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Abstract

Security tools have evolved dramatically in the recent years to combat the increasingly complex nature of attacks.
However, these tools need to be configured by experts that understand network protocols thoroughly to be effective.
In this paper, we present a system called FieldHunter, which automatically extracts fields and infers their types. This
information is invaluable for security experts to keep pace with the increasing rate of development of new network
applications and their underlying protocols. FieldHunter relies on collecting application messages from multiple sessions.
Then, it performs field extraction and inference of their types by taking into consideration statistical correlations between
different messages or other associations with meta-data such as message length, client or server IP addresses. We
evaluated FieldHunter on real network traffic collected in ISP networks from three different continents. FieldHunter
was able to extract security relevant fields and infer their types for well documented network protocols (such as DNS
and MSNP) as well as protocols for which the specifications are not publicly available (such as SopCast). Further, we
developed a payload-based anomaly detection system for industrial control systems using FieldHunter. The proposed
system is able to identify industrial devices behaving oddly, without any previous knowledge of the protocols being used.

1. Introduction

In recent years attacks against networks have become
more complicated. To defend against these complex at-
tacks, network security systems have also evolved to use
more sophisticated mechanisms. For instance, firewalls
have moved from using simple packet-filtering rules to us-
ing application level rules that need deeper understanding
of the protocols being used by network applications. Sim-
ilarly, intrusion detection systems are increasingly using
vulnerability based signatures [1] that contain information
specific to network protocols. Access control mechanisms
are also evolving from IP address based policies to fine-
grained policies which use protocol objects such as users
and message types.

It is clear that configuring all of the above applications
requires a deeper understanding of the network proto-
cols, which is done through reading protocol specifications.
However, comprehending protocol specifications is a very
tedious task. Moreover, many of the proprietary protocols
specifications are not publicly available. The traditional
approach of manual reverse engineering a protocol cannot
cope with the rate at which new benign or malicious ap-
plications are made available and brought into workplace.
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As a result, security administrators have to configure secu-
rity applications with very limited visibility into the net-
work protocol space; thus adversely affecting the efficacy
of these tools in securing the network.

The above technology challenge has led to a growing
interest in the research community in the development
of techniques for automating the reverse-engineering pro-
cess for extracting protocol specifications, which consists
of inferring message formats and underlying protocol state
machines. The state-of-the-art techniques can be clas-
sified in two categories: reverse-engineering through bi-
nary code analysis [2, 3, 4, 5, 6] and from network traf-
fic [7, 8, 9, 10, 11, 12, 13]. In this work, we present an
automatic reverse-engineering system of the second cate-
gory, i.e. it infers protocol specifications from just network
traffic data. Reverse-engineering using network traffic has
an advantage over techniques using binary analysis, be-
cause application binaries are not always available to the
security operators.

Our approach to the problem of protocol reverse en-
gineering aims to extract field boundaries and field pro-
tocol types from network traces that belong to the pro-
tocol. As compared to previous works in this area, we
are able to extract richer protocol information in terms
of (i) extracting diverse field types, and (ii) handling bi-
nary and textual protocols in an uniform framework. We
study well known protocols and identify a set of field types
that can be used in a multitude of security applications.
We focus on identifying: (i) Message Type (MSG-Type),
such as flags in DNS protocol or GET/POST keywords
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in HTTP, (ii) Message Length (MSG-Len), usually found
in TCP protocols to delimit application messages in a
stream, (iii) Host Identifier (Host-ID) such as Client ID
and Server ID, (iv) Session Identifier (Session-ID) such as
cookies, (v) Transaction Identifier (Trans-ID) such as se-
quence/acknowledgment numbers, and (vi) Accumulators
such as generic counters and timestamps. We note that a
protocol may not have all the above types of fields.
We built a system called FieldHunter, that uses a two

step methodology: (i) Field extraction: here we extract
fields from the protocol messages. (ii) Field type infer-
ence: here we infer the type of the fields extracted in the
previous step. The key contribution of our work is the de-
velopment of various heuristics based on observed statisti-
cal properties for inferring the different field types. In our
evaluation, we used real network traces from three different
Internet Service Providers (ISPs) to validate the ability to
extract various field types from well known protocols such
as Real Time Protocol (RTP), as well as protocols with-
out any publicly available specification such as SopCast’s
protocol.
Next, to illustrate the use of FieldHunter in building

end-to-end security applications, we developed a payload-
based anomaly intrusion detection system for industrial
control systems. Industrial Control Systems (ICS) encom-
pass several types of control systems used in industrial
production, including Supervisory Control and Data Ac-
quisition (SCADA) systems, Distributed Control Systems
(DCS), and other smaller control system configurations
such as Programmable Logic Controllers (PLC). Due to
their use in the industrial sectors and critical infrastruc-
tures, they are a prime target for attackers and the cost
of successful attacks is tremendous to the victims. Typ-
ically, the attackers targeting ICS are sophisticated, and
have a lot of resources; sometimes even being state spon-
sored. They are able to avoid detection by traditional
defense mechanisms [14]. To make matters worse, there
has been a trend of increasing number of attacks on criti-
cal infrastructure as evidenced by the rapid increase in the
number of reported attacks on ICS from 91K in 2012 to
over 675k in 2014 [15]. To the best of our knowledge, our
system is the first payload-based anomaly detection sys-
tem that handles legacy proprietary protocols commonly
used in ICS networks.
The rest of the paper is organized as follows. §2 defines

the terminology used throughout the paper, §3 provides
details about the core algorithms used by FieldHunter.
Performance evaluation and parameter tuning are pre-
sented in §4. We describe the anomaly detection system
for ICS in §5. We discuss about assumptions and limita-
tions in §6, related works in §7 and finally conclude this
work in §8.

2. Terminology

Figure 1 shows a pictorial representation of the termi-
nology used throughout this work. Our system uses as in-

Figure 1: Terminology diagram.

put a set of conversations 1 of a particular application.
We refer to such a set as collection. Conversations con-
sist of exchanged messages between two hosts. Messages
from client to server are denoted as C2S (dark-colored)
and from server to client as S2C (light-colored). We con-
sider the initiator of the conversation as the client, the
other end as the server, and identify hosts by their IP ad-
dress. Messages consist of different pieces of information
enclosed in fields. As we show in figure 1, conversations
evolve horizontally over time (t) and messages can be com-
pared vertically across multiple conversations.
To enable the analysis of a collection, the messages in

the conversations can be grouped together in the follow-
ing ways: (i) Grouping messages based on their position in
conversations, e.g., all third messages in C2S direction. (ii)
Grouping together all the messages of a conversation. This
essentially captures session-like information. (iii) Group-
ing together messages by direction, e.g., all C2S messages.
We note that (i) and (ii) are very similar to vertical and
horizontal sub-collections as defined by Kreibich et al. [16].
Message grouping is instrumental for FieldHunter to find
patterns in the collections. If these groups do not contain
enough message diversity, FieldHunter cannot unveil the
field types it is designed for.
It is worth mentioning that the formation of protocol

collections used by FieldHunter is beyond the scope of
this work. However, we suggest two alternatives for the
same. One way is to use a test-bed in which the applica-
tion is executed while the traffic exchanged is being cap-
tured. Alternatively, the collection can be extracted from
passive observation of actual traffic by the means of net-
work classifiers, i.e., by filtering all conversations involving
a well-known port (see §5), or by relying on a behavioral
traffic classifier classifier [17].
Application conversations are transported by

TCP/UDP segments and are extracted by Field-
Hunter using the following methodology: (i) for messages
transported over UDP it is assumed that each segment

1A conversation is formed of the two flows in opposite directions,
where a flow is defined by the 5-tuple (Layer-4 Protocol, Source IP,
Source Port, Destination IP, Destination IP)
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Figure 2: FieldHunter system diagram.

contains one application message, and (ii) for TCP it is
assumed that TCP PUSH flags delimits the beginning of
a new application message from the end of another one.
An accurate message extraction can be done once the
MSG-Len field has been identified by FieldHunter.
We make a distinction between textual and binary pro-

tocols as follows: Textual protocols use human readable
words and symbols to structure data, and they look more
like a text document. Exponents of textual protocols are
HTTP and SMTP. On the other hand, binary protocols
encode data on bits rather than symbols and the way that
data is structured is quite rigid. Examples of binary pro-
tocols are DNS and DNP.

3. Design

In this section, we describe the system design and dis-
cuss the two components of FieldHunter (i) Field Ex-
tractor (ii) Field Type Inference Engine. These compo-
nents are run in sequence to obtain a field summary re-
port (which describes the identified fields and their types)
as shown in figure 2.

3.1. Field Extractor

Textual and binary protocols differ greatly in the way
fields are delimited. Textual protocols typically use delim-

iters such as “:” or “\r\n” (carriage-return and line-feed
pair) to separate fields. On the other hand in binary pro-
tocols, fields either have fixed offset and size or offsets and
lengths that are specified in some preceding fields. Hence
we have developed different techniques for textual and bi-
nary protocols. Next, we explain each of these techniques
separately.

3.1.1. Textual Protocols

Field extraction for textual protocols boils down to iden-
tifying field delimiters. However, this is a non-trivial task
as many protocols use multiple delimiters for different pur-
poses. For instance, consider a message such as TIME-OUT:
60 # PORT: 54001. In this message, “#” is used to sep-
arate out the fields, while “:” is used to separate out the
key and the value in a field. Hence, we categorize delim-
iters into two types: (i) Field delimiter (Df): separates
the different fields of a message, e.g., the “#” character in
the above example. (ii) Key-value delimiter (Dk−v):
separates the key from its corresponding value, e.g., the
“:” in the same example.

Table 1: Common text-based protocols and their observed delimiters.
GAME: Team Fortress (game), TEL: Telnet, CS: Counter Strike (game),
GNU: Gnutella.
Prot. Df Dk−v Prot. Df Dk−v

HTTP \r\n ‘:’, ‘ ’ FTP \r\n ‘ ’

SMTP \r\n
‘:’, ‘ ’,
‘-’

TFTP 0x1D 0x1E

POP3 \r\n ‘:’, ‘ ’ CS 0x5C 0x5C

RTSP \r\n ‘:’ GNU \r\n ‘:’, ‘ ’

SIP \r\n ‘:’, ‘ ’ RTP \r\n ‘:’, ‘ ’

GAME 0x00 0x00 MSN \r\n ‘ ’

TEL \r\n ‘:’, ‘ ’

Commonly used Df and Dk−v delimiters are shown in
Table 1. These delimiters are obtained from the documen-
tation of the listed protocols, and are actually observed
in our data sets. As we see, there are popular delimiters,
such as \r\n, as well as non-standard delimiters, such as
0x00 (null), 0x1D, and 0x5C.

Generally speaking, FieldHunter identifies delimiters
using three key observations: (i) Delimiters are non-
alphanumeric sequences of 1 or 2 characters. (ii) De-
limiters have a high horizontal and vertical frequency
compared to other non-alphanumeric sequences in a tex-
tual protocol. (iii) There is only one Df that splits
up the messages into key-value pairs (UID: 1234,

Content-length: 872) or singleton keywords fields
(HELO, LOGOUT, OK, FAILED). FieldHunter first identifies
Df and then proceeds with the Dk−v if fields are key-value
paired.

Field Delimiter Inference. FieldHunter finds frequent
sequences of non-alphanumeric characters in the protocol
which are considered to be delimiter candidates d. Then
from among all the candidates it chooses only one (Df =
d), such that it splits up any protocol message into valid
key-value pairs and singletons. Validity of key-value pairs
and singletons is checked by comparing common prefixes
and exact matches respectively.

Key-Value Pair Delimiter Inference. Once Df has
been detected, messages are split into fields from which
we need to identify key-values along with Dk−v, and sin-
gletons. The identification of Dk−v is performed in three
steps: (i) FieldHunter clusters fields of the same type
by using the Longest Common Prefix (LCP); (ii) by re-
clustering the clusters, FieldHunter cleans up possible out-
liers caused by two or more keywords sharing a common
prefix. E.g., Port: and Point: have Po in common, and
finally (iii) we choose the Dk−v as the non-alphanumeric
suffix part of the LCP of each group. In the case that all
the LCPs are identical for a group, then we say that the
field contained by the group is a singleton and we do not
search for a delimiter.

3



3.1.2. Binary Protocols

In binary protocols, fields represent serialization of vari-
ables as they are structured in memory. To parse these
fields, message recipients need to know the structure of
the data, i.e. the offset and length of the fields. The chal-
lenge for FieldHunter is that the message data structure
is initially unknown. Therefore messages are split into n-
grams which are used by Field Type Inference Engine. We
observe that for most of the field types, the n-grams form-
ing the field also show similar characteristics to the field.
For instance, in a protocol that has a 32-bit Host ID field,
the four 8-bit n-grams also exhibit similar statistical prop-
erties as Host ID. In such cases, we identify the field type
for the single n-gram and then check whether consecutive
n-grams can be merged into a larger field of the same type.
We note that this assumption does not always hold. For

instance, a 32-bit Accumulator field may increment by one
every time. But given the number of samples that we may
consider in our collection (say order of thousands), the
most significant bits may show up as constants and not
accumulators. This issue is circumvented for fields such
as Message Length and Accumulators (numerical repre-
sentations) by considering n-grams of larger size first, say
32-bit n-gram, and then iteratively reducing n-gram size
till the whole n-gram fits the field. Moreover, we han-
dle byte-endianness for fields that contain numerical rep-
resentations by repeating the heuristics separately for both
little-endianness and big-endianness. This is not the case
for fields that can be interpreted as categorical represen-
tations.

3.2. Field Type Inference Engine

Our approach is based on the following key observa-
tion: Fields with different types change differently over
specific sub-collections. For instance, a field that consis-
tently takes a distinct value for each IP address may rep-
resent a Host-ID. Similarly, fields that increment by one
over sequential messages of a conversation may be part of
a message counter.
FieldHunter assigns types to fields by using different sta-

tistical tests that are further explained. The techniques
for FTI are similar for both textual and binary protocols.
In the rest of the paper we use the term “n-gram” to in-
terchangeably to mean “binary n-gram” or “textual field”
for ease of exposition. For example, when we state “n-
gram entropy is computed”, we actually mean that either
“binary n-gram entropy is computed” or “textual field en-
tropy is computed”. We use specific statistical tests based
on different associations between observed variables to in-
fer different field types. The association between two vari-
ables (a, b) can be of the following types: (i) “numerical
correlation” (a ⇔ b), e.g., message length field is numeri-
cally correlated to the observed length of the message, (ii)
“categorical correlation” (a ∈ A ⇔ b ∈ B), e.g., user IDs
correlate categorically with IP addresses and (iii) “causal-
ity correlation” (a ⇒ b), e.g., certain type of message will
result in a particular response from server.

The labeling process works by making a hypothesis that
a given field is of a certain type. When the hypothesis
holds, i.e., the field exhibits the statistical behavior of the
field type, FieldHunter labels the field as such. We note
here that a field may be labeled as multiple field types.
For instance, an acknowledgment number field could be
labeled as both Transaction ID as well as an Accumulator.

In figure 3 the more complex heuristics are illustrated
using block-diagrams. Blocks in the diagrams repre-
sent different tests; horizontal/vertical arrow inside a
block defines horizontal/vertical sub-collection analysis
and thresholds are highlighted in italic. More details on
parameter selection are given in §4.4.

3.2.1. Message Type (MSG-Type)

MSG-Type contains information about the underlying
protocol state machine and its values represent the seman-
tic of the whole message. Thus, the content of MSG-Type
field is used by the receiver to understand what type of
message is received, for example a request, a status up-
date, or an error message.

The process of finding MSG-Types is based on two key
observations: (i) MSG-Type takes values from a well de-
fined small static set; and (ii) represents transitions in an
underlying protocol state machine. Hence, by pairing re-
quest/response messages, there is a high probability that
their corresponding MSG-Type fields are related. The left-
most diagram in figure 3 describes the MSG-Type labeling
process.

Using observation (i) above, FieldHunter first looks for
n-grams that vertically are neither random nor constant.
Randomness of a n-gram x can be measured using the en-
tropy H(x) metric. Let pi be the probability of having
the n-gram take the value i. Then H(x) = −

∑
i pilog2pi,

where 0 · log(0) = 0. By definition for 1-byte n-grams (8-
bits) H(x) takes values between 0 (constant) and 8 (per-
fectly random). Then n-grams that are unlikely to be part
of a MSG-Type field are discarded. Once some candidate
fields are identified, according to observation (ii), we check
for n-grams that have a causal relationship with n-grams
in the response messages. Here FieldHunter uses cate-
gorical correlation metric. Towards this end, FieldHunter
measures causality using the information theoretic metric
I(q; r)/H(q), where I(q; r) = H(q, r) − H(q|r) − H(r|q)
is the mutual information, that measures the information
shared by a request (Q) and a response (R) [18].

FieldHunter takes n-grams for which causality is greater
than a threshold, say 0.8, as MSG-Type candidates. For
the case of binary protocols, if multiple n-grams are candi-
date, these are grouped together and causality is checked
again. Thus, if a group coincides with the actual MSG-
Type field, then the whole candidate group should also
satisfy the initial hypothesis of causality. For example,
suppose n-grams at byte offset 1, 5, 6 show a large causal-
ity such that q1 ⇒ r1, q5 ⇒ r5, q6 ⇒ r6. Then we
check whether the groups (q1, q5, q6) ⇒ (r1, r5, r6) holds
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Figure 3: MSG-Type (left), MSG-Len (center) and Trans-ID (right) modules.
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Figure 4: n-gram correlation with MSG-Len for SopCast.

the causality. If this holds, the field containing n-grams at
offsets (1, 5, 6) are returned as the MSG-Type field.

3.2.2. Message Length (MSG-Len)

Our goal here is to find fields that contain indication of
the application message length. As such, we expect the
MSG-Len field is linearly correlated with the actual physi-
cal message size. We use two different tests for identifying
linear correlations in order to have higher confidence on
our results.
The complete MSG-Len test algorithm is depicted in

the central diagram in figure 3. This heuristic does not
use the typical 1-byte n-gram and for textual protocols it
decodes the content of the field as a number. The reason
why 1-byte n-grams do not provide good results is that
Most Significant Byte and Least Significant Byte are not
correlated in this case. Hence, FieldHunter iteratively se-
lects n-gram windows of size 32, 24, 16-bits that are shifted
at a step of 8-bits. Such windows sizes are the standard
sizes used to represent integers in computer memory. At
each iteration Pearson correlation coefficient tells whether
the numeric values of the fields are associated with the
length of the messages. Notice that the computation of
this correlation could be affected by biases due to some
popular messages in the collection of the same size, for

instance, if 950 out of 1,000 of collection messages are 40
bytes long. We avoid such biases by stratifying messages
by length, creating in this way a size-heterogeneous col-
lection not affected by the bias problem. We select all the
fields for which the coefficient is above a certain threshold
as MSG-Len candidates. We empirically found 0.6 to be a
good threshold.
Figure 4 shows the results of applying the Pearson cor-

relation to the SopCast protocol collection obtained from
one of our traces. In this example, we use 16-bit n-gram.
Pearson coefficient values span from zero to one, where
zero indicates no correlation and one represents a strong
correlation. In figure 4 there are two clear spikes, one at
offset 88-bit and the other at 168-bit that suggests the
presence of a MSG-Len field (see § 4.2). We cross-verified
these results using DPI signature rules for UDP SopCast
found in OpenDPI [19], an open source packet inspection
engine 2.
Once the candidates are found, the next step is to con-

duct a test to verify that the candidates indeed are carry-
ing information regarding the length of the message. The
hypothesis is that the message length expresses the length
of the message in an unit of measurement, such as bytes
or words, and that it describes the length of data starting
from a given byte offset. In other words, we state that the
message length is ruled by the following linear equation:
MSGlen = a · FIELDvalue + b, such that MSGlen ∈ N is
the observable message length, FIELDvalue is the value
taken by candidate field, a > 0 accounts for the unit of
measurement and b ∈ N is the starting offset of the data
described by the field. To verify the assumption, the linear
equation is solved and (a, b) are obtained. This process is
repeated taking all possible message pairs with different
lengths. Finally a candidate is considered as a true MSG-

2OpenDPI project has since been discontinued.
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Figure 5: n-gram correlation with Client IP (Vuze DHT).

Len field if for most of the pairs (> 90%) the solution is
acceptable (a > 0 ∧ b ∈ N).

3.2.3. Host Identifier (Host-ID)

Host identifiers are used to identify a particular host
or device beyond the boundaries of the local network.
For instance, in peer-to-peer applications, the “Peer-ID”
field uniquely identifies a specific peer/host in the whole
overlay, even when the peer is behind a Network Address
Translation (NAT) device or is moving over multiple net-
works.

The heuristic assumes that all the messages sent by
the same host carry the same Host-ID, i.e., for a given
source IP, messages are likely to have the same Host-ID.
Then Host-ID should be strongly correlated with the IP
address of the sender. Based on this assumption, Field-
Hunter computes the categorical correlation R(x, y) =
I(x; y)/H(x, y) ∈ [0, 1] of n-grams x with the sender IP
address y, where H(x, y) is the joint entropy (that mea-
sures the total amount of information that x and y jointly
carry). That is, for each x ∈ X, there is a different
y ∈ Y , and vice-versa. N-grams with correlation coeffi-
cient greater than certain threshold, say 0.9, are selected
as candidates. Finally, consecutive candidate n-grams are
merged into fields of at least a length of 4 bytes. Notice
that the adoption of statistical tests, such as correlation,
makes the algorithms robust to handle noise in the data,
such as when NAT is used.

Figure 5 shows the categorical correlation between n-
grams in a vertical collection and the corresponding source
IP address for the Vuze DHT collection [20]. Note how
R(x, y) is very close to one (high correlation) for n-grams
that represent the Client Address and the Client-ID. How-
ever, we also observe that the first n-grams of the Session-
ID are also correlated with the sender IP address. The
explanation for this protocol peculiarity is found in the
Vuze’s specification. Vuze’s Session-ID is an application’s
global counter randomly initialized at the start-up and in-
cremented by 1 for each new conversation. Hence, the
most significant bits in the Session-ID are likely to be the
same for all messages sent by the same sender. By impos-
ing a minimum length constraint, FieldHunter can discard
such fields.

0
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Figure 6: The n-gram entropy for Vuze DHT over a C2S vertical sub-
collection.

3.2.4. Session Identifier (Session-ID)

Session Identifier keeps track of application-level ses-
sions that span over multiple conversations. Semantically,
it is similar to the use of Cookies in HTTP. Since the
Session-ID remains constant between a pair of endpoints,
FieldHunter correlates the n-grams to the pair of client
and server IP addresses. Then we proceed using the same
categorical correlation as we do for Host-ID.

3.2.5. Transaction Identifier (Trans-ID)

The algorithm we use to detect Trans-IDs is illustrated
in the rightmost diagram in figure 3. It is assumed that
Trans-ID are randomly picked by the transaction creator
and then copied back in the replies. Therefore, we first
search for n-grams that appear random across both ver-
tical and horizontal collections. Randomness is measured
using entropy as before.
Figure 6 shows the entropy of n-grams for the Vuze DHT

protocol. The figure shows the entropy of the first 36 n-
grams (reported on the x-axis at the corresponding offset)
in the C2S vertical sub-collection. On the top, the protocol
field names are reported as extracted from documentation.
In this example, n-grams with high entropy are good can-
didates for the Trans-ID field.
Next, all consecutive request/response messages are

paired and for each of them, it is checked whether the
n-grams/fields take the same values. If the check passes,
then the pair of n-grams are added to a set of Trans-ID
candidates. Note that request/response message formats
can change and Trans-ID may appear at different offsets
(for instance in Vuze DHT). Therefore, the heuristic does
not assume the protocol message formats are the same in
both directions.
Finally, FieldHunter measures the consistency of these

candidates over all the conversations, i.e., n-gram candi-
dates with enough support, say > 0.8, are finally marked
as such. Minimum support allows some degree of mis-
match, for example, caused by message reordering or re-
transmission in the collection. Finally, consecutive n-
grams are merged to form a field of at least 2 bytes. For
textual protocols such n-gram merging is not needed.

3.2.6. Accumulators

Accumulators are fields that have increasing values over
consecutive message within the same conversation. These
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fields typically represent message sequence numbers, ac-
knowledgment numbers or timestamps. To identify such
fields, we calculate the difference, denoted as ∆, between
values of n-grams in two subsequent messages. We ex-
pect ∆ to be positive and fairly constant. Notice that
differences are not required to be perfectly constant. For
instance a byte-wise counter in a protocol of variable size
messages would have variable ∆.
We search for accumulators in C2S and S2C directions

independently of each other. As with the MSG-Len field,
here we start with fixed size n-grams. We assume accu-
mulators are encoded in fields of a given field length, for
example, 64, 32 and 16 bits. For each field offset, we com-
pute the vector of increments (∆) considering each con-
secutive message pair in each conversation. In order to
use one threshold that captures the variations among ∆s
of different scales (such as sequential counters vs millisec-
ond timers), we compress ∆ using a logarithmic function;
∆̂ = ln∆. Next, we analyze ∆̂ and select those that have
relatively low entropy, i.e., ∆̂ looks “fairly constant”.

3.3. Field Summary

FieldHunter provides information of the field type ex-
tracted automatically out of protocols as the final result.
It provides two separate reports (corresponding to each
direction of messages) for each protocol. The report con-
tains the set of fields for which the types have been in-
ferred. Note that we may not identify the type for some
of the fields and will skip them in the report.

4. Evaluation of FieldHunter

In this section we evaluate the efficacy of FieldHunter
in inferring protocol specification of known protocols. We
use TSTAT [17], a DPI tool that classifies traffic and feeds
FieldHunter with protocol collections. In general, each
collection presents different characteristics. For instance,
some may contain wrongly classified flows caused by DPI
false positives. Other may present little diversity, for ex-
ample, showing only conversation exchanged with a hand-
ful of servers. Different traces generate different collec-
tions that are separately analyzed (for cross verification
purpose). We consider a protocol collection as valid only
if it has at least 200 conversations for textual or 2,000 for
binary protocols; see § 4.4 for more details.
The subset of protocols for which we present results are

summarized in Tables 3 and 4 for binary and textual pro-
tocols, respectively. Both straightforward and challenging
cases are considered in our evaluation.

4.1. Datasets

We evaluate FieldHunter using three different ISP traces
(Table 2). Data was collected from different geographical
regions (Asia, Europe, and South America), between the
years 2007 to 2012. All traces contain full payload from

Table 2: Summary of the traces we use.

Name Location Network Location Date Duration

TR1-2012 Europe Edge 04-2012 24 h
TR2-2009 S. America Backbone 10-2009 4 h
TR3-2007 Asia Backbone 01-2007 7 h

Table 3: Summary of the results from running FieldHunter on the
binary-based protocols.

Protocol Discovered/GT [bits] Cov/AoC
C2S S2C C2S S2C

Vuze DHT 288/240 200/208 0.87/1 0.85/0.87
DNS 48/32 56/32 0.75/1 1/1
uTP 88/96 200/96 0.75/1 0.67/0.87
RTP 80/88 80/88 0.82/1 0.82/1
ED2K 128/16 16/16 1/1 1/1

KADEMLIA 352/16 104/16 1/1 1/1
STUN 256/160 184/160 0.9/0.83 0.85/0.88

SOPCAST 128/? 152/? ?/? ?/?
PPLIVE 0/? 32/? ?/? ?/?

network connections. Given the large size of the TR1-
2012 trace we limit the payload per connection to the first
1048 bytes3. Although, all our parameter selection is made
using TR1-2012, we tested FieldHunter on all three traces.

4.2. Evaluation of Binary Protocols

Table 3 reports the number of Discovered and Ground-
Truth (GT) bits, for both C2S and S2C collections, the
Coverage (Cov) and the Accuracy over Coverage (AoC).
Cov is the ratio between Discovered bits of the GT and
the GT bits; while AoC is the ratio between correctly dis-
covered bits over the total number of discovered bits.
The first seven protocols in the table have known specifi-

cations, and the latter two do not have. Note that for some
protocols, the number of discovered bits is larger than the
GT bits. This happens because many protocols carry other
protocols on top of them, such as ED2K. FieldHunter does
not differentiate the header from the protocol’s payload,
resulting in identifying the fields of the transported (inner)
protocol as well.
The average Accuracy over Coverage (AoC) is 0.83 in

the worst case. We observe that typical inaccuracies are
due to the Accumulator type. For counters that span over
large fields (for instance, a 32-bit long number), Field-
Hunter easily identifies the less significant bits, but tends
to miss the most significant ones, which are identified as
“constant”. From the results shown in the table, we dis-
cuss the details for three interesting case studies.

4.2.1. ED2K and KADEMLIA

ED2K and KADEMLIA eMule messages are preceded
by a common header which is used as GT. FieldHunter

3We did not observe this to cause any notable problems. Only for
some protocols with long payloads, such as HTTP, portions of the
payload and rarely portions of the application-layer header were not
fully captured.
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correctly identifies such common header. Moreover, it dis-
covers additional fields, that sum up to a total of 128 bits
in the C2S EDK2 collection. After manual inspection, we
observed those fields to correctly include Session-ID, and
Host-ID.

4.2.2. SopCast

SopCast is a proprietary and closed protocol used for
P2P-TV broadcasting. Unveiling information about the
message format of such protocols is one of the motivations
for developing FieldHunter.

Specifically, this protocol represents a large fraction in
the TR3-2007 trace. FieldHunter identifies 128 bits cor-
responding to: MSG-Len, Trans-ID, Session-ID, Host-ID
(we hypothesize it is used for NAT traversal since it uses
64 bits, 32 of which correspond typically to private IP ad-
dresses, and 32 are identical to the Host public IP address)
and some accumulators of 16, 32 and 64 bits (possibly used
to reorder video/audio chunks).

4.2.3. Domain Name Service (DNS)

For DNS in the TR1-2012 trace, FieldHunter success-
fully identifies the Trans-ID and a MSG-Type field, each
of 16 bits. We expected parsing DNS in this trace to be
challenging due to the bias in the collection. First, most of
the C2S messages are “DNS Requests” messages. Second,
requests are directed to the most popular DNS resolvers
(in the TR1-2012 trace customers use the ISP DNS server).
Despite this, FieldHunter is able to identify some protocol
fields.

Interestingly, in the C2S messages, FieldHunter reports
the presence of a 16 bit accumulator in the DNS Trans-
ID field. We manually verified this, and discovered that
some implementations of DNS clients generate a “random”
Trans-ID by using a local counter. FieldHunter captured
this peculiar but common behavior, exposing more details
about the protocol.

4.3. Evaluation of Textual Protocol

Table 4 reports overall results for textual protocols. It
reports the number of inferred fields, the number of key-
value pairs (K-V) and singletons (most of them MSG-
Type) for each direction (with the exception of the last two
protocols for which the DPI provided just one direction of
the conversation). In addition, we report those fields that
we label as being identifiers (IDs), highlighting those that
proved to be False Positives (FP). Here, by IDs we mean
Host-IDs, Session-IDs, and Trans-IDs. Overall, from the
26 fields labeled as IDs, 22 are verified as correct and only
three are false positives. In general, we observe that the
majority of the fields of textual protocols are successfully
inferred in both the C2S and S2C directions. Similar to the
binary protocols, we pick two interesting textual protocols
as case studies.

Table 4: Summary of the results from running FieldHunter on the tex-
tual protocols

Protocol #Fields K-V CMD IDs FP-IDs
C2S/S2C C2S/S2C C2S/S2C C2S/S2C C2S/S2C

STUN 3/3 2/2 1/1 1/1 0/0
FTP 19/18 12/17 7/1 2/1 0/0
HTTP 9/14 9/14 0/0 3/0 1/0
POP3 9/28 5/24 4/4 2/0 0/0
SMTP 19/9 15/9 5/0 1/1 0/0
MSNP 3/4 3/4 0/0 2/0 0/0
RTSP 9/25 9/18 0/7 3/6 0/2

GAME */17 */15 */2 */2 */0
RSP 3/* 2/* 1/* 1/* 0/*

4.3.1. Microsoft Notification Protocol (MSNP)

The MSN protocol is present in all three traces. Field-
Hunter correctly finds that the field called USR field car-
ries a Host-ID and which indeed is the MSN’s user name.
Similarly, the CVR field which is used to send specific in-
formation about the client and its OS to the server. This
field is captured by FieldHunter since system settings are
different for each MSN user, but consistent during the com-
munication with the server. Although CVR is not an actual
Host-ID, this is a right interpretation for the field type
because the field behaves the same as Session-ID.

4.3.2. Real-Time Streaming Protocol (RTSP)

The S2C direction of this protocol returns 6 inferred ID
fields. Out of these, four are correctly labeled and two are
false positives. The latter occur when some fields that are
supposed to take different values actually always take the
same value for a given conversation, behaving similar to
a Session-ID. The false positive fields are Last-Modified

and Cache-Control. For instance, Last-Modified is the
timestamp of the last modification for a given content.
Since a single object is requested using multiple RTSP con-
versations, its modification time appears constant across
conversations. Similarly, the Cache-Control field tends
to always take the same value among conversations used
to retrieve the same content as well. In general, we ob-
serve that the original collection may be biased toward
some specific subset of protocol fields and values. This
is challenging for FieldHunter, and, in general, any field
inference algorithm that relies on traffic data.

4.4. Sensitivity Analysis & Parameter Tuning

We evaluate the sensitivity of FieldHunter to different
parameters and to external factors, such as the collection
size. As mentioned before, we perform parameter tuning
using one trace, and then we evaluate FieldHunter on all
three traces. Next we show how the design proved to be
robust to parameter tuning.

First we focus on one of the most challenging fields
to infer, the MSG-Type for binary protocols. We con-
sider all collections for those protocols that have available
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Figure 7: Parameter sensitivity for the MSG-Type.

ground truth. Then for each collection, the MSG-Type al-
gorithm is executed manifold by tweaking the thresholds
(Min. Correlation and Max. Entropy). For each threshold
pair, the product between Coverage and AoC is computed,
providing a coefficient from 0 to 1, where values close to
1 are desired. The results are reported in figure 7. The
darker the block, the better FieldHunter performs. As can
be clearly seen, there is a large range of good parameters
that yield scores above 0.8, which means that in most cases
FieldHunter was able to correctly pinpoint the MSG-Type
field. We repeat the experiment for other field types and
we observed qualitatively similar results.
We now evaluate the effect of the collection size for

both binary and textual protocols. For textual protocols,
we first select nine protocols for which we know all fields
present in our traces. Then, we randomly extract a subset
of conversations from the collections and run FieldHunter
over the subset. Results are compared against ground
truth to compute the Coverage and AoC (figure 8). We see
that FieldHunter performs well even with limited number
of textual conversations. In fact, when 50 conversations
are considered, we identify 85% of all the fields, with 97%
AoC. Overall, using large enough collections, we always
identify the Df delimiter for all tested protocols. Most of
the mis-labeling happens due to challenges in inferring the
Dk−v for some fields.
For binary protocols, we perform similar evaluation, but

focus on two challenging protocol cases, DNS and Vuze
DHT. The results are shown in the bottom plot of fig-
ure 8. As we can see FieldHunter may require a bigger
collection sizes to produce the best results. We believe
that the heuristics apply differently on textual and binary
protocols as textual protocols are less sensitive to diver-
sity. Vuze DHT represents the protocol for which we had
highest diversity in our dataset, with many end-points ex-
changing a variety of messages. Conversely, DNS (from
TR1-2012) represented a challenging scenario due to little
diversity in the collections: typically only one MSG-Type
(DNS requests) was found, and conversations were very
short (a single request/response). As we see, eventually
we achieved very good results for DNS, but it required as
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Figure 8: Coverage and AoC versus the number of conversations. text-
based protocol (top); DNS and Vuze DHT binary-based protocols (bot-
tom).

many as 2,000 conversations.

5. Application

In this section, we present an end-to-end security ap-
plication that uses FieldHunter. Specifically, we focus on
intrusion detection systems (IDS) which are a common
defense mechanism for many critical infrastructures. IDS
can be categorized into anomaly detection systems or sig-
nature based systems based on the detection mechanisms
used. Anomaly detection systems work by learning the
normal, also called baseline, behavior of any system and
flagging any deviation from this as anomaly, which can be
considered an indicator of malicious behavior. This is in
contrast with signature based systems which use signatures
of known threats. The advantage of anomaly detection
systems over signature based ones is that they can detect
previously unknown attacks, i.e. zero-day attacks. How-
ever, anomaly detection systems can suffer from higher
false positives.
In this work, we develop a payload-based anomaly de-

tection system for Industrial Control System (ICS) net-
works. Most of the current solutions rely on statistical
features such as volume of traffic for creating baseline [21].
Such systems are ineffective against stealthy attacks that
work by modifying the protocol behavior without caus-
ing discernible change in statistical properties of the traf-
fic. There are a few systems that offer payload based
anomaly detection, but they rely on the protocol speci-
fications which are not available for many of the legacy
protocols that are used quite often [22].
FieldHunter forms the core of the anomaly detection

system. It infers protocol fields from the ICS network be-
ing monitored. These protocol field summaries are con-
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Figure 9: Temporal patterns shown in ICS communications

verted to policy rules which form the baseline of the sys-
tem. Any deviation in network protocol payload from
these rules are flagged as anomalies. This allows us to
detect attacks which modify the protocol messages or in-
troduce new types of messages which are not part of the
protocol. There is a direct mapping between the human
readable field summaries and the policy rules generated.
This is greatly beneficial to any analyst analyzing the root
cause of alerts generated by the anomaly detection system.

5.1. ICS Networks

ICS networks typically consists of a set of devices
such as sensors or controllers and a central monitor-
ing/administrative unit. These networks differ from other
networks such as enterprise or ISP networks in many re-
spects. ICS network traffic contains a large portion of
proprietary protocols which are unknown or not well doc-
umented along with a few well known protocols such DNS
or SNMP. These proprietary protocols are predominantly
binary based. The communication patterns in these net-
works are quite deterministic as only a handful of devices
communicate with each other according to configurations
that are set statically. Moreover, many of the connections
are long-lived, often lasting for hours or days.
These characteristics present some unique challenges for

FieldHunter. First challenge is the lack of diversity in
the traffic, which renders some of the heuristics such as
detection of Host-IDs ineffective. However, this is not a big
limitation as our goal is to detect anomalous behavior and
not protocol understanding. Hence, even if we incorrectly
label a Host-ID field as a Constant, this field can be used to
detect violations when the attacker intentionally changes
the “Constant” value.
Second challenge is the presence of long-lived network

flows. Many of the thresholds for various heuristics are
set assuming that the input to FieldHunter contains mul-
tiple flows. We analyzed long-lived ICS connections and
observed that often these connections show repeating pat-
terns which indicate some conversations happen with a
specific frequency. Hence, multiple conversations occur
serially within a single flow. Therefore, we can break up
a single flow into multiple conversation by computing the
frequency of communication. Figure 9 depicts packet pay-
load sizes in a window slice of 10 seconds for a very long

Figure 10: Payload Based Anomaly Detection System diagram.

conversation. We observe that the devices involved in the
communication send burst of protocol messages at a fre-
quency of approximately 1 second.

5.2. Design

The payload-based anomaly detection system (Fig-
ure 10) has two modes of operation: Training and De-
tection. In Training mode, the system generates network
protocol profiles associated with specific TCP/UDP ports
used by the physical devices for communication. During
this phase, FieldHunter plays a critical role, since it learns
the protocol field summaries used as baselines by the next
step. In Detection mode, the anomaly detector uses rules
to determine flow by flow if any baseline policy rule has
been violated. For instance, the detection mode can verify
whether a flow contains the particular value that a specific
field is supposed to take as per the policy rule. Otherwise,
the system raises an alarm of violation.

5.2.1. Training Mode

Network traffic is intercepted using a tap, that listens
to network communications of devices connected to the
ICS network. TCP/UDP payloads are extracted and
grouped properly, forming the protocol collections required
by FieldHunter to create functional protocol descriptions.

Traffic Labeler, accomplishes the fundamental job of cre-
ating the protocol collections. Since this IDS is profiling
network protocols running in a particular mode on indus-
trial devices, traffic is labeled by their associated triplets
(Layer-4 protocol, destination port, destination IP ad-
dress). For instance, packets going through a bi-directional
TCP network connection, in which IP 192.168.1.101 is
sending packets to 192.168.1.202, using source port 9988
and destination port 1822, has two triplets associated
with it: (TCP, 9988, 192.168.1.101) and (TCP, 1822,
192.168.1.202).
The Conversation Reconstruction module reassembles

conversations. The Conversation Collector groups them
by label (triplet), until we get enough number of pack-
ets associated to a triplet i.e., greater than a pre-defined
threshold. The dataset associated to a label is the protocol
collection for FieldHunter (See §2) and the threshold tells
how much data is enough to start field inference from the
collection.
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The Sub-conversation Splitter module is used in to han-
dle very long-lived connections. This module splits the
long conversations into multiple small conversations when
strong temporal patterns in the traffic are observed (see
figure 9). To do this, the module artificially increments the
number of connections associated with a collection such
that there is one for each direction of the conversation.
FieldHunter uses these conversations to generate pro-

tocol summaries. The protocol summaries are converted
to policy rules in a straight-forward manner. The type of
the field determines the nature of the rule. We have a pre-
determined way of converting each field type to a rule. The
key idea behind this conversion is that each rule specifies
how a field should behave, for instance, what values it can
take or how the value correlates to something else such as
message length. As an example, the rule for MSG-Type
field specifies which opcodes to expect in the flows. These
rules are put into the Rule Database.
The duration of the training mode depends on in the

amount of available data rather than the clock time. This
means if an application handles more traffic, the required
clock time to generate summaries is lesser. Figure 8, gives
a rough idea of the required amount of application mes-
sages to be collected before moving into the detection
mode.

5.2.2. Detection Mode

In a nutshell, detection mode can be described by the
interaction of three different modules: the Rule Database,
the Traffic Labeler and the Anomaly Detector. Our sys-
tem has two inputs in detection mode: on the one had it
receives network traffic and on the other it gets the rules
from the database. The output of the anomaly detection
system is packets/connections which are flagged as anoma-
lous as they violate the rules learned by the system.
The traffic labeler simply labels traffic with the respec-

tive pair of triplets and forwards it to the anomaly detec-
tor. Using the triplets, the detector can retrieve the rules
from the database and apply them to the traffic. If rules
are violated, system raises alarms indicating that the traf-
fic contains anomalous packets or connections. When rules
can not be found in the rules database, traffic is forwarded
to the training mode path.

5.3. Evaluation of Anomaly Detection System

We tested our system using traffic collected from Pow-
erCyber the test-bed. It simulates and emulates compo-
nents of a smart grid including industrial SCADA [23].
The anomaly detection system is trained with clean net-
work traffic. Finally, we evaluate its efficacy by running
traffic collected during an attack.

5.3.1. Datasets

Network traffic is collected from one control center net-
work of PowerCyber’s test-bed. Traffic is collected during
normal operation of the control center network and also

Table 5: Network captures used for evaluation of the payload-based
anomaly detection system

Trace Duration #Flows #Messages#Malicious#Endpoints

Flows

TPC 2[h] 176 46,503 0 5
MPC 2[h] 180 31,274 2 5

during an attack. Such attack is performed intentionally
in a controlled environment.
Table 5 describe the datasets used for testing the de-

tection system. Two datasets of two hour duration, each
with about 180 flows, are used. Despite the few flows
present in these datasets, the number of application mes-
sages is about thousands, which allows FieldHunter to pro-
vide meaningful results from it. The attack dataset con-
tains both normal traffic and two flows belonging to an
authentication attack. We use full packet traces and there
is no packet filtering. Training Packet Capture (TPC)
contains only normal traffic, while Mixed Packet Capture
(MPC) contains normal and attack traffic mixed together.

5.3.2. Evaluation

We evaluated the system end to end, using TPC dataset
to train the system and MPC for testing. The expectation
was that the anomaly detection system should flag only
malicious flows in the mixed dataset and ignore the benign
traffic.
We found 6 different protocol summaries from MPC.

One of them belongs to the DNP3 protocol [24], which
is common in SCADA systems. The message structure
of DNP3 protocol is defined by a header containing the
constant value 0x0564 at the start, the message length,
a control byte, destination and source ids, and a Cyclic
Redundancy Check (CRC) field followed by the payload.
Similarly payload is structured as data blocks which con-
tain user data (1-16 byte) followed by a CRC.
From the protocol, FieldHunter is able to identify parts

of the constant field, message length, and destination and
source ids. In the given trace, the control byte appears as
constant (0xC4 for client-to-server direction and 0x44 for
server-to-client direction). Similarly, the destination field
appear as a constant in the client-to-server messages as
there is only one server in the trace, and the same for the
source in the other direction. Therefore, the identity of
clients can be associated to IP address.
MPC, contains a malicious DNP3 flow which abuses the

lack of authentication in the protocol. Another machine
in the same network spoofs valid DNP3 messages, but it
has to provide a 2 byte entity in the source id field of the
protocol. The attacker has two options: (i) provide a new
source id, or (ii) use one already used by another client.
In both cases we can raise an alarm, because in case (i)
we observe a new source id not seen during training; for
case (ii) we observe that the source id does not match the
IP address associated to that identifier. In this particular
attack the attacker spoofed the identifier of one of the

11



observed clients. The system detected the anomaly and
can provide a detailed report to the administrator to make
an informed decision.

We also evaluated our system on real industrial datasets.
Results were similar to the ones presented for test-bed
dataset. Unfortunately, due to privacy concerns about the
data, we can not disclose further details in this paper.

6. Assumptions and Limitations

In this section, we discuss the assumptions of Field-
Hunter. Further, for each assumption we describe the lim-
itations imposed on the system due to that assumption.

Training data contains patterns corresponding to
the protocol fields:

FieldHunter assumes that the training data contains the
patterns that allow it to identify protocol fields. Hence, the
system cannot identify fields when traffic is compressed
or encrypted. However, this limitation can be overcome
by using a pre-processing stage that decompresses or de-
crypts traffic before passing it to FieldHunter. Another
consequence of this assumption is that the FieldHunter is
dependent on the quality of the dataset. Therefore, if the
traces do not contain the required diversity that highlights
data patterns, FieldHunter is not able to identify fields
from traffic, or worst it may misclassify fields. For exam-
ple, a Server-ID may be classified as a constant if traces
only contain traffic directed to one particular server.

TCP PSH flag delimits the start of a new applica-
tion message:

For TCP communication FieldHunter does not assume
that a single TCP segment contained in packet carries an
application message. It heavily relies on TCP PSH flag
to delimit the end from the beginning of a new applica-
tion message in the TCP stream. The assumption here
is that the TCP PSH flags are set when sender does not
have more data to transfer. On the receiver side ,TCP
PSH flag is used to trigger transmission of the data to the
application layer. When a TCP PSH flag is incorrectly
set in the middle of an application message, it creates a
message misalignment. This is similar to the noise due to
having random data in the protocol collection. Note that
we did not observe this odd behavior in any of our traces.

In addition, we assume that the data in-between two
PSH flags belongs to a single application message. How-
ever, this is not true all the times, since multiple applica-
tion messages can be contained in between two consecu-
tive PSH flags due to TCP buffering. This situation can
be mitigated if the protocol shows different types of mes-
sages with multiple lengths allowing FieldHunter to split
the “single” application message into multiple correct ones.

Binary protocols have a header and a payload:

We assume that every binary protocol has similarly
structured messages – each with a common header and
a payload that may change. However, this assumption
may not be true in all cases. For instance, some protocols
can have messages with different formats for handshakes or
preamble communication and subsequently, when connec-
tion is established all communication uses standard uni-
form messages. FieldHunter is not designed to discrim-
inate among these two types of message formats. This
can be overcome by using a preprocessing module that
splits the conversations to ensure that the messages hav-
ing different formats are in separate collections. Moreover,
FieldHunter can still provide meaningful results if this sit-
uation happens. However, the quality of the final result
depends on how popular is each type of message is in the
whole collection. For instance, if flows are long lived, then
the preamble message will be less popular than the rest of
the messages, and the final result will contain fields of the
protocol format that follows the preamble.
Another characteristic of FieldHunter is that it cannot

differentiate between message header and payload. So even
though, we target field inference from the header, some-
times FieldHunter ends up identifying fields contained in
the payload part of the protocol.

Dataset contains pure protocols:

Our expectation is that the protocol collections are pure
since FieldHunter is sensitive to noise in the form of differ-
ent protocol format types. However, traffic classifiers such
as a DPI can produce false positives, which means flows
belonging to other protocols are classified as the protocol
of our interest. FieldHunter is not able to detect the pres-
ence of this noise, and will underperform depending on
how bad is the noise level.

Fields in textual protocols are Key-Value paired:

FieldHunter looks for key-value pairs found in textual
protocols. It does not take advantage of other characters
that provide richer structure to textual protocols such as
parenthesis to enclose one object, or commas used in enu-
meration. When complex textual protocols are processed
by FieldHunter it can still obtain valuable information.
However, it can produce a less richer result set that fails
to take into account the structure of the data.

ICS protocols are similar to “traditional” network
protocols:

Our observation is that many of the ICS network pro-
tocols use traditional transport UDP/TCP network pro-
tocols. Hence, our assumption is that these protocols can
be profiled using FieldHunter. However, there are other
differences in the environments which impose further chal-
lenges that require special attention. For instance, the
diversity in such networks is more difficult to reach given
the applications or setups of those networks. This makes
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it more difficult to correctly identify some fields since the
patterns do not show up in the traffic collection, or in some
cases, the final result can overfitted to the training data
given the lack of samples that truly represent the protocol
behavior. However, we note that for the anomaly detec-
tion application that we described, we do not need to infer
all the fields of the protocol. Hence, FieldHunter is very
effective for this application.

7. Related Work

Protocol Format Reverse Engineering using Net-
work Traces: Automatic inference of protocol formats
from passive network monitoring was first addressed by
Beddoe [25]. The authors applied the Needleman-Wunsch
algorithm for alignment of byte sequences between network
payloads. The same algorithm has been used in Script-
gen [26] and RolePlayer [9] for automating the process of
learning protocols in honey-nets. Their works aim to find
variant and invariant segments in textual protocols. In
contrast, our aim is to identify a broader selection of field
types.

The problem of extracting message format specification
for security applications was later addressed by Discov-
erer [8]. They first clustered messages with similar for-
mats together using sequence alignments and then identi-
fied parts of the messages that change across flows. In con-
trast to FieldHunter, Discoverer has the same limitations
as in [25, 26, 9], where fields of the protocols are expected
to appear in a predefined order. In [12] authors propose
Prodecoder that uses semantic information for field ex-
traction, by using the LDA model. Their approach looks
promising for identifying keys and the syntax of textual
protocols, but it is not clear how LDA can properly merge
n-grams into fields of binary protocols.

Protocol Format Reverse Engineering using Bi-
nary Analysis: Other authors have tackled the prob-
lem of protocol reverse engineering by using binary anal-
ysis. For instance Prospex [6] is a system that analyzes
both binary execution traces combined with network traf-
fic. Binary analysis requires an instrumented system with
enough privileges to read protected memory of the ap-
plication that uses the protocol. Similar in spirit, in
Dispatcher [27] the authors focused on protocol reverse-
engineering for botnet infiltration. All the above works
rely on binary analysis and they are therefore very differ-
ent from what we want to achieve with FieldHunter, where
we only have passive access to network traffic.

Protocol Network Signature Generation from
Network Traces: In [11, 28, 10, 7, 13] authors auto-
matically derive protocol signatures purely from network
traces. In PEXT [10] and ReveX [7] signatures are ex-
tracted for protocols using similar tokens to cluster flows.
On the other hand [28] uses semantic information found
in the protocol to group messages with similar formats.
Authors in [13] propose a system that can automatically

produce signature for botnets’ command and control traf-
fic. Obtaining automatically generated signatures for traf-
fic classification has multiple positive implications. How-
ever, understanding the mechanics of the semantic of the
protocols is a valuable complementary information for the
system experts to verify the quality of automatically gen-
erated signatures.
Payload Based Anomaly Detection Systems: Sys-

tems able to detect anomalies from network traffic observ-
ing protocol payload, have been previously proposed in
[29, 30, 31, 32]. These anomaly detectors define signa-
tures on patterns found in network payloads, from which
they create models and baselines. Our proposed system
differs from all of them, because we use a generic abstrac-
tion of protocol format to create rules and baselines. This
allows easier false positive back tracking, since the system
can explain better the cause and context of a violation.
For example, when a new value for an opcode has been
observed. Moreover, as far as we are aware, none of these
systems have been tested in industrial control networks.
ICS Anomaly Detection Systems: In the recent

years there has been an interest on developing anomaly
based IDS for ICS. Authors in [21] propose a system that
uses clustering to detect anomalies. Their system does not
necessary look only at network traffic, but also at other fea-
tures that may come from other logs such as engine speeds
and temperature. Another work that is more closely re-
lated to ours is [22]. Here, the authors use known protocol
descriptions to extract field values from network traffic,
which they use to create models to detect sequence at-
tacks. The system that we have developed shares some
similarities with their solution. However, a crucial dif-
ference is that they assume that they know the protocol
specification. This is an unrealistic assumption as many
of the protocols used by industrial devices are poorly doc-
umented.
FieldHunter is complementary to other systems for ex-

traction of protocol message format, as our final goal is
to identify containers/fields of information. Moreover, we
present a specific application for FieldHunter in a criti-
cal security context, using data obtained from a realistic
scenario.

8. Conclusions

In this paper, we presented FieldHunter, a system that
automatically infers protocol field types from passive ob-
servation of network traffic. We showed that FieldHunter
is able to provide a comprehensive set of fields and their
types for both textual and binary protocols that may not
have a publicly available specification. Therefore, we be-
lieve that a system such as FieldHunter can significantly
improve the effectiveness of modern network security tools.
Finally, we extended FieldHunter and built a payload-

based anomaly detection system on top of it. Field-
Hunter provides valuable information about network pro-
tocol specification, allowing it to detect realistic zero-day

13



attacks on ICS network. Our anomaly detection sys-
tem can detect stealthy attacks in ICS systems with un-
documented protocols that current statistical-based or tra-
ditional payload-based anomaly detection systems can not.
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