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A Multi-Measure Nearest Neighbor Algorithm
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Fábio Fabris, Idilio Drago, and Flávio M. Varejão
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Abstract. In this paper, we have evaluated some techniques for the time
series classification problem. Many distance measures have been pro-
posed as an alternative to the Euclidean Distance in the Nearest Neigh-
bor Classifier. To verify the assumption that the combination of vari-
ous similarity measures may produce a more accurate classifier, we have
proposed an algorithm to combine several measures based on weights.
We have carried out a set of experiments to verify the hypothesis that
the new algorithm is better than the classical ones. Our results show
an improvement over the well-established Nearest-Neighbor with DTW
(Dynamic Time Warping), but in general, they were obtained combining
few measures in each problem used in the experimental evaluation.

Key words: Data Mining, Machine Learning, Time Series Classifica-
tion, Multi-Measure Classifier

1 Introduction

A time series is a sequence of data points taken at regular intervals. Supervised
classification is defined as the task of assigning a label to cases, based on the
information learned from examples with known labels. Special algorithms are
needed when temporal features represent the examples. The Nearest Neighbor
Algorithm with some specialized measure has been the main approach to deal
with this kind of classification problem. Several measures have been proposed to
this task throughout the years. [1, 2] describe some of them without any practical
accuracy evaluation. [3] evaluates empirically a set of measures and shows poor
classification results in a couple of time series classification problems. [4] shows an
extensive experimental evaluation about DTW and concludes that the measure
is superior to the basic Euclidean.

In this work, we evaluated if combining measures can improve classification
accuracy. We proposed a new heuristic based on weights to combine measures in
the nearest neighbor decision rule and carried out a set of experiments to verify
our algorithm.

In the next section, we briefly describe the Nearest Neighbor Algorithm and
some similarity measures commonly used. Next, we describe the algorithm pro-
posed to search the best weights combination. In Section 4, we showed the test-
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ing method, the data sets and our experimental results. Finally, in Section 5, we
pointed out our conclusions.

2 1NN Algorithm and Similarity Measures

The traditional approach to classify a given time series uses the Nearest Neighbor
Algorithm (1NN) with some similarity measure suitable for temporal data. In
this section, we present the nearest neighbor decision rule and several similarity
measures that are able to work with time series.

2.1 1NN Algorithm

In the context of classification, the 1NN Algorithm was first introduced by [5].
The algorithm idea rests in the fact that close samples (given some similarity
measure) should belong to the same class if they are well distributed and there
is enough correlation between the time series and the classes.

We can define formally the 1NN Algorithm given S = {(x1, θ1), . . . , (xn, θn)}
as a set of pairs containing n time series xi and their classes θi. For the sake of
our discussion, θi ∈ {θ1, . . . , θc}. We wish to ascertain the class of a new sample
when introduced its correspondent x. We call x′ ∈ {x1,x2, . . . ,xn} the nearest
neighbor of x if

δ(x′,x) = min δ(xi,x) i = 1, 2, ..., n , (1)

where δ(y, z) measures the similarity between two time series y and z. The θ
of the new sample is set to its nearest neighbor class. If more than one such
neighbor exist, θ is set to the most frequent class.

2.2 Similarity Measures

In order to classify an unlabeled time series using the 1NN Algorithm, we must
use some kind of similarity measure δ(y, z). Many measures have been proposed
throughout the years. In this section, we shall expose a brief description of the
most used ones together with some well-known remarks about them.

Euclidean Distance Probably the first choice of measurement between two
time series y and z, both with size d, is to consider the series as a vector in
a d-dimensional space and ascertain the Euclidean Distance between them. [6]
defines the distance as

δ(y, z) = [(y − z)t(y − z)]1/2 =

[ d
∑

i=1

(yi − zi)
2

]1/2

. (2)

There are several drawbacks using Euclidean Distance we have to consider.
For instance, the distance is very sensitive to noise, translations, scaling, and
small phase differences [7]. To solve vertical translation and scaling problems,
an accepted solution is to normalize the curves before measuring [3]. [6] shows
many other similarity measures, for example Manhattan Distance, however the
same noise, scaling, translation and phase difference problems apply to them.
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Edit Distance The Edit Distance [8] is defined as the minimum set of op-
erations required to change a string into another. The allowed operations are
characters deletion, insertion, and substitution. In order to use the Edit Dis-
tance, we first have to discretize the data to create a finite set of symbols. [9]
defines the Edit Distance of two strings y and z as follows:

D(i, 0) = sw × i (3)

D(0, j) = sw × j (4)

D(i, j) = min







D(i, j − 1) + dw

D(i− 1, j) + dw

D(i− 1, j − 1) + t(i, j)
(5)

where D(i, j) means the minimum operation cost needed to change the first i
symbols of the string y into the first j symbols of the string z, t(i, j) equals mw

(matching weight) if yi = zj and sw (substitution weight) otherwise, and finally
dw means the character insertion or deletion weight.

In particular, we are interested in the original Edit Distance formulation,
with mw = 0 and sw = dw = 1. The Edit Distance has two main advantages
over Euclidean Distance: the character deletion and insertion remove distortions
in the series and correct local misalignment; the discretizing process acts as a
noise filter.

A common variation of the Edit Distance (sw = 1, dw = ∞, and mw = 0)
is the Hamming Distance [10], defined as the number of positions with different
symbols in two strings. This variation does not keep the desirable property of
distortion removal. The noise filter, however, is still present since the data must
be discretized before Hamming Distance calculation.

Another common variation is the Longest Common Subsequence (LCSS [9]),
defined as the size of the longest ordered sequence of symbols (not necessarily
contiguous) appearing in both sequences y and z. We can define LCSS as

L(i, j) =







L(i− 1, j − 1) + 1 yi = zi

L(i− 1, j) L(i− 1, j) ≥ L(i, j − 1)
L(i, j − 1) otherwise

, (6)

where L(i, 0) = L(0, j) = 0, and use the LCSS as a similarity measure by the
relation

δ(y, z) = d− L(d, d) , (7)

where d is the series size. If we consider the Edit Distance formulation with
sw = ∞, dw = 1, and mw = 0, [11] shows the following relation

D′(d, d) = 2[d− L(d, d)] , (8)

where D′(d, d) is the Edit Distance particular case.

Dynamic Time Warping Dynamic Time Warping (DTW) is often used to
classify continuous time series [12, 4]. The goal is to calculate the minimum
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distance (often Euclidean) between two series after aligning them. The concept
is similar to Edit Distance’s but while the Edit Distance only outputs the number
of operations made in a reduced set of symbols, DTW outputs the actual distance
between the aligned curves. Therefore, it appears that DTW is more prone to
deal with time series because no information is lost. On the other hand, we
probably do not get the desirable noise reduction from discretization.

The recurrence relation to calculate DTW Distance of two series y and z can
be written as

DTW (i, j) = γ(yi, zj) +min







DTW (i, j − 1)
DTW (i− 1, j)
DTW (i− 1, j − 1)

(9)

where DTW (i, j) is the aligned distance of the first i points in y and the first j
points in z. γ(yi, zj) is the coordinate distance of points yi and zj .

DTW has an integer non-negative parameter r (also known as warping win-

dow) that fixes the greatest modular difference between i and j. If r = 0 we are
merely calculating the Euclidean Distance of two series. Other values of r limit
the maximum possible distortion allowed to match the series.

The value of r affects the classification performance. If r is too big, the align-
ment could distort too much the series involved, resulting in poor classification
performance (see [4]). We can extend the concept of r to Edit Distance and its
variations as well. We have considered r as a parameter of these measures during
the experimental evaluation.

Transformation based measures A common approach to measure time se-
ries distance requires transforming the series to a new domain and then perform
calculation. The Edit Distance, for instance, does exactly that by changing con-
tinuous time series to simple discrete strings of symbols. We can use various
mathematical transformations to change the series format before measuring.

The Discrete Fourier Transform (DFT) and the Discrete Wavelet Transform
(DWT) have been used frequently as a pre-processing step in measure calcu-
lation. The amplitude of Fourier coefficients, for example, has the attractive
property of been invariant under shifts. Moreover, for some kind of time series,
they concentrate major signal energy in few low frequency coefficients [1].

We can generate the Fourier coefficients using the well-known relation [13]

Xk =
1√
d

d−1
∑

t=0

xte
−i2πtk

d k = 0, 1, . . . , d− 1 , (10)

and use the k first coefficients distance as a similarity measure. In this case, k
is a parameter to tune and small values will filter high frequencies components
(probably noise). In the same way, the Discrete Wavelet Transform can be used
as the pre-processing step. The following relation calculates the DWT coefficients

cj,k =
1

d

d−1
∑

t=0

xtψj,k(t) , (11)
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where the Mother Wavelet ψj,k(t) will be scaled and translated by the following
relation

ψj,k(t) = 2j/2ψ(2jt− k) , (12)

where j is a scale factor, k determines the translation and several basis are
available, for instance, Haar and Daubechies basis [14]. In this case, we can only
use the first j scales in the measuring in order to obtain a noise free distance
between two time series.

Discretization Process When the measure needs to convert series to strings,
a discretizing step is needed. The usual method is defining a (fixed) number of
intervals and mapping the real numbers to some of them. The intervals limits
are chosen equally spaced to divide the values in a homogeneous way.

This method has however a weakness in the boundaries: when two values are
near to the limits they may be mapped to different symbols. For instance, the
Edit Distance will be increased in that situation, when the series in fact may be
very similar.

An alternative is matching points based on proximity [11]. In this case, two
points are considered the same symbol if they are closer than a limit β. The
value of β must be adjusted, and will deeply affect the classification accuracy.

3 Combining Measures

In the previous section, we have defined several similarity measures. When it
comes to classification using the 1NN Algorithm, the traditional approach is to
select one measure at a time. We want to evaluate if the use of several measures
will extract more useful information from data, improving the overall classifica-
tion accuracy.

Therefore, a way for selecting or combining measures is necessary. We have
created a weighting algorithm to assign a real number for each measure. In our
approach, the nearest neighbor is defined as a weighted sum of all measures.
We have proposed a new heuristic to search for the best weights, based on a
method for the feature selection problem. In this context, [15] proposed the
following strategy: divides the interval [0, 1] in k equally spaced sub-intervals,
uses the middle of the interval as starting point in the search, moves through
space replacing weights by their next larger or smaller values in a greedy way,
and uses the estimated error rate in the training set as evaluation function. The
search stops when successive moves do not produce better results.

In some situations, this approach may generate redundant weights. For exam-
ple, if k = 10 and we have two measures (or features), the combinations (0.2, 0.8)
and (0.1, 0.4) produce the same classification results. We have proposed a new
approach to avoid generating redundant values and to reduce the search space
size: the sum of all values must be always 1. This restriction has led us to the
following number of possible weights:

Ck
m+k−1 =

(

m+ k − 1

k

)

, (13)
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where m is the number of measures. For small values of k and m, we can check
exhaustively all combinations. In the experimental evaluation presented in the
next section, we have m = 8 and k = 10, so the exhaustive enumeration is
feasible.

Algorithm 1 shows the steps to generate all Ck
m+k−1

weights combinations.
It enumerates all possibilities using the lexicographic order and estimates the
error rate for each distribution using only the training set and the leave-one-out

procedure [16].

Algorithm 1 Searches for the combination of weights that maximize the clas-
sification performance using several measures.

Require: S, training examples;
M , similarity measures;
d, the step for weight distribution (1/k).

Ensure: P, array of size m containing the best weight distribution found.
1: se ← sd ← ∞ {se - smallest error found. sd - average distance between samples

on the best combination.}
2: Q0 ← 1 e Q1...m−1 ← 0 {Initializes the weight array for evaluation.}
3: repeat

4: e← ascertain error(Q,M, S) {Evaluates the current weight distribution.}
5: dist← ascertain distance(Q, M, S)
6: if (e < se) ∨ [(e = se) ∧ (dist < sd)] then

7: Updates P, se and sd;
8: end if

9: i← m− 1 {i determines if there are more combinations to evaluate.}
10: repeat

11: i← i− 1
12: until [(i ≥ 0) ∧ (Qi = 0)]
13: if i ≥ 0 then {There are more valid configurations yet.}
14: tmp← Qm−1

15: Qm−1 ← 0
16: Qi+1 ← tmp + d
17: Qi ← Qi − d
18: end if

19: until [(i ≥ 0)]

As an example of Algorithm 1 steps, suppose d = 0.5 and 3 similarity mea-
sures. The algorithm will generate weights as showed in Table 1 and use the
ascertain error function to estimate the classification error for each combina-
tion.

The algorithm solves ties by preferring combinations where the average dis-
tance from samples to their nearest neighbors is minimal (line 6 and variable
sd), i.e. we are looking for a selection that keeps neighbors as close as possible.

Another important remark about this algorithm is that it does not tune
each measure during the search. It is well known in the literature that some
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Table 1. Weights sequence generated by Algorithm 1 when d = 0.5 and there are 3
metrics.

Step Q0 Q1 Q2 Step Q0 Q1 Q2

0 1.0 0.0 0.0 3 0.0 1.0 0.0

1 0.5 0.5 0.0 4 0.0 0.5 0.5

2 0.5 0.0 0.5 5 0.0 0.0 1.0

measure parameters affect the classification accuracy - for instance, see [4] where
the authors present such evaluation, about the parameter warping window in
DTW. We have chosen to work only with the best individual measure setup to
restrict the search space size in Algorithm 1. In the experimental evaluation, we
have adjusted each measure separately with the training set before running the
algorithm.

4 Experimental Evaluation

Our goal is to determine if combining measures in the classification is better
than using always the same one. We have compared the new classifier against
a “classical option”. Normally the Euclidean Distance is used in the baseline
classifier when someone wants to advocate the utility of a novel measure, however
many works already had showed various weakness related with this measure [7].
We have chosen DTW because it is certainly better than Euclidean Distance,
when implemented with warping window and tuned with a sufficiently large
training set (see [4]).

We want to ascertain if Algorithm 1 yields an improved performance over
1NN-DTW in general, and not only in a special problem. According [17], what
we need is a technique to compare two classifiers on multiple data sets. The
Wilcoxon Signed-Rank Test is suitable for this task, if a random set of time
series classification problems is available. The test ranks the difference between
the two algorithms and computes the rank sums where each algorithm wins.
Under the null hypothesis, the algorithms are equal and the sums will be the
same. If the data indicate low probability of the result, we can reject the null

hypothesis. A complete description about that test can be found in [18].

4.1 Data Sets

In order to compare the accuracy of two algorithms on multiple domains, we
need a random sample of time series classification problems. There is a great
difficulty in obtaining such sample - for instance, [3] shows how the absence of
database benchmarks causes erroneous conclusions in data mining community.

We have used 20 problems available in [19], probably the biggest public repos-
itory of time series classification data. Even with a reasonable number of exam-
ples (in this case, different classification problems), the lack of randomness is
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a serious drawback to this kind of experimental essay, as described in [20]. Al-
though this weakness reduces the quality of our results, we have used a very safe
statistic method (according [17]) and the best sample available, so our conclu-
sions are supported at least by good evidences.

All data sets in the repository were normalized to standard deviation 1 and
average 0 in order to mitigate vertical translations and scales issues. Each data
set were originally split in two disjoint files for training and independent test.
We have merged the two files, randomized their examples, and estimated the
error rate by cross-validation, as described in the next section.

4.2 Experimental Results

In order to apply the Wilcoxon Signed-Rank Test we have to estimate the error
rate for each domain in the experimental sample. We have used the recommended
approach in [20]: we have conduced a 10-fold cross-validation, where for each
fold only the training set was used to tune the measures and to estimate the
weight distribution that minimizes the error rate. In both cases, the leave-one-

out procedure was used. We have ascertained the round errors with the test
sets and the final error rate was the average across 10 repetitions. As noted in
[17], individual variances are not needed, since it comes from the different (and
ideally independent) problems in the sample.

Table 2 summarizes the results. It shows 1NN-DTW and Algorithm 1 results
and marks (boldface) the best result for each problem. The errors for both algo-
rithms were obtained using the same random split during the cross-validation.
For this table, the Wilcoxon Signed-Rank Test reports p-value equal to 2.2%
and we were able to reject the null hypothesis that the algorithms have the same
accuracy, with 5% significance level.

Table 2. Comparison of error rates for 1NN-DTW and measures combined as in the
Algorithm 1.

Database 1NN-DTW Comb. Measures Database 1NN-DTW Comb. Measures

50 Words 20.87 17.12 Adiac 33.17 33.30

Beef 43.33 33.33 CBF 0.00 0.00

Coffee 0.00 1.67 ECG200 11.00 1.00

Face/All 2.70 1.40 Face/Four 6.36 1.82

Fish 14.57 8.86 Gun/Point 2.00 3.00

Lighting 2 13.01 11.35 Lighting 7 22.38 22.43

Olive Oil 11.67 11.67 OSU Leaf 26.22 13.15

S. Leaf 12.89 8.27 S. Control 1.00 0.67

Trace 0.50 0.50 Two Pat. 0.00 0.00

Wafer 0.50 0.60 Yoga 15.67 13.00

We now must point out some details about the results in Table 2. Firstly,
Algorithm 1 searches exhaustively for the best weight distribution, so the combi-
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nations where just one measure receives all weights (all others with zero weight)
were checked. We expected at least the same results for both algorithms, because
the 1NN-DTW was a special case tested by Algorithm 1, but in 5 problems 1NN-
DTW has got better results. This might have occurred in some cases due to the
small data set size - for instance, in Coffee database we had about 50 examples for
round training, almost all measures alone got 100% of correct classification, and
the final error difference (1.67%) was caused by 1 mistake. The small database
size prevented us from finding the true best measure. In other cases, the weight
distribution was very unstable across the cross-validation rounds and probably
Algorithm 1 has suffered from overfitting.

In 8 out 11 problems where Algorithm 1 was better, the weights were very
concentrated on measures derived from Edit Distance. These measures are much
related to DTW. In those problems, probably the noise filter makes the differ-
ence.

5 Conclusions

In this work, we presented some measures typically used in time series classi-
fication problems. To verify if using different measures together improves the
classification accuracy, we proposed an algorithm that combines several mea-
sures by assigning weights to them. We conduced a set of experiments and we
compared the accuracy of the new algorithm against 1NN-DTW. The Wilcoxon

Signed-Rank Test reported results with 5% significance level. Our results show
that DTW is certainly the first good choice in this kind of problems, but another
measures, specially the string ones, must be checked. In some cases, combining
metrics brought a good accuracy gain, but in most cases the weights were con-
centrated in the few best metrics to each problem.
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11. Bozkaya, T., Yazdani, N., Özsoyoglu, M.: Matching and Indexing Sequences of
Different Lengths. In: CIKM ’97: Proceedings of the Sixth International Conference
on Information and Knowledge Management, New York, NY, USA, ACM Press
(1997) 128–135

12. Sakoe, H., Chiba, S.: Dynamic Programming Algorithm Optimization for Spoken
Word Recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing
26(1) (1978) 43–49

13. Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search in Sequence
Databases. Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms (1993) 69–84

14. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Reg. Conf. Series in Applied
Math. SIAM (1992)

15. Kohavi, R., Langley, P., Yun, Y.: The Utility of Feature Weighting in Nearest-
Neighbor Algorithms. In: 9th European Conference on Machine Learning, Prague,
Czech Republic, Springer-Verlag (1997)

16. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. 2nd edn. John Wiley
and Sons, New York (2001)
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