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“For a long time, people were saying that most accidents were due to 

human error and this is true in a sense but it’s not very helpful. It’s a bit 

like saying that falls are due to gravity.” – Dr Trevor Kletz 

 

 

Out of this nettle, danger, we pluck this flower, safety.  

William Shakespeare 

 
  



  



Abstract 
The present work of thesis investigate the explosibility sensitivity and behavior of combustible solid 

materials, in the form of dusts. 

The first phase of the work has focused on the ignition sensitivity of combustible dusts, both in 

form of clouds than deposed as layers. Standard test methods has been used to assess ignition 

parameter of the samples, i.e. UNI EN 50821: 1999. 

MITC and MITL were measured for pure combustible dusts and for mixtures of different dusts. In 

particular mixtures of combustible and inert dusts were analyzed. The experimental results 

underlined the increase of the ignition temperature (both in clouds than in layers) as the weight 

content of inert material increase. Extinguishing powders with chemical heat depletion effect had 

demonstrated to be more effective in increasing the ignition temperature with respect to inert acting 

with physical inertia mechanism. MITC of two combustible dusts mixture have been analyzed and 

results have shown the poor accuracy of the standard procedure in defining the ignition temperature, 

particularly when there is little difference between ignition temperatures of the pure materials. 

The author has attempted to reduce this lack of accuracy, inadequate when a high level of details is 

required (like for scientific purposes) in ignition measurements through different statistical analysis 

of experimental data. 

This study has generated a statistical approach to the investigation of dust ignition temperature with 

the definition of the SIT (Statistical Ignition Temperature) and the definition of a Probability 

Escalation Interval (PEI); within PEI ignition probability of dusts vary between 0 and 1 with respect 

to temperature. 

The results obtained show that standard methods adopted worldwide could fail in determine the 

MITC of dusts and bring a new, more accurate methodology as a contribution on the definition of 

ignition concept of dusts. The statistical study could also apply to ignition criteria of the 

explosibility test proposed here, in order to give to SET procedures and results a more reliable 

statistical value. 

The Speditive Explosibility Test has the form of a screening procedures for defining explosibility of 

dust samples, with the aim of avoiding time and cost-consuming standard procedures. The test 

consist in different procedures derived from standards (mainly UNI EN 50821 and UNI EN 13821) 

which ignition conditions are modified to be “as worst as possible”, in order to avoid marginally 

explosive dusts to be classified as non explosible. 

Tests were performed on different dusts samples (by chemical composition, nature, PSD) and 

results were validated through explosion test in the 20 L Siwek-sphere. The test classification 

shows, for the majority of the samples collected, good agreement with literature standard 

explosibility tests. The SET could be assumed as standard test for the explosibility determination of 

a dust. 

A second experimental campaign was performed on non-traditional dusts coming from textile 

industries. All samples PSD was analyzed and 15 over 100 total were submitted to the SET with the 

aim to obtain more data on explosive behavior of those type of dusts. 

 

Keywords: ignition probability escalation, dust explosibility screening, non-traditional dusts 
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Introduction 

1.1 Generality on dust explosion 
The term “explosion” is declined in dictionary in different acceptations: 

 “a rapid increase in volume and release of energy in an extreme manner, usually with the 

generation of high temperatures and the release of gases”; 

 “ A violent bursting as a result of internal pressure”; 

 “The loud, sharp sound made as a result of either of these actions”. 

As gas and dust explosions are concerned, these different meanings are both used, depending on 

context whether the causes or the consequences of the phenomena are analyzed. 

While gas explosion is worldwide known as phenomenon and its hazards have been deeply 

investigated since early technological era, dust explosion study is still a challenge for those who are 

concerned with. 

Thus, nevertheless the first documented dust explosion dated as old as 1795: Count of Morozzo 

(Northwest Italy) reconstructed a flourmill deflagration occurred in Turin on 14 December of that 

year. The most probable cause was indicated in the unaware act of a mill worker that enlightened 

the inside of one flour silo with a lamp; this caused the ignition and consequential explosion of the 

amount of dust lifted by the miller boy and his injuring. 

Dust explosion study had made several steps from that moment on.  

People experienced in everyday lifetime small and confined dust explosion (actually rapid 

combustion): the sawdust injection in stove to sustain its early combustion is a typical example. 

Dusts are described as solid particles generated by handling, crushing, grinding, rapid impact, 

detonation, and decrepitation (breaking apart by heating) of organic or inorganic materials, such as 

rock, ore, metal, coal, wood, and grain. (Industrial Hygiene) 

For many years, NFPA 68 defined combustible dust as a "finely divided solid material 420 microns 

or smaller in diameter (material passing a U.S. No. 40 Standard Sieve) that presents a fire or 

explosion hazard when dispersed and ignited in air. Other NFPA standards, however, have changed 

their combustible dust definition to remove the size criterion, but discuss size in their explanatory 

notes. In general, dusts generated from combustible material with a particle size of less than 420 

microns could be defined as combustible dusts. However, certain particles, such as fibers, flakes, 

and agglomerations of smaller particles, may not pass a No. 40 sieve but still have a surface-area-to-

volume ratio sufficient to pose a deflagration hazard. In the most recent revisions, the explanatory 

notes in many of the NFPA standards have moved from a 420 to 500 micron size threshold. 

European regulations according to the EN 13327 set this threshold at 500 um. 

Dust explosion could be defined as the rapid combustion of a combustible solid substance divided 

into small particles. As a combustion reaction, this requires an amount of energy to occur; reagents 

had to be at a certain energy level, called activation energy to be converted into products. 

This gap to reach the activation energy in combustion reaction is fulfilled with the energy of an 

ignition source that is transferred to the reagents. 

https://en.wikipedia.org/wiki/Volume
https://en.wikipedia.org/wiki/Energy
https://en.wikipedia.org/wiki/Temperatures
https://en.wikipedia.org/wiki/Gas


Dust and gas explosion has the “fire triangle” in 

common: both need an ignition, a combustible and an 

oxidant to occur. Dust explosion actually need two 

more components to happen: a certain confinement of 

the fuel involved and its adequate dispersion in air: 

here literature speaks about the “dust explosion 

pentagon” (OSHA). 

 

 

 

 

 

 

 

Figure 2: Fire triangle 

 

The first aspect of the pentagon to take in account should be the possibility of a dust being 

combustible: this could be actually considered the generic aim of the screening test proposed here in 

this work. In these terms the words combustible, flammable and explosible are considered the same. 

Nevertheless in the followings explosible is referred to dust that result positive in the screening test 

and to indicate LEL and UEL (lower and upper explosibility limits). 

Dust must be airborne and beforehand disperdible in air. This aspect deals with the so called 

dustiness, as defined in Klippel et al. (2015) work, as the capacity of a dust sample to be dispersed 

and stay airborne (definition in VDI 2263-3). Dustiness is relevant with respect to the correct 

procedure of standard test: e.g., only dust sample that could be efficiently injected in the furnace 

could be submitted to the MIT test. 

Ignition sources that could be found in a working place are several, the most probable to find within 

a dust handling or processing plant are correlated to the processing apparatus. These could be 

represented by welding, cutting, heating elements. Furthermore, the generation of sparks by 

mechanical impacts, burning materials or embers could initiated an explosion, as well as electrical 

sources like electrostatic discharges or electric arcs. Each different type of ignition must have a 

specified experimental setup with which dust sample sensitivity to it could be examined. 

Figure 1: Dust explosion pentagon 



 

 

Figure 3: Major dust explosions ignition sources with respect to different industrial equipment, from Abbasi 

(2007). 

 

1.2 Dust explosion influencing factors 
Specific surface area is defined as the ratio between the surface and the volume of a single particle 

in the dust clouds. If as an example we consider spherical particle (traditional dusts could be mainly 

assumed as spheres) then we have: 

𝑆 =
𝜋𝑥2

𝜋

6
𝑥3

           (1) 

Where x is diameter of spheres. 

Therefore the specific surface area available for the combustion reaction will increase as the x linear 

dimension decrease; the specific surface being the site where oxygen and combustible mix and 

reaction take place. 

In this context the smaller the dust particle are the higher the combustion rate, in general up to a 

certain limit value below whom any further increase in the specific surface has no significant 

influence on the reaction. 

Aluminum dust particles could be at first instance not combustible at all, as aluminum is subjected 

to superficial oxidation at extremely low rate (if the specific area is reduced); actually when size of 

aluminum particles is reduced combustion rate increase quickly.  
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Figure 4: Schematic drawing that shows the influence of particle size with respect to combustion kinetics, 

from Echkoff (2003). 

 

Specific surface area of dust particles is one of the variables that affect dust explosion sensitivity 

and violence; among them: 

 Dust chemical composition and nature; 

 Physical conditions of dust and gas phase before the explosion (temperature and pressure) 

 Moisture content of dust 

 Dust particles size distribution (PSD) and shape 

 Dust particle distribution in dust cloud 

 Degree of dispersion or agglomeration of dust particles 

 Distribution of dust concentration in cloud 

 Initial turbulence of dust cloud 

 

All of these factors do contribute to the dust explosion process (causing and be consequences of it). 

Actually, dust chemical composition, physical conditions and particle size distribution could be 

considered as parameters proper of the dust cloud, while degree of dispersion or agglomeration and 

turbulence are associated more to the mechanism of dust generation in the actual industrial process. 

Any solid material susceptible to react with an oxidant element and generate a relevant amount of 

heat in the evolution of the combustion could give birth to a dust explosion if conditions of the 

“pentagon” are satisfied. 

Oxygen is generally the main oxidizer for such type of reactions: element already stables as oxides 

are therefore excluded in the list of those susceptible to rise an explosion (as example silicates, 

carbonates, sulphates ecc...). 



 

Figure 5: Occurrence of explosion dust according by industrial area during the period 1986-2004, from 

Abbasi (2007). 

 

Mainly combustible dusts are divided in organic and inorganic materials.  

The heat of combustion is therefore the main variable when the assessment of the explosibility of a 

dust is envisaged. 

Great heat of combustion means great heat release during the reaction; Echkoff (2003) underlined 

that also the oxygen consumption is a key-factor and has to be considered together with the heat of 

combustion when a comparison between different combustible dusts is performed.  

𝐶𝑜𝑚𝑏𝑢𝑠𝑡𝑖𝑏𝑙𝑒 𝑑𝑢𝑠𝑡 + 𝑂𝑥𝑦𝑔𝑒𝑛 = 𝑂𝑥𝑖𝑑𝑒𝑠 + 𝐻𝑒𝑎𝑡      (2) 

Inorganic elements follow the reaction scheme simplified of Eq. 1.1; the reaction products are the 

stabilized oxides of the element and the heat amount released. 

While organic compounds follow a slight different scheme: 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑑𝑢𝑠𝑡 + 𝑂𝑥𝑦𝑔𝑒𝑛 = 𝐶𝑂2 + 𝐻2𝑂 + 𝐻𝑒𝑎𝑡      (3) 

In this way, the number of moles generated in the reaction are greater and the pressure rise (i.e. the 

violence of the explosion) is reduced, according to the gas equation 

𝑝 =
𝑇𝑅𝑣

𝑛
           (4) 

 

Where T and v are temperature and volume of gases and n is the number of moles in this volume. 

Nitrogenous compounds are instead prone to liberate nitrogen in the reaction and thus is depleting 

the oxygen fraction available for the combustion, which is sometimes compromised or completely 

avoided (as example natural elements containing proteins or carbohydrates, azo dyes etc.) 

In this study several dusts samples of different chemical composition are tested and their behavior 

to ignition and explosion potential is analyzed. In particular experimental campaign of flammability 

screening test is been performed with dust samples coming from the Italian industrial reality, 

spacing form metallic dusts to natural organic and synthetic organic ones. 
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It’s worthy to underline that dust samples in industrial context are rarely pure elements: the great 

majority consists of mixture of different elements, depending on the type of manufacturing to which 

materials are subjected. This mixture could be also inert – combustible dust mixture if dust 

collecting is performed in a part of process where some thermal treatment has been done on it. 

This study deals mainly with these types of samples, that are the more representative in the actual 

industry, but unfortunately the more difficult to examine, as scientific fundaments on dust mixture 

behavior are not yet well understood and several works are in progress with this aim in the 

academic and research context all-around the world. 

 

1.3 Motivation of the Thesis work 
Nowadays there’s no standard conceived to simply determine if the dust can cause an explosion, i.e. 

a test questioning about the explosibility capacity of a dust sample that returns a yes/no result. 

The work of this Thesis starts from here: how it is possible to characterize the explosibility of a dust 

sample without drawing upon standards specific methods? 

In order to fully describe dust behavior a great number of parameters can be measured according to 

several technical standards. In general, each standard describes how to measure a single parameter, 

which characterize a specific dust behavior. 

The main problematics rise from different aspects of the study: 

 Standard methods are often expensive in terms of time and laboratory expenses; 

 Dust that “could not explode” are not tested through standard methods; 

 The definition of a test require a great data set to rely on. 

Literature provided different approach to the explosibility determination; these varying one from 

another depending on the apparatus device used in the test or in the detail of the investigation and 

number of variables monitored. 

A more detailed overview of all this methods is provide in Chapter 4.  

The ongoing work of development of this type of test came mainly from the activity planned in the 

C.S.S.I.AT.Ex in Politecnico. Within it, dust explosible properties are tested through standard test 

methods. The laboratory offers entrepreneurs the possibility to examine whether the dust produced 

in their industrial operation is out of risk or not. The actual industrial characterization of dusts 

samples is different: as said before rarely dust samples could be found in form of pure element, but 

mainly mixtures of peculiar composition are present. 

The chance to work with several dust samples coming from different industrial realities (and from 

different operational processes) let to found the reliability of the screening test procedure on a 

relative high-inclusive data set.  

Moreover an intensive work has been performed with non-traditional dusts. These are dust samples 

coming from the textile industrial reality of Northern Italy. Among them 15 were tested with the 

screening test and 10 to 15 resulted explodible. The limitations related to non-traditional dusts 

applied also to the screening test; here limited dispersibility due to the fibrous nature of samples do 

not allow to perform the screening test on some of them. This campaign’s results are described in 

chapter ### and reveals how the screening test has to be improved when non-traditional dusts are 

involved. 



As what concern costs of standard methods, these are related to the great number of tests (meant as 

single injection of a specific dust concentration in any apparatus) and consequently in terms of test 

time duration. As an example for the MIT determination procedure described in the UNI EN 50281, 

at least 11 injections of the dust sample are required to assess the final value. 

In the LIT procedure, problematics are related to the long execution of one single test: the 

confirmation or not of an ignition has to be investigated up to 30 minutes from the starting of the 

test. Again, no ignition tests are to be confirmed with a series of three test at the same temperature. 

This need of reducing the time (and economics) costs of tests has to be compared to the need of 

performing an adequate number of tests in order to sustain the statistical reliability of the results. 

Chapter 2 of this thesis deals with this problematics related to the determination of a “statistical” 

ignition temperature for dust sample, investigating the evolution of the probability of ignition in the 

temperature range between the “0%” ignition probability temperature and the 100%. 

This existence of this probability range with respect to a certain variable (temperature, energy as 

examples) influences also the procedures of the SET and the definition of a number of attempts for 

each tests that could consider this probability evolution in its totality. 

Actually the European standard EN 1127-2011 (Explosive atmospheres. Explosion prevention and 

protection. Basic concepts and methodology) defines main possible ignition sources for a dust 

explosion. This regulation could be usefully integrated with the possible implications of the results 

obtained by the SET and the implications related to the ignition probability definition on statistical 

basis. 

 

  



  



Measurement of explosible parameters of dust 

2.1 Preliminary phase and sampling of dusts 
Laboratory tests constitute the first step for the hazard evaluation in working places where 

combustible powders are handled or produced. 

An efficient investigation should start from the analysis of the working place where the dust to be 

tested is found: here the operator of the analysis should individuate the presence of areas where dust 

clouds could formed (in normal process operations but also in case of accidents). 

Furthermore, it’s relatively important to individuate on situ the presence of possible effective 

ignition sources nearby the areas where dust cloud could be found. 

After this preliminary phase the evaluation starts from the collection of the samples of dust: these 

have to be the more representative as possible of the actual characterization of the possible dust 

cloud that could be ignited and explode. 

The sampling phase plays an important role: even the more precise and accurate testing is 

misleading if the dust samples tested are not representative of the real dust characteristics found in 

situ. 

Factors that could influencing dust ignition sensitivity like moisture content, size distribution and 

chemical composition (among others) should not be altered from the original sampled dust from 

industrial sites to the one tested in laboratory. The initial part of sampling is the collection of dusts 

from the section of the process plant in which is deposed: this could be part of a moving stream, 

contained in a conveyor bucket or cumulated in a bag or in a heap. Different procedures of sampling 

should be applied depending on the sites where the collection has to be done. 

The second part of sampling is the sub-sampling practice performed in laboratory, down to the 

adequate amount of dust sample to perform the measurement (in some case down to 0.1 grams). 

The attention here should be focused on the grade of segregation of the great amount of dust that 

could be found in sampling bags and compared to the poor representation of the dust sample that 

could be found in a little picked up amount from it. For instance, particle with higher density will 

fall in the lower part of the container, while lighter particles will stay in the surface. 

 

Figure 6: Schematic example of segregation of particles with different sizes in containers. 



In laboratory the coning-quartering sampling method is adopted, this is described in the standard 

UNI 10802:2013. 

 

 

 

Figure 7: Schematic representation of coning-quartering sampling method 

 

Classification of hazards related to dust explosions falls in two categories: the “likelihood of an 

explosion” tests and the “consequence of explosion” tests. 

The first are related to the sensitivity of the dust sample to be ignited and starts the evolution to the 

explosion. These tests should provide the adequate measures of prevention of the occurrence of a 

dust explosion, among them: 

 Control measures on the existing ignition sources; 

 Control on the oxidant supply to the combustion reaction; 

 Limitation of the disperdibility of dust in air. 

 

The second group defines the severity of an explosion and deals with mitigating and reduction 

measures: 

 Venting, suppression, inerting procedure 

 Prevention and housekeeping culture in working place. 

 

 



 

Figure 8: Example of possible proceeding of an explosibility dust screening test. 

 

The parameters measurements related to the ignition sensitivity of dusts are: 

 Minimum Ignition Temperature of a dust cloud (MIT); 

 Minimum ignition temperature of a dust layer (LIT); 

 Minimum Ignition Energy of a dust cloud (MIE); 

 Minimum Explosible Concentration (MEC) or Lower Explosibility Limit (LEL); 

 Limiting Oxidant Concentration (LOC); 

 Electrostatic volume resistivity and chargeability of dust 

In the followings, the main parameters with their measurement procedures are described, 

underlining the problematics related to laboratory scale measurement and the application limits 

depending on the type of dusts to be tested and the present literature in each field. 

 

2.2 Minimum ignition temperature of a dust cloud 
Any hot surfaces, with an energetic level overpassing a critical threshold, could be an efficient 

ignition source for a combustible dust cloud. In industry it’s not rare to come across elements which 

surfaces are at a higher temperature with respect to ambient, in particular in sites where burners, 

dryers or furnaces are present. 

In those situations if a dust cloud is generated in proximity of these hot surfaces a dust explosion 

could occur. The Minimum Ignition Temperature of the dust sample involved represents the 

threshold level that has not to be overpassed by any heated elements in the working place where 

combustible dust are generated. 

Measurements of MIT could be assessed through a G-G Furnace (according to Dorsett, 1960) or 

with the BAM furnace (Leuschke, 1966).  



The Godbert-Greenwald furnace consists of a cylindrical furnace with stainless steel external 

structure covered internally with silica and able to sustain temperature up to 1000° C. The internal 

diameter of the furnace is 36 mm. The heated silica tube is vertical and open to the atmosphere at its 

lower end. The upper end is connected to the dust holder by a glass adaptor. The dust is injected 

into the furnace by an air pulse obtained as the air contained into a reservoir is discharged by 

opening a solenoid valve. The device is mounted on a metal mirror plate enabling the operator to 

observe the interior of the furnace. 

A pair of thermocouples is placed in contact with the interior part of the furnace; the first is linked 

to a PID temperature controller for furnace control, the other is intended for monitoring the internal 

temperature. 

The BAM furnace is similar to the G-G one, but it is positioned horizontally with respect to the 

working desk and the injection of dust sample in the test chamber is manual, through a rubber bulb. 

Echkoff reported that differences in the MIT values of dust samples are found with the two 

experimental setup. While in fact, the G-G furnace shows a relevant dependence on the particle 

settling velocity and therefore on the residential time of it inside the furnace, the BAM furnace 

allows dust “weak to ignite” to settle and the ignition of smouldering gases from these particles 

could occur. 

Hensel (1984) conducted a comparison study between the results of ignition in a modified G-G 

furnace with the length doubler than the standard and a BAM furnace with the automatic injection 

(instead of manually). The results reported that same as or smaller MIT were found with the BAM 

furnace (as an example Lycopodium dust MIT is 30°C lower). 

More recently Wolanski (1992) has demonstrated that the ignition temperature of dusts could vary 

relevantly with scale. Many authors have dealt with the task of validating numerical models of 

temperature ignition of clouds of dusts with experimental data. Among others, Di Benedetto et al. 

(2015) proposed a model for the computation of minimum ignition temperature of polyethylene 

dust clouds. Addai et al. (2015) compared experimental data obtained from the ignition temperature 

of hybrid mixture (combustible dust and gas) in a modified G-G furnace with seven mathematical 

models for MIT prediction. 

Another theoretical model was proposed by Chunmiao et al. (2012) for the determination of 

minimum ignition temperature of a magnesium powder cloud under conditions simulating a 

Godbert–Greenwald (GG) furnace. 

Yuan et al. (2014) in their work, adopted the BAM furnace with a slight modification to assess 

ignition temperatures of Titanium nanopowders. 

Gummer and Lunn (2003) tested the ignition sensitivity of dust clouds in the temperature range 

around MIT to smouldering nests of the same dusts, in a vertical tube apparatus. 

In the present work MIT is measured by means of a Godbert Greenwald (G-G) furnace (Chilworth 

Technologies, model MITC-L, serial number J303161B). Measurement procedure was developed 

according to CEI EN 50281-2-1:1999 as far as air sample injection overpressure and sample 

quantity are considered. 

According to CEI EN 50281-2-1 several runs were made at decreasing temperature (ΔT = 20 K 

above 300 °C and 10 °K below) in order to assess the temperature range (T1; T2) as described 

above. The air pressure in the dispersion reservoir was set at 1.1 bar. A 0.1 g sample of dust or 

mixture was blown into the furnace. 



The standard ignition criteria is the presence of a visible flame coming out of the furnace bottom. 

The presence of sparks in absence of flames is not considered proof of ignition. The T1 is accounted 

when no ignition occurs over 10 consecutive test. At this temperature, further investigations was 

made varying both the injection pressure and the sample weight (varying values of pressure release 

between 0.02 and 0.5 bar and sample weight (ranges from 0.01 to 1 g). In case of ignition the 

temperature is lowered by 20 °K and 10 test runs are repeated.  

The procedure described above to assess ignition temperature of dust clouds returns T2 as the MITC 

value. The real MITC falls in the 20° C interval between T2 and T1. 

 

Figure 9: Evidence of ignition in the G-G furnace test. 

 

The standard methods, described above, defines the MIT value with an accuracy that stands 

between this 20°C temperature range. If a more detailed analysis is required, another procedure has 

to be adopted. The reliability of this procedure is call into question in this Thesis. 

The applicability limit of the G-G furnace is evident when dealing with non traditional dusts. These 

flocks-like or plate-shaped particles present usually very low tendency to disperse in air and 

generate clouds. The study with textile waste dusts, described in Chapter 5 clearly underlined this 

problematics In particular the injection apparatus of the G-G furnace, air blow from reservoir 

operated by a solenoid valve, result inefficient to disperse these samples into the furnace. 

 

2.3 Minimum ignition temperature of a dust layer 
Smoldering layers of combustible dusts, even if do not represent the proper primary dust explosion 

fuel themselves, could be typical initiator of a secondary dust explosion. The smoldering 

combustion igniter could be a metallic piece overheated by impact or a hot ember coming from 

another combustion process; the glowing fire on the dust layers is generally a slow process and 

could burn unbothered until it reaches its thermal peak with consequent ignition of the dust cloud 

coming in contact. 

The critical threshold in this case it is represented by the Layer Minimum Ignition Temperature (or 

LIT according to UNI EN 50281-2-1:1999). 



The (MITL) test in this study was performed with a hot plate apparatus as described in the standard 

procedures. The apparatus is made up of an aluminum plate over which the dust layer is placed and 

an electric resistance (1200 W) that allows to heat up the plate at the test set point. A sample holder 

made of a metallic ring enables to shape a 5 mm dust layer on the hot plate. Alternative holders 

allow to settle 12.5 and 25 mm height samples. A thermocouple is placed to monitor the 

temperature in the middle of the dust layer. A PID controller interfaced with a second thermocouple 

located inside the plate controls the plate temperature. 

The dust layer is dropped on the hot plate once set point temperature (TSP) was reached. Ignition 

criteria was assumed in accordance with CEI EN 50281-2-1 as the hot plate temperature that 

provoked one of the following conditions: visible glowing or flaming; a temperature of 450°C in the 

dust layer; a temperature rise of above 250 K respect to the set for the hot plate. If no ignition 

occurred within 30 minutes, the run was stopped. In case of ignition, the test proceeded until the 

sample temperature diminished below the plate temperature. 

According to CEI EN 50281-2-1 measurement procedure for the MITL, several runs were made at 

decreasing temperature ΔT = 20 K each step in order to assess the temperature range (T1; T2), where 

T1 is the lower temperature at which no ignition occurred and T2 is the upper temperature at which 

at least one ignition occurred. Further measurement at (T1+T2)/2 was performed to assess the 

minimum temperature at which an ignition occurred. 

The ignition criteria for the ASTM E2021 is slightly different from the UNI EN standard: glowing, 

flaming and a temperature rise above 50°C are considered proof of combustion in process in the 

dust layer examined. 

Furthermore it has found a slight decrease of the LIT of dust mixture, when an amount of inert 

material up to 20% is added to the combustible dust, thus in counter tendency with literature data. 

Moreover, dust sample composed of materials that could undergo to melting process could not be 

analyzed efficiently with this procedure. 

Many studies are present in literature dealing with minimum ignition temperature assessment of 

dust layers. Bideau et al. (2010) build up a model simulating the distribution temperature and 

evolution in time in the combustion of inert-combustible mixture dust layers.  

On the other hand Krause and Schmidt (2000) have inveditgate the propagation of smouldering in 

dust deposits through the adoption of cylindrical mesh wire baskets where the dust was layered. 

Recently Ajrash et al. (2016) focused their investigation on the influence of PSD and moisture 

content on the auto ignition temperature of coal dust layer, in hot and humid ambient. 



 

Figure 10: Evidence of ignition in the hot plate standard test for LIT, glowing combustion within the dust 

layer sample. 

 

 

2.4 Minimum ignition energy of a dust cloud 
Electric sparks and arc generated from short circuit of electrical engines or damaged cables could 

trigger a dust cloud explosion. Electrical arc generated by electrostatic energy could also develop an 

efficient explosion igniter for some type of dust. 

The first experimental apparatus devoted to measure the hazards related to electrical arc in contact 

with clouds of combustible dusts was developed by Dorsett et al. (1960). 

The standard apparatus is described in the UNI EN 13821:2004 and in the present work is carried 

out by an Hartmann tube of 1.2 l volume. 

Hartmann tube is plastic hollow cylinder with a 9 cm internal diameter and 34.5 cm high. 

The ignition source is provided by a couple of Titanium electrodes placed within the tube at 11.5 

cm high from the basement. Electrodes are placed horizontally and with a 6 mm gap between each 

other.  

The electrodes are included in a electric circuit that provide a capacitive discharge between them 

through a series of capacitors with different energy stored. The original apparatus was developed by 

Dorsett et al. (1960), actual setup differs from it for the discharge circuit that has been provided by 

an inductance; the induction coil makes the spark more effective as an ignition source by increasing 

the discharge duration of the spark. Dust dispersion mechanism remained the same: an air blow 

activated by a solenoid valve injects the dust sample into the tube (7.0 bar pressure). 

The more recent standard for the minimum ignition energy measurement procedures is the UNI 

13821:2004. According to this standard (and the correspondent ASTM E 2019-03) electric circuits 

for the spark generation could be of different kind. 

 



 

Figure 11: Transformer-generated spark circuit 

 

In Figure 11 C is the discharge condenser, having initial tense between its walls equal to U. 

Theoretical values assumed by energy generated from the circuit are equal to 1 2⁄ 𝐶𝑈2. 

EN13821 declines the characteristic of the circuit: 

 Discharge circuit inductance has to be between 1 and 2 mH; 

 Discharge circuit ohmic resistance has to be smaller than 5 Ω; 

 Electrodes has to be made of Tungsten, Alloy INOX, Copper or brass 

 Electrode peak has to be 1.5 to 2.5 mm large; 

 Electrodes must be adequately insulated to avoid stray currents. 

.  

It will be necessary to take account of the possible influences of dust concentration, dust cloud 

turbulence, and degree of dust dispersion on the test result. Preliminary tests must be carried out to 

adjust the dust dispersion conditions and the ignition delay, so that prescribed minimum ignition 

energies are actually measured for three specified reference dusts. Starting with a value of spark 

energy that reliably causes ignition of a given concentration of the dust being tested, the dust 

concentration being itself a variable, the test energy is successively halved until no ignition occurs 

in 10 successive tests. 

The minimum ignition energy is defined to lie between the highest energy at which ignition fails to 

occur in at least ten successive attempts to ignite the dust-air mixture and the lowest energy at 

which ignition occurs within 10 successive attempts. 

When the ignition energy of non traditional dusts has to be measured the Hartmann tube dispersion 

setup could not be efficient to generate a well-dispersed dust cloud and to disaggregate the flocks 

typical of this type of samples. In this case, as in the G-G setup for the MITC measurement, an 

alternative dispersion unit has to be developed for adequate testing. 

Many studies on the MIE of dusts and on variables influencing it have been carried out worldwide. 

Recently new measurement methods were proposed by Echkoff and Randeberg (2007) dealing with 

electrostatic discharge impact on sensible dusts (with MIE < 1 mJ) and Choi et al. (2001) with the 

introduction of an apparatus for the MIE testing employing a vibrating mesh to generate the dust 

cloud. 

Janes et al. (2008) compared the results of MIE measured both by Hartmann tube apparatus and 

MIKE 3 apparatus. 



A statistical method was proposed by Bernard et al. (2010) for the estimation of MIE; some 

hypothesis of this model have been adopted in this work. 

2.5 Minimum Explosibility Concentration (MEC), Lower Explosibility Limit (LEL) 
Similarly to combustible gas, combustible dusts have a lower concentration in volume in air at 

which the occurrence of an explosion could be considered reasonably impossible. The difference 

with respect to gas, is that while it’s simple to define gas concentration in a confined room, it’s not 

so easy to measure it as what concern an airborne of dust disperse inside a closed space. Actually 

industrial equipment handling dusts often deal with great amount of it and a dilution in air is not 

practice. Nevertheless, this operation is simpler to carry out for some apparatus: the typical example 

being the dust extractor system mounted on machineries that generate fine materials in their 

operations. The MEC is respected in the extraction system once the air velocity in the ducts is 

sufficient to obtain a dust concentration inside it below this threshold. 

MEC is first measured by Dorsett et al. (1960) of US Mines Bureau in a 1.2 L cylindrical container 

where the dust to test was dispersed and the ignition source was provided by an electric continuous 

spark. The procedure starts with low amount of dusts, then increasing it until an ignition occurs. 

This method was influenced by the dispersion and ignition mechanism: the first at the bottom of the 

tube do not let the cloud to developed before the ignition, thus resulting in an underestimation of the 

MEC, the second was not very effective as ignition source, resulting in an overestimation of MEC. 

Siwek vessel (Siwek, 1985) was adopted for Pmax and kst measuring, as well as for the MEC. In this 

case, however, depending on the excessive energy release with respect to the volume of the sphere 

in which was released, lower than expected MEC values are found. This phenomenon is defined as 

the overdriving of the explosion (discussed also for the kst measurement in the SET results of 

Chapter 4) and could be avoided within the 1 m3 chamber, due to its larger volume, the ignition 

source do not interfere with the first phase of the dust cloud propagation. 

The 20 l sphere method is described in standard UNI EN 14034-3:2011 and adopted internationally 

due to its smaller scale, more feasible in laboratory setups. The explosion criterion here is a value of 

maximum explosion pressure equal to at least 1.5 bar (g). This includes the pressure of 1.1 bar (g) 

generated by the chemical 10 kJ ignitor only, without dust. Tests are conducted with successively 

decreasing dispersed dust masses in steps of 0.2 g until a mass is reached at which the maximum 

pressure is lower than 1.5 bar(g) in three consecutive tests with the same dispersed dust mass. The 

minimum explosible concentration is then assumed to lie between the highest nominal 

concentration (dispersed mass divided by vessel volume) at which the maximum explosion pressure 

was less than 1.5 bar(g) in three successive tests and the lowest nominal concentration at which the 

explosion pressure was 1.5 bar(g) or more in one of up to three successive tests. 

Among other works, Chatrathi and Cashdollar (1992) have compared MEC values obtained from 20 

L Sphere and 1 m3 chamber. 

The study of Parnell et al. (2013) made a critical evaluation of testing methods, including MEC 

measurement with a comparison of tests performed on gin dusts with 10 both kJ chemical igniters 

and stationary coil as ignition sources. Amyotte et al. (2014) used MEC values as parameter for the 

implementation of a model assessing the dust explosion occurrence probability. 

LEL measurements of hybrid mixture (combustible dust and gases) were obtained by Garcia 

Agreda et al. (2011) in a 20L Siwek sphere adapted for such type of materials. 



 

Figure 12: Siwek 20 L sphere of the C.S.S.I.AT.Ex, in Turin 

 

2.6 Limiting Oxygen Concentration (LOC) 
The LOC indicates the minimum oxygen percentage in volume in air at which a dust explosion is 

yet possible. Below this threshold the amount of oxidant is inadequate to sustain a combustion 

process and therefore to develop an explosion. 

LOC is measured according to UNI EN 14034-4 and tests are performed in the 20 L Siwek sphere. 

Generally an inert gas (nitrogen mostly) is added to air to defines several mixture with different 

oxygen content. The procedure to follow is describe below; a couple of chemical igniters of 1 kJ has 

to be used in the tests. 

By increasing gradually the ratio of inert gas to air and varying the dust concentration, the oxygen 

concentration shall be reduced to a level, at which explosions no longer occur for any dust 

concentration. An ignition of the dust (dust explosion) shall be considered to have taken place, 

when the measured overpressure (influence of chemical igniters included) relative to the initial 

pressure pi is ≥ 0,5 bar [pex ≥ (pi+0,5 bar)]. 

The highest oxygen concentration where no ignition occurs in three consecutive tests shall to be 

reported as the limiting oxygen concentration LOC. 

LOC determination could apply to the safety protection measurement of substitution or partial 

inerting, depending on the type of dusts and inert gas considered. The possibility of dust explosions 

in process equipment can, in principle, be effectively eliminated by substituting the air by a gas that 

prevents flame propagation in the dust cloud. Thus could rise to economic problematics, since large 

amount of inert gases in a plant could weigh greatly on the process costs. 

For most dusts, it is not necessary to substitute the entire atmosphere in the actual area by, for 

example, nitrogen, carbon dioxide, or other inert gas to obtain inerting. 



In some cases, it may even be of interest to use smaller fractions of inert gas than required for 

completing inerting, because this reduces both the ignition sensitivity of the dust cloud and the 

maximum pressure and rate of pressure rise at constant volume. Metal dusts, like aluminum and 

magnesium, exothermic reactions with C02could occur and the use of rare gases may have to be 

considered in certain cases. 

In practice, several experiments were made on the influence of inerting gases on ignition sensitivity 

and explosion mitigation of combustible dusts. 

Echkoff (2003) reported some results obtained by other authors in their research, mainly: 

 explosion pressure and the rate of pressure rise decreased with decreasing oxygen content 

and the reduction of the maximum pressure is approximately proportional to the reduction of 

the oxygen content, (Wiemann, 1984); 

 As particle size increased, the influence of reducing the oxygen content became pronounced 

(Hertzberg and Cashdollar, 1987) 

 

More recently significant results were found by Wilen (1998) and Schwenzfeuer (2001). The first 

found an increase in the LOC of biomass dust, when the initial pressure is increased. The second 

found that that LOC for ignition of dust clouds by electrostatic discharges were significantly higher 

than the conservative limit determined in standard tests, using a very strong pyro- technical ignition 

source. On the other hand, Walther and Schacke (1986) reported that the LOC of clouds of a 

polymer powder was independent of the initial cloud pressure over the range 1–4 bar (abs.). 

Echkoff (2004) experiments showed that the maximum rate of pressure rise decreased 

approximately linearly with decreasing oxygen content, down to zero at 11 vol.% oxygen, the 

limiting oxygen concentration (LOC) for sustained flame propagation through the dust cloud. 

2.6 Explosion violence parameters 
The parameters that evaluate the consequencies of a dust explosion are defined as explosion violence 

parameters and are: 

 Pmax maximum explosion pressure (bar) 

 (dP/dt)max  maximum rate of pressure rise (bar/s) 

 

 

Figure 13: Typical pressure.time curve of a dust explosion, the pressure peak and the maximum rate of 

pressure rise with time are indicated. 



The procedure to obtain those value is the standard UNI EN 14034-1 and the equipment in which 

the test is performed is the Siwek 20 L sphere, as in the case of MEC, LEL and LOC determination. 

The procedure of test consider different dust ignition attempts at different dust concentrations. For 

this type of test only the more powerful 10 kJ igniters are used. 

From the pressure-time curve obtained , the value of kst is derived. 

This index report the rate of pressure rise to a 1 m3 reference volume, through the following 

correlationship propsed by Bartknecht (1971, 1978): 

𝑲𝒔𝒕 =  (
𝒅𝑷

𝒅𝒕
)

𝒎𝒂𝒙
∗ √𝑽𝒗𝒆𝒔𝒔𝒆𝒍

𝟑          (5) 

Where Vvessel  is the volume of vessel test where the dust is ignited. 

Values of kst classified the dusts according to their explosion severity in classes, reported in the 

table below. 

 

Kst values [bar·m·s-1] Explosibility St Class 

0 St0 

Kst  < 200 St1 

200 < Kst < 300 St2 

Kst  > 300 St3 

  

Kst and pmax values have specific meanings in the building of explosion mitigation equipment in 

process plants handling combustible dusts. 

The investigation of those parameters has been intensively performed worldwide and since the very 

beginning of dust explosion research. 

The general theory of explosion parameters is well described in the works of Cashdollar (2000) 

which gave an overview of dust explosion characterization, Echkoff and Amyotte (2010) dealing 

with explosion causation and mitigation and the recent book by Amyotte (2013) that gave a 

complete introduction of the dust explosion research. 

Recent studies have focused on the occurrence of the overdriving phenomenon (described in detail 

later, in Chapter 4): among them the studies of Clooney et al. (2013) and of Myers et al. (2013). 

 

2.7 Tests at Temperature and Pressure different from ambient conditions 
Echkoff (2003) reported results obtained by Glarner (1983) and Wiemann (1987) on explosion tests 

performed at initial temperature higher than ambient. 

They found decreasing MEC with the increasing of the initial temperature, below to a certain value 

close to 0, when the data seemed to converge to a asymptotic value of temperature. From the data 

collected by the two authors this convergence point is found at around 300-500°C. This is relative 

low with respect to the same temperature value found for hydrocarbon gases (1200°C). They justify 



this behavior with the more complex physics and chemistry dealing with organic dusts with respect 

to gases. 

Glarner (1984) studied the influence of the initial temperature on the dust minimum ignition energy 

generated from an electric spark. Also in this case a convergence appeared at 0.088 mJ and 1000°C. 

On the other hand explosion parameters kst and Pmax are influenced also by the initial temperature. 

Maximum pressure rise tends to decrease with the increasing temperature due to the reduction 

oxygen content being the pressure at a constant level, while temperature increase. The trend of the 

rate of pressure rise with respect to initial temperature is more complex and could not be explained 

by a linear relationship. 

Wiemann (1987) studied also the influence of the increasing initial pressure on explosion 

parameters. Clearly the increasing of pressure resulted in increasing pressure peaks in the 

explosions, with a proportional trend with the initial value. Wiemann’s experiments found a linear 

correlation between initial pressure and rate of pressure rise, even if with initial pressure greater 

than 2 bar the correlation level out. 

The most recent effort in this investigation is due to Gribson and Rogers (1980) with their study on 

ignition of dust clouds in hot environments. 

More experimentations are needed also in this context, in particular aiming to the development of 

practical equipment to generate initial temperature or pressure different from ambient in safety 

conditions. 

  



  



The dust ignition concept 

3.1 Literature context 
The original motivation in the early years of dust explosion research to develop standard tests was 

simply to determine in the more adequate manner some specific parameter useful to design 

appropriate protection measures for plants that handled combustible dust. 

In particular, a test was developed to measure explosion violence parameters (kst and Pmax) in order 

to obtain data on the venting requirements for plant apparatus in which an explosion, and then a 

pressure rise over design value, was likely to occur. Later, data collected with these standards, were 

adopted as physical constants of the specific dust without further investigation and 

misunderstanding their original scope. 

More recently research has pointed out the diversification of the parameters and the need of 

arbitrary tests related to different parameters. The scenario, which researchers have to face 

currently, is complex. 

Only a few parameters could be considered physical or chemical constants of the specific examined 

dust sample.  

Keywords for an efficient and practice approach to the measurement of dust ignitability and 

explosibility parameters has to be: 

 differentiation; 

 resolution; 

 applicability. 

As Echkoff reported (2003) one first approach to the differentiation is to arrange several tests for 

every different parameter in order to define the more appropriate for different practical issues. 

If this approach is adopted, two parallel operations are possible. The example relates to the ignition 

sensitivity of dust to electric sources. 

From one hand experimental tests could be performed, in which different kind of electric discharge 

(and of different energy) are used as ignition sources, to test the sensitivity of dust sample to every 

one of them. On the other hand a detailed in situ survey is necessary to evaluate the actual ignition 

sources present in the industrial context on which dust samples are located and in order to discuss 

the ignition test results with them. For example in the case of the ignition energy measurement the 

introduction of an inductive component in the discharge circuit, resulting in more incendive sparks, 

could be used to increase the ignition effectiveness. If, however, electrostaticity hazards are to be 

proved, this arrangement would not be useful, because discharge of lower energy order are 

examined. Glor (2003) investigated furtherly the difference between the effectiveness of electric 

hazards to ignite a combustible dust and concluding that more work is needed to cover all cases 

related to electrostatic phenomena and a standard solution is yet to be found. 

An alternative approach to diversification is using the measured parameters as input for calculations 

in suitable theories in order to simulate the best as possible actual industrial conditions. From kst 

values, laminar cloud combustion velocity could be found and the cloud combustion could be 

simulated with fluid dynamics models, thus in practice increasing the complexity of the task. 

Resolution focused on the scale of the measurement test. Real industrial situations could be 

simulated through a full-scale setup test in which dust could be introduced and occurrence of 

ignition registered. This is obviously not practical to build up with respect to small-case laboratory 

equipment. Investigation should focus on what level of resolution could be the more suitable for the 

parameter to be measured. 



As Eckhoff reported (2015) effective difference in dust explosion violence has been observed 

whether the test was performed in the 20 l Siwek sphere or in experimental 500 m3 silo. This was 

because these parameters (kst and Pmax) are not influenced only by inherent dust parameter (like 

moisture content, size of particles) but also by parameters related to the specific process in which 

the dust is generated. Among those, the dust dispersion system and the degree of turbulence of the 

dust cloud and its concentration, are relevant and have to be considered when tests with different 

scale resolution are performed. 

Another point to be examined is the applicability of laboratory test procedures suitable for all type 

of dusts susceptible to combustion in the actual industrial reality. 

Standard tests in use for dust explosibility parameters present by their same nature some limitations 

with respect to certain type of dust samples. As underlined in Chapter 5, these measurement 

procedures are hardly suitable for all non-traditional dusts (for example flock-like aggregate coming 

from textile industry) because of their poor disperdibility in air. This condition itself should grant 

that such type of dust are rarely capable of generate an explosive atmosphere in air; however other 

laboratory test, with more energetic ignition sources, or with more effective mechanism of dust 

dispersion, have proved the explosive nature of these samples. This is reported by Amyotte et al. 

(2011) and detailed again in Chapter 5. 

Recently some revision on standard measurement test have been done, aiming to go towards more 

differentiated and consequently efficient procedures. 

Nifuku and al. (2001) have developed an ignition test method in which a sieving tap is used to 

create the dust cloud over a Hartmann tube to investigate the Minimum Explosible Concentration. 

Dahn and Dastidar (2007) proposed a test to determine the threat posed by potential incendive 

electrostatic discharge from fiberglass reinforced plastic pipes.  

In the meantime data collected by the BIA was published in Beck (1997), grouping combustible 

dusts in different classes according to their chemical nature, reporting for each element (where 

measured) LEL, MIE, St Classification, LOC, MIT (cloud and layer) and BZ combustibility class. 

 

Table 1: Recent tests developed for dust explosive properties assessment. 

Parameter Equipment Proposer, developer (date) 

Dustiness Rotating drum tester Breum, 1999 

Ignition Energy Circuit for lower than 1 mJ spark 

generation 

Siwek & Cesana (2014), Eckhoff 

& Randenberg (2007) 

Ignition Energy Movable electrode, energy down 

to 1µJ 

Zhou, Tan & Yu (1994) 

Ignition Energy Vibrating mesh to generate dust 

cloud 

Choi et al. (2001) 

Dispersibility Measuring powder flowability Jong et al. (1999) 

Dustiness Standard methods VDI 2263-9 

LOC New test method ASTM E 2931, Dastidar () 

Kst and Pmax Exploding wire in 20 l sphere Scheid et al. (2013) 

 

Finally, if an investigation of ignitability of a dust is planned, figure ### (reported from Eckhoff, 

2003) is relevant. 



 

Figure 14: From experimental data to real systems, derived from Echkoff (2003). 

 

The left side of the scheme stands for testing procedures, while predicted results are present in the 

right side. If a full scale testing campaign is planned, then what results from the first box is the same 

in the right-side box. However if laboratory scale tests are adopted, some correlations through 

theory and suitable models is required to transform test results to actual data for real system 

performance. 

The main questions are: 

 Which level of quality is obtained from the actual available measurement techniques? 

 Is there a suitable theory beside each of them? 

 Which level of resolution is the optimal one? 

These questions should been applied every time an investigation on a dust explosion parameter is 

started, thus depending on the type of dusts, on the industrial site and setup where the dust is 

handled. 

  



3.2 The concept of the Probability Escalation Interval (PEI) 
The attempt to answer to the previous questions could start from the identification of a demarcation 

line between the evaluation of the explosion hazard concerning a dust and the quantification of the 

explosion risks associated to it, once hazard is demonstrated to exist. 

In fact, while ignition sensitivity measurements could deal with the identification of hazards, the 

quantification of explosion parameters (mainly kst and pmax) is more a matter of risk estimation. 

This work will focus primarily on the determination of the explosion hazard correlated to a specific 

dust sample; clearly this is related with the ignition sensitivity of the material to a certain external 

stress application (an independent variable) in terms of transferred energy. 

The more the dust sample is “sensible” to this stress the higher the probability of an explosion to 

occur. 

Consequently two further questions emerged: 

 How could we correlate explosion probability of a dust to the intensity of the stress applied 

to it? 

 What is the lower value of this stress at which we are sure (statistically based) to avoid an 

explosion? 

Several tests (presented in Chapter 1) has been defined by technical and scientific literature to 

determine the dust explosibility parameters to which technicians can refer to assess the 

characteristics of a dust sample. Some parameters describe a countable variable, which is defined by 

a numerical value (e.g. Pmax, kst) while others define a threshold above (or below) which the 

explosion should not occur (MIE, LOC, autoignition temperature). These latter should be regarded 

as a limit at which the probability of occurrence of ignition (or explosion propagation in case LOC 

or LEL are considered) is low enough to be considered negligible. 

This is the main point of our investigation and is reported in the two previous questions, to which 

this Thesis will try to answer. 

Technical standards indicate the procedure to be followed to measure the different parameters. The 

Cloud Autoignition Temperature (AIT), according to the European standard CEI EN 50821 is the 

temperature at which 10 consecutive ignition attempts in a defined apparatus result negative (no 

ignition). Similar assumption is made by UNI 13821 as MIE is considered. 

This work will focus on the temperature as independent variable influencing the ignition probability 

of dusts. 

As MIT is concerned the ignition probability at minimum ignition temperature is supposed to be 

zero, but to date this has to be considered just as an assumption. 

Effectively the relationship between the probability of occurrence of the studied phenomenon 

(ignition for example) and the independent variable (the temperature, in the case of AIT) is not yet 

well established. 

MIT is determined in order to assess what is a “safe” condition respect to what condition should be 

considered “unsafe”, being “safe” and “unsafe” defined as those conditions at which ignition 

“should not occur” or “could occur” respectively, assumed that ignition is an undesired event. If 

autoignition were a deterministic event with respect to T, a well-defined boundary temperature (say 

T*) could be found such that the ignition probability would be 0 at T<T* and 1 at T>T*. Process 

safety management would take great advantage of this phenomenon as ignition could be assumes as 



impossible at T<T*. If this were the case, the same conclusion could be drawn as the spark ignition 

were considered. 

It is well known that real systems behave in a very different manner as there is a temperature (or 

energy, in case of spark ignition) interval where ignition is not a deterministic event but rather a 

probabilistic event. 

Literature data (Marmo et. Al. 2011, Bernard et al., 2010) demonstrate that a temperature interval 

exists over which the ignition probability varies from almost 0 to almost 1 continuously. 

This range is defined here as the “probability escalation interval” (PEI). For many different dusts 

PEI seems to span about 30 °C. Conceptually the boundary between “safe” and “unsafe” as stated 

above should then be assumed as the temperature at which the ignition probability is low enough to 

be considered negligible. From an idealized point of view, this boundary should be intended as the 

MIT (or MIE if spark ignition is considered). In terms of risk analysis, the limit for an undesired 

event probability to occur depends first on the magnitude of the consequences. By considering the 

ignition as the starting event (or root cause) of a chain of events leading to the explosion, an order 

of magnitude of the acceptable probability p*
acc could be assumed as 10-3. 

The PEI definition would take central position both in the determination of the explosibility of a 

dust sample, than in the determination of the minimum temperature at which the dust could ignite. 

Starting from this concept this Thesis include the development of an explosibility screening dust 

test, named SET (Speditive Explosibility Test), as a tool to define the explosion hazard related to a 

dust, with a certain level of confidence; this being related again to the ignition probability concept 

described above. 

Experimental data presented here can indeed be used to identify the threshold below which the 

ignition probability is lower than a suitably predefined level with prescribed confidence, providing a 

more solid ground on which the definition of the AIT could be based 

Statistical models had been applied on this experimental database with the twofold aim to: 

 investigate mathematical relationship between MITC and the temperature field in its 

neighborhood 

 evaluate the reliability of the MITC value determined by the procedure defined by technical 

standards and to propose a new definition of the AIT, based on statistically sound 

methodology 

Three different statistical approaches and definitions of Ignition Temperature are experimented in 

the attempt to increase the accuracy and reliability of this value, especially required when dust 

mixture are involved and more defined data are needed for scientific purposes. 

The first definition of SIT derives from UNI EN 13821 definition of MIE; the second bases on a 

normal law distribution while the last bases on Generalized Linear Models. This last approach has 

proved to be the more reliable for our work and authors will adopt its definition of SIT in future 

works. 

 

 

 

  



3.2.1 Ignition of combustible-inert dust mixtures: state of the art 

A brief section is presented here with the purpose of collect all main literature findings in the field. 

The study of dust explosions has to deal with the influence of inerts or impurities included in the 

combustible dust bulk. Indeed industrial products of several processes are frequently encountered as 

powders, in many cases in the form of mixture among different elements. 

In the pharmaceutical production actives principles are intimately added with excipients or coating 

materials; in food industry grains are always mixtures of different cereals and the same could be 

said about sugar powders; in chemical factories paintings are often mixture of pigments and also the 

waste recycling industry treats mixtures of powdered materials (for example oxidized and non-

oxidized metals mixed together). 

A dust mixture with an inert could be defined in different ways, the “mixing” depending on 

samples’ chemical composition (i.e. a combustible dust and a sand), but also on dust size 

distribution. Thus is the case of a sample of dust with very large size distribution (from 102 um to 

100 um) that could be considered a mixture between two different materials with sensitive 

difference in ignition sensitivity (the higher the smaller are dust particles). 

In the process industry quite often dust is processed in non-homogenous conditions, with a variable 

content of humidity and impurities related to process evolution. All these parameters contribute to 

rise (or decrease) the ignition sensitivity of the dust mixture as well as the explosion severity. 

Nevertheless several studies on the likelihood of explosion occurrence with combustible dusts has 

been made (and comparison with different ignition sources). However only recently studies on 

combustible dust mixtures (with inert or another combustible element) have been carried on 

(Dufaud et al. 2012, Marmo and Luzzi 2009, Reddy, Amyotte and Pegg, 1998, Amyotte 2006, 

Hamad and Qubbaj 1998) and literature data are relatively scarce with respect to pure combustible 

dust investigations.  

The partial inerting technique aims to reduce the potential of the explosion in term of heat release. It 

differs from a complete inerting process where the amount of inert is considerably greater and no 

explosion occurs at all. The amount of inert is sufficient to mitigate the ignition sensitivity of dusts 

samples, influencing their MIT or MIE, or effects on their explosion parameters, like kst(explosion 

violence index). 

Echkoff (2004) states that partial inerting offers an additional degree of freedom in dust explosion 

protection: that is the possibility to, have the effect of explosion or even the occurrence of it reduced 

by it. 

Additional protection systems (like venting size) could be drastically reduced thus implying a 

decrease in economic and design costs, leaving unmodified the safety condition for the process in 

the case.  

The partial inerting is a prevention procedure that could also be included in the concept of a design 

inherent safety, a concept becoming more and more relevant recently. 

As Amyotte (2005) reports the use of solid inertants is more applicable in terms of suppressing 

agents in a context aimed not to prevent but to mitigate the consequences of an inevitable explosion. 

Inerting indeed requires that fuel dusts has been intimately mixed with the inert material in the first 

stage of the process, while suppression consists in inject the inert powder into the just-ignited 

combustible dust to limit the generation of overpressure, even if the main intent is the same in both 

the techniques, i.e. the heat removal from the combustion reaction.  

Practically the inerting method, with the need to premix combustible and inert dust, is less 

applicable than suppressing, because the contamination of process dust with foreign solids is often 

undesirable in terms of quality, hygiene or food safety. This contamination is less relevant in coal 



mining industry where coal combustible dust generated during the process is extracted mixed with 

inert rock sand dust(limestone or dolomite for instance). 

Main studies have been carried out on rock dust inerting coal combustible dust and investigations 

have focused on explosion severity and flammability limit (NiansengKuai et al. 2011), on minimum 

explosible concentration (MEC) and flame propagation velocity (Sapko et al., 2000), on dust layer 

ignition (Reddy, Amyotte and Pegg, 1998) and on flammability behavior and minimum inerting 

concentration (Chatrathi and Going, 2000). 

More recent studies has been made also on other dust mixtures, involving other combustible 

powders largely diffused in industry process. Dufaud et al. (2010) investigated MIT cloud, LIT and 

MIE of several mixtures of combustible dust in addition with inerts like alumina, silica and sodium 

bicarbonate. 

Mintz, Bray, Zuliani, Amyotte and Pegg (1996) studied MEC and MOC of mixtures of fine metallic 

powders with MgO as inert. Janes and Carson (2013) analyzed ignition sensitivity of fuel dusts like 

lycopodium, rice and coffee husks, powdered sugar with respect to different amounts of inerts 

(alumina and kieselguhr). 

Hamdan and Qubbaj (1997) investigated oil shale dust in addition with calcium carbonate, stone 

and clay. 

Marmo,Fois and Luzzi (2011) performed a research on MIE of flour, lycopodium and grain dust 

with silica, limestone and calcium carbonate. 

The experimental campaign presented in this work (Danzi et al. 2014) deal with the investigation of 

LIT and MIT of mixtures (flour, sucrose, lactose as combustible and limestone, silica and 

extinguishing powders as inerts). 

 

  



3.3 Ignition Temperature measurements 
The procedure described by UNI EN 50821 is shown in Figure 15; measurements proceed in steps 

of 20 K until a value of temperature at which no ignition occur after 10atempts is found. 

The MIT correspond to this value of temperature, at which 20K are furtherly subtracted as 

conservative approach required. (10K if the temperature found is below 300°C). 

As said before, MIT represent a non-countable variable, not measurable directly, but that has to be 

estimated through sensitivity trials. 

 

 

Figure 15: MIT according to UNI EN 50281-1:1999, Schematic procedures. 

 

The dust sample subjected to test will respond to a certain applied stress, in the MIT case, a value of 

temperature, in order to highlight a specific critical threshold, in this case the ignition temperature.  

If this threshold is overpassed by the stress applied to the sample, then a positive response will 

come (ignition), otherwise, a negative response will occur (no ignition). As already reported the 

transition between the positive and the negative response depending on the applied stress is not a 

straight demarcation, but consist in a probability range between 0 and 1. This probability value will 

increase and have a specific evolution with stress (temperature) rising. 

Similarly to MIT procedure, the MIE measurement standard is described according to UNI EN 

13821. 

The sample is submitted to a certain electric discharge energy that will cause with a high degree of 

confidence an ignition. Then the test is repeated over a range of decreasing energy at the same 

concentration until no ignition occur in 10 consecutive tests. 

When this energy is found, different concentrations are tested. If an ignition occurred with a certain 

concentration of dust, the first phase is repeated at this concentration, until 10 negative tests are 

found. The procedure is repeated until the maximum energy at which no ignition occur is found 

defined as E1, while E2 is the minimum energy at which ignition occur in 10 consecutive tests. 

The MIE lays between these 2 values and it’s calculated according to: 

MIE = 10
logE2−

I[𝐸2]∗(logE2−logE1)

N[E2]+1           (6) 



 

Where: 

I(E2) is the number of test with ignition at E = E2; 

N(E2) is the total number of tests performed at E = E2. 

Same assumptions about the ignition probability made on MIT apply on MIE, while in this case the 

variable will be the discharge energy and not the temperature. 

The assessment of the minimum ignition temperature of dust layer, or LIT, is also reported in the 

UNI EN 50281. 

The probability ignition problematic studied in this section applied also at this measurement since 

the investigation range of the ignition temperature is again 20K, and any intermediary results could 

be found, nevertheless this application is not part of this work and will be included in future 

perspectives. 

 

3.3.1 Experimental setup and procedures 

In the following paragraphs, the experimental setup adopted for all of the experimental 

measurements of MIT is described. When slight modifications of the standard procedures were 

required, these are reported and described in details. 

MITC was measured by means of a Godbert Greenwald (GG) furnace (Chilworth Technologies, 

model MITC-L, serial number J303161B). Measurement procedure was developed according to 

CEI EN 50281-2-1:1999 as far as air sample injection overpressure and sample quantity are 

considered. 

Particles size diameter characterization of the dust samples was made by laser diffractometry. The 

samples were characterized by the d10, d50 and d90 quantiles of the mass distribution as indicated 

in Table 1; the dx diameter being defined as the percentage in weight of particles smaller than the xth 

diameter. 

As regards the inert dust particle, a further classification through mechanical sieving was performed 

to verify the effectiveness of the inertial effect according to particle size. The sieving system 

adopted was a tile of standard sieves operated by a sieving machine (model IG3/WET by Giuliani 

Torino). Different meshes were used, from 32 µm to 500 µm, which allowed the classification of 

inert dust by size. 

The MITL test was performed with a hot plate apparatus. This consists of an aluminum plate over 

which the dust layer is placed and an electric resistance (1200 W) that allows to heat up the plate at 

the test set point. A sample holder made of a metallic ring enables to shape a 5 mm dust layer on the 

hot plate. Alternative holders allow settling 12.5and 25 mm height samples. 

A thermocouple is placed to monitor the temperature in the middle of the dust layer. The plate 

temperature is controlled by a PID controller interfaced with a second thermocouple located inside 

the plate. 

A conditioning treatment was performed on each pure material prior to measurements or mixture 

preparation (3 hours at 65° C in a laboratory stove). After stove drying samples were kept in silica-

gel dryers to preserve the humidity residual until measurements. In any case no more than 48 hours 

lasted between conditioning and measurements. 

Mixtures were prepared before each tests series using the conditioned pure material. A batch of 

some grams was generally prepared. To obtain the proper weight ratio given amount of pure 



samples were weighted on an analytical balance and then mixed manually in a glass becker with the 

aid of a spatula. 

Mixing was obtained both by mechanical blending with the spatula and by gentle rotation of the 

becker while it was kept tilted. The use of a glass container allowed to better observing the mixture 

behavior. No evident sign of segregation were observed with any material. This was also confirmed 

by the repeatability of the results obtained with any batch of mixture. 

 

3.3.2 Definition of SIT derived from UNI EN 13821:2002 

According to CEI EN 50281-2-1 several runs were made at decreasing temperature (ΔT = 20 K 

above 300 °C and 10 °K below) in order to assess the temperature range (T1; T2) as described 

above. The air pressure in the dispersion reservoir was set at 1.1 bar. A 0.1 g sample of dust or 

mixture was blown into the furnace. 

I ignition is accounted if there is a visible flame coming out of the furnace bottom. The presence of 

sparks in absence of flames is not considered proof of ignition. The T1 is accounted when no 

ignition occurs over 10 consecutive test. At this temperature, further investigations was made 

varying both the injection pressure and the sample weight (varying values of pressure release 

between 0.02 and 0.5 bar and sample weight (ranges from 0.01 to 1 g). In case of ignition the 

temperature is lowered by 20 °K and 10 test runs are repeated.  

The procedure described above to assess ignition temperature of dust clouds returns T2 as the 

MITC value. The real MITC falls in the 20° C interval between T2 and T1. 

A first attempt to define a more precise value can be derived on the basis of the data obtained 

according to CEI EN 50281-2-1 procedure by calculating the Statistical Ignition Temperature (SIT) 

according to Eq. () derived from the MIE definition given in UNI EN 13821:2002: 

 

Ts = 10
logT2−

I[T2]∗(logT2−logT1)

N[T2]+1           (7) 

 

Where: 

T1 is the lower temperature at which ignition does not occur after 10 consecutive tests; 

T2 is the temperature value at which at least one ignition occurs after 10 consecutive tests; 

I(T2) is the number of test with ignition at T = T2; 

N(T2) is the total number of tests performed at T = T2. 

Since this last approach seem to return more accurate values it has been adopted at first instance in 

MITC measurement for combustibles dust mixtures. On the other hand MITC measurement 

according to CEI EN 50281-2-1 being more conservative give the temperature limit below which 

dust explosion risk is negligible in operating conditions. The new definition of SIT, described in 

Section 3.8, would demonstrated the poor accuracy of the standard definition itself. 

 

 

 

 



3.3.3 MITL measurements 

The dust layer was dropped on the hot plate once set point temperature (Tsp) was reached. 

Ignition criteria was assumed in accordance with CEI EN 50281-2-1 as the hot plate temperature 

that provoked one of the following conditions: visible glowing or flaming; a temperature of 450°C 

in the dust layer; a temperature rise of above 250 K respect to the set for the hot plate. If no ignition 

occurred within 30 minutes the run was stopped. In case of ignition the test was prolonged until the 

sample temperature diminished below the plate temperature. 

According to CEI EN 50281-2-1 measurement procedure for the MITL, several runs were made at 

decreasing temperature ΔT = 20 K each step in order to assess the temperature range (T1; T2), 

where T1 is the lower temperature at which no ignition occurred and T2 is the upper temperature at 

which at least one ignition occurred. Further measurement at (T1+T2)/2 was performed to assess 

the minimum temperature at which an ignition occurred. 

  



3.4 Materials 
The combustible dusts tested were mainly typical materials processed in food industry like flour 

(“00” type) and three types of carbohydrates: Glucose, Lactose and Sucrose. In addition Sulphur 

was tested due to its very low MIT. 

Inert dusts were Limestone, Silica sand and three different type of extinguishing powders. 

For what concerns the MITC study all combustible dusts were sieved at 75 um and the under sieve 

fraction was used, while different particle size fractions of inert dusts (limestone and silica sand) 

were used to create mixtures with combustible dusts. This allowed to study the influence of particle 

size on the inerting efficiency. Size classification was obtained by sieving using a pile of standard 

sieves operated by a sieving machine. 

Extinguishing powders were commercial products named respectively ABC93, ABC2010 and 

ABC40%. The first two of them were composed mainly by Phosphate Monoammonium (90%), the 

last is a mixture of Monoammonium Phosphate (40%) and Ammonium Sulphate (55%). 

 

Table 2: PSD of dust samples tested. 

Material d10 d50 d90 Notes 

Flourtype “00” (Barilla) 10 34 78 Under sieve ASTM 75 um 

Flourtype “00”(Barilla) 12 57 148  

Lactose(Milei) 6 33 101  

Lactose (Milei) 3 22 62 Under sieve ASTM 75 um 

Glucose (Ardet) 6 35 83 Under sieve ASTM 75 um 

Glucose (Ardet) 42 156 358  

Sucrose (PaneAngeli) 3 14 48 Under sieve ASTM 75 um 

Sucrose (PaneAngeli) 4 20 129  

Lycopodium (Aldrich Chemistry) 22 30 41  

Limestone 32/75 6 23 62 Classified by sieving 

Limestone 125/250 154 234 351 Classified by sieving 

Limestone 250/500 294 446 690 Classified by sieving 

Silica sand 32/75 20 56 109 Classified by sieving 

Sulphur 3 10 46  

Extinguish powder ABC40 (Gibi SRL) 7 61 196  

Extinguish powder ABC40 (Gibi SRL) 4 25 67 Under sieve ASTM 75 um 

Extinguish powder ABC1993 (Gibi SRL) 5 58 199  

Extinguish powder ABC1993 (Gibi SRL) 3 21 63 Under sieve ASTM 75 um 

Extinguish powder ABC2010 
(Ecoplanservice S.A.S.) 

10 72 249  

Extinguish powder ABC2010 
(Ecoplanservice S.A.S.) 

6 26 72 Under sieve ASTM 75 um 

 

 

 



3.5 Minimum ignition temperature of dust clouds 
The MITC of dust mixtures between flour and different inert is plotted in Figure 1 against mixture 

mass fraction. Values are measured according to CEI EN 50281-2-1. As expected the MITC of 

mixtures between a combustible and an inert dust increases when the inert dust concentration 

increases. The behaviour of the mixture depends on the inert characteristics’. As expected the 

maximum increase of MITC is obtained when extinguishing dusts are used. This behaviour is due to 

the combined endothermic decomposition of the extinguishing dust which subtracts heat to the 

system and to the chemical decomposition that produce gases so depleting Oxygen concentration in 

the test chamber. 

The use of limestone has much less effect on MITC than extinguishing dust. The MITC at 90% inert 

rises only to 540°C (instead to 940-960°C). This is roughly the MITC showed by a 50% mixture 

flour-extinguishing dust. 

Measurements show almost no effect of inert particle size on MITC, at least as far as the MIT 

definition given by CEI EN 50281-2-1 is used. Only in case of 60% limestone content, the 125-250 

um inert was, as expected due to the lowest surface area and hence to a less efficient heat 

subtraction, less efficient than the finest 32-75 um. 

In order to appreciate the mixture composition effect when dusts with similar ignition temperature 

are mixed, the SIT of flammable dust mixtures is presented in Figure 2. There, the statistical 

temperature calculated according to Equation (#) is plotted versus the mixture weight fraction. The 

Sucrose-Flour mixture behaviour is such that the dependence of the SIT versus %W is almost 

linear. Mixtures containing Lactose do not exhibit the same trend, since the SIT decrease steeply as 

the amount of Lactose decreases from 100% to 75%W. In case of Lactose-Flour mixture, at 75% 

content of Lactose the SIT is almost equal to the SIT of pure Flour. The mixture Lactose – Sucrose 

show similar trend, whereas at 75% Lactose the SIT is almost halfway between pure Lactose and 

pure Sucrose SIT. In Figure 2 also the MITC of the mixture Sulphur-Flour is presented. As 

expected the MITC decreases with increasing Sulphur content, confirming previous data by Dufaud 

et. Al. (2012). 

The same authors proposed the adoption of an harmonic model to predict experimental data on 

ignition temperature of dust mixtures. This model was then adopted in this part of the work to 

predict the evolution of the SIT of a mixture made of dusts A and B: 

1

SITM
=

(xvol)a

SITa
+

(xvol)b

SITb
          (8) 

The predictions obtained with the harmonic model are presented in Figure 2 as well. In general the 

harmonic model is no capable to predict the SIT trend.  

 



 

Figure 16: Minimum ignition temperature of dust clouds of flour-inert mistures. 

 

 

 

Figure 17: Statistic MITC .of various dust mixtures. Harmonic model (Eq. 2) is also represented as dotted 

line. 

 

 

 



3.6 Minimum ignition temperature of dust layers 
The minimum ignition temperature of layers of flour mixed with various inert dusts is presented in 

Figure 3. Pure flour exhibited a MITL of 390 °C (5 mm layer), whereas ignition was difficult. The 

flour layer curved and fractured a few minutes after run start. This behavior makes ignition difficult, 

because the heat transfer from the heating plate is reduced to a great extent. Mixtures flour 

limestone (32-75 μm) do not exhibit such behavior and as a consequence they have a MITL which 

is lower than pure flour MITL at inert weight fraction up to 40%. Further increase of inert weight 

fraction make the MITL rise sharply above 400°C. 

Mixtures of flour with coarser limestone fractions, although preventing the mixture layer curvature, 

did not exhibit such a drop of the MITL. The MITL of these mixtures was not measured because 

exceeded the measuring range of the hot plate used in the experiments (400°C). 

Quite surprisingly the finer 32-75 μm limestone dust is the less efficient to prevent layer ignition. 

On the contrary, it seems to promote layer ignition, since the ignition temperature measured are 

well below the pure flour MITL. This seems mainly a consequence of the fact that these mixtures do 

not curve during heating. The layer remains well adherent to the plate surface and ignite quite 

easily. Also in the case of mixtures with coarser inert particles the dust layer remains in contact with 

the hot plate but no ignition is observed. 

 

 

Figure 18: MITL .of mixtures with flour and different inerts. 

 

MITL of the mixture between flour and inert dusts exhibit unexpected behavior and a strong 

dependence upon the particle size distribution of the inert. Limestone 32-75 μm mixed with flour 

provoke a 70 °C drop of MITL to 330 °C from 390°C of pure flour. 

Also in case of extinguishing powder ABC 40 a slight decrease of MITL occurs at 10% inert. In 

both cases the presence of an inert promote ignition. Such dust mixtures present a higher ignition 

risk than pure flour. This is mainly due to the behaviour of a 5mm thick flour layer that, as deposed 

onto the hot plate, cracks and curves. The smaller contact area with the hot plate under these 

conditions makes ignition difficult. 



This phenomenon do not take place in case of mixture. 

Again quite surprisingly, in the case of flour-limestone mixture, using a coarser inert do not 

provoke a decrease of the MITL. 

  



3.7 Statistical Ignition Temperature according to Normal law 
The methodology base itself on the evolution of the dust ignition probability within a certain well-

defined number of attempts. The main objective of the work will be to individuate a new stopping-

criterion for the ignition investigation test. 

In particular the methodology tried to minimize the attempts number and in the same time to obtain 

a result with a high accurate reliability range (i.e. within a confidence interval above a defined level, 

as an example above 95% confidence range). 

In the same time the work go into the perspective, cited in Chapter 4, of giving a reliable statistical 

character to the SET different test procedures, described in the same chapter. The principle is: we 

have to find the less possible attempts for the more reliable result that will define the sample as safe 

or not. 

The stopping-criterion at which the standard UNI EN 50281 impose to stop the test is the 

observation of 10 consecutive tests without ignition at a certain temperature. The procedure is 

costly in terms of time and economic efforts due to the relative high number of tests at different 

temperatures to be performed in order to determine the minimum ignition temperature. 

A stopping-criterion based on a “a priori” defined number of negative attempts that will define the 

test as negative could allow the definition of a confidence range (expressed in percentage) that grant 

the result of the test correspond effectively to a negative response (safe condition). 

Being the tests “destructive” is not possible to measure on each sample the critical value. It’s 

necessary then to perform a relevant number of tests with different samples, the greater the 

experimental data the more accurate the estimation of the Statistical Ignition Temperature. For each 

different degree of stress it could be derived a response curve, i.e. the ignition probability in 

function of the temperature. 

Methodology consist in 10 consecutive attempts of ignition performed at step of 5K from each 

other. The experimental data are compared with a reference mathematical model, related to the 

event that is considered. In the present case, the normal distribution (or Gauss) has been adopted to 

fit the data, assuming that they followed the evolution of a cumulative normal distribution curve. 

Mean and standard deviation of the curve are derived from tables referred to normal distribution [], 

where the standard aleatory variable z is defined as: 

𝑍 =
𝑋−𝜇

𝜎
            (9) 

Where: 

X is the value of test temperature, mu and sigma are respectively the mean and the standard 

deviation of the unknown normal distribution. 

Two values of Z (at 2 T) are then compared and associated to the ignition experimental probability 

found on 10 tests at these temperatures, in order to solve the system and obtain the value of mu and 

sigma that defines the cumulative distribution desired. 

The SIT is defined as the temperature at which the probability of ignition is equal to 5%. This 

threshold value is chosen according to the work of Bernard et al. (2010), dealing with statistical 

determination of the MIE of dusts. 

 



 

Figure 19: Ignition probability with respect to temperature of pure Lycopodium, experimental data (dots) 

are plotted with the Normal distributive curve found. 

 

Table 3: Summary of attempts performed with Lycopodium dust, where I. means ignition and N.i. no ignition. 

Test n° 440°C 445°C 450°C 455°C 460°C 465°C 475°C 

1 N.I. N.I. N.I. N.I. I. I. I. 
2 N.I. I. I. I. N.I. I. I. 
3 N.I. N.I. N.I. N.I. I. I. I. 
4 N.I. N.I. N.I. N.I. I. N.I. I. 
5 N.I. N.I. N.I. I. N.I. I. I. 
6 N.I. N.I. I. I. I. I. I. 
7 N.I. N.I. N.I. N.I. I. I. I. 
8 N.I. N.I. I. I. N.I. I. I. 
9 N.I. N.I. N.I. N.I. I. I. I. 

10 N.I. N.I. N.I. N.I. N.I. I. I. 

Ignition 0 1 3 4 6 9 10 

 

Table 3 show the application of the methodology with experimental tests on Lycopodium powder 

(which characteristic sizes are reported in Table 2). As the table reported, each temperature is 

associated to an ignition probability, according to the results of the tests, for example at 445°C a 

probability of 10% is associated (1 ignition on 10 tests performed). 

It’s worthy to note that the probability range (and then the PEI) stretches from 0% at 440°C to 

100% at 475°C. 

With the purpose to validate the statistical approach adopted an experimental campaign 

investigating on the ignition temperature of Lycopodium dust – inert dust has been performed. 
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3.7.1 SIT of inert-combustible dust mixtures 

Inert dust utilized is the AC93 powder, presented in Table 2and constituted mainly by Phosphate 

Monoammonium. Physical characteristic of this extinguishing powder are provided by the 

following Table. 

 

Table 4: Physical properties of extinguishing powder AC93 

Chemical composition: Phospate Monoammonium 90% 

pH 5.5 

Melting point 170-190°C 

Density 0.9 g/cm3 

Not soluble in water - 

Relative humidity 0.85% 

 

Mixture preparation adopted the same procedure described previously in this Chapter. The weight 

ratio of Lycopodium-AC93 was 3:2. The standard procedure to evaluate the MIT (UNI EN 50281) 

has been adopted to compare its results with those expected with the SIT method based on the 

Normal law, as in the case of the pure Lycopodium dust sample. 

 

 

Figure 20: Ignition probability with respect to temperature of Lycopodium in mixture with AC93 

(experimental data with Normal distribution curve). 

 

First ignitions here are found at 470°C, while PEI stretches up to 495°C, 10°C greater than the 

interval defined with the pure Lycopodium dust. 
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3.7.2 Influence of PSD of inert dust on ignition sensitivity of mixture 

As to evaluate the influence of PSD of inert dust on the ignition sensitivity of the mixture the same 

procedure has been applied for a mixture of Lycopodium dust and AC93 powder, that has been 

sieved to 75 um through mechanical sieving operator (the sieve standard number is ASTM 200). 

The curve relative to this third mixture shifts towards higher temperatures, while the PEI stretches 

between 475°C and 500°C. This demonstrates the efficacy of a finer particle distribution on the 

inertial capacity of the extinguishing powder. 

 

 

Figure 21: Ignition probability vs Temperature of: Lycopodium dust, pure (blue line, red dots); Mixture with 

AC93 (green line, triangles); Mixture with AC93, sieved at 75 um (purple line, squares). 
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3.8 Statistical Ignition Temperature according to Generalized Linear Models 
This section deals with a third more comprehensive approach that has been adopted for the 

definition of the ignition temperature of a pure combustible dust sample, comparing experimental 

with Generalized Linear Models (described below). 

The autoignition temperature (AIT) of a dust cloud is defined as the temperature of a hot surface 

that can provoke the spontaneous ignition of a dust cloud that comes into contact with it and is 

measured according to CEI EN 50821 (whose procedure is described above in chapter ###) or 

ASTM E1491.  

In order to assume that the ignition probability at MIT, pacc(AIT) is smaller than p*
acc, measurement 

procedures defined by technical standard (CEI EN 50821) imply to make multiple ignition attempts 

at decreasing T, spanning 20°C at each attempt (10 °C if below 300°C). The test ends after 10 

attempts without ignition at a given T, say TX, which is also defined as MIT. 

Conceptually, this procedure poses two serious problems. The first is that AIT assumes discrete 

values. Under a purely scientific point of view, the accuracy could be non-adequate to study certain 

behaviors, such as the effect of admixing two dusts or the effect of a change of moisture, PSD, etc. 

The second kind of problem is that there is no theory to assess which is the ignition probability at 

TX. As a consequence, it is impossible to state which is the confidence of the statement that 10 

negative attempts at TX mean no ignition at TX. 

A significant improvement would come from the knowledge of the dependence between the 

ignition probability and T over PEI, where p(T) varies from 0 to 1. Further improvement will come 

from defining a suitable probability threshold for the “safe” condition. Recently, Bernard et al. 

(2010) have assumed this threshold as 0.05 (5%), which is a figure much higher than what usually 

accepted for undesired events. This value has been adopted by the authors according to 

pyrotechnics industrial requirements, being 5% the probability of ignition corresponding to the 

higher energy which provide adequate safety in storage of those materials 

The aim of this work is to define the dependence of p(T) vs T, such to better define the AIT and its 

measurement procedure. To this purpose, following common assumptions on undesired root events, 

pacc will be assumed as 0,001. 

 

3.8.1 A new definition of MIT 

As we mentioned in the Introduction, the PEI is the range of temperatures where the autoignition of 

a dust cloud is not a deterministic event: even when the experiment is performed under the same 

experimental conditions, repeated trials yield different outcomes. 

It is therefore appropriate to formulate a mathematical model for the ignition probability. A few 

natural requirements for such model are listed below. 

 The outcome of any single trial at a given temperature 𝑇𝑖 is a random variable 𝑌𝑖 whose 

value is either 1 (ignition) or 0 (no ignition) and the ignition probability is a function 𝑝(𝑇) 

of the temperature 𝑇 such that 𝐸(𝑌𝑖) = 𝑝(𝑇𝑖). 

 An ignition never happens if the temperature is small enough while if 𝑡 is sufficiently high 

we always get ignition. That means that lim
𝑇→0

𝑝(𝑇) = 0 and lim
𝑇→∞

𝑝(𝑇) = 1. It is fairly 

reasonable to assume that the function 𝑝(𝑇) is increasing and continuous. 

From the statistical viewpoint this situation is well described in the framework of Generalized 

Linear Models (GLMs), cf. McCullagh, P. and J. A. Nelder. (1989) on which we base all the 

discussion below. In the classical univariate Linear Model (LM) the mean of the response variables 

𝑌𝑖 (independent and with the same variance, often assumed to follow the Gaussian distribution) is a 

linear function of the independent variable, 𝐸(𝑌𝑖) = 𝛽0 + 𝛽1𝑇𝑖. 



The more flexible univariate GLM extend the LM in the following sense: 

 The response variables 𝑌𝑖 are assumed to be independent random variables, each with a 

distribution from a specified exponential family, in our case Bernoulli random variables 

with mean 𝐸(𝑌𝑖) = 𝑝(𝑇𝑖). 

 The linear predictors ƞ𝑖 = 𝛽0 + 𝛽1𝑇𝑖, sometimes called Systematic Component of the 

model, are linked to the expectation of the responses 𝐸(𝑌𝑖) = 𝑝(𝑇𝑖) by a function 𝑔, usually 

called the link function, such that 𝑔(𝑝(𝑇𝑖)) = ƞ𝑖. 

For models with dichotomous outcomes the link functions that are most commonly used in practice 

are: 

1. the logit link g(p)= log
𝑝

1−𝑝
 whose inverse function is the logistic function, that, composed to 

the predictor, gives 𝑝(𝑇𝑖) =
𝑒𝛽0+𝛽1𝑇𝑖

1−𝑒𝛽0+𝛽1𝑇𝑖
. 

2. theprobit link 𝑔(𝑝) = ɸ−1(𝑝) whose inverse is the Normal Cumulative Distribution 

Function  ɸ that, composed to the predictor, gives 𝑝(𝑇𝑖) = ɸ(𝛽0 + 𝛽1𝑇𝑖). 

3. the complementary log-log function (Cloglog), 𝑔(𝑝) = log[− log(1 − 𝑝)] whose inverse, 

composed to the predictor, gives 𝑝(𝑇𝑖) = 1 − exp[−exp(𝛽0 + 𝛽1𝑇𝑖)]. 

Logit and probit are symmetric link functions and they just differ in how fast they decrease to 0 

(and increase to 1). Probit is faster. Cloglogis mainly used when there is evidence of the asymmetric 

behavior between the right and left tail. 

Whatever link function is chosen, from a set of experimental data Maximum Likelihood estimators 

�̂�0 and �̂�1 for the parameters (and the relative standard errors) are computable. An estimated 

ignition probability curve is given by �̂�(𝑇) =
𝑒�̂�0+�̂�1𝑇

1−𝑒�̂�0+�̂�1𝑇
 in the case of logit link and by the 

analogous expressions with other links. To such estimated probability curve we can also associate 

confidence intervals and in particular in the next section we are interested in the upper bound 

�̂�𝑈,𝛼(𝑇) of the one-sided confidence interval (0, �̂�𝑈,𝛼(𝑇)). This value is such that the true value 

𝑝(𝑇) of the ignition probability is smaller than �̂�𝑈,𝛼(𝑇) with probability 1 − 𝛼. 

Useful statistics for assessing the fit of the model are the Pearson 𝜒2 and the Deviance 𝐺2. Under 

the hypothesis that the model is true, their asymptotic distribution should be approximated by a chi-

square distribution with n-2 degrees of freedom (where n is the number of different values of the 

covariate at which the tests are performed and 2 is the number of parameters we are estimating). 

The approximation, however, is known in many relevant circumstances to be quite poor so that p-

values of the tests based on such statistics are not reliable. Still, smaller values of such statistics 

provide indication for a better fit. 

The definition of autoignition temperature given in the European standard CEI EN 50821 is an 

operative definition, based on the results of an experiment. The number of trials requested for such 

experiment is small and there is no scientifically sound assessment of which is the probability that 

an ignition occurs at such temperature. 

Based on the models above it is possible to formulate an abstract definition of the autoignition 

temperature probability that is independent of the experiment outcome. According to our model 

(whatever the link we use) the ignition probability 𝑝(𝑇) is strictly positive for any 𝑇, so that it is not 

possible for any temperature to guarantee that no ignition can occur. However if we agree to fix a 

small enough ignition probability level 𝑘 that is considered a tolerable risk, then temperature 𝑇𝑘 at 

which 𝑝(𝑇𝑘) = 𝑘 could be considered as a new definition of the autoignition temperature. 

Operatively, after an experimental campaign we can give an estimate of such a temperature in at 

least two ways. The naïve way is it to define the estimator 𝑇�̂� as such value of the temperature for 



which the estimated ignition probability curve �̂�(𝑇�̂�) = 𝑘. Such a value is still random and it would 

be safer to take into account its variability. A more prudential estimate would be given by the value 

of the temperature such that the upper confidence bound curve �̂�𝑈,𝛼(𝑡)gives �̂�𝑈,𝛼(𝑇�̂�) = 𝑘. At such 

temperature, we can affirm that the probability that the true value of 𝑝(𝑇�̂�) is smaller than 𝑘 is1 − 𝛼 

(95% for example). 

 

3.8.2 Experiments 

Lycopodium was used as test dust, due to its stable characteristics and narrow PSD. All the tests 

were done using a single 1kg batch of dust from Sigma-Aldrich so to avoid any influence on the 

results. Size characteristic of Lycopodium samples are those provided by Table 2 

Autoignition tests were done in a GG furnace (Chilwort technology, SN J303161B). A given 

amount of dust, weighted on a laboratory balance, is placed in the injection system and blown into 

the test room by an air pulse. The pulse is obtained by releasing the air contained in a reservoir 

previously pressurized to a given pressure. Compressed air with a dew point of -4°C is used to blow 

the sample into the test room. Test conditions are the furnace temperature (T), the dust mass (m) 

and the blowing pressure (P). Optimal mass m and P conditions were defined as those that produced 

the most evident explosion in a series of test at a range of temperature well above the AIT. Same 

conditions for P and m were maintained through the whole campaign, i.e. 0.25 bar and 0.1 grams. 

The autoignition probability was measured in the temperature range 434 to 473 °C, which is wide 

enough to let 𝑝(𝑇)to span from 0 to 1. The trials were done at 3°C interval, such to cover all the 

expected PEI. The number of trials at each temperature was set to 40 at the tails of the distribution 

and to 30 at the center. 

 

3.8.3 Data analysis 

The results of our experimental campaign are summarized in Table 5. The PEI for Lycopodium 

seems to span around 30°C (440-470°C). As expected the ignition probability increases with T. A 

plateau seems to appear at about the PEI middle (452-458). It is still unclear whether this is the real 

behavior of the system or the consequence of an uncontrolled variable. A discussion about the AIT 

that would be obtained according to CEI EN 50821 is given at the end of the next section.  

 

Table 5: Summary of experimental campaign, PEI is highlighted in green. 

 

 

We estimated the parameters of GLM models with different link functions and the results are 

summarized in Table 6. Comments on the quality of the fit and on diagnostic tools are given in the 

discussion of next Section. 

 

 

 



Table 6: Regression analysis. The estimated values �̂�0and �̂�1  are reported with relative standard errors. The 
value of the fit statistics𝜒2 and 𝐺2 are also reported with their degrees of freedom. 

Link �̂�𝟎 �̂�𝟎 s.e. �̂�𝟏 �̂�𝟏 s.e. Dev. 𝑮𝟐 Pears.𝝌𝟐 d.f. 

Logit -91.7 7.7 0.20 0.02 25.2 20.5 12 

Cloglog -62.6 4.9 0.14 0.01 23.9 18.5 12 

Probit -53.57 0.01 0.12 0.01 20.9 17.8 12 

 

The data and the estimated models are compared in Figure 1, where two-sided 95% confidence 

interval for the estimated ignition probability curves obtained in the different models are plotted. 

Figure 22 shows quite many points outside the confidence bounds in all three models. This is an 

indication for a lack of fit (less apparent in the probit case), which is also confirmed by the high 

values of the Deviance and of the Pearson statistics. A chi-square test at 95% based on the Deviance 

values rejects the null hypothesis that the data follows a GLM with logit and cloglog link. In the 

case of probit link the p-value is 0.052 which does not lead to rejection at 95% confidence level but 

that is very close to the critical value. The same test for the Pearson statistics would be more 

tolerant. Let us however remember that in our case the chi-square approximation on which such 

tests are based might be rough and it is much better not to take such values too seriously. In any 

case both deviance and Pearson statistics suggest that the probit model is preferable to the other 

candidates. 



 

Figure 22: Plots of the data compared with the fitted models. 

 

As a further diagnostic check, we consider the value of the overdispersion parameter. In the 

literature it is reported that due to different causes, for example in the case of a missing covariate, 

data very often display too much variability with respect to that predicted by the model. This is 

apparent also in our case as it can be seen from Figure 22. A measure of the overdispersion is the 

ratio between 𝜒2 and the number of degrees of freedom. If it is greater than 1, overdispersion is 

present to some extent. The overdispersion parameters for the logit / cloglog / probit links are 

displayed in Table7 and they again suggest that the probit link guarantees the smallest 

overdispersion among the three considered. 
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Table7: Overdispersion parameter 

Overdispersion 

Logit 

1.71 

Cloglog 

1.54 

Probit 

1.48 

 

Finally we can affirm that among the three model we have considered the GLM with probit link 

gives the best fit, even if some overdispersion is still present. The reason for this overdispersion 

deserves to be investigated as could be due to some environmental factors that could have affected 

the data acquisition process. Apparently, all the process variables were properly controlled except 

than ambient temperature, pressure and moisture content. Since the data set was acquired through 

many days, a change in the weather conditions could have influenced to some extent the data set. In 

any case these variables should have minor effects on data dispersion, since they do not affect the 

test environment, except for ambient pressure. 

A GLM with random effect might deserve to be considered as an alternative model that could 

account for some unmeasured source of variability that is not considered in our analysis. This topic 

will be subject of further studies together with a more controlled experimental setup and air 

compressors system. 

A prudential estimate of the autoignition temperature can be given as such value of the temperature 

at which the upper confidence bound curve �̂�𝑈,𝛼(𝑇) gives �̂�𝑈,𝛼(𝑇�̂�) = 𝑘 (cf. Section 3.8.1 for more 

details). As ignition can be considered as a root event of a chain leading to an accident (e.g. in case 

mitigation/protection devices fail to protect the system), it seems reasonable to assume as ignition 

tolerable probability a value 𝑘 = 0.001 (any different value could be considered as well on the 

basis of a risk analysis) 

The estimates of the autoignition temperature according to the three models are displayed in Table 

8. 

 

 

Table 8: Estimates of the autoignition temperature. 

Autoignition temperature (C) 

Logit 

427.8 

Cloglog 

417.8 

Probit 

434.1 

 

What about CEI EN 50821 norm? It prescribes to start at 500 C and to decrease each time by 20 C 

unless no explosion is seen in 10 trials. In Table 5 we report the probability that a trial conducted 

according to the norm would stop at given temperature assuming that the true model is a probit with 

the parameters we have estimated. 

 

 

 

 



Table 9: Probability that the CEI EN 50821 norm identifies a given temperature as the AIT given the probit 
model. 

Autoignition temperature according to CEI EN 50821 (C) 

Temperature 

Probability 

460 

1.5e-06 

440 

0.65 

420 

0.35 

400 

8e-05 

 

The resulting value of the AIT is highly volatile. The probability of stopping the trial at 500 C, 480 

C and 460 C is negligible, since the ignition probability is rather high at such temperatures while at 

440 C the probit model gives an ignition probability of 0.043 that corresponds to a probability of 

getting zero ignitions in 10 trials of 0.65. That means that in the 65% of the cases (if the probit 

model were true), after a campaign designed according to the norm once would evaluate the AIT to 

440 C. This is a clearly too high value that corresponds to an ignition probability of 4.3%. In the 

remaining 35% of the cases, the experimenter would have recorded the AIT as 420 C that is 14°C 

less than the already conservative value obtained with our method. 

We believe that such a result is quite relevant and that the use of sophisticated statistical 

methodology such as those introduced in this paper would foster the development of safer 

procedure based on more solid theoretical ground. 

 

  



  



The development of a explosibility test for dusts 
Does this dust will explode? This is one of the most common questions that employers or HSE 

specialist asks if approaching a new explosion risk assessment or updating an existing one after a 

change in the manufacturing process. 

Nowadays several technical standards (ASTM 2012, UNI-EN 1999, 2004) can be used as guide for 

dust testing, in order to measure the typical parameters that describe the behavior of an explosible 

dust (Minimum Explosible Concentration, MEC, maximum pressure rise Pmax, the deflagration 

index kst, minimum ignition energy MIE, autoignition temperature AIT). 

As underlined in chapter ## laboratory tests necessary to measure the above parameters are 

generally expensive, especially for SME with small budget and often many different dusts whose 

behavior is a priori unknown. It may happen that, in face of a possible negative result, employers 

avoid to submit dusts to expensive tests so underestimating in fact the risk due to all the explosible 

samples which are not tested. 

Work by Rodgers and Ural (2011) present the issues related to marginally explosible dusts.  

They reported that combustible dusts could be: 

 Non explosible; 

 Marginally explosible; 

 Severely explosible. 

This classification do not come from any standard or any threshold value dependent on explosible 

dust parameters. The issue posed by this work is then the definition of the marginal explosibility 

criterion and how standard test method lose their accuracy when “marginally explosible” dusts are 

concerned. 

In effect, same legal restriction are to be satisfied when dealing with marginal or severely explosible 

dusts. For these reason standard tests for explosibility definition has to be the more universal and 

accurate and not have any dependence on the nature of the analyzed dust sample. 

The key factors for the authors are the quenching limit and the flammability limit. The definition of 

explosibility (in this context associated to the term flammability with the same meaning)  is referred 

to the ability of a dust cloud to be ignited by a sufficiently high energy source and to auto-sustain a 

deflagration when the energy provided is dismissed (or far from the igniton source position). 

To demonstrate the self-propagating nature of the flame generated from the dust tested, the key 

point is the dimension of the test apparatus: flame thickness has to be larger than the enclosure 

space to avoid relevant heat losses at the walls that could prevent the flame to propagate. The 

quenching limit is the condition in which heat generation from the combustion reaction exceeds the 

heat loss and let a self-sustained flame to propagate. Flammability refers as the condition in which 

an adequate concentration of dust generate sufficient energy to auto-sustain its flame and it is not 

limited by the quenching or by weak ignition energy. 

The problematics with small test apparatus rises from the fact that in such enclosures, combustion 

products remained close to the flame and add to it their energy, letting the propagation to occur. 

This is defined as the overdriving of an explosion. In a larger test apparatus, with the same ignition 

source, a smaller volume fraction is affected by the ignition energy and thus result in easier 

prediction of a false positive. 



For this reason, standard test for the determination of the explosibility of dusts are more likely to be 

performed in larger test equipment, like the 1 m3 chamber or the 20–L Siwek sphere. 

Hartmann tube was used for flammability test (see Table 10), but less used recently because of the 

relative low ignition source that could be used and for the quenching limitation, as Rodgers 

reported. 

ASTM E1226 proposed the explosibility test with the 20-L spherical vessel with 5 or 10 KJ 

chemical igniters. Actually, if an explosion occur with these “high” energetic igniters, and no 

measurable explosion is achieved with the 2.5 KJ igniters, then the system is supposed to have 

overdriven the reaction. 

The ASTM recommend in this case the repetition of the test in a 1m3chamber to assess the actual 

nature of the dust. In the same study, the authors made a comparison between dust explosible 

properties, tested in the 20-L sphere and in the 1 m3 chamber. They concluded that dust that exhibit 

a kst value lower than 45 bar-m/s in the sphere would likely be non-explosible in the larger test 

apparatus. 

 

4.1 Yes/No screening test, state of art 
The need of a lab-scale test that could straightforward establish, with a relative high grade of 

reproducibility and that gives statistically safe results in defining a dust sample “capable of giving 

an explosion or not” is desired. 

Since earlier studies on dust explosion, this task was taken into account by scientific worldwide 

research, the amount of dust sample to test (concentration in air) and the energy of the ignition 

source being the two more relevant variables involved. 

These two variables are chosen in order to grant the main characteristic of the test, i.e. to create the 

“worst conditions as possible” that is the best conditions for an ignition to occur. 

The size of the dust cloud to be tested has to be adequate with respect to the experimental setup in 

which is dispersed, as to maintain a certain level of turbulence, but not lower than the minimum 

explosible concentration of dust in air (MEC). The optimal solution should be the stoichiometric 

concentration of the examined dust in air, factor that depends on the sample chemical nature. A 

reasonable attempt is a dust cloud of 500-1000 g/m3, which is the range in which most combustible 

dust are found to be explosible (according to Amyotte, 2013). 

An adequate powerful ignition source is an ignition that has the energy to start the combustion 

process and the self-sustained flame propagation in the dust cloud. More discussions are nowadays 

still opened on the optimal ignition sources, thus depending on factors non-inherent with the 

specific samples to test, but to external factors also (dispersion system, industrial equipment 

involved). 

The first information on the utility and practicing of a screening test, investigating dust explosibility 

is dated back to seventies and developed by Palmer (Palmer, 1973). 

More recently some other test procedures, also with different laboratory setups, has been proposed.  

summarizes tests together with setup, testing conditions and criteria for ignition (where specified). 

 



Table 10: Review of dust explosibility tests. 

Development Setup Ignition source Test conditions Ignition criteria 

Palmer, 1973 Vertical Perspex 

tube 

Hot coil or 

electric sparks 

As received, then 

sieved down to 

1400 um (dried and 

further sieving if no 

ignition, up to 25 

um) 

Visual observation 

of flame detaching 

from ignition 

source  

Modified from 

original Lutolf, 1971 

(then Bartknecht, 

1978) 

Modified 

Hartmann tube 

Electric spark, 

hot coil (up to 

1000 °C) 

NS Visual observation 

of flame 

Kuhner explosibility 

test 

20 l Siwek sphere 2 kJ chemical 

igniters 

Concentration 

range 

Overpressure 

greater than 0.3 

bar 

ASTM E 1226:2012 20 l Siwek sphere 5-10 kJ 

chemical 

igniters 

Concentration 

range 

Overpressure 

greater than 

threshold value 

Norway Open vertical mild 

steel tube 

Acetylene 

welding torch 

The amount of 

powder and the 

dispersion air 

pressure are varied 

to produce 

optimal conditions 

for ignition 

Visual observation 

on flame length, 

color and 

appearance 

violence 

Classification test 

Group A/B (UK, 

Explosion Hazard 

Testing Ltd), 

Commercial test 

Hartmann tube, G-

G furnace, 20 l 

Siwek sphere 

Electric spark, 

hot coil, hot 

ambiance, low 

energy chemical 

igniters. 

Concentration 

range variation 

according to results 

Visual observation 

of flame 

propagation and 

overpass of 

overpressure 

threshold 

ADINEX screening 

test, Commercial test 

Hartmann 

modified tube 

Temporary 

discharge 

spark(10 J 

energy), 

confirmation 

with 2 kJ 

igniters in 20 l 

sphere 

Concentration 

range from 30 g/m3 

to 2500 g/m3. 

Visual observation 

of flame 

propagation and 

overpass of 

overpressure 

threshold 

Chilworth, 

Commercial test 

Hartmann 

modified tube, G-

G furnace 

Electric 

continuos arc 

(10 kV), hot 

environment 

(1000°C) 

Concentration 

range variation 

according to results, 

with further sieving 

and drying if no 

ignition occur. 

Visual observation 

of flame 

propagation 



4.2 The Speditive Explosibility Test 

4.2.1 Testing philosophy 

The aim of this work is to define a speditive, low cost and reliable esplosibility test for dusts, whose 

results are aligned with the standard tests described in the technical standards. 

The philosophy that stands behind such a test is related to the concept of ignition probability, 

described in Chapter 3. The test have to be speditive, but its results should lay on a strong statistical 

basis that grant the reliability of them. Indeed a dust sample that is classified as Non explosible by 

the test must have passed a sufficient number of attempts in which no ignition has occurred, being 

this number defined a priori on statistical considerations. 

Furthermore the test conditions must be “as worst as possible”, thus meaning that each procedure 

has to maximize the strength of the ignition source. This is required not to have false negative in the 

explosibility classification. 

To this purpose, an ad hoc test procedure defined “Speditive Esplosibility Test (SET) composed of 

four different tests was developed. The SET procedure comprehend two tests in a modified 

Hartmann tube, a test in a Goodbert Greenwald Furnace and a test on a hot plate. 

All these tests are done at conditions that maximize the ignition probability. Continuous arc and 

glowing wire are used in the Hartmann tube, temperature high as 800 °C and 400°C are used, 

respectively, in the GG furnace and in the hot plate test. 

Several dusts having different origin but all from the process industry were submitted to SET and to 

traditional tests in the 20L sphere to compare the results. In this case the sample reactivity and 

eventually the kst indexes of the violence of explosion were measured according to UNI EN 14034 

standard.  

The kst measurement is not included in the SET, because the actual aim of the test is not to evaluate 

some single parameters among those considered when the explosibility of a dust sample is regarded, 

but to assess its ability to provoke an explosion hazard. 

Nevertheless, all of the dust samples analyzed were tested also in the sphere, both using 2*5kJ 

igniters and 2*1kJ igniters (Simex manufacturer) to compare the SET results with those from 

standard (UNI EN 14034) tests and to check for explosion overdriving. 

 

4.2.2 Experiments 

Twenty-two dust samples supplied by different process industries were collected and submitted to 

SET and to 20-L sphere tests. Pretreatment and test methods are described below. As a rule only the 

fraction passing through a 500 um opening sieve was submitted to the test. 

Each sample, as collected from industry, was characterized by the measure of the particle size 

distribution (PSD) and the moisture content. Test procedures are applied according to standards or 

to laboratory internal methodologies (Table 11). 

 

 

 

 



Table 11: Characterization tests. 

Parameter Standard/Methodology Unit of measure 

Moisture ISO 562:2010 Weight % 

PSD by Sieving  Internal procedure 08/2014 Weight % 

PSD by Laser granulometry ISO 13320:2009 Weight percentiles 

BZ flammability class VDI 2263-1 - 

 

PSD by laser granulometry was measured with a Malvern laser Particle Size Analyzer (Mastersizer 

2000E), with a dry powder disperser unit (Scirocco 2000M). The measurement range of the 

instrument is 0.01-1000 um. The measurement procedures were carefully calibrated, as the feed rate 

and air pressure dispersion are significant operative variables when this kind of disperser is used. As 

PSD measurement. 

PSD by Sieving was obtained using a pile of standard sieves: 2000 um (ASTM n°10), 1000 um 

(ASTM n° 18) and 500 um (ASTM n°35), 250 um (ASTM n° 60), 200 um, 125 um (ASTM ° 120), 

75 um (ASTM n°), 63 um (ASTM n° 230) and 32 um.  

An amount of about 10÷15 g of sample is placed on the larger openings sieve and piled with the 

others below. A sieving machine (IG3/WET by Giuliani, Torino) operates the pile of sieves for 10 

minutes. PSD was obtained by weighting under-sieve and over-sieve amounts recovered from the 

pile of sieves: 

In case of “non traditional” dusts (as defined by Amyotte, 2012) no dry sieving (as described above) 

or laser PSD were possible. In those cases, wet sieving was necessary. In this case an adequate 

amount of dust sample is placed on the top of the sieve pile. Sample is flushed with water and 

gently moved. The sample fractions are collected from the sieve pile and dried in a laboratory stove 

at 65° C for at least 12 hours. The PSD is obtained by weighting. Samples treated by wet sieving are 

number 14 to 17.  

Any sample having a moisture content higher than 15%, it was submitted to SET both “as received” 

and conditioned for moisture content. To this purpose, samples were dried in a laboratory stove at 

65°C for 5 hours. 

SET is conceptually divided in two parts, named “room temperature” and “high temperature” tests, 

as described in Table 12. SET starts with test N° 1, and stops at the first ignition. In case of no 

ignition in test 1, SET is continued to test 2 and so on. 

 

Table 12:SET test structure. 

Test N° Test device Ignition method Classification 

1 Hartmann Tube, open Continuous arc Room temperature 

2 Hartmann Tube, open Glowing wire Room temperature 

3 GG furnace Autoignition, 800°C High temperature 

4 Hot plate Autoignition, 400°C High temperature 

 



 

4.2.3 Room Temperature Test 

Hartmann 1.2-L tube is used for room temperature tests (1 and 2). Test conditions and procedure 

are, as close as possible, those described by the UNI EN 13821 standard to measure the Minimum 

Ignition Energy (MIE). The aim of this test is to evaluate the ignition sensitivity of the dust sample 

to ignition source with relative high energy (as worst as possible conditions). Dust cloud is 

generated at room temperature.  

Each sample is first submitted to continuous arc ignition attempt (test N° 1). After UNI EN 13821, 

the arc is generated between two Tungsten electrodes having a 6 mm gap, placed at 1/3 of the tube 

height from the bottom. The sample is placed at the tube bottom close to the mushroom air 

disperser. An air blast delivered from a 50 ml reservoir (7 ATE) is used to create the dust cloud. 

The arc characteristics are 29 kV (maximum at dielectric breakage) and 0.75 mA. 

Each dust sample is tested at different concentrations: 0.3, 0.5 and 1 grams are dispersed into the 

Hartmann tube. The test is repeated 10 times at each concentration unless ignition is observed. As 

per UNI EN 13821, no more than three attempt are made with the same dust amount. 

The evidence of the ignition is the presence of a flame propagating from the ignition point (space 

between the electrode) to the top of the Hartmann tube. According to EN 13821, the ignition has 

occurred if a flame greater than 5 cm is seen in the test. 

In case of no ignition in all the electric arc tests, the sample is submitted to the same procedure 

using a glowing wire as ignition source. The glowing wire is located at the same height as the 

electrodes. A continuous current of 11.8 V and 13.1 A is used to make the wire glow. 

When one ignition is observed the test is interrupted as the sample is classified as “explosible at 

ambient temperature (EA)”. 

 

 

Figure 23: Glowing wire detail (left-side) and Hartmann modified tube (right-side) for the ambient 

temperature tests. 



 

4.2.4 High temperature Test 

In case of no ignition in room temperature tests, samples are submitted to “High temperature tests”. 

These are derived from the cloud Autoignition Temperature test and the layer Autoignition 

Temperature tests described in UNI EN 50281:1999 standard. The apparatus used are the Godbert-

Greenwald furnace, and the hot plate device, both normalized by UNI EN 50281:1999 standard. 

Again the “as worst as possible” ignition conditions are assumed: the temperature in the GG furnace 

is 800°C and the temperature of the hot plate is 400 °C (both are maximum operating set up of the 

apparatuses). 

The first test examine the hazards related to dust cloud dispersed in air. Each dust sample is tested 

at different concentrations obtained by injecting different amounts of dust in the furnace (0.1, 0.3 

and 0.5 grams). The air pressure in the blowing reservoir is set at 0.25 bar. 

The test is continued up to ignition or at minimum 10 attempts are made at each sample amount. 

Again, ignition is assessed when flame propagates outside the furnace bottom. Sparks is not 

considered as proof of explosion. 

In case of no ignition, the sample is tested for layer autoignition on the hot plate device to assess the 

sensitivity of dust sample when placed in a layer. An adequate amount of dust is weighed in order 

to fill the metal ring used to form the layer on the plate. The ring height is 5 mm, according to UNI 

EN 50281:1999 standard for the MIT layer measurement. 

The evidence of an ignition is set as the same described in the ASTM E2021-2006 (4.3), considered 

more conservative with respect to the UNI EN standard.  

Unless any ignition is observed, the test is repeated three times. 

In case of ignition during a “High temperature test” the sample is defined as “explosible at high 

temperature” (EH). 

 

 

Figure 24: Hot plate device and G-G furnace for the high temperature tests. 

 

4.2.5 Tests in 20 l Siwek Sphere 

All the samples were submitted to explosion tests in a 20l sphere with the aim to measure the kst. A 

wide range of concentrations were tested (generally starting from 250 g/m3, the maximum 



depending on the sample nature) for each sample. Both 1 kJ and 5 kJ chemical igniters were used 

(manufactured by Simex control) to verify possible overdriving effects on the “weakest” samples. 

The test procedure is the same as the standard (UNI EN 14034), unless non-traditional dusts are 

handled. In this case, the samples were not dispersible through the injection valve of the sphere, 

resulting in poor reproducibility of the measures. 

For this reason, the total amount of the sample was directly introduced into the sphere, paying 

careful attention to the fact that the dust distributes all around the rebound nozzle as to obtain a 

homogeneous dispersion by the air blast. 

The 1 kJ tests have the precise aim to assess if a “false positive” as consequence of explosion 

overdriving has occurred during tests with the 5kJ igniters. 

When using 1kJ igniters, the threshold for an ignition is the same adopted in the Kuhner 

explosibility test, i.e. when values of overpressure pm and Pex are respectively greater than 0.2 bar 

and 0.5 bar. 

 

 

Figure 25: Siwek 20 L sphere operating an explosion parameters measurement. 

 



 

Figure 26: Detail of the couple of 5 kJ chemical igniters. 

  



4.2.6 Materials 

Dust samples in industrial context are rarely pure elements: the great majority consists of mixture of 

different materials or chemicals, depending on the type of manufacturing process from which 

materials derive. In many situations, the sample could be a mixture of different dusts, often inert – 

combustible dust mixtures can be generated by processes including some thermal treatment such as 

laser cutting of metallic artifacts. 

This study deals mainly with these types of samples, that are the more representative of the process 

industry, but also the more challenging to examine, as scientific fundaments on dust mixture 

behavior are not yet well understood and several works are in progress with this aim in the 

academic and research context all-around the world. The screening test purpose is also to try to fill 

this lack of knowledge of actual industrial dust samples behavior to ignition. 

The samples studied here are representative of different Italian industrial realities. Their nature is 

reported in Fig.27, the Table 13 resume sample characterization (including industrial source and 

type of process). 

 

 

Fig.27: Classification of dust samples. 

Most of the samples came from engineering industry, other from the textile industry. Almost all the 

samples are waste materials collected from abatement devices or from the workplace. One sample 

(N° 1) was a mixture of Cellulose Acetate (1b in Table 14) and Bentonite (1a in Table 14) at 

different weight ratios. Four samples derive from textile processes and have a strong fibrous nature. 
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Table 13:Features of the samples submitted to SET. 

Sample Source Aspect Peculiarity 

1 Dust mixture cellulose-ether and 
bentonite, at different concentrations, 
processed for packing production 

Pure elements, cellulose is 
white, while bentonite grey-
like 

 

2 Waste dust from processing of steel 
screw and joints 

Mainly constituted by 
calamine, gray aspect. 

High dustability and tendency to 
stain 

3 Waste dust from an industrial silo, from 
plastic laminates production. Organic 
nature of sample. 

Ochre colored, with 
persistent smell. Little plastic 
shaving present in it 

Low grade of adherence to 
surfaces and easy to disperse 

4 Waste dust from mechanical workshop. 
Sample collected in proximity of 
machineries processing wood artifacts. 
Organic sample. 

Light yellow colored, similar 
to sawdust. 

Homogenous in particle sizes 

 

5 Wood dust used for feeding of a 
furnace in a concrete production site. 

Sample constituted by a finer 
fraction and a rough fraction 
with shavings up to 1 mm 
length. 

 

6 Sample collected from waste of a 
milling machinery in a polymeric resins 
model production site (organic) 

Ochre colored. Wide particle 
size ranged, persistent smell. 

High tendency to cumulate 
electrostatic charge and 
adherence to container walls, 
difficult to collect. 

7 Waste dust from remaining from a 
laser cutting machine of metallic 
elements. 

Burgundy-like color, poor 
smell, similar to varnish.. 

High persistence on objects and 
tissues, tendency to stain 

8 Metallic nature dust sample from 
remaining from grinding machines 

Grey color, poor smell Very fine dust, scarce tendency 
to agglomerate 

9 Metallic nature dust sample from 
remaining from welding process 

Dark brown color, persistent 
and acre smell 

 

10 Waste dust from blasting process of 
aluminum artifacts 

Dark color, mainly 
constituted by finer than 500 
um particles. 

 

11 Sample dust from suction filter 
operating on grinding - sandblasting 
machineries 

Dark color, grey like, high 
fine fraction. 

 

12 Dust sample processed for artifacts 
production form recycled material 
(PET) 

Light blue color, very fine 
particles. 

 

13 Metallic dust sample from traction 
tools production unit (bearings, brakes) 

Dark color, with acre smell High persistency on objects 
surfaces, mainly fine particles 
with a little fraction of shavings 
up to 1 mm length. 

14 Dust sample from waste of industrial 
textile processing 

Fibrous, high fraction of fine 
particles, grey. 

 

15 Dust sample from waste of industrial 
textile processing 

Fibrous, high fraction of fine 
particles, black 

 

16 Dust sample from waste of industrial 
textile processing 

Fibrous constituted by finer 
particles and greater fibers of 
ca. 2 cm length, grey 

 



17 Dust sample from waste of industrial 
textile processing 

Fibrous, scarce presence of 
fine particles, tendency to 
agglomerate in flocks, black 

 

18 Sample dust from bag filter of 
metallurgic industrial site 

Silver color  

19 Sample from waste of foundry 
operations – sanding machine 

Dark color, high percentage 
of fines 

 

20 Sample from waste of foundry 
operation- smearing machine 

Dark color, high percentage 
of fines 

 

 

Samples PSD and moisture are presented in Table 14. They are characterized by the percentiles of 

the PSD in case of laser diffraction measurement, otherwise the weight fraction is adopted. It is 

evident as the majority of the samples contain a significant amount of small particles. All the 

samples present a wide PSD, samples 14, 15, 16 and 17 have a fibrous nature. 

 

Table 14: PSD by laser diffraction and sieving for all the samples tested in SET. 

 

 

Sample  
 PSD, – Laser diffraction (um)  PSD-Sieving (%w ) Moisture 

(%w)  d(0.1) d(0.5) d(0.9)  <2000 1000<d<2000 500<d<1000 <500 

1a  3.54 13.10 37.98       

1b  106.15 271.77 523.89       

2  10.42 65.23 102.80  0.54 0.62 1.36 97.5 <0.05 

3  54,62 193.99 523,56       

4  36,97 159.08 407,39       

5  NE NE NE  3.5 9.5 23.4 63.6 5.2 

6  36,50 170.76 489,85       

7  1,32 4.84 87,17  0.02 0.16 0.28 99.53 0.25 

8  2,21 15.61 96,65  0.43 0.08 0.16 99.33 0.82 

9  1,03 5.04 150,60  8.77 6.65 4.39 80.19 1.7 

10  7.83 45.56 231.32  <0.01 0.12 0.39 99.49 0.08 

11  4.69 34.20 117.22  0.26 0.09 0.32 99.33 0.17 

12  18.10 51.50 128.99  0.8 0.8 0.4 98.4 0.81 

13  7,17 81.75 320,53  0.3 0.5 0.7 98.5 0.83 

14  3.06 13.71 261.49  34.7 0.48 1.38 63.5 7.1 

15  NE NE NE  44.4 0.9 5.0 49.6 4.76 

16  4.88 39.80 350.49  69.3 0.63 1.67 28.4 5.0 

17  NE NE NE  <0.1 <0.1 <0.1 >99.9 5.0 

18  7.59 102.49 342.54  0.19 1.04 8.16 90.1 6.7 

19  26.76 207.34 549.34  <0.1 0.13 5.95 93.8 1.04 

20  11.44 140.54 434.34  0.59 0.08 1.00 98.3 0.06 



 

Figure 28: Quantiles distribution versus the amount of samples. 

 

The majority of the dust samples examined by Laser Diffraction were constituted by fine particles: 

all the samples have a d(10) smaller than 100 um. The exceptions are counted among the samples 

deriving from textile industrial wastes, that have a fraction of particles bigger than 2000 um greater 

than 35% in weight (samples 14, 15 and 16 in Table 14). 

Dust morphology was observed through microscopy: the majority of samples’ particles could be 

defined to be sphere-like, while textile dust samples are constituted by fiber-like particles, as is 

shown in the microscopic image of Figure 45 

No sample is found to have a moisture content greater than 15 %, being the limit at which internal 

laboratory procedures adopted suggest to dry the samples in stove. 

 

 

Figure 29: Left side: Sample #1, Right side: sample #2 
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Figure 30: Left side: Sample #3, Right side: sample #4 

 

 

Figure 31: Left side: Sample #5, Right side: sample #6 

 

 

Figure 32: Upper Left: Sample #7, Upper Right: sample #8 

 

Figure 33: Upper Left: Sample #9, Upper Right: sample #10 

 



 

  

 

Figure 34: Upper Left: Sample #11, Upper Right: sample #12, Bottom left: sample #13 

 

 

Figure 35: Left: Sample #14, Right: sample #15 

 



 

Figure 36: Left: Sample #16, Upper Right: sample #17 

 

 

Figure 37: Left: Sample #18, Upper Right: sample #19 

 

 

Figure 38: Sample #20. 

 

 

 

 

 

 



Table 15: Summary results of SET, where O: organic sample, N: inorganic sample, M: mixture of both. Y: 

positive result, N: negative result. NE: test non executed. 

Sample Nature AT Test HT Test SET class 10 KJ 2 KJ 

1b O Y NE EA Y Y 

1c M Y NE EA N N 

1d M N Y EH N NE 

2 N N Y EH N NE 

3 O Y NE EA Y NE 

4 O Y NE EA Y NE 

5 O Y NE EA Y NE 

6 O Y NE EA Y NE 

7 N N N Nexp N N 

8 N N Y EH Y N 

9 N Y NE EA Y NE 

10 N Y NE EA Y NE 

11 N Y NE EA Y NE 

12 O Y NE EA Y NE 

13 N N Y EH Y N 

14 O Y NE EA Y NE 

15 O Y NE EA Y NE 

16 O Y NE EA Y NE 

17 O N ND Nexp Y NE 

18 N N Y EH N N 

19 N N Y EH - Y 

20 N N Y EH - Y 

 

 

Figure 39: Summary of results according to nature of dust samples. 
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Table 16: Detailed results of SET. Where: N: no ignition, P: ignition. NE: test non executed, ND: sample 

non dispersible. (I/0.1): n° of attempt and sample weight at which ignition occur. 

Sample  

Room temperature 

Tests 

High temperature 

tests 

SET 

class 

20l Siwekspheretests 

Continuou

sarc 

Glowin

gwire 

G-G 

furnace 
Hot plate 

- Pmax 

(bar) 

(dP/dt)ma

x (bar*s-

1) 

kst 

(bar·m·s-1) 

St 

Class 

1b N P (I/0,5) NE NE EA 6.3 253 69 1 

1c N 
P 

(II/0,5) 
NE NE 

EA 
0 0 0 0 

1d N N P (I/0,3) NE EH 0 0 0 0 

2 N N P (I/0,3) P EH 0 0 0 0 

3 N 
P 

(III/1,0) 
NE NE 

EA 
6.8 314 85 1 

4 N P (I/0,3) NE NE EA 7,4 365 99 1 

5 N P (I/0,3) NE NE EA 7,6 284 114 1 

6 P (II/0,5) NE NE NE EA 7,0 250 67 1 

7 N N N N NE 0 0 0 0 

8 N N P (I/0,3) NE EH 5,7 197 53 1 

9 P (I/1,0) NE NE NE EA 5,9 349 94 1 

10 N 
P 

(III/0,3) 
NE NE 

EA 
3,6 450 122 1 

11 N P (I/1,0) NE NE EA 2,5 75 20 1 

12 P (I/0,3) NE NE NE EA 6,3 526 142 1 

13 N N N P (II) EH 3,8 49 13 1 

14 P (II/0,3) NE NE NE EA 7,0 390 105 1 

15 P (IV/0,3) NE NE NE EA 6,1 164 44 1 

16 P (II/0,3) NE NE NE EA 6,3 183 49 1 

17 N N ND NE NE 6,1 93 25 1 

18 N N P (I/0,3) NE EH 0 0 0 0 

19 N N 
P 

(III/1.0) 
NE 

- 
- - - - 

20 N N 
P 

(III/1.0) 
NE 

- 
- - - - 

 

 

 

 

 

 



3.4.1 Validation test in the 20-L Siwek sphere 

Results of the SET are presented in Table 16. The majority of the samples were classified as 

“explosible at ambient temperature”. Among these, all but sample 1c exhibited a measurable kst in 

the 20 L sphere operated with a couple of 5kJ igniters. The same samples exhibited a measurable 

explosion in the 20 L sphere operated with a couple of 1 kJ igniters. 

Sample 1c did not exhibit any explosion in the 20 l sphere nor with 5kJ or 1kJ igniters. In both 

cases Pm and Pex, although being measurable, did not meet the criteria to assess the explosion. The 

reason for this behavior is still not clear. The evident difference of PSD between Bentonite and 

Cellulose Acetate may suggest a certain mixture classification most probably in the Hartmann Tube 

tests which could lead to create a cloud richer than expected in the flammable component, so 

leading to ignition. 

Two samples were classified as “Not Explosible” at the SET. One of these, sample #7, was a dust 

from laser cutting of metallic artifacts. It is reasonable to suppose that the material was inert as it 

was oxidized by the high temperature of the laser beam. 

The other “Not Explosible”, Sample 17, yielded a measurable kst of 25 bar/ms-1, and resulted 

explosible as well in the test conducted using the 1kJ couple of igniters. This discrepancy can be 

explained with considering the highly fibrous nature of the sample, which demonstrated a scarce 

dustability. This behavior is evident in the Hartmann tube, where it was not properly dispersed by 

the air blast. The same in the GG furnace. In this case, the sample stuck into the injection system, 

such that it was not possible to test the dust. It is reasonable to assume that the most powerful air 

blow in the 20 l sphere overcome these problems creating an explosible cloud. 

Samples 1d, 2, 8 13 and 18 were classified as “Flammable at High temperature” after the SET test. 

Among these samples 1d, 2 and 18 did not exhibit a measurable kst with the 5kJ igniters, such to 

result not explosible with traditional tests. 

The other way around, samples 8 and 13 tested in the 20 L sphere with two 5kJ igniters resulted in a 

weak, but measurable kst equal to 53 and 13 bar/ms-1 respectively. The same samples submitted to 

the 20 L sphere test with a couple of 1kJ igniters did not match the criteria for explosion 

assessment. Therefore, according to standard tests, these samples would be characterized by a kstbut 

it would not be possible to measure their Lower Explosible concentration. This result could drive 

the conclusion that samples 8 and 13 did undergo to explosion overdriving in standard 20Ltest for 

kst measurement. 

Samples 19 and 20 also showed a different behavior with respect to other samples of the some 

nature (i.e. inorganic) 

Both were classified as Explosible at High temperature with the SET procedure. The validation was 

done with 2X1 kJ igniters in the Siwek sphere. An evidence of explosion (overpressure greater than 

0.5 bar, a) occurred with both the samples with a relative high concentration of 3000 g/m3. No tests 

were made for these two samples with 5kJ igniters, consequently they are not St classified. 

This concentration was close to the injection valve-working limit, in fact values of pd (expansion 

pressure) lower than expected were measured by the pressure sensors. 

In order to assess the real behavior of those two dust samples a test in the 1 m3 chamber of 

explosion is suggested, here not performed due to absence of adequate equipment). 

 

  



 

 

 

  



Testing “Non traditional” dusts 
The results of the SET, shown in the previous sections of this work, have underlined the 

problematics related to materials that could not be dispersed efficiently through the traditional 

injection systems for dust explosion testing, also present in the SET setup. 

In particular, the dispersion units on board of the Hartmann tube and the Godbert-Greenwald 

furnace tend to fail in their attempt of dust dispersion, when non-spherical particles dust are to be 

tested. The problem is related to the air blow generated by the reservoir on board of the machine 

(G-G furnace) and to the injection solenoid valve that opens to convey the air on the dust-charging 

chamber. 

This problem of dipersibility in testing equipment is related to the characteristic size of the dust 

particles: increasing the diameter decreases the attitude of the fibers to be dispersed. The fibers 

demonstrated a strong attitude to coagulate into spherical aggregates with greater diameter. The 

longer the fibers, the stronger the attitude 

This part of the Thesis’ work is an application of a explosion hazard evaluation on non-traditional 

dusts. Since few database exist up to now in literature, the present one could constitute a starting 

pint for increasing the awareness on the hazards related to those type of materials. 

5.1 The concept of dustiness 
The concept of dustiness, the tendency of a dust to be dispersed and stay airborne (according to VDI 

2263, part 9) has been only in recent times included in those safety parameters that characterize a 

dust susceptible of ignition.  

Actually explosive dust-air mixtures occur due to dispersion of dust layer, conveying of dust or 

filling up of containers. Dust clouds generated in these processes are usually not homogeneous. 

Since dustiness is not a physical value of the dust, but it is influenced by several variables, to 

develop a standard measurement method is not an easy task. The standard method presented by VDI 

2263-9 intend to assess the likelihood of dust clouds generation of a certain dust sample after free 

falling or chute. 

There is no standard procedure to assess the attitude of a dust to generate a cloud by lifting of dust 

layers through airflows, whereas this is the mechanism of secondary explosions. The concept of 

dustiness or dispersibility of dust is not new but recently new research development was provided 

by some authors (Klippel et al., 2013 and 2015 

The major unknown dealing with secondary explosion is related to the easiness (or difficulty) of 

dispersion in air of the combustible dust, a detailed study in perspective will help to develop new 

regulations or guidelines to measure the dustiness of dust layers and to assess the risk of secondary 

explosions. 



 

Figure 40: Mechanism of dust pile or layer lifting by an air blast, from Echkoff (2003). 

At present, our research has focused on the behavior of non-traditional dusts and on their low 

tendency to be dispersed to form clouds, once settled to the ground. The dynamics of explosion 

involving those type of combustible are relatively unknown and very scarce literature exists 

nowadays on this problematics; nevertheless, hazards related to non-traditional dusts are real and 

this research could increase the knowledge in this field and promote the buildup of a more 

conscious safety culture on the matter. 

Few studies had been performed on the explosibility of fibers, as textile dusts were recently studied 

(Amyotte, 2012, Marmo & Cavallero, 2008 and Iarossi et al., 2013) but no literature is present on 

the dustiness of fibrous textile dust all around the world. 

Such fibers can be composed of a multitude of materials, including cotton, acrylic, and polyester, 

and have a multitude of uses such as upholstery, carpeting, toys, paper, noise reduction, and 

insulation materials. Flocculent materials would not be considered as dusts according to the NFPA 

definition as “finely divided solid with a diameter of less than 420 μm (0.017 in.). A dust will pass 

through a US No. 40 standard sieve.” 

However, flocculent materials may be considered dusts, though “nontraditional”, given the NFPA 

definition of a combustible dust. Under this definition, a combustible dust is any combustible 

particulate solid that when suspended in air poses a risk of fire or deflagration. This definition gives 

no restriction on the shape or size of the particle.  

Recently NFPA published a standard document that include under the definition of combustible 

dust “Flat platelet-shaped particles, flakes, or fibers with lengths that are large compared to their 

diameter…usually do not pass through a 500 µm sieve” if they actually represent a deflagration 

hazard. NFPA 652 conclude that a combustible dust is “a finely divided combustible solid 

particulate that present a flash fire hazard or explosion hazard when suspended in air or the 

process specific oxidizing medium over a range of concentration”. 

In this, combustible solid particulate is defined as “any solid material composed of different 

particles or pieces, regardless of size, shape and chemical composition, that when processed, stored 

or handled in the facility has the potential to produce a combustible dust”. 

 

 

 



5.2 Textile industry dusts 
Whereas Textile industry is generally not considered to be at high risk of dust explosions, it has 

encountered in the past some episodes worldwide. Marmoet. Al. (2010) described a flock explosion 

occurred in a facility that produced nylon-based threads. Piccinini (2008) and Salatino et.al. (2012) 

described the same episode, a powerful explosion occurred in a wool manufacturing. 

The detailed accident list provided by Abbasi (2007) includes three episodes of dust explosions 

involving textile samples worldwide, among these one with relevant consequences (57 deaths and 

177 injured in China, 1987). The percentage of textile-related accidents is anyway relative low with 

respect to other involved industrial realities (like food and feed chain or coal handling). This could 

be an explanation on the very low degree of consciousness of the risk of explosion due to fibers in, 

for example, those industrial comparts where they are commonly found, as is the case of the textile 

industry. Consequently, regulations on explosive atmosphere do not explicitly comply with the 

presence of combustible fibers. 

Moreover the episodes reported by Abbasi (2007) deal with cotton or linen, but not with wool.  

Wool is generally regarded as a flame-resistant material and adopted for fire fighters equipment due 

to its ignition temperature (∼ 570 °C). Furthermore, once ignited, wool fibers display charring 

phenomena and behave as flame retardant. 

This could constitute another reason for disregarding the risk associated to wool dust explosions and 

fires. 

Recently many authors (among them Amyotte et.al. 2012) underlined that non-traditional dusts, 

such as fibers, are a potential hazard factor that affects the textile industry. Textile processes handle 

fibers, which are materials having specific morphology with one dimension being at least two 

orders of magnitude bigger than the others. Generally speaking, textile fibers are long cylinders 

having diameter in the range 10-1000 µm. Characterization of such type of dusts is often based 

upon the length-to-diameter ratio rather than on the diameter value alone. 

Explosion likelihood of this type of dusts also increases with a diminishing particle size, as for 

spherical traditional dusts. 

Minimum explosible concentration, minimum ignition energy, and minimum ignition temperature 

have all been shown to decrease with reduced particle size. 

Same authors have found that the MIE of flocculent materials is generally higher when compared to 

values of spherical-shaped particle dusts. They explained this difference focusing on the length 

dimension of the fiber: when subjected to thermal operation fibers shorten and aggregate into a 

spherical shape, with greater diameter, decreasing in the meantime the degree of dispersion of the 

sample and consequently their tendency to ignite (higher MIE). 

Flocculent materials therefore present explosion hazards similar to spherical dusts and should be 

considered as combustible dusts. Nylon flock ignition has been determined as the cause of at least 

one explosion in flock manufacturing plants in recent years. Marmo (2010) described an accident 

occurred in a flocking manufacturing plant in North-west of Italy, where cumulated flock layers in 

ducts and inside operation machines ignited and generated a secondary explosion, once entrained by 

the primary pressure shock wave.  

Salatino et al. (2012) reported an incident in a wool factory, involving wool dust, occurred in 2001 

in Italy. In this case the combustible materials was constituted by wool processing byproduct, 



namely, noils and burr. Wool noils are short fibers removed in the processing of textile fibers, and 

burr consists of lumps or flakes of wool together with the vegetable fragments present on the 

sheep’s fleece. 

The explosion was triggered by the smouldering combustion of a cumulated layer of dusts that 

evolved in a flaming combustion and then caused the propagating explosion of the finer airborne 

dust particle dispersed along ducts and inside operation machines. 

 

 

Figure 41: Statistical data on dust explosions according to industrial facilities, from 1986 to 2004, by 

Abbasi, 2007. Textile industry is reported as 4.5% of the total accidents episodes. 

 

5.2.1 State of the art of non-traditional dusts explosion investigation 

Flocculent materials are not being extensively studied and only recently authors seem to interested 

in this type of non traditional dusts. 

A review by Amyotte et al. (2012) presented some aggregate results of investigation both on 

ignition sensitivity and explosion parameters of fibrous materials. 

As for traditional dusts, the explosion severity increase with the decreasing of particle size. In 

particular, PSD exhibit greater influence on pressure rise rate than on maximum pressure value. 

Moreover Amyotte et al. (2011) revealed that Pmax and kst values are generally achieved for lower 

concentrations and with smaller particles.  

The same authors have measured kst and Pmax values for polyethylene fibrous dusts and wood 

fibrous dusts; both the samples resulted classified as St 1 and present values of Pmax between 5 and 

8 bar/ms-1. 

The non traditional dusts could be defined both for diameter or length values (or by length to 

diameter ratio). Amyotte et al. (2010) underlined the influence of both those characteristic sizes on 

the MIE determination, while the diameter is the controlling parameter (relatively smaller than the 

length). 

The influence of this latter is anyway accounted in the MIE determination, mainly because during 

melting process, fibers tend to shorten and form spherical particle, with increased diameter and 
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because longer fibers contribute to increase the aggregation of the samples and reduce its 

dispersibility. 

Nylon fibers were found to have similar explosion propertiesto organic dusts, with explosion 

severity generally falling into the St1 dust explosion class. 

Marmo and Cavallero (2002) tested nylon flocks coming from an Italian manufacturer (diameter 

between 10 and 27.4 mm, length between 600 and 1800mm) in the modified Hartmann tube to 

obtain data on MIE of those kind of dusts. They found that the explosive characteristics of the nylon 

fibers (flock) were very similar to those of an explosible organic traditional dust. The MIE was as 

low as 145mJ. Both the diameter and the length of the fibers influence the MIE, as it increases as 

both dimensions decrease. As expected, the influence of the diameter is more obvious, since it is the 

controlling variable of the heat and mass transfer phenomena, as reported above by Amyotte’s 

review (2011). 

To date, the explosion risk associated to non traditional dusts, in the case of textile waste materials, 

is being investigated by some authors, but still scarce data on explosion parameters of those type of 

dusts exist. Frank (2004) have illustrated the importance on focusing on the explosibility of 

flocculent materials, while describing the Malden Mills explosion occurred in 1995. Van Pidoll has 

underlined the risks associated to ignition of flocculent textiles by electrical discharge originated in 

the flocking process itself (2001, 2002). 

Furthermore, Piccinini (2008) and Salatino (2012) described a severe accident occurred in a wool 

factory in Italy. 

A further need of data is required with the objective to build up standard equipment to measure 

explosion parameters of those specific kind of dusts that are not easily tested with the equipment for 

so defined traditional dusts. The work of this thesis could also be an attempt to raise the awareness 

on the hazard related to non-traditional dusts and to orient the research on the development of more 

specific laboratory test, adequate and reliable for fibrous materials. 

 

5.3 Experiments 
The work presented in this section and supported by the Unione Industriale Biellese has 2 main 

purposes, which are connected: 

 To define the particle size distribution of dust samples collected at textile industrial reality 

of the North-west of Italy; 

 To assess the actual explosion hazard of those samples (investigation carried out on 15 

samples considered more hazardous) 

 To trace potential correlations between the size of samples and the specific machinery dusts 

are produced by, with respect to their explosion likelihood. 

During the present work 100 dust samples were sampled from different companies in a textile 

district in the north of Italy. The samples have been examined, as expected all could be included in 

the non traditional dust category. All the samples were subjected to particle size distribution 

analysis and 15 of them to the Screening Explosibility Test (SET) developed at the Politecnico di 

Torino, described in previous Chapter. 



The conclusions and assumptions that could be made on the results of this work could be relevant in 

the direction of increasing the knowledge of nontraditional dusts behavior and sensitivity to 

different ignition sources. 

5.3.1 Methodology 

Samplings were performed in situ and the collection included “ambient samples” and “machinery 

samples”. The first category includes samples collected from workplace, from air treatment system 

or in general from the environment of the sites examined, while machinery samples were collected 

nearby process machinery or from on board suction unit. 

Each sample, as collected from field, was characterized by the particle size distribution (PSD) and 

the moisture content. A selection of 15 samples were submitted to the SpeditiveExplosibility Test 

and among them 4 were subjected to explosion trials in the 20 l sphere. 

The characterization tests were performed with the same procedures described before for the sample 

submitted to the SET test (Chapter 4). 

Table 17:Characterization tests. 

Parameter Standard/Methodology Unit of measure 

Moisture ISO 562:2010 Weight % 

PSD by Sieving Internal 08/2014 Weight % 

PSD by Laser diffractometry ISO 13320:2009 Weight percentiles 

 

The problematic related to fibrous dust here raised relevantly. An instrument, like the Laser 

granulometer used here, working on the light scattering principle, could fail to distinguish between 

different particle shapes assuming all signals are generated from spherical particles. The result is 

that, with flat-like or flock-like particles as the ones analyzed in this work, the laser diffractometry 

analysis could be less precise than the sieving procedure. To overcome these difficulties, the 

samples were subjected to laser PSD and sieving measurements and the results were compared for 

internal check. In case the results were comparable, the laser diffractometry was used as it is faster. 

The laser diffractometry was used to measure 56 samples. The 44 remaining samples were treated 

with the wet sieving procedure. 

In this case an adequate amount of dust sample is placed on the top of the sieve pile. Sample is 

flushed with water and gently moved. The sample fractions are collected from the sieve pile and 

dried in a laboratory stove at 65 °C for at least 12 hours. The PSD is obtained by weighting. 

 

 

 

 

 

 

 



5.4 Materials 
Dust samples are divided per textile process section and per sampling position. 

 

 

Figure 42: Textile process. 

 

The basic scheme of a textile process plant is shown in the figure above. 

Spinning is a series of operations by means of which a mass of textile fibers (staple), initially in 

disorder, can be arranged into one very long unit (yarn). There are multitudes of spinning processes 

which vary according to the characteristics of the fibers to process and to those of the yarns one 

wants to obtain. The different phases of the process are complex and aimed at achieving a high 

quality, regular, and resistant yarn with minimum hairiness. 

Carding is a mechanical process that disentangles, cleans and intermixes fibers to produce a 

continuous web or sliver suitable for subsequent processing 

Winding is the last phase of spinning and consist in winding the yarn on a tube that can be either 

cylindrical or conical in shape, unwinding is the opposite process. 

Weaving is a method of textile production in which two distinct sets of yarns or threads are 

interlaced at right angles to form a fabric or cloth.  

Reeling is the process that convert yarn in commercial portable form. It’s normally done after 

twisting/winding to wrap yarn carefully in hank form and unwinding it later. 

Figure 43 shows the different source of the samples, collected in several textile industrial sites. 

Samples are composed mainly by wool, natural fibers and synthetic fibers, depending on the 

original site of processing. 

https://en.wikipedia.org/wiki/Sliver_(textiles)
https://en.wikipedia.org/wiki/Textile
https://en.wikipedia.org/wiki/Yarn
https://en.wikipedia.org/wiki/Textile
https://en.wikipedia.org/wiki/Cloth


 

Figure 43: Samples origin, based upon the textile processing sections. 

 

Table 18: Samples classification by sampling sites, divided per process sections. 

Process section (n° of 

samples) 

Ambient samples Machinery samples 

Spinning (14) 10 4 (3 spinning, 1 open-end spinning) 

Pre-treatment processes(12) 7 5 

Woollen yarn spinning (2) 2 - 

Carding(24) 5 
19 (Carding, open-end, mixed, 

threshing) 

Twisting (6) 5 1 

Weaving (13) 8 5 

Finishing (18) - 7 (clipping), 11 (other machineries) 

Winding (4) 3 1 

Dyeing (2) - 2 

Reeling-Unwinding (2) 2 - 

Generic plants (3) - 3 
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5.5 PSD characterization 
In this section the PSD of the samples is presented according to the process section from where they 

were collected. Both PSD results obtained by laser diffraction and by sieving are reported (where 

present). Laser diffractometry was used to characterize, when possible, the PSD of the fraction 

smaller than 500 µm obtained by sieving. 

Morphological characterization through photographs and microscopic observations, along with 

tendency to disperse in air are also described for each group of samples. 

5.5.1 Spinning section 

The PSD by laser diffraction was satisfactory for 9 of the total amount of 14 samples. The samples 

are characterized by a high content of fibrous elements and present scarce dustability. Only one 

sample is composed by a relevant fraction of fine particles and could be considered easy to disperse 

in air (132/15 in Figure 44). 

Table 19: PSD results, Spinning section samples. 

Sample characterization Undersieve (<500) PSD 

PSD by 

 

Mean of 14 

samples (%w) 

PSD by 

laser 

diffraction 

Mean of 9 

samples (µm) 

>2000 54.19 d10 8.05 

1000<d<2000 2.01 d50 59.98 

500<d<1000 3.42 d90 380.49 

<500 40.40 

 

 

Figure 44: Dust from  ambiance sampling (132/15) and machinery sampling (139/15). Origin: spinning 
section. 

 

Figure 45: Optical microscopy image (5X) of the two samples above, 132/15 contains fine particles, while 

only fibers are present in 139/15  



 

5.5.2 Preparation processes 

As what concerns machinery samples only one of five could not be processed by laser diffraction. 

The PSD obtained from 3 of the other 4 samples present a single peak, one was binomial. 

All the environmental samples were submitted to laser diffractometry PSD analysis. 

Table 20: PSD results, Preparation section, machinery sampling. 

Sample characterization Undersieve (<500) PSD 

PSD by 

sieving (µm) 

Mean (%w) PSD by laser 

diffraction 

Mean 

(µm) 

>2000 58.18 d10 10.05 

1000<d<2000 0.44 d50 34.51 

500<d<1000 1.27 d90 253.06 

<500 40.12 

 

 

Figure 46: Preparation section samples, from machinery (137/15) and ambiance sampling (181/15). 

 

Table 21: PSD results, Preparation section, ambiance sampling 

Sample characterization Undersieve (<500) PSD 

PSD by sieving 

 

Mean (%w) PSD by laser 

diffraction 

 

>2000 27.58 d10 868 

1000<d<2000 2.96 d50 38.76 

500<d<1000 5.96 d90 302.39 

<500 63.80 

 

5.5.3 Woollenyarn spinning section 

One over two samples could not be processed by laser diffractometry. The samples are both 

characterized by fibers and not appear to have a significant attitude to be dispersed in form of dust 

cloud. 

 

 



Table 22: PSD results, Woollen yarn spinning 

Sample characterization Undersieve (<500) PSD 

PSD by sieving 

 

Mean (%w) PSD by laser 

diffraction 

 

>2000  67.40 d10 3.58 

1000<d<2000 1.61 d50 49.20 

500<d<1000 5.62 d90 375.17 

<500 23.35 

 

 

Figure 47: Woollen yarn spinning samples. 

 

5.5.4 Carding section 

The samples collected from the carding section splits up in two groups with similar characteristics: 

the PSD of 12 samples could be measured by laser diffractometry. A relevant fine particles fraction 

was detected. The second group was composed of samples that could not be processed by laser 

diffraction, characterized by a relevant amount of particles greater than 2000 um (mean value 

greater than 50%). 

Table 23: PSD results, Carding section. 

Sample characterization Undersieve (<500) PSD 

PSD by sieving 

 

Mean of 24 

(%w) 

PSD by laser 

diffraction 

Mean of 12 

 

>2000  55.51 d10 14.42 

1000<d<2000 6.13 d50 76.14 

500<d<1000 4.60 d90 373.91 

<500 33.42 

 



 

Figure 48: Carding section samples, from ambiance (203/15) and machinery sampling (205/15) 

 

5.5.5 Twisting process 

The samples collected in the section devoted to the twisting process were quite homogeneous in 

shape and size. Only 2 of 6 could not be processed by laser diffraction being composed by fiber-like 

particles. 

Table 24: PSD results, Twisting process. 

Sample characterization Undersieve(<500) PSD 

PSD by sieving 

 

Mean of 6 

(%w) 

PSD by laser 

diffraction 

Mean of 4 

 

>2000  31.16 d10 2.69 

1000<d<2000 1.18 d50 10.28 

500<d<1000 3.36 d90 90.31 

<500 64.28 

 

 

Figure 49: Ambiance (141/15) and machinery sampling (224/15) from twisting process. 

 

5.5.6 Weaving 

Four of the 13 weaving dust samples could not be processed by laser diffraction; the other nine 

presented a PSD curve with one single peak. These samples had a relevant fine particles fraction 

and with a homogeneous distribution of particle sizes. 

 

 

 



Table 25: PSD results, weaving section. 

Sample characterization Undersieve (<500) PSD 

PSD by sieving Mean of 13 

(%w) 

PSD by laser 

diffraction 

Mean of 9 

 

>2000 um 38.05 d10 7.42 

1000<d<2000 3.18 d50 32.84 

500<d<1000 3.55 d90 155.36 

<500 54.74 

 

 

Figure 50: Ambiance (171/15) and machinery sampling (169/15) from weavingsection. 

 

5.5.7 Finishing 

(mean value greater than 50%) and are typically samples composed by fibers and relevant 

agglomerates of particles. Their tendency to disperse in air is extremely low. Only three samples of 

18could be dispersed such that their PSD was measured by laser diffraction. 

The PSD of these samples presented as much as three maximum, as a confirmation of their 

inhomogeneity and to underline the difficulty to analyze efficiently those kind of samples with 

diffraction methods. 

Table 26: PSD results, Finishing section. 

Sample characterization Undersieve(<500) PSD 

PSD by sieving 

 

Mean of 18 

(%w) 

PSD by laser 

diffraction 

Mean of 3 

 

>2000  52.14 d10 18.76 

1000<d<2000 12.29 d50 112.53 

500<d<1000 7.63 d90 435.94 

<500 28.31 

 



 

Figure 51: Ambiance samples from finishing sections. 

 

5.5.8 Winding 

The PSD of the samples collected from ambiance sampling in the winding department was 

measured by laser diffraction. On the contrary the samples collected from machinery wastes were 

composed entirely by fibers and could not be analyzed by laser diffractometry.  

Table 27: PSD results, Winding section. 

Sample characterization Undersieve (<500) PSD 

PSD by sieving 

 

Mean of 4 

(%w) 

PSD by laser 

diffraction 

Mean of 3 

 

>2000  42.74 d10 3.36 

1000<d<2000 1.86 d50 18.05 

500<d<1000 4.77 d90 155.67 

<500 50.56 

 

 

Figure 52: Ambiance (215/15) and machinery sampling (231/15) from winding section. 

 

5.5.9 Dyeing 

Samples from dyeing departments could not be processed by laser diffractometry. These samples 

were collected from the machinery which are in the final steps of the textile production, thus 

explained the flock shape of the samples collected here and its low tendency to disperse finer 

particles in air. 

 

 



Table 28: PSD results, Dyeing. 

Sample characterization Undersieve(<500) PSD 

PSD by sieving 

 

Mean of 2 

(%w) 

PSD by laser 

diffraction 

 

>2000  84.15 d10 NE 

1000<d<2000 0.50 d50 NE 

500<d<1000 0.80 d90 NE 

<500 14.55 

 

 

Figure 53: Dyeing samples, from machinery 

5.5.10 Reeling – Unwinding section 

The PSD of the two environmental samples collected at unwinding department were measured by 

laser diffraction and resulted similar. 

Table 29: PSD results, Reeling- unwinding section 

Sample characterization Undersieve(<500) PSD 

PSD by sieving 

 

Mean of 2 

(%w) 

PSD by laser 

diffraction 

Mean of 2 

 

>2000  6.78 d10 7.62 

1000<d<2000 2.49 d50 32.86 

500<d<1000 6.66 d90 184.06 

<500 84.05 

 

5.5.11 Generic plants 

These samples are characterized by a briquette-like agglomerates of particles. Laser diffraction was 

possible for all, although they had to be dispersed manually before being injected to the particle size 

analyzer. 

Table 30: PSD results, Generic plants. 

Sample characterization Undersieve (<500) PSD 

PSD by sieving 

 

Mean of 3 

(%w) 

PSD by laser 

diffraction 

Mean of 3 

 

>2000  25.97 d10 16.66 

1000<d<2000 18.18 d50 95.73 

500<d<1000 8.05 d90 415.13 

<500 47.83 



 

 

Figure 54: Generic plants (carding and spinning machineries) sample. 

 

5.6 PSD investigation results 
The first part of this work intended to define the PSD of dust samples derived from different 

department and machinery of a huge number of typical textile processes. Different PSD 

measurement techniques were applied to all the samples depending on their characteristics. 

Figure Figure 55, Figure 56 and Figure 57 underlined the followings considerations: 

 A relative high fraction of the samples (44%) contains a fine particle fraction (<500 um) 

greater than 50% in weight (see Figure 55); 

 56 samples could be examined by laser diffraction and presented a d90 smaller than 600 um 

(Figure 57); 

 32 samples are examined by wet sieving and among these 50% contains a fraction smaller 

than 75 um greater than 10.5% (Figure 56); 

 

 

Figure 55: Content of particles <500 µm (weight base) with respect to sample number. 
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Figure 56: Content of particles <250 µm and 125 µm(weight base) with respect to sample number. 

 

 

 

Figure 57: Quantiles distribution versus the amount of samples (56) processed by Laser Granulometer. 

 



5.7 SET Results 
Speditive Explosibility Test (SET) was used to determine the explosibility of 15 of the 100 samples 

studied here, to assess their ignition sensitivity and explosion likelihood. Results are shown in Table 

31. The SET combines different type of ignition sources at ambient temperature and in a hot 

environment as described in details in Chapter 4. 

On the total amount of 15 samples: 

 10 resulted as “Explosible at Ambient Temperature” 

 4 resulted as “Explosible at High Temperature”; 

 1 resulted as “Non Explosible” 

Generally speaking, all the samples have scarce tendency to create dust clouds when subjected to air 

blows. One sample of 15 is almost non dispersible and could not be tested in any of the equipment 

used in the SET procedure. 

The dispersion unit used to feed the G-G furnace, in particular, seem to be inefficient with such 

nontraditional dust samples, thus compromising the results of the SET when dealing with those type 

of samples. 

Also the dispersion system used in the Hartmann tube is only partly efficient to disperse flocculent 

dusts such as those studied here. Hence the reproducibility of tests conducted in the Hartmann tube 

is quite low. Despite these aspects should decrease the apparent reactivity of the dust examined at 

SET, it is worth to note that 14 samples were classified somehow flammable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 31: SET results. N: No ignition, P(I,0,5): Ignition (attempt N°/sample mass), NE: not executed. EA: 

explosible at ambient temperature, EH:esplosible at high temperature, NE: not explosible 

Sample  Section of sampling 

Room temperature Tests 
High temperature 

tests 
SET class 

Continuous 

arc 

Glowing 

wire 

G-G 

furnace 

Hot 

plate 

- 

133/15 Spinning, ambient N P (I/0,5) NE NE EA 

135/15 Carding, ambient N P (II/0,5) NE NE EA 

142/15 Weaving, ambient N N P (I/0,3) NE EH 

144/15 Finishing, machinery N N P (I/0,3) P EH 

150/15 Weaving, ambient N P (III/1,0) NE NE EA 

154/15 Weaving, ambient N P (I/0,3) NE NE EA 

158/15 Winding, ambient N P (I/0,3) NE NE EA 

160/15 Finishing, machinery P (II/0,5) NE NE NE EA 

165/15 Carding, machinery N N N N NE 

168/15 Finishing, machinery N N P (I/0,3) NE EH 

177/15 Twisting, ambient P (I/1,0) NE NE NE EA 

181/15 Preparation, ambient N P (III/0,3) NE NE EA 

186/15 Carding, machinery N P (I/1,0) NE NE EA 

213/15 Spinning, ambient P (I/0,3) NE NE NE EA 

227/15 Generic plants, 

machinery 
N N N P (II) 

EH 

 

 

Table 32: Siwek 20 L sphere tests performed on four of the textile dusts. 

Sample  

SET 

class 

20l Siwek 

Sphere tests 

- Pmax 

(bar) 

(dP/dt)ma

x (bar*s-

1) 

kst 

(bar·m·s-1) 

St 

Class 

133/15 EA 7,0 390 105 1 

135/15 EA 6,1 164 44 1 

158/15 EA 6,3 183 49 1 

160/15 NE 6,1 93 25 1 

 

 

 

  



 

 

 

  



Conclusions 
This Thesis has concurred in the investigation and definition of the explosibility of solid materials, 

in form of dusts. The term “explosible” is strictly connected to the attitude of the dust examined to 

be ignited, then to its sensitivity to different kind of ignition sources determined by the place and 

conditions in which the dust is generated. 

The probability with which a dust will ignite when submitted to external stress (like hot 

environments or electric discharges or arcs) is found to grow monotonically with the intensity of the 

applied stress. 

The individuation of an interval in which the ignition probability, so the explosion hazard, grow 

from the 0% to the 100% with respect to a defined variable is a relevant result coming from this 

work. In the case, the variable examined was the temperature, but this strategy will apply also to 

energy of external ignition sources. 

The first implication of this consideration contribute to the determination of a temperature safety 

threshold value, corresponding to sufficiently low ignition probability, then to the determination of 

a new concept of Minimum Ignition Temperature with respect to the standard one. 

The second implication deal with the development of a explosibility test (SET) that could define the 

explosibility or not of a dust sample on a strong statistical basis, derived from the PEI theory. 

Consequently, this work should suggest a reexamination of the international standards applied 

nowadays for Minimum ignition Temperature determination and also on the possibility of redefined 

explosibility test when dealing with non traditional dusts. At this purpose the experimental 

application of SET and PSD investigation performed on several textile dust samples show relevant 

results both regarding the ignition sensitivity and the explosion severity of this type of materials. 

The findings are reported under separate headings according to the different phases of the work. 

 

Speditive Explosibility Test  

The outcomes of the SET are: 

 EA: Explosible at Ambient temperature; 

 EH: Explosible at High temperature; 

 Nexp: Non explosible 

Dust sample that are classified as NExp are reasonably regarded as dusts that, in normal conditions, 

both in form of clouds or layers, should not imply an explosion hazard in the workplace in which 

they are located. 

Dusts classified as EA have to be regarded carefully, because should reasonably imply an explosion 

hazard, even at ambient conditions. More measurements on their explosion parameters are 

suggested in order to implement adequate protection measures for equipment in which these 

samples are manufactured or handled. 

Dusts classified as EH are considered hazardous as they could explode also at ambient conditionns. 

For those type of dusts the SET suggest a verification of their explosion strength with a test in the 

20 L Siwek-Sphere with more energetic ignition sources (couple of 5 kJ and couple of 2 kJ 



chemical igniters). The test with the 2 kJ is required for those samples, in order to eliminate the 

possibility that an overdriving has occurred with the more energetic sources (10 kJ). 

In the present study, seven of 22 dust samples were classified as Explosible at High temperature and 

a verification procedure has been performed with the tests in the Siwek sphere. 

Among those, two samples measured values of kst equal to 0 when tested with the couple of 5 kJ 

igniters, confirming their non-hazardous nature at ambient conditions. 

Other two samples, although showing evidence of explosion with the 10 kJ igniters, have measured 

values of kst equal to 0 when tested with 2 kJ igniters; therefore it could be demonstrated that an 

overdriving occurred with the more powerful ignition source. 

Two samples are classified EH and they exhibit a measurable kst with the weaker igniters. An 

evidence of explosion (overpressure greater than 0.5 bar, a) occurred with both the samples with a 

relative high concentration of 3000 g/m3 

In order to assess the real behavior of those two dust samples a test in the 1 m3 chamber of 

explosion is suggested, here not performed due to absence of adequate equipment). 

Finally, a sample does exhibit a measurable kst, even if it was classified as Nexp in the SET 

procedure, due to its fibrous nature and impossibility to be dispersed through the dispersion system 

of the SET equipment. 

In conclusion, SET results were verified by these “high energy” standard tests and the procedure 

adopted here seemed to reveal the occurrence of false positive (i.e. overdriving phenomena) for 

some samples. In addition, test classification criteria seem to agree with criteria proposed in the 

Kuhner explosibility test, present in the 20 L sphere and with the standard procedure to determine 

dust explosion parameters UNI EN 14034. 

Nevertheless, these procedures seemed not to work well with fibrous samples and mixture of 

different dusts. A more comprehensive procedure has to be develop to include those kind of dusts in 

the SET classification and verification. 

The followings approaches could be adopted in future works to align results of the SET to update 

literature findings on overdriving effect. 

 

Alternative approaches to overdriving phenomena evaluation 

Many authors have deal with the under and over driving phenomena that occur when dust samples 

are tested in different vessel tests and with igniters of different energy. 

The above-cited work by Rodgers and Ural (2011) presented the OSHA NEP implementation to the 

definition of a combustible dust. The test apparatus for this procedure is again the 20L sphere. A 

range of different dust cloud concentrations is tested with one single 2.5 kJigniter. 

The maximum pressure ratio PR and thenormalizedrateof pressure rise K are recorded foreach test. 

𝑃𝑅 =
(𝑃𝑒𝑥,𝑎−∆𝑃𝑖𝑔𝑛𝑖𝑡𝑜𝑟)

𝑃𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛
           (10) 

Where: 

Pex,a is the maximum explosion pressure reached during a single test; Dp,ignitoris the maximum 

pressure rise in the chamber due to the ignitor by itself; Pignition is the absolute pressure at the time of 

igniton. 



And K is defined as 

𝐾 = [𝑉
1

3⁄ (𝑑𝑃 𝑑𝑡⁄ )𝑚𝑎𝑥]          (11) 

OSHA consider an explosion to occur and consequently a dust sample explosible, when PR is 

greater than 2 and K is greater than 1.5 bar/ms-1 in anyone of the tests 

As said before, they suggest paying attention to marginally explosive dusts and their classification 

with tests performed in the 20L sphere. Indeed, they reported results of kst tests for the same dust 

sample with three different methods: the OSHA with the 20L sphere and two commercial tests in 

the 20L sphere and in the 1 m3 chamber respectively. 

Values of PR and K of the tests performed in the sphere revealed the dust to be explosible, while in 

the 1 m3 chamber the explosion threshold imposed by OSHA is not overpassed. They concluded 

that when OSHA test or Standard 20L-Explosibility test results indicate a marginal degree of 

explosibility for a dust sample it is cost effective to perform the definitive screening in a 1 m3 

chamber or larger enclosures. 

Proust et al. (2007) made a comparison between explosibility test performed in the 20L sphere and 

in the ISO 1m3 vessel. 

They reported some dust samples that show significant explosion severity in the 20L sphere are not 

even explosible in the larger vessel. They suggest the ignition energy is the dominating force in the 

reaction, inducing a strong preheating on the samples. Experimental results indicate that a 

significant percentage of dusts (5 of 21 tested) explode in the 20L sphere, even weakly, and not at 

all in the ISO 1 m3 chamber. 

They stated from their analysis that dust samples that exhibit a kst equal to or smaller than 45 

bar/ms-1 would not explode in the 1 m3 chamber, defining this value as the overdriving threshold in 

the 20L sphere. 

Our experimental data could be compared to Proust assumptions. In particular, we have found 

sample 11, 13, 15 and 17 with a value of kst smaller than 45 bar/ms-1. 

Result associated to sample 13 agreed with Proust threshold, since we have found this sample not 

explosible with both 2X5 kJ and 2X1 kJ igniters. However, samples 11 and 15 resulted Explosible 

at Ambient Temperature in the SET procedure and have not been subjected to the verification with 

the 2X1 kJ igniters. 

As what concerns sample 17, as said before, due to its fibrous nature, problematics related to the 

dispersion efficacy of SET equipment are influencing results and a revision of the tests has to be 

done before drawing any conclusions on its explosibility. 

In addition we could state that also sample 8 could be considered by Proust approach, even its kst 

value overpassed the threshold found by this author (53 bar/ms-1); this little discrepancy between tis 

value and the 45 bar/ms-1 individuated by the experimental campaign of Proust has to be verified, 

preferably with tests in the 1 m3 vessel. 

More recently Kuai et al. (2013) proposed another two approaches to evaluate whether an over 

driving has occurred. The first approach is based on the determination of the flame thickness. This 

value is estimated as the distance traveled by the rear of combustion in the last phase of the 

explosion, assuming the peak pressure is reached in the instant when rear of combustion reaches the 

wall of the vessel. 

The authors study the evolution of the flame thickness with the energy of the igniters. They found 

that the curve shows a steep decrease in the initial phase, then a minimum is attained and the flame 

thickness almost increase linearly. The rate of pressure rise with ignitor energy is also reported. 

Authors have found a critical value of energy (Ecr) corresponding to an inflection in the 



𝑑𝑃 𝑑𝑡 ⁄ versus Eign curve, from steep increase to almost asymptotic behavior. This value of energy is 

the same as the one that minimize the flame thickness and authors have adopted it as overdriving 

threshold. 

All igniters that generate an energy greater than Ecr could cause overdriving phenomena and alter 

the results of the explosion parameters measurement. 

The other approached they proposed is based on the evaluation of the induction time ti, in 

comparison with the time to reach ignition, tign. 

The occurrence of ti<tign means that energy from the ignitors overpassed the sufficient energy for 

ignition and a significant part of it is devoted to heat propagation and that overdriving has occurred. 

From our experimental tests data are not sufficient to verify the consistence of this method. This 

could be an interesting perspective in order to validate our procedure in agreement with these 

literature findings. 

Ignition temperatures of dust mixtures  

The Minimum ignition temperature of dust clouds obtained by mixing different dusts was 

measured. 

In the case of mixtures obtained mixing a combustible (flour) and an inert dust, the MITC decreases 

as the mass fraction of inert rises. Inert dusts, which undergo endothermic decomposition, are, as 

expected, much prone to increase the mixture MITC. Limestone effect on MITC is limited: when 

mixed with 10% flour the temperature rises to only 540°C. The size of the inert dust has little 

influence on the MITC. Limestone 32-75 µm and 125-250 um mixed with flour exhibited the same 

MITC except at 60% (weight basis) inert. At that composition the mixture obtained with finer 32-75 

um limestone exhibited a 10 °C lower MITC than the one obtained with the coarser 125-250 um. 

It is also clear that MITC measured according to CEI EN 50281-2-1 is not precise enough to study 

the behavior of mixtures when the influence of the variables is small. To this purpose a more 

defined representation can be obtained using the Statistical Ignition Temperature (SIT). 

The use of SIT allowed to describe the behavior of mixtures between combustible dusts having 

similar MITC. It was evident that some mixtures do not follow the harmonic model, in the case of 

lactose a small amount of a different component (flour, sucrose), cause a steep decrease of MITC. 

Sulphur as well promote a steep decrease of MITC inducing a trend that is not represented by the 

harmonic law. 

 

The Statistical definition of Ignition Temperature  

The second approach to the definition of a Statistical Ignition Temperature was made with the 

adoption of a Normal distribution curve fitted over the experimental data of Lycopodium and 

Lycopodium-AC93 powder mixture tests. 

The model proposed succeed to represent the effect of the inert powder to increase the MIT of the 

mixture and the shift of the Probability Escalation Interval towards higher temperatures. 

The table below reported the results obtained. A difference of 23.2 °C exist between the MIT 

defined through standard procedures and the Normal law definition.  

The statistical approach well represented the effect of the decreasing of inert particle sizes in 

increase the inertial capacity of the powder, a SIT greater than 8°C was found in this case, with 

respect to the SIT of mixture with inert powder not sieved. 

 



 

 

 M.I.T (°C) S.I.T. (°C) ΔT (°C) 

Lycopodium 420 443,2 23,2 

Lycopodium/AC.93 440 467.3 27.3 

Lycopodium/AC.93 (<75µm) - 475.5 - 

 

 

The third statistical approach not only moved towards a refinement of the statistical value of the 

ignition probability, but also gave birth to a new definition of the Minimum Ignition Temperature 

with respect to the standard. 

This approach was applied to Lycopdium pure dust sample. 

The Autoignition probability of Lycopodium at a temperature range just above the Autoignition 

Temperature (AIT) is a monotonically increasing function with respect to temperature. This range 

of temperatures was called the “Probability Escalation Interval”, PEI. The set of data was analyzed 

by a GLM with different link functions and the probit link provided the best fit. 

The AIT can be estimated by assuming a residual ignition probability small enough to fit a risk 

analysis requirement. In the present case, by assuming 𝑘 = 0.001, AIT was 434,1°C. According to 

our results, CEI EN 50821 measurement procedure applied to the same data would have a 65% 

probability to yield a result of 440°C and 35% probability to yield a result of 420°C.  

It is evident that the statistical approach proposed here is much more suitable to treat experimental 

data when an accurate value is needed or if small differences have to be appreciated, e.g. for 

scientific purposes. On the contrary, the CEI EN 50821 method would bring to estimate an AIT of 

440°C with a 65% probability, or an AIT of 420°C with the 35% probability. No intermediate 

values could be obtained. 

Beside these more scientific arguments, it is interesting to observe that, if the probability escalation 

interval (PEI) would be wider than 25-30°C as in the case of Lycopodium, using the method 

proposed by the norm would have a greater probability to produce poor estimate of the AIT, and, 

the most relevant, the probability to overestimate AIT would be not negligible. 

The literature data on the probability escalation interval are scarce, as the data on the probability 

dependence respect to T (or to energy, in case of spark ignition). It seems quite important to further 

explore this matter in order to improve the awareness on the confidence of AIT or MIE 

measurement methods, as well to improve the measurement accuracy needed to study some 

physical phenomena that could affect AIT or MIE, such as PSD variation, mixture behaviors etc 

Testing non traditional dusts  

The PSD of 100 textile waste dusts sample was investigated. The samples were collected in 

different textile industrial realities in the North-west of Italy and they are characterized depending 

on the different section of the textile process  they derived. 

As expected, all the samples could be defined as non-traditional dusts, having fibrous nature and 

with a relative scarce tendency to disperse in clouds. 

Samples from Winding, Twisting and Weaving sections are smaller than samples from other 

sections; 

At each department, it was observed that samples representative of ambiance dust have smaller PSD 

than samples collected at machinery. 



According to PSD the dust samples more prone to explode are those coming from Winding, 

Twisting and Weaving departments 

In general, environmental dust samples had a smaller PSD than “machinery” dust: 

Eight over 9 environmental samples were defined as “Explodible at Ambient temperature” 

according to SET, among these 2 were from Weaving section and 1 from Winding and Twisting 

respectively. 

Dust dispersion provided by the GG furnace is not adequate for flocculent materials, in particular 

GG furnace dispersion system should be improved to test these kind of dust. 

The four dusts submitted to Siwek 20 L sphere tests all exhibit a measurable kst. and should be 

classified as St1. Among them sample 133/15 show the most severe explosion with a kst equal to 

105 bar/ms-1. 

This value is in agreement with literature kst values found for textile dusts: Piccinini (2008) found a  

St1 classifcation (with kst equal to 110 bar/ms-1) for samples composed mainly by wool dusts and 

vegetable particles. 

The samples named 135/15 and 158/15, despite being classified as Explosible at Ambient 

Temperature, exhibit a less severe kst values, below the threshold defined by Proust (2007) to 

eliminate the possibility of an overdriving occurrence. For these samples an alternative procedure to 

estimate their actual explosion strength is suggested. 

The last sample 160/16 (that is reported as sample 17 in Chapter 4) exhibit a measurable kst, even if 

SET declared it Non explosible. The poor dispersion of this sample explained here the poor efficacy 

of SET equipment, while 20 L sphere dispersion mechanism could succeed in generating the dust 

cloud and explode it with the 10 kJ igniters. Again further tests are suggested for the explosibility 

definition of this sample. 
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