
Towards the use of Augmented Reality techniques for Assisted 
Acceptance Sampling  

Fiorenzo Franceschini1, Maurizio Galetto, Domenico Maisano, Luca Mastrogiacomo 

1 fiorenzo.franceschini@polito.it 
Politecnico di Torino, DIGEP (Department of Management and Production Engineering), 

Corso Duca degli Abruzzi 24, 10129, Torino (Italy) 

Abstract 

Acceptance Sampling is a statistical procedure for accepting or rejecting production lots according 

to the result of a sample inspection. Formalizing the concept of Assisted Acceptance Sampling 

(AAS), this paper suggests the use of consolidated tools for reducing the risk of human errors in 

acceptance sampling activities. To this purpose, the application of Augmented Reality (AR) 

techniques may represent a profitable and sustainable solution. 

An AR-based prototype system is described in detail and tested by an experimental plan. The major 

original contributions of this work are: (i) introducing the new paradigm of AAS, and (ii) 

developing a preliminary application in an industrial-like environment. This application is a first 

step towards the realization of a complete AAS system. 

Keywords: lot-by-lot acceptance sampling, assisted acceptance sampling, augmented reality, quality 

control, on-line quality control. 

1. Introduction and literature review 

Quality inspection procedures are generally used for checking the compliance with specification of 

incoming lots of products. When the lot size is very large and inspections are expensive or 

destructive, Acceptance Sampling (AS) is generally preferred to 100% inspection. AS uses 

statistical sampling to decide whether to accept or reject a production lot. This widespread and 

deep-rooted practice is regulated by several standards [1]. As derivatives of MIL STD 105E [2] and 

ANSI / ASQ Z1.4 [3], ISO 2859 and ISO 3951 standards [4] address the important role that AS 

plays when dealing with the product flow, with an emphasis on the producer’s process [5]. 

AS generally requires the random selection of a sample of product units from a lot which should be 

representative of the lot itself (see Fig. 1). Then the lot is sentenced according to the result of the 

sample inspection: if the sample defectiveness is tolerable, then the whole lot is accepted, otherwise 

it is rejected [5]. 

To date, the human factor still has a crucial role in the AS, which often involves specialized 

operators dedicated to the inspection activities. In this context, distraction, fatigue, superficiality 
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and lack of operator’s training are among the possible causes of errors that might compromise the 

effectiveness of AS. 

 

Fig. 1. Schematic representation of the AS process. 

Being able to superimpose virtual objects and cues upon the real world and in real time, Augmented 

Reality (AR) potentially constitutes a useful tool to assist operators in the random sampling process.  

There are many examples of ad-hoc AR systems designed for assisting operators in their specific 

tasks. Limiting the focus on manufacturing technologies, AR is applied to prototype visualization 

[6, 7, 8, 9], assistance in maintenance and repairing activities [10, 11, 12], training [13, 14], 

guidance during product assembly [11], robot path planning [15, 16]. 

This manuscript introduces the concept of Assisted Acceptance Sampling (AAS), suggesting the 

use of AR techniques for supporting quality inspectors in the AS activities. This can significantly 

decrease the time for training operators, also reducing the risk of human error in the selection of the 

sample while ensuring the compliance with the requirement of sampling randomness. In detail, the 

paper describes a prototype implementation based on AR techniques which is able to recognize and 

track production lots in industrial environments. The ability to recognize and track production lots 

and simultaneously display them on a portable device is a first and fundamental step for any 

subsequent development of additional support features. As a preliminary implementation, the goal 

of the prototype is limited to support the user in the univocal identification of the item to sample in 

order to ensure the hypothesis of random sampling which is a fundamental assumption of AS. The 

prototype is tested through an experimental screening of the major factors affecting its performance. 

This paper is not aimed at developing new AR techniques or procedures, but rather extending the 

use of the available ones for typical AS operations. Moreover, the preliminary prototype application 

represents a first step towards the realization of a complete AAS system. 

The remainder of this paper is organized into five sections. Sect. 2 discusses the problem of 

implementing an AR system for a lot by lot AS, while Sect. 3 describes the prototype developed in 

an industrial-like environment, at the industrial metrology and quality laboratories of DIGEP – 

Politecnico di Torino. Sect. 4 provides an application example of AAS based on the aforementioned 

prototype. Sect. 5 contains a screening analysis of the major factors affecting the performance of the 
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AR system. Finally, the concluding section highlights the main implications, limitations and 

original contributions of this work. 

2. The concept of AAS: problem introduction 

Even for companies with a high level of automation, AS activities are difficult to automate, since 

they are strongly affected by sensitivity, experience and training of operators. While automatic 

sampling and inspection systems have been developed and adopted in some specific contexts [17, 

18, 19], manual approaches are still very common, with a crucial role played by operators. 

Unfortunately, the presence of an operator may also cause some errors stemming from distraction, 

fatigue, superficiality, lack of training, etc. 

 

Fig. 2. Lot-pallet configuration. 

In AS, a typical situation is that of inspecting a lot of items arranged on a pallet (see Fig. 2). The 

operator has to disassemble the lot, open the packages to be inspected and eventually reconstruct the 

lot after the inspection. For large-sized lots or lots with a large number of items, these operations 

can be quite complex. Fig. 3 depicts the typical activities and issues in AS activities.  

pallet 

box / item 



 

Fig. 3. Typical phases and issues of non-assisted AS.  

Assisted AS is aimed at overcoming the limitations of the classical AS. In a AAS context, the 

operator is guided in his specific tasks providing real time information, such as for example the 

number and the location of the items to inspect and/or the optimal strategy to pick them. To date, 

specific tags (and readers) – such as Radio-frequency identification (RFID) tags or bar codes – have 

been used to identify, locate and track lots in warehouses or throughout production lines. Although 

this technology is mature and widely adopted, alone it is not able to fully assist AS procedures due 

to its intrinsic limitations [20, 21, 22].  

AR techniques can be seen as a complementary tool to enhances AS systems, enriching the 
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operator’s perception of the reality with additional information for guiding the sampling activities 

(see Fig.4). However, to be effective, they have to be minimally invasive, preferably inexpensive 

and not requiring particular hardware infrastructures.  

 

Fig. 4. Schematisation of the paradigm of AAS.  

In the following sections we describe the design and implementation of a first prototype developed 

according to the requirements of a specific application. Despite this specificity, the following 

discussion is deliberately general so as to apply to a generic context. 

In detail, the prototype tries to solve the problem of tracking a generic lot-pallet, locating and 

identifying single the items, also guiding the operator in AS process selection.  

3. Prototype implementation 

As schematized in Fig. 5, the prototype was designed as composed by two elements: 

 An image processing unit embedding an image acquisition device (i.e. a standard low cost 

camera); 

 A pallet equipped with some markers, to be recognized by the image processing unit.  

The idea was to realize a prototype able to manage the camera streaming so as to recognise a 

generic production lot, highlighting the items to be sampled. 

C++ language was used as programming platform due to its large variety of graphical and image 

processing libraries. In detail, current implementation uses ARToolkit and OpenGL libraries [23, 

24]. A tablet with an Intel® i3 processor and 4GB RAM was used as a preliminary processing unit. 

Two different cameras were used to test prototype performance (see Sect. 5).  

 



 

Fig. 5. Scheme of the prototype architecture. 

A simple selection algorithm able to suggest the boxes to sample was implemented. To make the 

implementation more efficient and robust, a set of markers placed on the base of the pallet was used 

(see Fig. 6). Being different from each other, markers make it possible to identify each side of the 

lot-pallet univocally. The choice of using artificial markers is not a relevant constraint in this kind 

of application: markers are simple labels which do not obstruct the normal functionality of pallets 

(for instance when handled by a forklift, pallet jack, front loader, etc.). Markers were simply glued 

onto the pallet in a simple and fast way.  

 

Fig. 6: Image of a lot with the detail of a marker.  

Fig. 7 synthetically shows the main steps of the implemented algorithm. Their logic is explained in 

the following sections by means of some graphical examples. Particular attention is paid to the third 

step (i.e. Transformation matrix estimation), which constitutes the core activity of the whole 

implementation. 
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Fig. 7: Schematic flow chart of the preliminary tested procedure.  

3.1 Step 1 – Preliminary image processing 

This phase is aimed at capturing a frame/image from the camera and performing some preliminary 

image processing, i.e. the image is converted to black and white, improving the contrast for easing 

the subsequent processing phases. The optimal threshold value for the black and white conversion is 

automatically estimated by the analysis of the image features [25]. Fig. 8 shows an example of 

black and white conversion.  

 

 

Fig. 8. Step 1 – Example of preliminary image processing.  

 

3.2 Step 2 – Marker localization 

The purpose of this step is to identify the position of the markers in the captured frame. This phase 

can be in turn divided into further steps, as described by Fig. 9. 

 

Fig. 9. Step 2 – Flow chart of the marker localization phase.  

At this stage, the black and white image is processed for identifying and extracting the so-called 

“connected-component”, i.e. the regions of the image that are characterised by connected  

boundaries [26, 27]. The approach here selected is that proposed by Samet et al. [28] which proved 
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to be robust and efficient.  

After identifying the connected boundaries in the analysed frame, the regions for which the outline 

contour can be fitted by four line segments are extracted. Rectilinear segments are intersected in 

order to identify the corner of each marker in the frame. Fig. 10 briefly summarizes these steps. 

 

 

Fig. 10. Step 2 - Schematic representation of the target segmentation phase. (a) is the original black and white 
image; (b) is the extracted connected component; (c) is the outline contour of the connected component while 

(d) is the result of the intersection of rectilinear segments.   

The final output of this phase is the set of 2D homogeneous coordinates  Tsksk YX ,, ,  relating to the 

corners of each marker in camera screen reference system. 

3.3 Step 3 – Transformation matrix estimation 

The purpose of this step is to determine the relative position of the image acquisition device with 

respect to the lot-pallet. This step requires the a-priori knowledge of (a) the relative positions of the 

markers on the pallet and (b) the technical specifications of the camera.  

On the one hand, the position of the marker on the pallet can be defined by a preliminary 

measurement procedure that, defined a local reference system on the pallet (hereafter referred to as 

marker reference system), for each marker establishes the coordinates of its four corners. 

On the other hand, the technical specifications of the camera are summarized by its internal 

parameters contained in the projection matrix P . In the absence of technical accidents, this matrix 

can be estimated once in a while through appropriate calibration procedures. Further details 

concerning these procedures can be found in Appendix B. 

(a) (b) (c) (d) 



  

Fig. 11. Step 3 – Schematization of coordinate reference systems. F and Q are respectively the focal point of the 
camera and a generic corner of the marker. F’ and Q’ are the projections of F and Q on the camera view-

plane. 

From the geometric point of view and focusing only on one marker, the problem is schematized in 

Fig. 11, where Q is the generic corner of a marker, Q’ its projection on the camera screen and F the 

focal point of the camera. The aim of this phase is to estimate the transformation matrix W , which 

links the coordinates of Q, in the marker reference system  TmQmQmQ ZYX ,,, ,, , to the 2D coordinates 

of Q in the camera screen reference system  TsQsQ YX ,, , . This transformation can be expressed as a 

roto-translation in homogeneous coordinates as: 
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where  TmQmQmQ ZYX ,,, ,,  and P  are known values specified by the calibration procedure and 

 TsQsQ YX ,, ,  the result of Step 2 as described in Sect. 3.2. The inversion of Eq. 1, which is possible 

considering all the corners concurrently recognized by the system, allows the estimation of W . 

Notice that the transformation matrix W  only depends on the relative position between the camera 

and the marker(s) of interest. Since the camera and the lot-pallet may move, W  has to be estimated 
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in real time, i.e. for each of the frames captured. 

For a more comprehensive description of this step refer to Appendix A.  

3.4 Step 4 – Lot-pallet reconstruction 

In this stage, the shape of the lot-pallet is reconstructed basing on a-priori known information. In a 

preliminary set-up phase, the coordinates of the lot corners are defined with respect to the markers’ 

reference system. Say  Tmkmkmk ZYX ,,, ,,  the coordinate vector of one of the corners of the lot, in the 

markers’ reference system. Having defined P  and W , the position of the corner in the camera 

screen  Tsksk YX ,, ,  is  given by: 
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Eq. 2 allows to determine the camera screen position of all the corners. A virtual representation of 

lot edges can be superimposed over the real image by simply plotting all the lines connecting 

corners. Fig. 12 shows an example of lot reconstruction.  

 

Fig. 12. Step 5 – Example of lot reconstruction. 

The items composing the sample are highlighted in the graphical output in order to ease their 

identification and sampling. 

4. Application Example 

This section illustrate a few screenshots captured by the prototype, moving the camera around the 



lot-pallet. In this example, twelve markers (three for each square of the pallet) were used to 

reconstruct a lot composed by 2 x 2 x 3 boxes. Markers highlighted in blue have been recognized by 

the system, while white crossed markers not (see Fig. 13c). 

 

Fig. 13. Qualitative example of system operation. White crossed squares represent markers that are not 
recognized by the system. 

As Fig. 13 shows, the prototype appears rather robust, even if lot reconstruction is not always 

perfect (see for instance the upper right corner of the lot in Fig. 13b). The accuracy of lot 

reconstruction is likely to be affected by several factors relating to the technology used, the 

environmental conditions as well as the algorithmic approach.  

In order to provide a quantitative evidence of the prototype performance, next section provides 

some preliminary experimental results.  

5. Factor Screening 

Being based on image processing, the prototype performance can be affected by a large number of 

different factors.  

In order to establish which of these factors are particularly significant, this section proposes a 

screening of five macro factors that were classified as potentially important for the system. The 

macro factors analysed may be further decomposed into other single factors. In detail, they are:  

 Number of recognized markers. To reconstruct the lot-pallet, the prototype requires the 

recognition of at least one marker. However, with the increase of the number of markers it is 

reasonable to expect a better reconstruction (see Fig. 14). 

      

(a) (b) (c) 



 

Fig. 14. Example of images captured by the prototype with 2 and 3 recognized markers.  

 Light. Lighting conditions can be crucial. An optimal lighting can improve the quality of the 

image so as to facilitate its processing (see Fig. 15). 

 

Fig. 15. Example of images captured by the prototype in different light conditions. 

 Distance. The distance between the image acquisition device and the lot compared to the 

size of the marker may influence the accuracy of the lot reconstruction (see Fig. 16). 

 

Fig. 16. Example of images captured by the prototype at different distances from the lot. 

 Angle. The angle between the camera and the lot (and thus markers) may complicate the 



recognition of the markers (see Fig. 17).  

 

Fig. 17. Example of images captured by the prototype at different angles. 

 Camera type. Resolution, shutter time, quality of the lens, intrinsic parameters of the camera 

are all parameters influencing the quality of the image, and as a consequence the 

performance of the system (see Fig. 18). 

 

Fig. 18. Example of images captured by two different acquisition devices. 

5.1 Factors Screening 

To test the aforementioned factors, a 5 factors complete factorial plan with 2 levels for each factor 

(i.e. 25 factorial design) and 3 replications was designed. In the experiments, the prototype was used 

to reconstruct a lot consisting of 2 x 2 x 3 boxes as the one exemplified in Fig. 13. The dimensions 

of each box are 60 x 40 x 40 cm, while that of the pallet are 120 x 80 x 15 cm. 

Factors were varied in a total of  96=3 25  combinations and the test sequence was randomized 

using the random number generator provided by Minitab®. For each of the 96 combinations, we 

recorded the image captured by the camera and the resulting coordinates of the corners (
vc ) of the 

reconstructed lot.  

The considered response variable was the error in the reconstruction of the lot, intended as the 



maximum pixel distance ( maxd ) between the corners of the real and the virtual lot (respectively rc  

and 
vc ), as reconstructed from the procedure:  

)(max
8,..,2,1

max vr
i

ccd 


.    (3) 

As a first application, the real lot corners were defined manually. Although this operation may 

introduce an error, its magnitude is considered negligible compared to that in the lot reconstruction. 

Each of the five factors was changed according to two levels. A detailed description is reported in 

the following: 

1. Number of recognized markers. The prototype ideally can work when one marker is 

recognized. However preliminary tests showed that more robust results in terms of lot 

reconstruction can be obtained with two or more markers. For this reason 1 and 3 recognized 

markers were chosen respectively as “-1” and “1” level for this factor.   

2. Light. The experiments were done in an indoor warehouse illuminated with artificial lights. 

A 1000-Watt halogen lamp was used. Two different configurations of illumination have 

been tested, respectively with the halogen lamp turned off and on. These two conditions of 

illumination correspond to approximately 250 lux and 720 lux in the area in which the pallet 

is placed.  

3. Distance. This factor is intended as the distance between the camera and closest marker, the 

two levels are 1301 d cm and 2302 d cm. Considering that we used square markers of 

side 15ml  cm, they respectively correspond to a ratio 7.8/1 mld  and  3.15/2 mld . 

4. Angle. Two angulations between camera and pallet were analysed: a frontal and a lateral 

position corresponding respectively to angles of about 90° and 135° between camera axis 

and the closest pallet side.   

5. Camera type. Two different cameras were tested. For both of them the resolution was 

limited to 800x600 pixels in order to facilitate the real-time use of the prototype. The first 

one is the Microsoft LifeCam NX-6000 model 1082 while the second is the Microsoft 

LifeCam Cinema MSH5D-00015. 

Tab. 1. Summary of the parameters of the Design of Experiment (DoE). 

Factors  Levels  Replications 

  ‐1  1   

A  Number of recognized markers  1  3  3 

B  Light  Off (250 lx)  On (720 lx)  3 



C  Distance  1301 d cm  2302 d  cm  3 

D  Angle 
Frontal 

( 901  °) 

Lateral 

( 1352  °) 
3 

E  Camera Type 
LifeCam  
NX‐6000 

LifeCam Cinema 
MSH5D‐00015 

3 

 

Table 1 summarises the parameters of the configuration of the experimental design. 

5.2 Results Analysis 

The response variable is modelled as:  
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where xi with  5,...,2,1i  are the values of the i-th factor. For each of the 96 considered 

combinations of the factors a value of maxd  is produced. Neglecting the residual, the response 

variable can be modelled as  
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According to this notation residuals are given by:  

maxmax d̂d  .     (6) 

Considering the analysed combinations, a total of 96 residuals are generated. Table 2 details the 

output of the factorial fit of maxd̂  versus all the factors and the considered interactions. Large values 

of T and conversely small P-values (say <0.05) indicate that the factors (or interactions) have a 

statistically significant effect on the response. 

Tab. 2. Factorial Fit: maxd̂   versus Markers; Light; Distance; Angle; Camera. 

Estimated Effects and Coefficients for Error (coded units) 
Term                      Effect     Coef        T      P 

Constant                          0̂  =   3.8020  64.16  0.000 

Markers (x1)              -0.9203  1̂  =  -0.4602  -7.77  0.000 

Light   (x2)               0.9240  2̂  =   0.4620  7.80  0.000 

Distance(x3)              -0.7643  3̂  =  -0.3822  -6.45  0.000 

Angle   (x4)               0.6595  4̂  =   0.3298  5.56  0.000 

Camera  (x5)               0.6609  5̂   =   0.3305  5.58  0.000 

Markers*Light             0.0773  2,1̂  =   0.0386  0.65  0.517 

Markers*Distance         -0.0982  3,1̂  =  -0.0491  -0.83  0.410 

Markers*Angle             0.1169  4,1̂  =   0.0584  0.99  0.327 

Markers*Camera            0.0524  5,1̂  =   0.0262  0.44  0.660 



Light*Distance            0.0338  3,2̂  =   0.0169  0.29  0.776 

Light*Angle               0.1301  4,2̂  =   0.0650  1.10  0.276 

Light*Camera             -0.5626  5,2̂  =  -0.2813  -4.75  0.000 

Distance*Angle           -0.1067  4,3̂  =  -0.0534  -0.90  0.371 

Distance*Camera          -0.2333  5,3̂  =  -0.1166  -1.97  0.053 

Angle*Camera             -0.0828  5,4̂  =  -0.0414  -0.70  0.487 

Markers*Light*Distance   -0.1010  3,2,1̂   = -0.0505  -0.85  0.397 

Markers*Light*Angle       0.3397  4,2,1̂  =  0.1699  2.87   0.005 

Markers*Light*Camera      0.1270  5,2,1̂  =  0.0635  1.07   0.288 

Markers*Distance*Angle   -0.1191  4,3,1̂  = -0.0595  -1.00  0.319 

Markers*Distance*Camera  -0.1899  5,3,1̂  = -0.0950  -1.60  0.114 

Markers*Angle*Camera      0.4502  5,4,1̂  =  0.2251  3.80   0.000 

Light*Distance*Angle     -0.2956  4,3,2̂  = -0.1478  -2.49  0.015 

Light*Distance*Camera     0.1092  5,3,2̂  =  0.0546  0.92   0.360 

Light*Angle*Camera       -0.0583  5,4,2̂  = -0.0292  -0.49  0.624 

Distance*Angle*Camera     0.0699  5,4,3̂  =  0.0349  0.59   0.557 

R2 = 80.65%   R-Sq(adj) = 73.74%  

 

The high value of R2 (>80%) indicates the goodness of fit of the model. This consideration is also 

supported by the value of the adjusted R2 (~74%) which gives the percentage of variation explained 

by only those factors (and interactions) that really affect maxd̂  [29]. Hence, the gap between R2 and 

the adjusted R2 (~6%) can be explained by looking the significance of the factors considered for the 

factorial fit: the value of R2 is slightly inflated by the presence of few factors – say those with a P-

value lower than 0.05 – that are not significant. 

Also, the analysis in Fig. 19a shows the normal distribution of the residuals which is further 

confirmed by an Anderson-Darling test. The homogeneity of residual distribution was tested with 

respect to all the analyzed factors. As an example, Fig. 19c reports a plot of maxd̂  versus the camera 

factor. Furthermore, there is no evidence of lack of independence. For instance, Fig. 19d shows the 

plot of residuals versus order of observation.  

 

 



 

Fig. 19. Residual analysis. (a) Normal Probability Plot, (b) Histogram of Residuals, (c) Residual versus camera 
and (d) Residual versus order plot. Residual are expressed in pixels.  

The factorial fit shows which factors and interactions are significant. These results are further 

confirmed by the main effects plot and the interaction plot for the response variable (see Fig. 20).  

In order of importance, light is the most significant factor. Surprisingly, excessive lighting of the 

scene can significantly worsen the performance of the prototype. This is probably due to the fact 

that the recognition of a marker is done by isolating a sub-image based on the white frame 

surrounding each marker (see Sect. 4.2). Increasing the lighting may generate an overexposed 

image with many “white” parts which may complicate the recognition of the markers. In this case, it 

would probably be reasonable to expect an optimal value of illumination beyond which the 

prototype performance worsens. 

As expected, the increase in the number of markers improves the performance of the prototype. 

Obviously, the recognition of a single marker allows the reconstruction of the lot with a lower 

accuracy with respect to the reconstruction obtained by the recognition of three markers. 

Another important factor is distance. In general, the increase of the distance between camera and 
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pallet results in a reduction of the reconstruction error. This is because the difference between the 

virtual reconstruction of the lot and the real lot is more evident when the camera is closer to the lot, 

and the error, in terms of pixels, is larger. Even in this case, the behaviour of the response variable 

is probably not linear: while increasing the distance may have a positive effect, on the other hand, it 

is also reasonable to expect a degradation of performance from large distances, when the markers 

on the pallet are not easily recognizable. 

 

Fig. 20. (a) Main Effect plot for the mean of the DoE response variable. (b) Interaction plot for the mean of the 
response variable versus Camera and Light factors 

Another factor that has a significant effect is the camera type. The quality of the components and 

the different firmware settings of the analysed devices have a significant effect on the prototype. In 

this case the second camera is the best. 

The angle causes an increase of the error for images from angled perspectives. It must be noted that 

in these tests it was decided to use only markers on one side of the pallet. In normal use, when the 

camera is angled with respect to the lot-pallet, the prototype is able to see up to six markers. In 

order to keep under control the number of recognized markers, nine of the markers on the pallet (i.e. 

all markers apart from those on one side) were hidden.  

Fig. 20(b) shows the interaction plot for the response variable versus Camera and Light factors. The 

interaction between Light and Camera is noteworthy. This can be explained by the camera settings 

which causing different reactions to light exposure. 

Three-way interactions Marker-Angle-Camera and Marker-Light-Angle are less important but 

significant. It is hard to give a practical explanation of the significance of such interactions: as for 

the Marker-Angle-Camera interaction, we can think that the different types of camera - which have 

different lenses and settings - can react differently to shots of different markers more or less angled; 

considering the Marker-Light-Angle interaction, one can imagine that depending on the angle and 

the marker, there are lighting conditions that allow a better reconstruction of the lot. 
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Being a screening, this analysis is far from being exhaustive. In particular, the behaviour of some 

factors, such as light or camera type, has still to be deepened. However, we remark that the 

maximum reconstruction error is in the order of a few pixels, i.e. a tolerable value for practical 

applications.  

6. Conclusions  

This paper introduced the concept of Assisted Acceptance Sampling (AAS), which entails 

conceiving and developing real-time tools for driving the AS operators in manual sampling 

operations, while reducing the risk of errors due to distraction, fatigue, lack of training, etc.. 

Preliminary results, concerning the implementation of a prototype, able to recognize and track a lot 

arranged on a pallet labelled with special markers, were presented. An experimental screening 

showed that the most significant factors affecting the performance of the prototype are lighting 

conditions, the number of markers used, the position with respect to the pallet and the type of 

camera used.  

The good performance of the prototype implementation corroborates the fact that the proposed tool, 

if properly used by AS operators, may lead to remove human errors concerning the non-random 

selection of the sample units. A rigorous quantification of this kind of improvement, in real 

industrial environments, is left to further analysis.  

In its current state, the main limitations of the prototype can be summarized as follows: 

 The system is able to recognize and track a generic lot, but a procedure for guiding lot 

disassembly and re-assembly remains yet to be fully developed. 

 To date, the prototype is only able to handle images in which at least one marker of the 

pallet is recognizable. 

To be truly applicable, future developments of the prototype need to address and overcome these 

issues. Efforts in this direction would allow the application of innovative ways of performing lot-

by-lot sampling in industrial environments, opening the possibility of reaching new levels of 

operational efficiency. 
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Appendix A – Transformation Matrix 

This appendix provides further details about Step 3 of the procedure schematized in Fig. 9. The goal 

of this step is to determine the relative position of the image acquisition device with respect to the 

lot-pallet.  With reference to the problem described by Fig. 11and the notation introduced in 

Sect. 3.3, the aim of this phase is to estimate the transformation matrix W , which links the 

coordinates of Q, in the local reference system of the markers  TmQmQmQ ZYX ,,, ,, , to the coordinates 

of Q in the camera reference system  TcQcQcQ ZYX ,,, ,, . This transformation can be expressed as a 

roto-translation in homogeneous coordinates as: 
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The transformation matrix W , which is composed of a rotation ( R ) and a translation (T ) 

component, only depends on the relative position between the camera and the marker of interest. 

Since the camera and the lot-pallet may move, W  has to be estimated in real time, i.e. for each of 

the frames captured. 

The projection matrix P , i.e. the function linking the coordinates of Q in the camera reference 

system  TcQcQcQ ZYX ,,, ,, to the coordinates of the same point (or its projection Q') in the camera 

screen reference system  TsQsQ YX ,, , , is assumed to be known: 
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This matrix is a function only of the intrinsic camera parameters (focal length, principal point, scale 

factors), so it does not depend on the position of the image acquisition device. P  can be determined 

through appropriate calibration procedures [31]; Appendix B will give more details about them. 

Combining Eqs. A2 and A1 we obtain: 
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Knowing the four pairs of coordinates of the marker corners in the camera screen reference system 

(i.e. the output of step 2), Eq. A3 can be reversed to find W . Focusing on W , R  and T  are 



estimated separately. In particular, R  is estimated basing on the following geometric 

considerations. When two parallel sides of a square marker are projected on the image, the 

equations of the line segments in the camera screen reference system are: 
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being  T

ss YX ,  generic coordinates in camera screen reference system. By using Eq. A2, Eq. A4 

can be reformulated as a function of generic coordinates in camera reference system (i.e. 

 Tccc ZYX ,, ): 
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In matrix form, Eq. A5 expresses the equation of two bundles of plans including the two parallel 

sides of the marker. Normal vectors of these planes 1n  and 2n  are: 
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Thus, the direction vector of two parallel sides of the marker can be obtained as the cross product 

21 nn  . Given the two sets of parallel sides of the marker, two nominally perpendicular unit 

direction vectors ( 1u  and 2u ) can be obtained. The cross product among 1u  and 2u  gives a third 

unit vector ( 3u ) so that the rotation component R  in the transformation matrix W  can be 

expressed as:  

 TTT uuu 321R .      (A7) 

Given R , the translation component of W  can be estimated by Eq. A1. In each frame, the 

coordinates of the four marker corners are known both in the marker and the camera screen 

reference system. Thus, a system of eight equations in three unknown parameters (  Tttt 321T ) 

is defined for every frame.  

Ideally, the recognition of a single marker is sufficient for the recognition and reconstruction of the 

entire lot-pallet. However, for a robust recognition, up to twelve markers were used (i.e. three in 

each side, see Fig. 12). Finally, 
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W  is estimated.  



Appendix B – Projection Matrix  

The goal of camera calibration is finding the projection matrix ( P ) introduced in Eq. A2 [32]. The 

camera calibration is performed using a simple cardboard frame with a ruled grid of lines. The 

coordinates of all intersection points are a-priori known in the cardboard local 3D coordinates. The 

cardboard frame is captured by the camera from different points of view. Also the coordinates of 

intersection points in the camera screen reference system are identified by image processing.   

Considering the generic intersection point Ii on the cardboard frame, the relationship among its 

camera screen coordinates  TsIsI ii
YX ,, , , the camera coordinates  TcIcIcI iii

ZYX ,,, ,,  and cardboard 

coordinates  TmImImI iii
ZYX ,,, ,,  can be modelled as:  
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where P  is the projection matrix to be estimated. Since many pairs of  TsIsI ii
YX ,, ,  and 

 TmImImI iii
ZYX ,,, ,,  are generally obtained, matrix C  can be estimated by a least square approach. 

Combining Eqs. A2 and B1, it is obtained:  
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Notice that matrix C  has 11 independent variables, while P  and W  5 and 6 (three rotation angles 

and three translation components) respectively. As a result, the matrix C can be easily decomposed 

into P  and W , considering the upper triangular form of P .  

 

 


