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A NOTE ON INTEGER POLYNOMIALS WITH SMALL INTEGRALS II

DANILO BAZZANELLA

Abstract. The smart method of Gelfond–Shnirelman–Nair allows one to obtain in
elementary way a lower bound for the prime counting function π(x) in terms of integrals

of suitable integer polynomials. In this paper we carry on the study of the properties of

the sets of integer polynomials relevant for the method.

This is the authors’ post-print version of an article published on Acta Math. Hungar.
(2016), DOI:10.1007/s10474-016-0600-7.1

1. introduction

In 1851, Chebyshev [7] made the first step towards the Prime Number Theorem by
proving that, given ε > 0,

(c1 − ε)
N

logN
≤ π(N) ≤ (c2 + ε)

N

logN

where c1 = log(21/231/351/5/301/30), c2 = 6c1/5 and N is sufficiently large. This result was
proved using elementary approaches, i.e. without use of complex analysis and the Riemann
zeta function. A survey of elementary methods in the study of the distribution of prime
numbers may be found in Diamond [8].

In 1936 Gelfond and Shnirelman, see Gelfond’s editorial remarks in the 1944 edition
of Chebyshev’s Collected Works [7, pag. 287-288], proposed a new elementary and clever
method for deriving a lower bound for the prime counting functions π(x) and ψ(x). In 1982
the Gelfond-Shnirelman method was rediscovered and developed by Nair, see [10] and [11].
The method of Gelfond–Shnirelman–Nair allows one to obtain in elementary way a lower
bound for π(x) in terms of integrals of suitable integer polynomials and it is based on the
fact that the least common multiple of the integers not greater than N , say dN , satisfied

dN ≤
∏
p≤N

plogN/ log p,
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2 DANILO BAZZANELLA

where p belongs to the set of prime numbers, which implies

(1) π(N) ≥ log dN
logN

.

Considering a polynomial of degree N − 1 with integral coefficients

P (x) =

N−1∑
n=0

anx
n

and letting

I(P ) =

∫ 1

0

P (x) dx =

N−1∑
n=0

an
n+ 1

,

we note that I(P )dN is an integer, and hence if I(P ) 6= 0 we have

dN |I(P )| ≥ 1

and then

dN ≥
1

|I(P )|
.

From the above and (1) we get

(2) π(N) ≥ log (1/|I(P )|)
logN

.

By the definition of I(P ), it follows that the small positive value of |I(P )| is 1/dN and it is
reached if

N−1∑
n=0

dN
n+ 1

an = ±1.

Since the integer coefficients dN , dN/2, . . . , dN/N are relatively prime, we have that for all
N there exists a polynomial of degree less than N such that I(P ) = 1/dN . This leads to
define the following sets of polynomials.

Definition. Let N ≥ 2. We define

ZN = {P (x) ∈ Z[x],deg(P ) < N},

RN = {P (x) ∈ Z[x],deg(P ) < N, I(P ) = 0}
and

SN = {P (x) ∈ Z[x],deg(P ) < N, I(P ) = 1/dN},
where dN denotes the least common multiple of the integers 1, 2, . . . , N .

It is simple to verify that, for every N , ZN is a free Z-module and RN is a submodule of
ZN and then it is also free. SN is the affine space of the integer polynomials with positive
and minimal integral on [0, 1].

In the precedent paper [3] we proved some results about the roots of polynomials of the
sets SN . In the present paper we carry on the study of the properties of the sets of integer
polynomials relevant for the method.
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2. Properties of the sets RN

We start giving a theorem about the structure of the modules RN .

Theorem 1. A basis BN of the module RN can be constructed by adding to a basis BN−1
of the module RN−1 a suitable polynomial q(x) ∈ RN . More precisely

(1) if N is a prime: q(x) = 1−NxN−1;
(2) if N is a power of a prime: q(x) = xn−1 − pxN−1, where N = pk and n = pk−1;
(3) otherwise: q(x) = a1x

n1−1 + a2x
n2−1 − xN−1, where p1 and p2 are primes dividing

N , a1 and a2 are such that a1p1 + a2p2 = 1, n1 = N/p1 and n2 = N/p2.

Proof. Let N prime and p(x) ∈ RN . Then we can write

p(x) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1

with

a0dN + a1
dN
2

+ a2
dN
3

+ · · ·+ aN−2
dN

N − 1
+ aN−1

dN
N

= 1.

Since N is a prime number we have that dN = NdN−1 and then

N/dN , N/
dN
2
, N/

dN
3
, . . . N/

dN
N − 1

and N does not divide dN/N . From this it follows that aN−1/N is an integer.
Now we define

r(x) = a0 + a1x+ a2x
2 + · · ·+ aN−2x

N−2 +
aN−1
N

,

which implies

p(x) = r(x) + aN−1x
N−1 − aN−1

N
= r(x)− aN−1

N

(
1−NxN−1

)
.

Then (1) is proved, since r(x) ∈ RN−1.
To prove (2) we let N = pk. In this case dN = p dN−1 and more precisely

dN =
∏
q≤N

q[ln q/ lnN ] = pk
∏

q≤N,q 6=p

q[ln q/ lnN ] = Nm,

where (m, p) = 1 and q runs over primes. From this follows that

p/dN , p/
dN
2
, p/

dN
3
, . . . p/

dN
N − 1

and p does not divide dN/N , hence aN−1/p is an integer.
Now we define n = pk−1 and

r(x) = a0 + a1x+ a2x
2 + · · ·+ aN−2x

N−2 +
aN−1
p

xn−1,

which implies

p(x) = r(x) + aN−1x
N−1 − aN−1

p
xn−1 = r(x)− aN−1

p

(
xn−1 − pxN−1

)
.

Then also (2) is proved, since r(x) ∈ RN−1.
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To prove (3) we observe that if N is neither prime nor power of a prime then there exist
two primes p1 6= p2 both dividing N . Let a1 and a2 integers such that a1p1 + a2p2 = 1, we
define n1 = N/p1, n2 = N/p2 and

r(x) = a0 + a1x+ a2x
2 + · · ·+ aN−2x

N−2 + a1aN−1x
n1−1 + a2aN−1x

n2−1.

We conclude that

p(x) = r(x)− aN−1
(
a1x

n1−1 + a2x
n2−1 − xN−1

)
.

and then the proof of the theorem is complete, since r(x) ∈ RN−1. �

Using Theorem 1 we can fully describe the sets RN . By the definition we have

R2 = {p(x) ∈ Z[x], p(x) = a0 + a1x, 2a0 + a1 = 0} = {p(x) ∈ Z[x], p(x) = a0(1− 2x), a0 ∈ Z} .

Then a basis B2 of the set R2 is

B2 = {1− 2x}.

Using several times Theorem 1 we can get a basis BN of the set RN for many values of
N:
B3 = {1− 2x, 1− 3x2},
B4 = {1− 2x, 1− 3x2,−x+ 2x3},
B5 = {1− 2x, 1− 3x2,−x+ 2x3, 1− 5x4},
B6 = {1− 2x, 1− 3x2,−x+ 2x3, 1− 5x4, x(1− x− x4)},
B7 = {1− 2x, 1− 3x2,−x+ 2x3, 1− 5x4, x(1− x− x4), 1− 7x6},
B8 = {1− 2x, 1− 3x2,−x+ 2x3, 1− 5x4, x(1− x− x4), 1− 7x6, x3 − 2x7},
B9 = {1− 2x, 1− 3x2,−x+ 2x3, 1− 5x4, x(1− x− x4), 1− 7x6, x3 − 2x7, x2 − 3x8}, . . .

3. Properties of the sets SN

To describe the sets SN is much more complicated. Since SN are affine spaces, we can
write

SN = {p(x) + r(x) : r(x) ∈ RN},



A NOTE ON INTEGER POLYNOMIALS WITH SMALL INTEGRALS II 5

where p(x) is a fixed polynomial of SN . For small values of N it is simple to find such a
suitable polynomial

N p(x) N p(x)

3 x(1− x) 14 x7(1− x)4(2x− 1)(−3 + 4x)
4 x2(1− x) 15 x7(1− x)6(2x− 1)
5 x2(1− x)(2x− 1) 16 x8(1− x)6(4− 7x)
6 x3(1− x)2 17 x8(1− x)6(2x− 1)(4− 5x)
7 x3(1− x)2(2x− 1) 18 x9(1− x)6(2x− 1)(3− 4x)
8 x4(1− x)2(2− 3x) 19 x9(1− x)6(2x− 1)2(53− 77x)
9 x4(1− x)3(2x− 1) 20 x10(1− x)6(2x− 1)2(42− 59x)
10 x4(1− x)3(2x− 1) 21 x10(1− x)7(2x− 1)2(−2 + 3x)
11 x5(1− x)3(2x− 1)(−4 + 5x) 22 x12(1− x)6(2x− 1)2(17− 23x)
12 x6(1− x)3(2x− 1)(−3 + 4x) 23 x12(1− x)7(2x− 1)2(−62 + 87x)
13 x6(1− x)4(2x− 1)(−4 + 5x) 24 x12(1− x)7(2x− 1)3(−3 + 4x)

Unfortunately it is very difficult to find out such a polynomial for a generic value of N .
However we may provide some theorems about their factorization.

Theorem 2. For every N ≥ 3 there exists a polynomial p(x) ∈ SN such that p(0) = p(1) =
0, namely p(x) = x(1− x)q(x) with q(x) ∈ Z[x].

Proof. The list of polynomials given before shows that the theorem is true for 3 ≤ N ≤ 7.
Then we let N ≥ 8 and p(x) ∈ SN , that is

p(x) = a0 + a1x+ a2x
2 + · · ·+ aN−1x

N−1

and

(3) a0dN + a1
dN
2

+ a2
dN
3

+ a3
dN
4

+ · · ·+ aN−2
dN

N − 1
+ aN−1

dN
N

= 1.

The Diophantine equation

a3
dN
4

+ a4
dN
5
· · ·+ aN−2

dN
N − 1

+ aN−1
dN
N

= 1

has an integer solution (a3, a4, aN−1), since for N ≥ 8 we have(
dN
4
,
dN
5
, . . . ,

dN
N − 1

,
dN
N

)
= 1.

Setting a0 = 0, a1 = 2(a3 + a4 + · · · + qN−1) and a2 = −3(a3 + a4 + · · · + qN−1) we have
that (a0, a1, a2, . . . , aN−1) is a solution of (3) and verify p(0) = a0 = 0 and

p(1) = a0 + a1 + a2 + · · ·+ aN−1 = 0,

which concludes the proof of the theorem. �

At the cost of some complications we can prove a similar result also including the factor
(2x− 1).
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Theorem 3. Let N ≥ 4.

(1) If N is not a power of 2, then there exists a polynomial p(x) ∈ SN such that
p(0) = p(1) = p(1/2) = 0, namely such that p(x) = x(1 − x)(2x − 1)q(x) with
q(x) ∈ Z[x];

(2) If N is a power of 2, then there not exists a polynomial p(x) ∈ SN such that
(2x− 1)/p(x).

Proof. Let p(x) = (2x− 1)(b0 + b1x+ b2x
2 + · · ·+ aN−2x

N−2). The condition∫ 1

0

p(x) dx =
1

dN

is equivalent to

(4)

N−2∑
k=1

dN k

(k + 1)(k + 2)
bk = 1.

If N is a power of 2, then all the coefficients

dN k

(k + 1)(k + 2)

are even and thus the equation (4) has no solutions, therefore there not exists a polynomial
p(x) ∈ SN such that (2x− 1)/p(x).

The list of polynomials given before shows that (1) is true for 4 ≤ N ≤ 24 and then we
need only to consider the case N ≥ 25. If N is not a power of 2, then we are able to prove
that the coefficients

dN k

(k + 1)(k + 2)

are relatively prime. In order to prove the coprimality, we suppose on the contrary that
there exists a prime p dividing

dN k

(k + 1)(k + 2)

for every k = 1, 2, . . . , N − 2. Let H = pj , with j = max{i : pi ≤ N} and observe that p
does not divide dN/H. Then at least one of the two coefficients

dN (H − 1)

H(H + 1)
and

dN (H − 2)

(H − 1)H
,

is not divisible by p, a contradiction. By the coprimality of the coefficients of the Diophan-
tine equation (4) follows that there exists p(x) ∈ SN such that (2x− 1)/p(x).

To have also the factors x and (1 − x) it is sufficent to note that the integer H defined
above is greater than 7, since N ≥ 25, and then there exists a solution (b4, b5, . . . , bN−2) of
the Diophantine equation

(5)

N−2∑
k=4

dN k

(k + 1)(k + 2)
bk = 1.
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We conclude the proof as above by setting b0 = b1 = 0, b2 = 9(b4 + b5 + · · · + bN−2) and
b3 = −10(b4 + b5 + · · ·+ bN−2). �

Applying similar ideas we can prove the following theorem.

Theorem 4. Let N ≥ 4 and let 0 < m < n natural numbers such that (n,m) = 1.

(1) If N is not a power of a prime, then there exists p(x) ∈ SN such that (nx−m)/p(x);
(2) If N is a power of a prime p, then there exists p(x) ∈ SN such that (nx−m)/p(x)

if and only if (p, n) = 1.

Proof. Let N ≥ 4 and p(x) = (nx−m)(b0 + b1x+ b2x
2 + · · ·+ aN−2x

N−2). The condition∫ 1

0

p(x) dx =
1

dN

is equivalent to

(6)

N−2∑
k=0

dN
(k + 1)(n−m)−m

(k + 1)(k + 2)
bk = 1.

If N is not a power of a prime, then we are able to prove that the coefficients of the
Diophantine equation (6) are relatively prime. In order to prove the coprimality, we suppose
that there exists a prime q dividing

dN
(k + 1)(n−m)−m

(k + 1)(k + 2)

for every k = 1, 2, . . . , N − 2, with the goal of obtaining a contradiction. Let H = qj , with
j = max{i : qi ≤ N} and consider the coefficient

(7) dN
(H − 1)(n−m)−m

H(H − 1)
=
dN
H

n− dN
H − 1

m,

which arise from k = H − 2. By the definition of H, q does not divide dN/H and divides
dN/(H − 1) . If q does not divide n then q does not divide (7) and we reach the desired
contradiction. If instead q divides n, and then does not divide m, therefore q does not
divide the coefficient

dN
H(n−m)−m
H(H + 1)

= dN
n

H + 1
− dN

H
m,

which arise from k = H − 1, and this leads again to contradiction.
If N is a power of a prime, namely N = pk with k ≥ 1, and (n, p) > 1 this implies that

p divides all the coefficients

dN
(k + 1)(n−m)−m

(k + 1)(k + 2)

and then the equation (6) has no solutions.
Finally if N = pk and (n, p) = 1 then we suppose that a prime q divides all the coefficients

of the equation (6) and find as above that one of such coefficient is not divisible by q, a
contradiction. �
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4. Integer polynomials in SN non-negative in [0, 1]

In the first paper of the series we proposed the following conjecture:

Conjecture. For every N, or at least for infinitely many values of N, there exists an integer
polynomial p(x) ∈ SN such that p(x) ≥ 0 in the interval [0, 1].

A straightforward way to obtain a negative conclusion about the existence of integer
polynomials of SN non-negative in [0, 1] is to consider 0 ≤ x1 < x2 < x3 · · · < xn ≤ 1 and
a generic polynomial p(x) ∈ SN in the form

p(x) =

N−1∑
k=0

akx
k.

Since p(x) ∈ SN , we have ∫ 1

0

p(x) dx =
1

dN
,

that is
N−1∑
k=0

dN
k + 1

ak = 1

and consider the following linear Diophantine system composed of an equality and n in-
equalities

(8)



N−1∑
k=0

dN
k + 1

ak = 1

p(x1) ≥ 0
p(x2) ≥ 0
. . .
p(xn) ≥ 0.

If we are able to prove that, for a fixed value of N , the above linear system have no integer
solutions a1, a2 . . . aN−1, we obtain that there not exists an integer polynomial p(x) ∈ SN

such that p(x) ≥ 0 in the interval [0, 1].
By the branch and cut algorithm, used in many mathematical software systems, we can

verify in deterministic way that for N = 5 and xk = k/4, with k = 0, 1, . . . , 4, the system
(8) has no integer solutions, although it has infinitely many real solutions, which implies
that there are no integer polynomials p(x) ∈ S5 such that p(x) ≥ 0 in the interval [0, 1].
Hence we disproved the strong form of the conjecture.

For N = 6 there exists the polynomial p(x) = x3(1−x)2 ∈ S6, non-negative for all values
of x ∈ [0, 1]. Then the case N = 5 might appears as an exceptional case. Instead we can
verify that for many values of N there not exists a polynomial in SN non-negative in [0, 1].
More precisely we can verify that there not exists an integer polynomial p(x) ∈ SN such
that p(x) ≥ 0 in the interval [0, 1] for all 7 ≤ N ≤ 20, with the only exclusion of the case
N = 10, for which we have the polynomial p(x) = x3(1− x)4(2x− 1)2.
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To find out any others non-negative polynomials it might be difficult because the calcu-
lations involved, but one can prove that such polynomials cannot exist for large values of
N . A Nikolskii-type inequality gives that there is a constant C > 0 such that

max
x∈[0,1]

|p(x)| ≤ CN2

∫ 1

0

|p(x)|dx

for any polynomial p(x) of degree N − 1, see e.g. [16, Corollary 13.3.3]. If we suppose that
there exists a sequence of non-negative polynomials pN (x) ∈ SN , we have

1

dN
=

∫ 1

0

pN (x) dx =

∫ 1

0

|pN (x)|dx ≥ 1

CN2
max
x∈[0,1]

|pN (x)|

and hence

lim
N→+∞

(
max
x∈[0,1]

|pN (x)|
)1/N

≤ lim
N→+∞

d
−1/N
N .

It follows from the Prime Number Theorem that

lim
N→+∞

d
−1/N
N = e,

see [12, page 180]. On the other hand, Gorshkov’s bound [12, page 187] gives that

lim
N→+∞

(
max
x∈[0,1]

|pN (x)|
)1/N

≥ 0.42,

which is a contradiction. This implies that there are only finitely many values of N for
which there exists a non-negative polynomial in SN and then we have also disproved the
weak form of the Conjecture.

Acknowledgement. We are particularly indebted to the referee for a very thorough read-
ing and for many useful suggestions.
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