbleStorm to return query results according to the Poisson distribution.
However, as discussed in Section 9.1, since we used the same network to forward both
queries and documents, there is a dependency not captured by the idealized analytic
result. For a homogeneous network, we argued that it was necessary to amplify the
results by a factor of 1.14 in order to correctly bound the failure rate. Furthermore, we
also expect that the approximation made in Theorem 7 will cause us to overestimate
the necessary bubble sizes when the network is highly heterogeneous.

To check how closely theory meets practice, we recorded the number of document
replicas found per query over the period from hour one to two in the churn scenario.
During this time, the network is quite stable, though it is subject to crash events. The
results for bubblecast are shown in Figure 9.12.

Firstly, the probably of zero hits for the homogeneous network is slightly higher than
predicted for λ = 4. I believe there are enough samples in this plot that this is not
measurement error, but a true defect in the success rate. This difference disappears
when crash events are removed, so it is most likely due to lost messages. One of the key

100



 0.75

 0.8

 0.85

 0.9

 0.95

 1

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

bc
flood
walk

Figure 9.13.: Query success rates under churn in a homogeneous network

advantages of BubbleStorm is that one can tune λ to deal with the expected worst-case
network events. As long as one keeps in mind that λ is for a network without losses,
then BubbleStorm appears to be working exactly as intended.

Next, except for 0, the mass of the homogeneous result distribution is shifted slightly
to the right when compared with the idealized Poisson distribution (though not as far
as the heterogeneous result). This corresponds to the dependency compensation factor
F = 1.14. Recall that this factor corrects the mass at zero, but increases the average
number of results by 14%. The plot confirms this behaviour; the curves align at zero,
but the average is 14% right-shifted.

Finally, consider the heterogeneous topology. We have a rather small network of 1000
peers with capacity ranging from degree 16 to 1280. We are clearly in the realm where
a few peers completely dominate the network. Thus, the approximation of using wm
to simplify the balance equation will clearly cost us some unnecessary traffic. Indeed,
the network is returning 5.6 matches instead of 4, a significant shift of mass to the
right. However, we already know from Figure 9.9 that despite this wasted effort, the
bandwidth is still significantly decreased by leveraging heterogeneity. Furthermore, we
know from Theorem 8 (optimality of BubbleStorm) and Figure 5.6 (heterogeneous bub-
ble sizes vs. network size) that if the network were to grow with this same bandwidth
distribution, the wasted traffic would decrease. So, BubbleStorm should perform even
better at scale, though simulating networks large enough to see this effect is beyond the
capabilities of our lab.

We now further examine the rate of successful queries. While the results per query
are interesting, the main concern is the failure probability. To that end, consider Fig-
ures 9.13 and 9.14. In these plots, the success rates of the three replication algorithms
are compared as they are subjected to the churn scenario’s events.

101



 0.75

 0.8

 0.85

 0.9

 0.95

 1

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Simulated time (h)

^{Crash50}^{Join50}^{Leave50}^{Peer-JoinExpChurn}

bc
flood
walk

Figure 9.14.: Query success rates under churn in a heterogeneous network

Right away, it is clear that random walks are a poor choice. As argued in Section 9,
a lost packet affects a random walk much more significantly than a tree. It’s also quite
clear that the slower convergence times of the measurement protocol on homogeneous
networks makes topology changes affect the success rate for much longer. On the join
event (and the initial exponential join), the success rate is too low as the bubbles need
to be scaled up. On leave events, the success rate is temporarily too high as the bubbles
need to be scaled down in size. On crash events, success initially plummets due to lost
messages, but thereafter is too high as the bubble size needs to come down. These
effects are also visible on the heterogeneous network in Figure 9.14, though they are
less pronounced.

In heterogeneous networks, the success rate is higher than it should be. However, this
is to be expected since we already saw in Figure 9.12 that our heterogeneous approxi-
mation led to more results than requested. Still, it is quite instructive to see how much
a difference a slightly increased effective λ has on the success rate. Both plots have the
same scale, and the difference is quite noticeable.

Finally, the perhaps most surprising result is that flooding performs markedly worse
than bubblecast on homogeneous networks, but does not suffer significantly on hetero-
geneous networks. This is due to the collision chaining effect illustrated in Figure 9.7.
For a flood-based replication approach, a single collision is magnified to 14 more colli-
sions in a homogeneous network. In a heterogeneous network, the query size is roughly
the same as the average degree. Thus there is little opportunity for chaining to appear.

We argued that the collision chaining effect is normally small enough to be neglected,
overwhelmed by the approximation g. However, that argument presupposed branch
factor 2 bubblecast and degree 16 peers. Indeed, we specifically chose those values to
ensure that collision chaining does not matter.

102



 0.75

 0.8

 0.85

 0.9

 0.95

 1

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

hetero
homo

Figure 9.15.: Query success rates under changing bubble balance

Finally, Figure 9.15 shows the effect of changing bubble balance. First of all, the
heterogeneous success rate is again higher than it should be, due to our approximation
using wm. The heterogeneous plot stays roughly where it should, but the homogeneous
plot has periodic dips. In fact, each of those dips corresponds to a new measurement
round. The publish bubble size increases after each measurement, but fading bubbles
take no corrective action. Since the queries look for data that is potentially 5 minutes
old, they sometimes match against publish bubble that are too small. Still, the average
hovers around the target 98%, so the system is performing correctly. The balancer does
a good job finding bubble sizes as the ratio of SD to SQ changes for both hetero- and
homogeneous networks, confirming that the theory matches practice.

9.4.2 Homogeneous Congestion Collapse

So far, we have seen that BubbleStorm performs well even in the face of major topology
changes. However, to truly understand a system, one must break it! In this section,
we subject BubbleStorm to a true torture test. The static scenario increases the traffic
linearly after the one hour mark, ending with a 60-fold increase in traffic. This pushes
the traffic requirements beyond what the network can bear, and we will see that this
tells us a lot about the system.

Figure 9.16 shows the average UDP traffic sent by each peer. At the one hour mark,
both query and publish events increase linearly in frequency, so unsurprisingly, the traf-
fic shoots up. All our peers in this network have 1Mbs DSL, which has only 128Kbs
= 16KBs uplink capacity. The simulation includes Ethernet and IP traffic overhead not
measured here, so the plot shows we are pretty close to completely saturating the link
by the end of the hour.

103



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

tr
a
ff
ic

 (
b
y
te

s
/s

e
c
o
n
d
)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

bc
flood
walk

Figure 9.16.: Average uplink traffic per peer in the homogeneous static scenario

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 4e+08

 4.5e+08

 5e+08

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

tr
a
ff
ic

 (
b
y
te

s
/m

in
u
te

)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

flood-rendez
walk-rendez

bc-rendez
bc-notify

flood-notify
walk-notify

Figure 9.17.: Traffic breakdown for the homogeneous static scenario

Once congestion sets in, messages must be dropped. However, because we use CUSP
priorities, not all traffic is affected equally. For example, no gossip or topology messages
are lost. As designed and Figure 9.17 shows, rendezvous (bubblecast/flood/walk) traffic
begins to get dropped when congestion sets in. Decreased rendezvous traffic results in
less matches, which in turn leads to less notification traffic. This nice feedback loop
results in us getting results back to the user with a reduced λ, which is pretty much the
best we could hope for. The notification (search result) traffic alone exceeds the network
capacity, so no system could guarantee exhaustive search under these conditions.

104



 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

tr
a
ff
ic

 (
b
y
te

s
/m

in
u
te

)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

flood-rendez
walk-rendez

bc-rendez
bc-notify

flood-notify
walk-notify

Figure 9.18.: Traffic breakdown for a buggy homogeneous static scenario

By comparison, consider the buggy network in Figure 9.18 where rendezvous traffic
has higher priority than notification traffic. There, the rendezvous traffic completely
eliminates the notification traffic from the system. Naturally, this means that there are
no results being returned to the user, and all of the system’s effort is in vain.

When the rendezvous traffic decreases, this means that bubbles are smaller than they
should be. Because we prioritize larger counter values, the losses tend to be on the
leafs of publish/search trees. Furthermore, though not shown here, both query and
publish bubbles are affected equally. This is exactly the trade-off we want according
to rendezvous theory. The improvement to search success decreases as bubbles get
larger. Thus, by reducing all bubbles equally, success is maximized despite losses. This
is confirmed in Figure 9.19. There we see the success rate begins to fall around 1:15
and reaches 50% success rate around 1:30. Keep in mind that workload is increasing
linearly, which means that request rate at 1:30 is double that at 1:15. Since the system
is at maximum capacity, it cannot return any more results. Thus, getting results for half
of the issued requests is pretty much the ideal result.

While the curves for bubblecast show great promise, we can see that the alternative
replication algorithms run into problems. Random walks, as ever, suffer badly in the
face of packet drops. Even light congestion can cause drops and thus bubbles are much
smaller than they could be. Indeed, random walks even failed to fully saturate the
system as Figure 9.16 shows.

The situation for flooding is less dire. However, in a homogeneous network, “flooding”
is just bubblecast with branch factor 16. Thus, we actually expect it to perform fairly
well; our concerns with flooding had to do with hop counters (which we replaced with
a replica counter in this test) and poor load balance due to a dependency on degree.
Since load is injected uniformly at random in the graph, and all nodes have the same
degree, flooding should not suffer from poor load balance in this test either.

105



 0

 0.2

 0.4

 0.6

 0.8

 1

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

bc
flood
walk

Figure 9.19.: Query success in a homogeneous network under increasing load

The only real benefit bubblecast has compared to flooding in this simulation is that
bubblecast has a wider variety of counter values. Branch factor 16 reduces the bubble-
cast priorities very quickly. As a consequence, it is harder to reduce all bubbles equally.
Many/most of the counter values under flooding are 1. When a peer must drop traffic, it
can’t distinguish between these messages. Thus, some bubbles get lucky and suffer very
little reduction, while some bubbles are unlucky and lose nearly all their leafs. As ar-
gued earlier, rendezvous performs best when all bubbles are reduced equally. As this is
harder to achieve with flooding, it obtains fewer results, despite the higher rendezvous
traffic shown in Figure 9.17. Also, the flooding experiment had to be terminated early
as it incurred so much queueing that the simulation system ran out of memory.

Finally, we turn our attention to latencies in Figure 9.20. We consider two latency
measures; time until a rendezvous peer identifies the match (raw) and time until the
requesting peer has received it (rtt). Obviously, random walks perform poorly for both,
and it only gets worse as congestion sets in.

Before the system is loaded, the notification latency dwarfs the rendezvous latency for
both bubblecast and flooding. If the documents were smaller, it is possible the shorter
paths of flooding would be of some benefit. However, as we’ve seen, large branch
factor has penalties in correctness (due to chained collisions) and performance under
congestion (less variety in counter values). Still, it might be worth trying bubblecast
with branch factor 4 (versus 16), to reap most of the latency benefit and (perhaps)
suffer little of the penalties.

Once congestion sets in, things get more interesting. Both bubblecast and flooding
rendezvous latency shoot up. Keep in mind that due to our prioritization, most of the
latency is incurred in the last few hops. Thus, the shorter forwarding path for flooding
benefits it much less than one might expect. As the load gets very high, something very
unexpected starts to happen: bubblecast performance begins to improve! There is a

106



 0

 5

 10

 15

 20

 25

 30

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

q
u
e
ry

 l
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

walk-rtt
walk-raw
flood-rtt

flood-raw
bc-rtt

bc-raw

Figure 9.20.: Search latencies in a homogeneous network under increasing load

fairly simple explanation: less results are being found because leafs on the search tree
are being pruned. Thus, a larger fraction of the successful results are being found in the
interior of the tree. We don’t see this benefit for flooding, because the rapid decrease
in counters means that most of the matching is still happening when the counter is 1,
which have the lowest priority.

9.4.3 Heterogeneous Congestion Collapse

For the heterogeneous overload test, the network has higher capacity due to the larger
peers. Thus, we need to increase the frequency of queries and publishes to saturate it.
Furthermore, as we can expect from Figure 9.9, rendezvous traffic will take a backseat
compared to notification traffic. Indeed, Figure 9.21 bears this out; notifications con-
sume the majority of traffic. We can already anticipate that things will not turn out well
in this scenario. BubbleStorm optimizes for rendezvous traffic, not notification traffic.

The next sign that something is amiss comes in Figure 9.22. Here we see that after
1:43 the average time for bubblecast to match on a rendezvous peer (bc-raw) is more
than the average time for results to be delivered to the query source (bc-rtt). This seems
impossible, because for a given result, the rtt must be larger than the raw time. However,
these plots only consider successful results. Therefore, we can conclude that there are a
large number of results found by the rendezvous system which fail to get delivered to
the query source. Furthermore, it must be exactly the uncongested rendezvous peers
which manage to deliver their results.

Recall that we use degree proportional to capacity. According to rendezvous theory,
a double capacity peer can match four times as many results. That peer receives twice
as many queries q and twice as many publishes p. From the point-of-view of processing
the received load, this isn’t typically a problem. The black box model doesn’t apply at a

107



 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

tr
a
ff
ic

 (
b
y
te

s
/m

in
u
te

)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

flood-notify
bc-notify

walk-notify
flood-rendez

bc-rendez
walk-rendez

Figure 9.21.: Traffic breakdown for the heterogeneous static scenario

peer; the peer is free to use an index or some other fancy data structure. For a database
table with a BTree index, the cost to process all the queries might simply be O(q log p).
Similarly, storing the publications costs just O(p log p), quite reasonable.

The problem that appears in this scenario, however, is that the traffic to report these
matches grows as O(qp). That means that a double degree peer needs to send four
times as many notification messages. Since we set degree proportional to bandwidth, it
should now be clear why the system is not taking this well. Rendezvous traffic is well
balanced, proportional to capacity, but notification traffic grows with the square.

As a result of this effect, the highest capacity peers are overloaded around the 1:25
mark. As the traffic continues to grow, more and more peers become overloaded. This
effect explains why the notification bandwidth in Figure 9.21 continues to increase after
the effects of congestion begin to be felt; there is as-yet unused capacity on the lower
capacity peers. The system has poor notification load balance.

This effect also appears in the success rates shown in Figure 9.23. In this plot, we
also measure the success rate of the rendezvous step alone (raw), as well as the success
rate including notification delivery (rtt). In the homogeneous case (Figure 9.19) we did
not plot these separately, because they had the same curve. It is easy to see that in the
heterogeneous case, bubblecast finds many matches that the notification subsystem is
then unable to deliver. This is because the majority of results are found on high capacity
peers which are completely overloaded and unable to deliver the result notification.

Curiously, the poor rendezvous load balance of flooding actually serves to improve
performance in this scenario. Recall that we expect flooding to place undue rendezvous
load on high capacity peers. They will send replicas proportional to the square of their
capacity (Section 9), which is bad for rendezvous traffic balance. However, rendezvous
traffic is not the dominant traffic in this scenario. Consider that every message has both
a receiver and a sender. If high capacity peers send too many replicas under flooding,

108



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

q
u
e
ry

 l
a
te

n
c
y
 (

s
e
c
o
n
d
s
)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

walk-rtt
walk-raw
flood-rtt

flood-raw
bc-rtt

bc-raw

Figure 9.22.: Search latencies in a heterogeneous network under increasing load

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10 01:20 01:30 01:40 01:50 02:00

s
u
c
c
e
s
s
 r

a
te

 (
%

)

Simulated time (h)

^{Peer-JoinExpStable} ^{Start-Work}

flood-raw
bc-raw

walk-raw
bc-rtt

flood-rtt
walk-rtt

Figure 9.23.: Static query success rates in a heterogeneous network

they must receive too few. Thus, due to this poor rendezvous load balance, the system
matches less on high capacity peers than designed. This serves to improve the load
balance for notifications, because high capacity peers (the bottleneck) are underutilized.

Despite the negative effect on notification traffic, the choice to set degree proportional
to bandwidth is not wrong for rendezvous traffic. We know from rendezvous theory that
this choice yields the most matches per invested unit of rendezvous traffic. If anything,
these results show the low cost of running BubbleStorm to solve the rendezvous problem
on a real system. The result set, which must be delivered by any correct system (black

109



box, key-based, or otherwise), dominates the traffic consumption. For small networks,
then, it might make sense to set degree proportional to the square-root of bandwidth.
This way, the notification traffic would be proportional to capacity.

On the other hand, BubbleStorm is designed primarily to deal with very large net-
works. In our simulation, there are only 1000 nodes due to memory limitations. How-
ever, in a large system with 10 million nodes, the bubble sizes would need to scale up
100 times higher1. At this point, bubblecast traffic would dominate notification traffic,
and one would again want degree directly proportional to bandwidth.

On yet another hand, in a real system, there will likely be more than one result per
search, increasing the notification load further. However, we have always intended to
build a Top-K query algorithm into BubbleStorm, similar to [7]. This would again keep
the notification costs down.

It’s hard to imagine a good static trade-off between these two types of traffic, because
their relationship depends heavily on the application, workload, network topology, and
size. Due to the myriad of factors involved, it might make sense for a future version
of BubbleStorm to measure notification traffic in addition to bubblecast traffic. Then,
a smart algorithm could decide where in the spectrum between square-root and linear
degree peers should position themselves.

This thesis leaves the solution to the notification versus rendezvous traffic problem
open. Our current position is that BubbleStorm needs to perform well when the network
is large. Small networks are easy. Leaving degree proportional to bandwidth means
that the system behaves best where the problem is hardest. However, a future adaptive
approach could capture the best of both worlds.

1 It will actually be much less because the wm approximation become sharper and the balancer will
have the freedom to more closely match query and publish bubble costs. I’d estimate just a 30- to
50-fold increase for this application setup at 10 million nodes.

110



10 Outlook
BubbleStorm started with lofty goals and matured into a complex software engineering
project. Now that we have a concrete system, it is natural to ask how close to our goals
we came. The primary goal of BubbleStorm was to bridge the gap in usability between
peer-to-peer systems and databases. We consider in this Section what worked out well,
the progress made, issues remaining, and give an outlook towards future work.

The main non-issue is bandwidth. Some researchers confronted with BubbleStorm
mumble something about square-root bandwidth cost and then dismiss it out of hand.
We believe that this issue is a complete red herring. The area where BubbleStorm is
particularly strong is networking. It has excellent bandwidth, latency, load balance,
fault tolerance, and structure.

We have shown that the black-box matching problem fundamentally requires square-
root traffic complexity. So long as one intends to build a system with capabilities ap-
proaching those of a database, one must be prepared to pay this cost. The “competition”,
in the form of key-based systems, only appears to offer logarithmic costs. The moment
they need to build a more sophisticated matching algorithm, their bandwidth advantage
is greatly diminished, often with an additional penalty to latency.

However, in the BubbleStorm project, we are not opposed to the special-case handling
of simple queries. In fact, the higher layers of BubbleStorm already offer constant-
bandwidth key-based lookups [49]. That said, when building a complete solution, one
cannot simply cherry pick the easy problems. The system must be prepared to handle
complicated queries, while still offering optimization opportunities. This is the approach
we have taken with BubbleStorm.

Furthermore, bandwidth is constantly improving. When the project began, perhaps
one could argue that square-root traffic costs were too high. Anecdotally, from when
BubbleStorm project started to the day this thesis was published, my bandwidth at
home increased 50-fold. The increase in global population (and thus potential query
workload) has barely increased over this time frame. Every day it makes more and
more sense to trade bandwidth for latency and query power.

The next area where BubbleStorm is particularly strong is latency. Certainly, one
can do no better than logarithmic routing depth, so long as the memory consumption
of peers is bounded. While bubblecast only forwards searches with a branch factor of
two, we have seen that the time to negotiate a connection and send the payload from
a responder to the query source overwhelms the bubblecast cost. The only area where
BubbleStorm’s latency might be improved would be through the exploitation of network
locality. For example, a friend-to-friend overlay might be used to further improve the
latency of intermediate hops.

On the load balance front, we have shown that BubbleStorm achieves the best steady-
state rendezvous workload distribution possible. However, Section 9.4.3 also showed

111



that notification traffic creates hot spots on high capacity peers. It would be inter-
esting to find a way to balance these two types of traffic, despite their fundamentally
different frequencies. This is a self-contained and probably easy-to-solve problem. Com-
pared to structured systems, the situation is vastly simpler. As those systems partition
based on key, popular keys will be fundamentally overloaded, particular if access is Zipf
distributed (like keywords). While there are approaches [2, 12, 88] to solve this, the
problem must be considered anew for each layer of complexity added as, inevitably,
more powerful queries are needed.

Thanks to its careful design, BubbleStorm can tolerate extreme network catastro-
phes. Half of the population can simultaneously join, leave, or crash and the system
stays intact. While these large scale events do have a temporary impact on the cor-
rectness guaranteed by BubbleStorm, the system returns quickly to normal operation.
Typically the system is fully healed after a single measurement round detects that cor-
rective action is required. Intermittent failures due to churn and individually crashing
peers poses no serious threat to correct operation. Even under extreme churn, the
application developer can simply increase λ to cope with the anticipated worst-case
scenario. Furthermore, due to the unstructured nature of BubbleStorm, no particular
network connections are required and the system works fine even when faced with the
real-world’s incomplete network connectivity.

The unstructured nature of BubbleStorm has not proven much of an obstacle. While
structured systems are designed to exploit particular network topology, BubbleStorm
demonstrates that this dependency is mostly unnecessary. It is quite possible to build an
efficient rendezvous system (and key-based routing) on an unstructured system.

One of the key contributions of this thesis was the development of rendezvous the-
ory using the Poisson formulation. Convex optimization, combined with a few carefully
chosen approximations, yielded a system which depends only on graph expansion. This
work is what enables BubbleStorm to guarantee performance and correctness on un-
structured systems, all while balancing bubbles for asymptotically optimal traffic con-
sumption. Furthermore, rendezvous theory empowers us to leverage the previously
untapped capacity of heterogeneous peers. This unique feature of BubbleStorm is espe-
cially important, as we have shown that heterogeneity pays off in the square!

Unfortunately, while BubbleStorm marks significant progress, it does not yet reach
our database-parity goals. In particular, BubbleStorm does not offer atomic commits,
unique/foreign key constraints, or joins. Atomic commits could probably be supported
using a two or three phase commit protocol on top of the per-document sequencing
offered for maintained and durable bubbles [49], similar to the approaches taken by
Ivy [61] and GauthierDickey [31]. However, this would incur significant costs and has
not been investigated yet. Similarly, key constraints could probably be layered above
the replication algorithms. We have had some thoughts about how to handle joins,
as discussed in [50]. However, all of these issues are very complicated future work.
BubbleStorm at present does not deliver these important features.

Finally, one of the major goals of BubbleStorm was to make peer-to-peer accessible
to network non-experts. The black-box and bubble abstractions do an excellent job
of sheltering users from routing concerns. During development, we ran several short

112



lab courses where students used BubbleStorm, and our anecdotal experience was that
students were perhaps too well insulated from networking, and needed prodding to
actually learn how and why their projects “just worked”.

BubbleStorm was developed as a research project, not for commercial deployment.
Thus, we made a few design decisions that would need to be revisited before Bub-
bleStorm could be delivered to the average developer. First, we implemented Bub-
bleStorm in Standard ML. While this was a good choice in terms of getting the job done
and learning new things, it is not a language familiar to most people. This limits who
can contribute to the BubbleStorm core codebase directly. Furthermore, while Bub-
bleStorm does offer an interface to C/C++/Java, this interface is fairly complex and
not sufficiently well documented. Finally, while CUSP does take steps to solve the NAT
problem, until a solution like the one proposed at the end of Section 7.2.1 is deployed,
BubbleStorm (like all peer-to-peer software) will be difficult for end users to configure.
Nevertheless, despite these minor issues, the BubbleStorm system is certainly mature
enough to support a sufficiently motivated developer.

In conclusion, BubbleStorm goes a long way towards building a complete system
that could be used by the network-unsavvy community at large. It certainly goes fur-
ther than most research projects, having a solid theoretical underpinning, clear vision,
well engineered design, and mature implementation. There remain several interesting
open research topics (atomicity, joins, etc.), which a motivated researcher could pur-
sue to achieve database parity. Finally, BubbleStorm is a near-optimal solution to the
rendezvous problem, and provides a firm foundation on which future work can be built.

Unfortunately, the research community appears to have lost its taste for peer-to-peer,
moving on before most of the technologies were ready to be commercialized. In my
opinion, the popularity of structured key-based routing was partly to blame. These
approaches were always a dead end for building a complete system, yet they were su-
perficially elegant enough to distract the majority of research. Sadly, today it seems we
will be left with cloud services, which have the paid developers needed to develop ma-
ture systems. Peer-to-peer’s theoretical advantage, no centralized authority, also appears
to have been its downfall, no centralized development.

113





A Notation and Variables
Symbol Defined Description
c 2.2 The number of columns in the grid formulation
Cu 2.1 The link capacity of a peer (in bytes/second)
d ∈ D 2 A particular replica of stored data
D 2 The set of all data stored by a given workload
Di :=

∑

u∈U C i
u 8 The degree sum of peer capacities

E(X ) The expected value of random variable X
f A generic function used with many definitions
g(z) = 1− e−z 2.3.1 A safe approximation for the sum of unlikely events
G 6.1 The adjacency matrix of a network graph
i, j Generic index variables used with many definitions
IX A generic indicator random variable; X=1 when X true
λ 2.3 The parameter which controls P(M = 0)≤ e−λ

λ2 6.1 The second eigenvalue of the graph topology
M 2.3 The number of peers which receive both q and d
Mag gregate(R) 2.1 The total traffic for a given rendezvous algorithm
Mbot t leneck(R) 2.1 The utilization of the most loaded peer
Mex pected(R) 2.1 The highest expected utilization amongst all peers
n= |U | 2.1 The total number of peers participating in the network
P(X ) The probability of event X
q ∈Q 2 A particular replica of a query
Q 2 The set of all queries processed in a given workload
r 2.2 The number of rows in the grid formulation
R(d) ⊆ U 2 The set of peers which receive a replica of d
Sd 2.1 The size (in bytes) of a particular piece of data
SD 2.1 The size (in bytes) of unique data in the system
Sq 2.1 The size (in bytes) of a particular query
SQ 2.1 The size (in bytes) of all unique queries processed
T 5 The set of bubble types
u ∈ U 2 A particular peer in the network
U 2 The set of all peers in the network
V 6.1 The diagonal matrix with peer degrees
wu = Cu/

∑

v Cv 2.5 The chance that a peer receives a replica
w 6.1 The vector formed from wu for all u ∈ U
x = |R(q)| 2.3 The number of replicas of a query (blue ball)
X A generic random variable used with many definitions
y = |R(d)| 2.3 The number of replicas of a piece of data (red ball)
Y A generic random variable used with many definitions
Z A generic random variable used with many definitions

115





Bibliography
[1] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic, Man-

fred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-Grid: a Self-
Organizing Structured P2P System. SIGMOD Record, 32:29–33, September 2003.

[2] Karl Aberer, Anwitaman Datta, and Manfred Hauswirth. Multifaceted simultane-
ous load balancing in dht-based p2p systems: A new game with old balls and bins.
In Self-star properties in complex information systems, pages 373–391. Springer,
2005.

[3] Divyakant Agrawal and Amr El Abbadi. Efficient solution to the distributed mu-
tual exclusion problem. In Proceedings of the eighth annual ACM Symposium on
Principles of distributed computing, pages 193–200. ACM, 1989.

[4] Yair Amir, Louise E Moser, Peter M Melliar-Smith, Deborah A Agarwal, and Paul
Ciarfella. The totem single-ring ordering and membership protocol. ACM Transac-
tions on Computer Systems (TOCS), 13(4):311–342, 1995.

[5] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in
message-passing systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

[6] Asad Awan, Ronaldo A Ferreira, Suresh Jagannathan, and Ananth Grama. Dis-
tributed uniform sampling in unstructured peer-to-peer networks. In System Sci-
ences, 2006. HICSS’06. Proceedings of the 39th Annual Hawaii International Confer-
ence on, volume 9, pages 223c–223c. IEEE, 2006.

[7] W-T Balke, Wolfgang Nejdl, Wolf Siberski, and Uwe Thaden. Progressive dis-
tributed top-k retrieval in peer-to-peer networks. In Data Engineering, 2005.
ICDE 2005. Proceedings. 21st International Conference on, pages 174–185. IEEE,
2005.

[8] Mauricio Barahona and Louis M Pecora. Synchronization in small-world systems.
Physical review letters, 89(5):054101, 2002.

[9] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web Search for a Planet: The
Google Cluster Architecture. IEEE Micro, 23(2):22–28, 2003.

[10] Krista Bennett, Christian Grothoff, Tzvetan Horozov, Ioana Patrascu, and Tiberiu
Stef. Gnunet-a truly anonymous networking infrastructure. In Proc. Privacy En-
hancing Technologies Workshop (PET), 2002.

[11] Ranjita Bhagwan, George Varghese, and Geoffrey M Voelker. Cone: Augmenting
DHTs to support distributed resource discovery. Department of Computer Science
and Engineering, University of California, San Diego, 2003.

117



[12] Silvia Bianchi, Sabina Serbu, Pascal Felber, and Peter Kropf. Adaptive load bal-
ancing for dht lookups. In Computer Communications and Networks, 2006. ICCCN
2006. Proceedings. 15th International Conference on, pages 411–418. IEEE, 2006.

[13] Kenneth P Birman, Robbert Van Renesse, et al. Reliable distributed computing with
the Isis toolkit, volume 85. IEEE Computer Society Press Los Alamitos, 1994.

[14] Béla Bollobás. Random Graphs. Cambridge University Press, 2nd edition, 2001.

[15] Angela Bonifati, Ugo Matrangolo, Alfredo Cuzzocrea, and Mayank Jain. XPath
Lookup Queries in P2P Networks. In Proceedings of the 6th Annual ACM Inter-
national Workshop on Web Information and Data Management (WIDM’04), pages
48–55, New York, NY, USA, 2004. ACM Press.

[16] Stephen Poythress Boyd and Lieven Vandenberghe. Convex optimization. Cam-
bridge university press, 2004.

[17] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
Making Gnutella-Like P2P Systems Scalable. In Proceedings of ACM SIGCOMM’03,
pages 407–418, New York, NY, USA, 2003. ACM Press.

[18] Stuart Cheshire, Marc Krochmal, and Kiren Sekar. Nat port mapping protocol
(nat-pmp). draft-cheshire-nat-pmp-03 (work in progress), 2008.

[19] Shun Yan Cheung, Mostafa H. Ammar, and Mustaque Ahamad. The grid protocol:
A high performance scheme for maintaining replicated data. Knowledge and Data
Engineering, IEEE Transactions on, 4(6):582–592, 1992.

[20] Tae Woong Choi and P. Oscar Boykin. Deetoo: Scalable Unstructured Search Built
on a Structured Overlay. In Proceedings of the International Workshop on Hot Topics
in Peer-to-Peer Systems (HOTP2P’10), Los Alamitos, CA, USA, 2010. IEEE Computer
Society.

[21] Tom Chothia and Konstantinos Chatzikokolakis. A survey of anonymous peer-to-
peer file-sharing. In Embedded and Ubiquitous Computing–EUC 2005 Workshops,
pages 744–755. Springer, 2005.

[22] Fan Chung and Linyuan Lu. The Volume of the Giant Component of a Random
Graph with Given Expected Degrees. SIAM Journal on Discrete Mathematics,
20(2):395–411, 2007.

[23] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong. Freenet:
A distributed anonymous information storage and retrieval system. In Designing
Privacy Enhancing Technologies, pages 46–66. Springer, 2001.

[24] Edith Cohen and Scott Shenker. Replication strategies in unstructured peer-to-
peer networks. In ACM SIGCOMM Computer Communication Review, volume 32,
pages 177–190. ACM, 2002.

118



[25] Vasilios Darlagiannis, Andreas Mauthe, and Ralf Steinmetz. Sampling cluster en-
durance for peer-to-peer based content distribution networks. Multimedia systems,
13(1):19–33, 2007.

[26] David Dittrich. So you want to take over a botnet. In Proceedings of the 5th USENIX
conference on Large-Scale Exploits and Emergent Threats, pages 6–6. USENIX Asso-
ciation, 2012.

[27] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermar-
rec. The Many Faces of Publish/Subscribe. ACM Computing Surveys (CSUR),
35:114–131, June 2003.

[28] Ronaldo A. Ferreira, Murali Krishna Ramanathan, Asad Awan, Ananth Grama, and
Suresh Jagannathan. Search with Probabilistic Guarantees in Unstructured Peer-
to-Peer Networks. In Proceedings of P2P’05, pages 165–172, Washington, DC, USA,
2005. IEEE Computer Society.

[29] Joel Friedman. A proof of alon’s second eigenvalue conjecture. In Proceedings of
the thirty-fifth annual ACM symposium on Theory of computing, pages 720–724.
ACM, 2003.

[30] Hector Garcia-Molina and Daniel Barbara. How to assign votes in a distributed
system. Journal of the ACM (JACM), 32(4):841–860, 1985.

[31] Chris GauthierDickey, Daniel Zappala, Virginia Lo, and James Marr. Low latency
and cheat-proof event ordering for peer-to-peer games. In Proceedings of the 14th
international workshop on Network and operating systems support for digital audio
and video, pages 134–139. ACM, 2004.

[32] David K Gifford. Weighted voting for replicated data. In Proceedings of the seventh
ACM symposium on Operating systems principles, pages 150–162. ACM, 1979.

[33] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2):51–59, 2002.

[34] Sarunas Girdzijauskas, Wojciech Galuba, Vasilios Darlagiannis, Anwitaman Datta,
and Karl Aberer. Fuzzynet: Ringless routing in a ring-like structured overlay. Peer-
to-Peer Networking and Applications, 4(3):259–273, 2011.

[35] Christos Gkantsidis, Milena Mihail, and Amin Saberi. Random Walks in Peer-to-
Peer Networks. In Proceedings of the Twenty-third Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM’04), volume 1, March
2004.

[36] Geoffrey Grimmett and David Stirzaker. Probability and random processes. Oxford
university press, 2001.

[37] Krishna P. Gummadi, Richard J. Dunn, Stefan Saroiu, Steven D. Gribble, Henry M.
Levy, and John Zahorjan. Measurement, Modeling, and Analysis of a Peer-to-Peer

119



File-Sharing Workload. SIGOPS Operating System Review, 37:314–329, October
2003.

[38] Jani Hautakorpi and Göran Schultz. A Feasibility Study of an Arbitrary Search in
Structured Peer-to-Peer Networks. In Proceedings of 19th International Conference
on Computer Communications and Networks (ICCCN’10), pages 1–8. IEEE, August
2010.

[39] Sandra M Hedetniemi, Stephen T Hedetniemi, and Arthur L Liestman. A survey
of gossiping and broadcasting in communication networks. Networks, 18(4):319–
349, 1988.

[40] Maurice Herlihy. A quorum-consensus replication method for abstract data types.
ACM Transactions on Computer Systems (TOCS), 4(1):32–53, 1986.

[41] M Frans Kaashoek and David R Karger. Koorde: A simple degree-optimal dis-
tributed hash table. In Peer-to-Peer Systems II, pages 98–107. Springer, 2003.

[42] Gene Kan. Gnutella. In Andy Oram, editor, Peer-to-Peer - Harnessing the Power of
Disruptive Technologies, pages 62–79. OŔeilly & Associates, Inc., Sebastopol, CA,
USA, first edition, 2001.

[43] Sebastian Kaune, Konstantin Pussep, Christof Leng, Aleksandra Kovacevic, Gareth
Tyson, and Ralf Steinmetz. Modelling the Internet Delay Space Based on Geo-
graphical Locations. In Proceedings of the 17th Euromicro International Conference
on Parallel, Distributed and Network-based Processing (ICPADS’09), pages 301 –
310, February 2009.

[44] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-Based Computation of
Aggregate Information. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’03), pages 482–491, Washington, DC,
USA, 2003. IEEE Computer Society.

[45] Jon Kleinberg. The small-world phenomenon: an algorithm perspective. In Pro-
ceedings of the thirty-second annual ACM symposium on Theory of computing, pages
163–170. ACM, 2000.

[46] Predrag Knežević, Andreas Wombacher, and Thomas Risse. Dht-based self-
adapting replication protocol for achieving high data availability. In Advanced
Internet Based Systems and Applications, pages 201–210. Springer, 2009.

[47] Max Lehn, , Tonio Triebel, Christof Leng, Alejandro Buchmann, and Wolfgang
Effelsberg. Performance evaluation of peer-to-peer gaming overlays. In Proceed-
ings of the IEEE Tenth International Conference on Peer-to-Peer Computing (P2P’10),
pages 1–2. IEEE, 2010. demo.

[48] Max Lehn, Christof Leng, Robert Rehner, Tonio Triebel, and Alejandro Buchmann.
An online gaming testbed for peer-to-peer architectures. In Proceedings of the ACM
SIGCOMM 2011 conference, pages 474–475. ACM, 2011. demo.

120



[49] Christof Leng. BubbleStorm: Replication, Updates, and Consistency in Rendezvous
Information Systems. PhD thesis, Technische Universität Darmstadt, 2011.

[50] Christof Leng and Wesley W. Terpstra. Distributed SQL Queries with BubbleStorm.
In Kai Sachs, Ilia Petrov, and Pablo Guerrero, editors, From Active Data Manage-
ment to Event-Based Systems and More, volume 6462 of Lecture Notes in Computer
Science, pages 230–241. Springer, nov 2010.

[51] Christof Leng, Wesley W. Terpstra, Bettina Kemme, Wilhelm Stannat, and Alejan-
dro P. Buchmann. Maintaining Replicas in Unstructured P2P Systems. In Proceed-
ings of the ACM CoNEXT Conference (CoNEXT’08), pages 19:1–19:12, New York,
NY, USA, 2008. ACM.

[52] Jinyang Li, Boon Loo, Joseph Hellerstein, M. Frans Kaashoek, David Karger, and
Robert Morris. On the Feasibility of Peer-to-Peer Web Indexing and Search. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS’03), 2003.

[53] Mamoru Maekawa. An algorithm for mutual exclusion in decentralized systems.
ACM Transactions on Computer Systems (TOCS), 3(2):145–159, 1985.

[54] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Com-
puting, 11(4):203–213, 1998.

[55] Dahlia Malkhi, Michael K Reiter, Avishai Wool, and Rebecca N Wright. Probabilistic
quorum systems. Information and Computation, 170(2):184–206, 2001.

[56] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer information
system based on the xor metric. In Peer-to-Peer Systems, pages 53–65. Springer,
2002.

[57] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems (IPTPS’01), pages 53–65, London, UK, 2002.
Springer-Verlag.

[58] Sebastian Michel, Peter Triantafillou, and Gerhard Weikum. Minerva: A scalable
efficient peer-to-peer search engine. In Proceedings of the ACM/IFIP/USENIX 2005
International Conference on Middleware, pages 60–81. Springer-Verlag New York,
Inc., 2005.

[59] ApS MOSEK. The mosek optimization tools version 3.2 user’s manual and refer-
ence, 2002.

[60] Damon Mosk-Aoyama and Devavrat Shah. Computing separable functions via
gossip. In Proceedings of the twenty-fifth annual ACM symposium on Principles of
distributed computing, pages 113–122. ACM, 2006.

[61] Athicha Muthitacharoen, Robert Morris, Thomer M Gil, and Benjie Chen. Ivy:
A read/write peer-to-peer file system. ACM SIGOPS Operating Systems Review,
36(SI):31–44, 2002.

121



[62] Joel H. Spencer N. Alon. The Probabilistic Method, chapter Eigenvalues and Ex-
panders. John Wiley & Sons, 3rd edition, 2011.

[63] Moni Naor and Avishai Wool. The load, capacity, and availability of quorum sys-
tems. SIAM Journal on Computing, 27(2):423–447, 1998.

[64] Chris Newman. SQLite (Developer’s Library). Sams, Indianapolis, IN, USA, 2004.

[65] Costin Raiciu. ROAR: Increasing the Flexibility and Performance of Distributed
Search. PhD thesis, University College London, London, UK, 2011.

[66] Costin Raiciu, Felipe Huici, Mark Handley, and David S. Rosenblum. ROAR: In-
creasing the Flexibility and Performance of Distributed Search. In Proceedings of
SIGCOMM’09, pages 291–302, New York, NY, USA, 2009. ACM.

[67] Costin Raiciu, David S. Rosenblum, and Mark Handley. Distributed Online Filter-
ing. In Proceedings of the 2007 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM’07), pages 15–16,
New York, NY, USA, August 2007. ACM.

[68] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A Scalable Content-Addressable Network. SIGCOMM Computer Communication
Review, 31:161–172, August 2001.

[69] Patrick Reynolds and Amin Vahdat. Efficient Peer-to-Peer Keyword Searching. In
Proceedings of the ACM/IFIP/USENIX 2003 International Conference on Middleware
(Middleware’03), pages 21–40, New York, NY, USA, 2003. Springer-Verlag New
York.

[70] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Middleware 2001, pages
329–350. Springer, 2001.

[71] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. In Proceedings of Multimedia Computing and
Networking, MMCN, page 152, 2002.

[72] Nima Sarshar, P. Oscar Boykin, and Vwani P. Roychowdhury. Percolation Search
in Power Law Networks: Making Unstructured Peer-to-Peer Networks Scalable. In
Proceedings of IEEE P2P’04, pages 2–9, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[73] Pyda Srisuresh and Kjeld Egevang. Traditional ip network address translator (tra-
ditional nat), 2001.

[74] Ralf Steinmetz and Klaus Wehrle. Peer-to-Peer Systems and Applications, volume
3485 of Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2005.

122



[75] Ion Stoica, Robert Morris, David Karger, M Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In ACM SIGCOMM Computer Communication Review, volume 31, pages 149–160.
ACM, 2001.

[76] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing Unstructured
Overlay Topologies in Modern P2P File-Sharing Systems. IEEE/ACM Transactions
on Networking, 16:267–280, April 2008.

[77] Wesley W. Terpstra. Distributed Cartesian Product. Diploma Thesis, Technische
Universität Darmstadt, May 2006.

[78] Wesley W. Terpstra, Stefan Behnel, Ludger Fiege, Jussi Kangasharju, and Alejandro
Buchmann. Bit Zipper Rendezvous—Optimal Data Placement for General P2P
Queries. In Proceedings of the EDBT 04 Workshop on Peer-to-Peer Computing &
DataBases, March 2004.

[79] Wesley W. Terpstra, Jussi Kangasharju, Christof Leng, and Alejandro P. Buchmann.
BubbleStorm: Resilient, Probabilistic, and Exhaustive Peer-to-Peer Search. In Pro-
ceedings of the 2007 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM’07), pages 49–60, New York,
NY, USA, August 2007. ACM.

[80] Wesley W. Terpstra, Christof Leng, and Alejandro P. Buchmann. Brief Announce-
ment: Practical Summation via Gossip. In Proceedings of the Twenty-Sixth Annual
ACM Aymposium on Principles of Distributed Computing (PODC’07), pages 390–
391, New York, NY, USA, August 2007. ACM.

[81] Wesley W. Terpstra, Christof Leng, and Alejandro P. Buchmann. BubbleStorm:
Analysis of Probabilistic Exhaustive Search in a Heterogeneous Peer-to-Peer Sys-
tem. Technical Report TUD-CS-2007-2, Technische Universität Darmstadt, Fach-
bereich Informatik, Darmstadt, Germany, May 2007.

[82] Wesley W. Terpstra, Christof Leng, Max Lehn, and Alejandro P. Buchmann.
Channel-based Unidirectional Stream Protocol (CUSP). In Proceedings of the IEEE
INFOCOM Mini Conference, March 2010.

[83] Robert H Thomas. A majority consensus approach to concurrency control for mul-
tiple copy databases. ACM Transactions on Database Systems (TODS), 4(2):180–
209, 1979.

[84] Robbert Van Renesse, Kenneth P Birman, and Werner Vogels. Astrolabe: A robust
and scalable technology for distributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems (TOCS), 21(2):164–206, 2003.

[85] Robbert Van Renesse and Adrian Bozdog. Willow: Dht, aggregation, and pub-
lish/subscribe in one protocol. In Peer-to-Peer Systems III, pages 173–183. Springer,
2005.

123



[86] Robert J Vanderbei. Loqo: An interior point code for quadratic programming.
Optimization methods and software, 11(1-4):451–484, 1999.

[87] Yong Yang, Rocky Dunlap, Michael Rexroad, and Brian F. Cooper. Performance
of Full Text Search in Structured and Unstructured Peer-to-Peer Systems. In Pro-
ceedings of the 25th IEEE International Conference on Computer Communications
(INFOCOM’06), pages 1–12, April 2006.

[88] Yingwu Zhu and Yiming Hu. Efficient, proximity-aware load balancing for
dht-based p2p systems. Parallel and Distributed Systems, IEEE Transactions on,
16(4):349–361, 2005.

124


	Introduction
	Rendezvous Theory
	Bandwidth Metrics
	Grid Formulation
	Poisson Formulation
	Failure Probability
	Limit Results

	Heterogeneous Lower Bound
	Heterogeneous Formulation
	Summary

	Related Work
	BubbleStorm Overview
	Component Architecture

	Bubble Balancer
	Convex Formulation
	Stability and Uniqueness
	Optimizer
	Evaluation

	Topology Theory
	Random walks and expansion
	BubbleStorm Topological Model
	Broken Edges
	Related Work

	Topology Protocol
	The Ring
	Degree Tuning
	Location Selection

	Bootstrapping
	Firewalls
	Host Cache

	Evaluation

	Measurement Protocol
	Approach
	Evaluation

	Bubblecast
	Topological Dependency
	Notification
	Queuing
	Evaluation
	Normal Operation
	Homogeneous Congestion Collapse
	Heterogeneous Congestion Collapse


	Outlook
	Notation and Variables

