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Abstract We consider a class of pseudodifferential operators, with crossed vector
valued symbols, defined on the product of two closed manifolds. We study the asymp-
totic expansion of the counting function of positive selfadjoint operators in this class.
Using a general Theorem of J. Aramaki, we can determine the first term of the asymp-
totic expansion of the counting function and, in a special case, we are able to find the
second term. We give also some examples, emphasizing connections with problems
of analytic number theory, in particular with Dirichlet divisor function.
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Introduction

In [28] L. Rodino introduced bisingular operators: a class of pseudodifferential oper-
ators defined on the product of two closed manifoldsM1×M2, related to the multi-
plicative property of Atiyah-Singer index, see [2]. A simple example of an operator
in this class is the tensorial productA1 ⊗A2, whereA1, A2 are pseudodifferential
operators on the closed manifoldsM1, M2. Another example, studied in [28], is the
vector-tensor productA1⊠A2. In [26], in order to prove an index formula, F. Nicola
and L. Rodino introduced classical, i.e. polyhomogeneous,bisingular operators and
defined Wodzicki Residue for this class of operators. The twoauthors defined the
residue, via holomorphic families, as in [9,25]. For the index of bisingular operators
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see also the work of V. S. Pilidi [27] and of R. V. Dudučava [5,6]. In [23], R. Mel-
rose and F. Rochon introduced pseudodifferential operators of product type, a class
of operators close to bisingular operators. Bisingular operators are an example of
operators with vector valued symbols; pseudodifferentialoperators of this type have
been meticulously studied, see, for example, Fedosov, Schulze, Tarkhanov [8] and
the references therein.

The aim of this paper is to analyze the asymptotic behavior ofthe counting func-
tion of selfadjoint elliptic positive bisingular operators. Similarly to the the case of
SG-calculus [3] (see e.g. [7,29] for more detail onSG-calculus), we use techniques
related to complex powers of operators,ζ -function and Tauberian Theorems. This
strategy, in the setting of closed manifolds, was first used by V. Guillemin [14] in
order to get the so calledsoft proofof Weyl’s formula.

Here, as in the case ofSG-calculus, it turns out that theζ -function can have
poles of order two. Thus, using a refinement of Tauberian Theorem due to J. Aramaki
[1], the asymptotic behavior of the counting function is determined. The presence of
a pole of order two of theζ -function implies that the counting functions can have
asymptotic terms of orderλ c logλ . Such a behavior appears in various setting: mani-
folds with conical singularities [9],SG-calculus onRn [25], SG-calculus on manifolds
with cylindrical ends [20]. See also Gramchev, Pilipović,Rodino, Wong [10,11] on
the asymptotic expansion of the counting function in the case of twisted bi-Laplacian.
Furthermore, in [24], S. Moroianu studied Weyl’s law on manifolds with cusps, with
an approach similar to the one used in this paper. In a specialcase, he showed that
the growth rate of the counting function isλ c logλ .

We remark that it is not surprising that theζ -function of a selfadjoint elliptic
positive bisingular operator can have poles of order 2. Indeed, let us consider two
positive elliptic pseudodifferential operatorsA,B defined on the closed manifolds
M1,M2. From general theory of complex powers of pseudodifferential operators on
closed manifolds [30], we know that theζ -function of an operatorP of this type is
holomorphic forRe(z) <− n

m (n= dim M, morder ofP) and it can be extended as a
meromorphic function to the whole ofC with poles of order 1. As we noticed at the
beginning, the tensorial productA⊗B is a bisingular operator onM1×M2 and it is
clearly positive and selfadjoint. One can prove the following

ζ (A⊗B,z) = ζ (A,z)ζ (B,z). (1)

If one defines theζ -function using the eigenvalues, equality (1) becomes moretrans-
parent. To this end, let{λ j} j∈N and{µi}i∈N be the eigenvalues ofA andB, respec-
tively. Then the eigenvalues ofA⊗B turn out to be{λ j µi}i, j∈N2. Therefore we have

ζ (A,z) = ∑
j∈N

λ z
j , Re(z)<−

n1

mA
;

ζ (B,z) =∑
i∈N

µz
i , Re(z) <−

n2

mB
;

ζ (A⊗B,z) = ∑
i, j∈N2

λ z
j µz

i = ζ (A,z)ζ (B,z), Re(z)<−max
{ n1

mA
,

n2

mB

}
;
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wheren1 = dim M1, n2 = dim M2 andmA,mB are the orders ofA andB. Then the
product structure ofζ (A⊗B,z) implies that it can have poles of order two. Let us
now focus on the special casen1

mA
= n2

mB
= z0:

ζ (A,z) =
CA

(z+ z0)
+hA(z), Re(z)<−z0+ ε;

ζ (B,z) =
CB

(z+ z0)
+hB(z), Re(z)<−z0+ ε;

ζ (A⊗B,z) =
CACB

(z+ z0)2 +
hA(z)+hB(z)

(z+ z0)
+hA(z)hB(z), Re(z)<−z0+ ε;

(2)

whereCA,CB are constants that depend just on the principal symbol ofA,B, while
hA,hB are holomorphic functions which depend on the whole symbol of A,B. From
(2), it is clear thatζ (A⊗B,z) has a pole of order two. Moreover, we observe that the
coefficient of the pole of order one depends on the whole symbol of A andB. Finally,
applying J. Aramaki’s Theorem 3.1, from (2) one obtains

NA⊗B(λ )∼
CACB

z0
λ z0 log(λ )−

(
hA(−z0)−hB(−z0)

z0
+

CACB

z2
0

)
λ z0 +O(λ z0−δ ),

(3)
whereδ > 0. Simple examples of operatorsA andB for which (3) holds areA =
−∆g+1, B=−∆g′ +1, where∆g, ∆g′ are the Laplace Beltrami operators associated
to Riemanniann structures ofM1, M2 respectively. We will extend (3) to all posi-
tive bisingular elliptic operators, expressing the constants in the Weyl asymptotics in
terms of the crossed vector-valued symbols.

The paper is organized as follows. In Section 1 we shortly recall basic properties
of bisingular operators; we refer the reader to [26,28] for more details. Section 2 is
devoted to the definition of complex powers of suitable bisingular operators; we in-
troduce theζ -function in this setting and we study its meromorphic extension. The
main result, concerning the asymptotics of the counting function of selfadjoint el-
liptic positive bisingular operators, is stated in section3. In section 4, we show the
connection with Dirichlet divisor problem, which we reconsider from the point of
view of Spectral Theory.

1 Bisingular operators

We start with the definitions of bisingular symbols and bisingular symbols with ho-
mogeneous principal symbol. In the following,Ωi always denotes a bounded open
domain ofRni .

Definition 1.1 We defineSm1,m2(Ω1,Ω2) as the set ofC∞(Ω1 × Ω2 ×Rn1 ×Rn2)
functions such that, for all multiindexαi ,βi and for all compact subsetKi ⊆ Ωi , i =
1,2, there exists a positive constantCα1,α2,β1,β2,K1,K2

so that

|∂ α1
ξ1

∂ α2
ξ2

∂ β1
x1

∂ β2
x2

a(x1,x2,ξ1,ξ2)| ≤Cα1,α2,β1,β2,K1,K2
〈ξ1〉

m1−|α1|〈ξ2〉
m2−|α2|,

for all xi ∈ Ki , ξi ∈ Rni , i = 1,2. As usual,〈ξ 〉= (1+ |ξ |2)
1
2 .
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S−∞,−∞(Ω1,Ω2) is the set of smoothing symbols. Following [28], we introduce the
subclass of bisingular operators with homogeneous principal symbol.

Definition 1.2 Let a∈ Sm1,m2(Ω1,Ω2); a has a homogeneous principal symbol if

i) there existsam1,·(x1,x2,ξ1,ξ2) ∈ Sm1,m2(Ω1,Ω2) such that

a(x1,x2, tξ1,ξ2) = tm1a(x1,x2,ξ1,ξ2), ∀x1,x2,ξ2, ∀|ξ1|> 1, t > 0,

a−ψ1(ξ1)am1,· ∈ Sm1−1,m2(Ω1,Ω2), ψ1 cut-off function of the origin.

Moreover,am1,·(x1,x2,ξ1,D2) ∈ Lm2
cl (Ω2), so, being a classical symbol onΩ2, it

admits an asymptotic expansion w.r.t. theξ2 variable.
ii) there existsa·,m2(x1,x2,ξ1,ξ2) ∈ Sm1,m2(Ω1,Ω2) such that

a(x1,x2,ξ1, tξ2) = tm2a(x1,x2,ξ1,ξ2), ∀x1,x2,ξ1, ∀|ξ2|> 1, t > 0,

a−ψ2(ξ2)a·,m2 ∈ Sm1,m2−1(Ω1,Ω2), ψ2 cut-off function of the origin.

Moreover,a·,m2(x1,x2,D1,ξ2) ∈ Lm1
cl (Ω1), so, being a classical symbol onΩ1, it

admits an asymptotic expansion w.r.t. theξ1 variable.
iii) The symbolsam1,· anda·,m2 have the same leading term, so there existsam1,m2

such that

am1,·−ψ2(ξ2)am1,m2 ∈ Sm1,m2−1(Ω1,Ω2),

a·,m2 −ψ1(ξ1)am1,m2 ∈ Sm1−1,m2(Ω1,Ω2),

and

a−ψ1am1,·−ψ2a·,m2 +ψ1ψ2am1,m2 ∈ Sm1−1,m2−1(Ω1,Ω2).

The set of symbols with homogeneous principal symbol is denoted asSm1,m2
pr (Ω1,Ω2).

We will shortly write that the principal symbol ofa is {am1,·,a·,m2}.

We can observe a similarity, at least formal, between bisingular symbols with homo-
geneous principal symbol andSG- classical symbols, see, e.g.. [7,25].

We define bisingular operators via their left quantization.A linear operatorA :
C∞

c (Ω1 ×Ω2)→C∞(Ω1×Ω2) is a bisingular operator if it can be written in the form

A(u)(x1,x2) =Op(a)(x1,x2)

=
1

(2π)n1+n2

∫

R
n1

∫

R
n2

eix1·ξ1+ix2·ξ2a(x1,x2,ξ1,ξ2)û(ξ1,ξ2)dξ1dξ2.

If a∈ Sm1,m2(Ω1,Ω2) or a∈ Sm1,m2
pr (Ω1,Ω2), then we writeA∈ Lm1,m2(Ω1,Ω2) and

A∈ Lm1,m2
pr (Ω1,Ω2) respectively. The above definition can be extended to the product

of closed manifolds; we refer to [28] for the details of the construction of global
operators and the corresponding calculus.
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Definition 1.2 implies that, for every operatorA∈ Lm1,m2
pr (Ω1,Ω2), we can define

functionsσm1,σm2,σm1,m2 such that

σm1
1 (A) :T∗Ω1\ {0}→ Lm2

cl (Ω2)

(x1,ξ1) 7→ am1,·(x1,x2,ξ1,D2),

σm2
2 (A) :T∗Ω2\ {0}→ Lm1

cl (Ω1)

(x2,ξ2) 7→ a·,m2(x1,x2,D1,ξ2),

σm1,m2(A) :T∗Ω1\ {0}×T∗Ω2\ {0}→ C

(x1,x2,ξ1,ξ2) 7→ am1,m2(x1,x2,ξ1,ξ2).

(4)

Moreover, denoting byσ(P)(x,ξ ) the principal symbol of a preudodifferential
operatorP on a closed manifold, the followingcompatibility relationholds

σ(σm1
1 (A)(x1,ξ1))(x2,ξ2) =σ(σm2

2 (A)(x2,ξ2))(x1,ξ1)

=σm1,m2(A)(x1,x2,ξ1,ξ2) = am1,m2(x1,x2,ξ1,ξ2).
(5)

Remark 1If we consider the product of closed manifoldsM1×M2, then the whole
symbol is a local object, in general. Nevertheless, similarly to the calculus on closed
manifolds, it is possible to give an invariant meaning to thefunctions (4) as functions
defined on the cotangent bundle, see [28].

As in the case of the calculus on closed manifolds, it is possible to define adapted
Sobolev spaces and then to prove some continuity results.

Definition 1.3 LetM1,M2 be two closed manifolds. The Sobolev spaceHm1,m2(M1×
M2) is defined by

Hm1,m2(M1×M2) = {u∈ S
′(M1×M2) | Op(〈ξ1〉

m1〈ξ2〉
m2)(u) ∈ L2(M1×M2)}.

If u∈ Hm1,m2(M1×M2) then‖u‖m1,m2 = ‖Op(〈ξ1〉
m1〈ξ2〉

m2)(u)‖2. Using the formal-
ism of tensor product, we can also write1

Hm1,m2(M1×M2) = Hm1(M1)⊗̂πHm2(M2).

Similarly to Sobolev spacesHs(M), we have

i) Hm1,m2(M1 ×M2) →֒ Hm′
1,m

′
2(M1 ×M2) is a continuous immersion ifmi ≥ m′

i ,
i = 1,2.

ii) Hm1,m2(M1 ×M2) →֒ Hm′
1,m

′
2(M1×M2) is a compact immersion ifmi > m′

i , i =
1,2.

Proposition 1.1 A pseudodifferential operator A∈ Lm1,m2(M1×M2) can be extended
to a continuous operator

A : Hs,t(M1×M2)→ Hs−m1,t−m2(M1×M2).

Furthermore, the norm of the operator can be estimated usingthe seminorms of the
symbol. It is also possible to prove the following proposition:

1 For definition of⊗̂π see [32].
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Proposition 1.2 Let A∈ Lm1,m2(M1 ×M2) be a bisingular operator; if mi ≤ 0 (i =
1,2), then there exists N∈N such that‖A‖0,0 ≤ sup|∑i≤N pi(a(x1,x2,ξ1,ξ2))|, where
{pi(·)}i∈N are the seminorms of the Fréchet space Sm1,m2(M1,M2).

An operatorA∈ Lm1,m2(M1×M2) is elliptic if am1,·,a·,m2,am1,m2, the three com-
ponents of its principal symbol, are invertible in their domain of definition. Explicitly:

Definition 1.4 Let A∈ Lm1,m2
pr (M1×M2); A is elliptic if

i) σm1,m2(A)(v1,v2) 6= 0 for all (v1,v2) ∈ T∗M1\ {0}×T∗M2\ {0};
ii) σm1

1 (A)(v1) ∈ Lm2
cl (M2) is invertible for allv1 ∈ T∗M1 \ {0};

iii) σm2
2 (A)(v2) ∈ Lm1

cl (M1) is invertible for allv2 ∈ T∗M2 \ {0};

whereσm1,m2(A),σm1
1 (A), σm2

2 (A) are as in (4).

In [28], it is proved that, ifA satisfies Definition 1.4, thenA is a Fredholm operator.
This property is a corollary of the following theorem:

Theorem 1.1 Let A∈ Lm1,m2
pr (M1×M2) be elliptic; then there exists an operator B∈

L−m1,−m2
pr (M1×M2) such that

AB= Id+K1,

BA= Id+K2,

whereId is the identity map and K1,K2 are compact operators. Moreover, the symbol
of B is b= {σm1

1 (A)−1,σm2
2 (A)−1}.

The proof of Theorem 1.1 is an easy consequence of the global version of the follow-
ing lemma:

Lemma 1.1 Let A∈ Lm1,m2(Ω1×Ω2) and B∈ Lm′
1,m

′
2(Ω1×Ω2), then

{(a◦b)m1+m′
1,·
,(a◦b)·,m2+m′

2
}= {am1,· ◦ξ2

bm′
1,·
,a·,m2 ◦ξ1

b·,m′
2
}

where

(a◦ξ1
b)(x1,x2,D1,ξ2)(u) = a(x1,x2,D1,ξ2)◦b(x1,x2,D1,ξ2)(u) ∀u∈C∞

c (Ω1),

(a◦ξ2
b)(x1,x2,ξ1,D2)(v) = a(x1,x2,ξ1,D2)◦b(x1,x2,ξ1,D2)(v) ∀v∈C∞

c (Ω2).

In first row the composition is in the space L∞(Ω1) of pseudodifferential operators
on Ω1, in second row, it is in the space L∞(Ω2).

2 Complex powers of bisingular operators

In this section we define complex powers of a subclass of elliptic bisingular operators.
The first step is to give a suitable definitionΛ -elliptic operators w.r.t. a sector of the
complex planeΛ .

Definition 2.1 Let Λ be a sector ofC; we say thata∈ Sm1,m2
pr (M1,M2) is Λ -elliptic

w.r.t. Λ if there exists a positive constantR such that
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i) (
σm1,m2(A)(v1,v2)−λ

)−1
∈ S−m1,−m2(M1,M2),

for all |vi |> R, i = 1,2, and for allλ ∈ Λ .
ii)

σm1
1 (A)(v1)−λ IdM2 ∈ Lm2

cl (M2),

is invertible for all|v1|> Rand for allλ ∈ Λ .
iii)

σm2
2 (A)(v2)−λ IdM1 ∈ Lm1

cl (M1),

is invertible for all|v2|> Rand for allλ ∈ Λ .

In the following, in order to define the complex power ofA, we assume thatΛ is a
sector of the complex plane with vertex at the origin, that is

Λ = {z∈ C | arg(z) ∈ [π −θ ,−π +θ ]}.

❍
❍

❍
❍

❍
❍

❍
❍

❍❍❍❍
❍
❍
❍❍❥

✟
✟

✟
✟

✟
✟✙

✟
✟

✟
✟

✟
✟

✟
✟

✟✟

✻

✲

arg= π −θ

arg=−π +θ

Lemma 2.1 Let a∈Sm1,m2(Ω1,Ω2) beΛ -elliptic. For all Ki ⊆Ωi , i = 1,2, there exist
c0 > 1 and a set

Ωξ1,ξ2
:= {z∈ C\Λ |

1
c0
〈ξ1〉

m1〈ξ2〉
m2 < |z|< c0〈ξ1〉

m1〈ξ2〉
m2} (6)

such that

spec(a(x1,x2,ξ1,ξ2)) = {λ ∈ C | a(x1,x2,ξ1,ξ2)−λ = 0} ⊆ Ωξ1,ξ2
,

∀xi ∈ Ωi ,ξi ∈ R
ni ;

moreover,

|
(
λ −am1,m2(x1,x2,ξ1,ξ2)

)−1
| ≤C(|λ |+ 〈ξ1〉

m1〈ξ2〉
m2)−1,

|
(
am1,·−λ IdΩ1

)−1
| ≤C(|λ |+ 〈ξ1〉

m1〈ξ2〉
m2)−1,

|
(
a·,m2 −λ IdΩ2

)−1
| ≤C(|λ |+ 〈ξ1〉

m1〈ξ2〉
m2)−1,

∀xi ∈ Ki ,ξi ∈ R
ni ,λ ∈ C\Ωξ1,ξ2

, i = 1,2,

where
(
am1,·−λ IdΩ1

)−1
stands for the symbol of the operator(am1,·(x1,x2,ξ1,D2)−

λ IdΩ1)
−1, and similarly for

(
a·,m2 −λ IdΩ2

)−1
.
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The proof of Lemma 2.1 is essentially the same of the one of Lemma 3.5 in [22].
Next, we prove that, ifA Λ -elliptic, then we can define a parametrix of(A−

λ Id). Actually, we prove that, for|λ | large enough, the resolvent(A−λ Id)−1 exists.
Restricting ourselves to differential operators, we couldfollow formally the idea of
Shubin ([31], ch. II) of parameter depending operators. Forgeneral pseudodifferential
operators, it is well know that this idea does not work, see [12].

Theorem 2.1 Let A∈ Lm1,m2
pr (M1×M2) beΛ -elliptic. Then there exists R∈R+, such

that the resolvent(A−λ Id)−1 exists forλ ∈ ΛR = {λ ∈ Λ | |λ | ≥ R}. Moreover,

‖(A−λ Id)−1‖= O(|λ |−1), λ ∈ ΛR.

Proof First, we look for an inverse of(A−λ Id) modulo compact operators, that is
an operatorB(λ ) such that:

(A−λ )◦B(λ ) = Id+R1(λ ), λR1(λ ) ∈ L−1,−1(M1×M2),

B(λ )◦ (A−λ ) = Id+R2(λ ), λR2(λ ) ∈ L−1,−1(M1×M2),
(7)

uniformly w.r.t. λ ∈ Λ . In order to find such an operator, we make the principal
symbol explicit:

a−λ = psym(a)−λ + c, c∈ Sm1−1,m2−1(M1,M2),

where psym(a) = ψ1am1,·+ψ2a·,m2 −ψ1ψ2am1,m2. As we have noticed in Theorem
1.1, we can write the symbol of the inverse (modulo compact operators) of an el-
liptic operator. In this case we need to be more careful because of the parameterλ .
Following the same construction as in Theorem 1.1, we obtain

b(λ ) = {
(
(σm1

1 (A)−λ IdM2)
−1,(σm2

2 (A)−λ IdM1)
−1}. (8)

The above definition (8) is consistent in view of theΛ -ellipticity and of the following
relation

σ
(
(σm1

1 (A)−λ IdM2)
−1(x1,ξ1)

)
(x2,ξ2) = (am1,m2 −λ )−1(x1,x2,ξ1,ξ2),

σ
(
(σm2

2 (A)−λ IdM1)
−1(x2,ξ2)

)
(x1,ξ1) = (am1,m2 −λ )−1(x1,x2,ξ1,ξ2).

Using the rules of the calculus and Lemma 2.1, we can check that B(λ ) satisfies
conditions (7). By parameter ellipticity, we get thatR1(λ ) andR2(λ ) are compact
operators forλ ∈ Λ , namely

(A−λ Id)◦B(λ ) = Id+R1(λ ),
(A−λ Id)◦B(λ ) = Id+R2(λ ),

(9)

λR1(λ ),λR2(λ ) ∈ S−1,−1(M1×M2) uniformly w.r.t.λ ∈Λ . SoB(λ ) is a parametrix
and its symbolb(λ ) has the following form

b(λ ) =−(am1,m2(x1,x2,ξ1,ξ2)−λ )−1ψ1(ξ2)ψ2(ξ1)

+ (am1,·−λ IdM2)
−1(x1,x2,ξ1,ξ2)ψ1(ξ1)

+ (a·,m2 −λ IdM1)
−1(x1,x2,ξ1,ξ2)ψ2(ξ2),



Weyl asymptotics of bisingular operators and Dirichlet divisor problem 9

where(am1,· − λ IdM2)
−1(x1,x2,ξ1,ξ2) is the value of the symbol of the operator

(am1,·(x1,x2,ξ1,D2)−λ IdM2)
−1 at(x2,ξ2), and similarly for(a·,m2 −λ IdM1)

−1. Fur-
thermore, denoting byr1(λ ) the symbol ofR1(λ ), we easily obtain

r1(λ ) = (a−psym(a))◦b(λ )+ (psym(a)◦b(λ ))−1, (10)

hencer1(λ ) ∈ S−1,−1(M1,M2) is the asymptotic sum of terms of the type

∂ α1
ξ1

∂ α2
ξ2

gDα1
x1

Dα2
x2

b(λ ) g∈ Sm1,m2(M1,M2).

Clearly(am1,m2(x1,x2,ξ1,ξ2)−λ )−1=O(|λ |−1). By the theory of pseudodifferential
operators on closed manifolds, the same property holds for the symbols of the opera-
tors(am1,·(x1,x2,ξ1,D2)−λ IdM2)

−1 and(a·,m2(x1,x2,D1,ξ2)−λ IdM1)
−1 and their

derivatives. Thusr1(λ ) =O(|λ |−1), as a consequence of the calculus. By Proposition
1.2, this implies‖R1‖L2 = O(|λ |−1), and the same is true for the operatorR2. So we
can chooseλ large enough such thatR1,R2 have norm less than 1. In this way, using
Neumann series, we prove that(A−λ Id) is one to one and onto, therefore invertible,
by the Open Map Theorem. Again, by Neumann series, we obtainB̃(λ ) such that
(9) is fulfilled with R̃1, R̃2 smoothing and still with normO(λ−1). Now notice that
λ
[
B(λ )− B̃(λ )

]
∈ S−m1−1,−m2−1 for all λ ∈ Λ . Furthermore, if we multiply both

equations in (7) by(A−λ Id)−1 we obtain

(A−λ Id)−1 = B̃(λ )+ B̃(λ )R1(λ )+R2(λ )(λ −A)−1R1(λ ).

Hence‖(A−λ Id)−1‖=O(|λ |−1) andλ 2
[
(A−λ )−1− B̃(λ )

]
is a smoothing operator

in L−∞,−∞(M1×M2), uniformly w.r.t.λ .

In order to define complex powers of an elliptic bisingular operator, we introduce
some natural assumptions.

Assumptions 1 1. A∈ Sm1,m2(M1,M2) is Λ -elliptic.
2. σ(A)∩Λ = /0 (in particular A is invertible).
3. A has homogeneous principal symbols.

Remark 2If we consider aΛ -elliptic operatorA ∈ Lm1,m2
pr (M1 × M2) with mi > 0

(i = 1,2), thenσ(A) is either discrete or the whole ofC, because the resolvent is
a compact operator ([31], Ch. I). Since by Theorem 2.1 we knowthat for largeλ
the resolvent is well defined, it turns out that the spectrumσ(A) is discrete. Then,
modulo a shift of the operator, we can find a suitable sector such that Assumptions 1
is fulfilled.

Definition 2.2 Let A be an operator fulfilling Assumptions 1. Then, we can define

Az :=
i

2π

∫

∂Λ+
ε

λ z(A−λ Id)−1dλ , Re(z)< 0, (11)

whereΛε = Λ ∪{z∈ C | |z| ≤ ε}.
The Dunford integral in (11) is convergent because‖(A−λ Id)−1‖= O(|λ |−1) for λ
large enough. As usual, we next define

Az := Az−k◦Ak, Re(z− k)< 0.
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Remark 3In Assumptions 1 we requireΛ ∩σ(A) = /0, therefore in particular the
operator must be invertible. It is possible to define complexpowers of non invertible
operator as well, provided the origin is an isolated point ofthe spectrum, see, e.g.,
[4]. For example, one can define the complex powers ofA= −∆ ⊗−∆ on the torus
S1×S1, even ifA has an infinite dimensional kernel.

Theorem 2.2 If A∈ Lm1,m2(M1,M2) satisfies Assumptions 1, then Az∈ Lm1z,m2z(M1×
M2) and it has homogeneous principal symbol. Moreover, by Cauchy Theorem2

az
m1z,m2z = (am1,m2)

z,

az
m1z,· = (am1,·)

z,

az
·,m2z = (a·,m2)

z.

(12)

Proof As a consequence of a general version of Fubini’s Theorem, denoting byaz

the symbol ofAz, we obtain

az =
i

2π

∫

∂+Λε
λ z(a−λ Id)−1)dλ , Re(z)< 0.

where(a− λ Id)−1 is the symbol of the operator(A− λ Id)−1. By Theorem 2.1,

we know thatλ 2
[
(A− λ Id)−1 −B(λ )

]
∈ L−∞,−∞(M1 ×M2) so, up to smoothing

symbols, we have

az =
i

2π

∫

∂+Λε
λ z(b̃(λ ))dλ

=
i

2π

∫

Ωξ1,ξ2

λ z(b̃(λ ))dλ ,
(13)

whereΩξ1,ξ2
is as in Lemma 2.1 and the second equality in (13) follows by Cauchy

integral formula. Now, by Lemma 2.1 and by the explicit form of b̃(λ ), we getAz ∈
Lm1z,m2z(M1×M2). In order to show thatAz has homogeneous principal symbol, we
write

(b̃(λ )) =ψ1(σm1(A)−λ IdM2)
−1+ψ2(σm2(A)−λ IdM1)

−1

−ψ1ψ2(σm1,m2(A)−λ )−1+ c(λ ),

whereλc(λ ) ∈ S−m1−1,−m2−1(M1,M2), ∀λ ∈ Λ . We split integral in (13) so that

az = i
2π

∫
∂+Λε λ zψ1(σm1(A)−λ IdM2)

−1 (14)

+ i
2π

∫
∂+Λε

λ zψ2(σm2(A)−λ IdM1)
−1dλ (15)

− i
2π

∫
∂+Λε

λ zψ1ψ2(σm1,m2(A)−λ )−1dλ (16)

+ i
2π

∫
∂+Λε λ zc(λ )dλ . (17)

The theorem follows from theory of complex powers on closed manifolds for the
integrals (14) and (15), and from Cauchy Theorem for integral (16). Finally, we notice
that integral (17) gives a symbol of order(m1z−1,m2z−1).

2 In equation (12)az
m1z,·,a

z
·,m2z,a

z
m1z,m2z represent respectivelyσm1z

1 (Az),σm2z
2 (Az),σm1z,m2z(Az), while

(am1,·)
z,(a·,m2)

z are complex powers of the operatorsσm1
2 (A),σm2

2 (A) and(am1,m2)
z is the complex power

of the functionσm1,m2(A).
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We now introduce the functionζ (A,z) of an elliptic operator that satisfies Assump-
tions 1. The proof of the following property is similar to thecase of compact mani-
folds (see [31], ch. II).

Proposition 2.1 Let A∈ Lm1,m2(M1×M2), mi > 0, i = 1,2, be a selfadjoint operator
satisfying Assumptions 1. Then we have

Az(u) = ∑
i∈N

λ z
j ( fi ,u),

where{λ j} j∈N is the spectrum of A, and{ f j} j∈N are the corresponding orthonormal
eigenfunctions. We define

ζ (A,z) := ∑
j∈N

λ z
j , Re(z)< min

{
−

n1

m1
,−

n2

m2

}
.

The definition ofζ (A,z) in the general case is the following:

Definition 2.3 Let A ∈ Lm1,m2(M1 ×M2) be an operator satisfying Assumptions 1
then

ζ (A,z) :=
∫

M1×M2

KAz(x1,x2,x1,x2)dx1dx2, Re(z)m1 <−n1,Re(z)m2 <−n2,

whereKAz is the kernel ofAz. The integral is well defined ifRe(z)m1 < −n1 and
Re(z)m2 <−n2 since, in this case,Az is trace class.

Theorem 2.3 KAz(x1,x2,y1,y2) is a smooth function outside the diagonal. Further-
more, KAz(x1,x2,x1,x2) restricted to the diagonal can be extended as a meromorphic
function on the half plane{z∈C |Re(z)<min{− n1

m1
,− n2

m2
}+ε} with, at most, poles

at the point zpole= min{− n1
m1
,− n2

m2
}. The pole can be of order two ifn1

m1
= n2

m2
, other-

wise it is a simple pole.

Proof By definition, the kernel ofAz has the form

KAz(x1,x2,x1,x2) =
1

(2π)n1+n2

∫

Rn1

∫

Rn2
az(x1,x2,ξ1,ξ2)dξ1dξ2. (18)

First, let us consider the casen1
m1

> n2
m2

. Then, ifRe(z) < − n1
m1

, Az ∈ Lm1z,m2z(M1 ×

M2)⊆ L−n1−ε,−n2−ε(M1×M2); hence it is trace class and the integral of the kernel is
finite. We can writeaz = az

m1z,·+az
r , az

r ∈ Sm1z−1,m2z(M1,M2) and we have then

KAz(x,x) =
1

(2π)n1+n2

∫

R
n2

∫

|ξ1|≥1

(
az

m1z,·+az
r,·

)
dξ1dξ2

+
1

(2π)n1+n2

∫

R
n2

∫

|ξ1|≤1

(
az

m1z,·+az
r,·

)
dξ1dξ2.

(19)

The second integral in (19) is an holomorphic function forRe(z) ≤ − n1
m1

+ ε since
we integrate w.r.t. theξ1 variable on a compact set. The same conclusion holds for
the integral ofaz

r,· on the set{(ξ1,ξ2) | |ξ1| ≥ 1,ξ2 ∈Rn2} because it has order(m1z−
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1,m2z). In order to analyze the integral ofaz
m1,·

, we switch to polar coordinates and
we obtain

∫

Rn2

∫

|ξ1|≥1
az

m1z,·dξ1dξ2 =−
1

m1z+n1

∫

Rn2

∫

Sn1−1
am1z,·dθ1dξ2. (20)

Clearly (20) can be extended as a meromorphic function on{z∈C |Re(z)<− n1
m1

+

ε}, and, moreover, by (12), we get

lim
z→−

n1
m1

(
z+

n1

m1

)
KAz(x1,x2) =−

1
(2π)n1+n2m1

∫

R
n2

∫

S
n1−1

a
−

n1
m1

m1,· dθ1dξ2.

The casen1
m1

< n2
m2

is equivalent, by exchangingm1 andm2.
The casen1

m1
= n2

m2
is a bit more delicate, since we have to analyze the whole

principal symbol. First we write

KAz(x,x) =
1

(2π)n1+n2

∫

R
n1

∫

R
n2

(
az

m1z,·+az
·,m2z−az

m1z,m2z

)
+

(
az−az

m1z,·−az
·,m2z+az

m1z,m2z

)
dξ1dξ2.

(21)

The definition of principal symbol implies that the second term in (21) belongs to
Sm1z−1,m2z−1(M1,M2), hence the second integral is well defined forRe(z)<− n1

m1
+ε

and holomorphic forRe(z) < − n1
m1

+ ε. Now we have to analyze the integral of the
principal symbol. SplittingRn1 ×Rn2 into the following four regions

{(ξ1,ξ2) | |ξ1|< τ, |ξ2|< τ}, {(ξ2,ξ2) | |ξ1| ≤ τ, |ξ2| ≥ τ},
{(ξ1,ξ2) | |ξ1| ≥ τ, |ξ2| ≤ τ}, {(ξ2,ξ2) | |ξ1|> τ, |ξ2|> τ},

one gets
∫

R
n1

∫

R
n2

(
az

m1z,·+az
·,m2z−az

m1z,m2z

)
dξ1dξ2 =

τ(m1+m2)z+n1+n2

(m1z+n1)(m2z+n2)

∫

S
n1−1

∫

S
n2−1

az
m1z,m2zdθ1dθ2

−
τm1z+n1

(m1z+n1)

∫

|ξ2|≤τ

∫

S
n1−1

az
m1z,·dθ1dξ2

−
τm2z+n2

(m2z+n2)

∫

|ξ1|≤τ

∫

Sn2−1
az
·,m2zdθ1dξ1

−
τm1z+n1

(m1z+n1)

∫

|ξ2|>τ

∫

Sn1−1

(
az

m1z,·−az
m1z,m2z

)
dθ1dξ1

−
τm2z+n2

(m2z+n2)

∫

|ξ1|>τ

∫

S
n2−1

(
az
·,m2z−az

m1z,m2z

)
dθ1dξ1

+h(z),

(22)

whereh(z) is an holomorphic function forRe(z) ≤ zpole+ ε. The evaluation of the
integrals in (22) are similar to Proposition 3.3 in [25], andTheorem 2.2 in [3]. This
concludes the proof.
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SinceM1,M2 are closed manifolds, Theorem 2.3 implies the following:

Corollary 2.1 Let A∈ Lm1,m2(M1 ×M2) be an operator satisfying Assumptions 1;
thenζ (A,z) is holomorphic forRe(z) < min{− n1

m1
,− n2

m2
} and can be extended as a

meromorphic function on the half planeRe(z)< min{− n1
m1
,− n2

m2
}+ε. Moreover, the

Laurent coefficients ofζ (A,z) at z= zpole= min{− n1
m1

,− n2
m2
} are

lim
z→−

n1
m1

(
z+

n1

m1

)
ζ (A,z) =−

1
(2π)n1+n2m1

∫∫

M1×M2

∫

R
n2

∫

S
n1−1

a
−

n1
m1

m1,· dθ1dξ2, (23)

if n1
m1

> n2
m2

.

lim
z→−

n2
m2

(
z+

n2

m2

)
ζ (A,z) =−

1
(2π)n1+n2m2

∫∫

M1×M2

∫

R
n1

∫

S
n2−1

a
−

n2
m2

·,m2 dθ2dξ1, (24)

if n2
m2

> n1
m1

.

res2(A) = lim
z→−l

(z+ l)2ζ (A,z) =

1
(2π)n1+n2(m1m2)

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθdθ ′,

(25)

lim
z→−l

(z+ l)
(
ζ (A,z)−

res2(A)
(z+ l)2

)
=−TR1,2(A)+TRθ (A), (26)

where

TR1,2(A) :=

1
(2π)n1+n2

lim
τ→∞

( 1
m1

∫∫

M1×M2

∫

|ξ2|≤τ

∫

S
n1−1

(am1,·)
−l − res2(A) logτ

)

+
1

(2π)n1+n2
lim
τ→∞

( 1
m2

∫∫

M1×M2

∫

|ξ1|≤τ

∫

Sn2−1
(a·,m2)

−l − res2(A) logτ
)

(27)

and

TRθ (A) :=
1

(2π)n1+n2(m1m2)

∫

M1×M2

∫

S
n1−1

∫

S
n2−1

a−l
m1,m2

logam1,m2dθ1dθ2, (28)

if n1
m1

= n2
m2

= l.

In (27), (am1,·)
l and(a·,m2)

l are the symbols of the complex powers of the operators
am1,·(x1,x2,ξ1,D2) anda·,m2(x1,x2,D1,ξ2). In order to obtain the terms in (26), (27),
(28), we notice that the constantτ in (22) is arbitrary and the Laurent coefficients
clearly do not change if we change the partition ofRn1 ×Rn2, therefore we can letτ
tend to infinity. In this way both the fourth and fifth integralin (22) vanish, due to the
continuity of the integral w.r.t. the domain of integration. The evaluation is similar to
the proof of Theorem 2.9 in [3] and of Proposition 3.3 in [25].
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3 Weyl’s formula for bisingular operators

In this section we study Weyl’s formula for positive selfadjoint bisingular operators
that satisfy Assumptions 1. In the sequel we use the following Theorem, proved by J.
Aramaki [1]:

Theorem 3.1 Let P be a positive selfadjoint operator satisfying Assumptions 1. If
ζ (P,z) has the first left pole at the point−z0 and3

ζ (P,z)+
p

∑
j=1

A j

( j −1)!

(
d
dz

) j−1 1
z+ z0

,

extends to an holomorphic function on the half plane{z∈ C | Re(z) < −z0 + ε},
then, setting

NP(λ ) = ∑
t∈σ(P), t≤λ

1,

we have

NP(λ )∼
p

∑
j=1

A j

( j −1)!

(
d
ds

) j−1(λ s

s

)
|s=z0 +O(λ z0−δ ), λ → ∞,

for a certainδ > 0.

Theorem 3.2 Let A∈ Lm1,m2(M1×M2) be a positive selfadjoint bisingular satisfying
Assumptions 1, then

NA(λ )∼





C1λ l log(λ )+C′
1λ l +O(λ l−δ1) for n1

m1
= n2

m2
= l

C2λ
n2
m2 +O(λ

n2
m2

−δ2) for n2
m2

> n1
m1

C3λ
n1
m1 +O(λ

n2
m2

−δ2) for n2
m2

< n1
m1

, λ → ∞, (29)

for certainδi > 0, i = 1,2,3. The constantsC1,C′
1,C2,C3 depend only on the principal

symbol of A.

Proof We use J. Aramaki’s Theorem 3.2, which gives the asymptotic of NA(λ ) know-
ing the first left pole of the zeta function. As a simple application we get (29) with

C1 =
1

(2π)n1+n2(n1m2)

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθ1dθ2

=
1

(2π)n1+n2(n2m1)

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθ1dθ2;

C′
1 =

TR1,2(A)+TRθ (A)
l

−
1

n1n2

∫∫

M1×M2

∫

S
n1−1

∫

S
n2−1

(am1,m2)
−l dθ1dθ2;

C2 =
1

(2π)n1+n2n2

∫∫

M1×M2

∫

R
n1

∫

S
n2−1

(a·,m2)
−

m2
n2 dθ2dξ1;

C3 =
1

(2π)n1+n2n1

∫∫

M1×M2

∫

R
n2

∫

S
n1−1

(am1,·)
−

n1
m1 dθ1dξ2.

(30)

3 The Aramaki’s Theorem actually requires another assumption on the decay ofΓ (z)ζ (P,z) on vertical
strips. In this case such condition is fulfilled, in view of the relationship betweenζ -function, heat trace and
gamma function, see [13,21].
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Remark 4In this paper we are focused just on bisingular operators with homoge-
neous principal symbol, since our aim is the study of the corresponding Weyl’s for-
mulae. We do not introduce classical bisingular operators and we do not investigate
the relationship between the poles of theζ -function and Wodzicki Residue defined in
[26]. Nevertheless, extending the results of section 2 to classical bisingular operators,
one can prove that, for a classical elliptic bisingular operatorA ∈ Lm1,m2(M1 ×M2)
that admits complex powers,

Wres(A) := m1m2 lim
z→1

(z−1)2ζ (A,z),

where Wres(A) is the bisingular Wodzicki residue defined by Nicola and Rodino in
[26].

4 Examples

First we consider the operatorA= −∆ ⊗−∆ on the torusS1×S
1. We clearly have

σ(A) = {n2m2}(n,m)∈N2. Hence the spectrum is countable and consists only of eigen-
values. The eigenvalue{0} has an infinite dimensional eigenspace, while all other
eigenspaces have dimension four. Therefore we get

NA(λ ) = ∑
0<n2m2≤λ

4. (31)

Let us define the functiond(h) : N→ N so thatd(h) is equal to the number of ways
we can writeh= m·n, with m,n natural positive numbers or, equivalently, it is equal
to the number of divisors ofh. This function is often called Dirichlet divisor function.
By a simple computation, we obtain

NA(λ 2) = 4D(λ ) = 4 ∑
n≤λ

d(n). (32)

Noticing thatζ (A) = 4ζR(2z)ζR(2z), whereζR(z) is Riemann zeta-function, we can
easily find the coefficients of the asymptotic expansion and we have

D(λ )∼ λ log(λ )+ (2γ −1)λ +O(λ 1−δ ), λ → ∞, (33)

where

γ := lim
τ→∞

[
[τ]

∑
i=1

1
i
− logτ

]
(34)

is the well known Euler-Mascheroni constant. The asymptotic expansion (33) is well
known (see [17] for an overview on Dirichlet divisor problem; see also [18,19]). It is
still an open question to understand the behavior of remainder. In [15], G. H. Hardy
proved thatO(λ 1

4 ) is a lower bound for the third term. The best approximation, found
by M. Huxley in [16], isO(λ c(logλ )d), where

c :=
131
416

∼ 0,3149038462 d :=
18627
8320

+1∼ 3,238822115.
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The conjecture is that the remainder isO(λ
1
4 ).

It is nevertheless interesting to investigate the link between Dirichlet divisor func-
tion and the above results on the spectral properties of a suitable operators. Let us
notice that in (31) we have a slight abuse of notation, sinceN(λ ) was only defined
for positive operators. In this caseA=−∆ ⊗−∆ is non-negative, but has a non trivial
kernel. In other words we actually consider

NA := NA◦(Id−PkerA)

wherePkerA is the projection on the kernel ofA. This definition is compatible with
the definition of complex powers of non invertible operatorsin [4]. The variant of
our theory to such a setting, which is possible, will be not detailed here. Rather, let
us now consider the operatorAc := (−∆ +c)⊗ (−∆ +c), c> 0, defined on the torus
S1 × S1. Clearly,Ac satisfies Assumptions 1; thus we can apply Theorem 3.2. It is
easy to see that the eigenvalues ofAc are{(n2+ c)(m2+ c)}(n,m)∈N2, each one with
multiplicity four. Hence

N(Ac;λ 2) = 4 ♯{ real numbers of the form(n2+ c)(m2+ c) |

(n2+ c)(m2+ c)≤ λ , n,m∈N}= 4 Dc(λ ).

By Theorem 2.2, we know thatσ−1,−1(A
− 1

2
c ) = (σ2,2(Ac))

− 1
2 so the constantC1 in

(30) can be easily evaluated

C1 =
1
2

1
(2π)2 (2π)2 4= 2. (35)

Since in this case we know the eigenvalue of the operator,TR(Ac) turns into

TR1,2(Ac) = 2 lim
τ→∞

[
[τ]

∑
i=−[τ]

1

(c+ i2)
1
2

−2logτ

]

= 4 lim
τ→∞

[
[τ]

∑
i=0

1

(c+ i2)
1
2

− logτ

]
= 4γc.

(36)

We have named this constantγc because of the link with the usual constant of Euler-
Mascheroniγ in (34). Notice that, lettingc tend to 0,γc goes to+∞; while, if c tends
to infinity, γc goes to−∞. Finally, we obtain

Dc(λ ) =
1
4

N(Ac;λ 2)

∼ λ log(λ )+ (2γc−1)λ +O(λ 1−δ ), λ → ∞.

(37)

In this case, knowing exactly the eigenvalues of the operator, we can check our es-
timate with a numerical experiment. We have checked (37) forDc(λ ) with λ =
10.000.000. In the second column of the Table 1 there is the estimate of the coef-
ficient of first term of the asymptotic expansion obtained with the software Maple 15,
in the third the coefficient obtained by (37), and in the fourth the error. We can notice
that the error increases withc. This is not surprising, since (35) does not depend onc.
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Table 1 1st. term approximation

c 1st. term with Maple 1st. term in (37) error
2 1,024846785 1 0,024846785
3 0,9916281891 1 0,008371811
4 0,968979304 1 0,031020696
5 0,951859819 1 0,048140181
6 0,938130598 1 0,061869402
7 0,926687949 1 0,073312051
8 0,916888721 1 0,083111279
9 0,908326599 1 0,091673401
10 0,900728511 1 0,099271489
11 0,893902326 1 0,106097674
12 0,887707593 1 0,112292407
13 0,882038865 1 0,117961135
14 0,876815128 1 0,123184872
15 0,871972341 1 0,128027659
16 0,867459966 1 0,132540034
17 0,863235614 1 0,136764386
18 0,859265437 1 0,140734563
19 0,855520776 1 0,144479224
20 0,851977951 1 0,148022049

Table 2 2nd. term approximation

c 2nd. term with Maple 2nd. term in (37) error
2 0,40048285 0,401484386 0,001001536
3 -0,13493765 -0, 1339381238 0,000999526
4 -0,499994550 -0,498993281 0,001001269
5 -0,775928050 -0,774926584 0,001001466
6 -0,997216950 -0,996213733 0,001003217
7 -1,181650650 -1,180647904 0,001002746
8 -1,339595550 -1,3385899520 0,001005598
9 -1,477600650 -1,476592538 0,001008112
10 -1,600067350 -1,599058126 0,001009224
11 -1,710092450 -1,7090842470 0,001008203
12 -1,809939750 -1,808931287 0,001008463
13 -1,901308850 -1,9002985710 0,001010279
14 -1,985505550 -1,9844949070 0,001010643
15 -2,063562050 -2,0625496430 0,001012407
16 -2,136292950 -2,1352865400 0,001006410
17 -2,204381450 -2,2033750580 0,001006392
18 -2,268373150 -2,2673662890 0,001006861
19 -2,328729950 -2,3277195600 0,001010390
20 -2,385833550 -2,3848212840 0,001012266

In order to make the error smaller, we should increase the number of digits at which
we truncate the seriesDc(λ ). In Table 2 we analyze the coefficient of the second
term. In this case the error is essentially independent ofc, this is due to the fact that
(36) does depend onc.

Our spectral approach to Dirichlet Divisor function suggests that othersWeyl’s
formula techniques(e. g. Fourier Integral Operator) could be useful to attack the
Dirichlet Divisor conjecture.
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