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Abstract We consider a class of pseudodifferential operators, witissed vector
valued symbols, defined on the product of two closed marsfaMe study the asymp-
totic expansion of the counting function of positive sejfadt operators in this class.
Using a general Theorem of J. Aramaki, we can determine thtedirm of the asymp-
totic expansion of the counting function and, in a speciak¢cave are able to find the
second term. We give also some examples, emphasizing diomewith problems
of analytic number theory, in particular with Dirichlet @éor function.
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Introduction

In [28] L. Rodino introduced bisingular operators: a claspseudodifferential oper-
ators defined on the product of two closed manifditisx My, related to the multi-
plicative property of Atiyah-Singer index, se€ [2]. A sirmgxample of an operator
in this class is the tensorial produst ® Ay, whereA;, A, are pseudodifferential
operators on the closed manifollfg, M,. Another example, studied in [28], is the
vector-tensor produdt; X Ao. In [26], in order to prove an index formula, F. Nicola
and L. Rodino introduced classical, i.e. polyhomogenebisggular operators and
defined Wodzicki Residue for this class of operators. The awthors defined the
residue, via holomorphic families, as [n[[Q] 25]. For theeraf bisingular operators
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see also the work of V. S. Pilidi.[27] and of R. V. Duducav&gh,In [23], R. Mel-
rose and F. Rochon introduced pseudodifferential opesatbproduct type, a class
of operators close to bisingular operators. Bisingularrafmes are an example of
operators with vector valued symbols; pseudodiffereofirators of this type have
been meticulously studied, see, for example, Fedosov,|8shtarkhanov([8] and
the references therein.

The aim of this paper is to analyze the asymptotic behavit@tounting func-
tion of selfadjoint elliptic positive bisingular operasorSimilarly to the the case of
SG-calculusl[B] (see e.d.l[7.29] for more detail 8G-calculus), we use techniques
related to complex powers of operatodsfunction and Tauberian Theorems. This
strategy, in the setting of closed manifolds, was first use&¥.bGuillemin [14] in
order to get the so callesbft proofof Weyl's formula.

Here, as in the case @&Gcalculus, it turns out that thé-function can have
poles of order two. Thus, using a refinement of Tauberian fidraalue to J. Aramaki
[1], the asymptotic behavior of the counting function isatatined. The presence of
a pole of order two of the-function implies that the counting functions can have
asymptotic terms of ordeér®logA. Such a behavior appears in various setting: mani-
folds with conical singularities [9F Gcalculus orR" [25], SG-calculus on manifolds
with cylindrical ends[[20]. See also Gramcheyv, Pilipo&adino, Wong[[10,11] on
the asymptotic expansion of the counting function in theadswisted bi-Laplacian.
Furthermore, in[[24], S. Moroianu studied Weyl's law on nfaltis with cusps, with
an approach similar to the one used in this paper. In a speasa, he showed that
the growth rate of the counting functionA$logA.

We remark that it is not surprising that ti§efunction of a selfadjoint elliptic
positive bisingular operator can have poles of order 2. éddéet us consider two
positive elliptic pseudodifferential operatofsB defined on the closed manifolds
M1, M. From general theory of complex powers of pseudodiffeatiofperators on
closed manifolds [30], we know that tliefunction of an operatoP of this type is
holomorphic fofRe(z) < — & (n= dim M, morder ofP) and it can be extended as a
meromorphic function to the whole @f with poles of order 1. As we noticed at the
beginning, the tensorial produbtx B is a bisingular operator oll; x My and it is
clearly positive and selfadjoint. One can prove the follogvi

{(A®B,2) = {(A2{(B.2). (1)
If one defines th&-function using the eigenvalues, equallfy (1) becomes rrars-

parent. To this end, lefA; }jcny and {1 }icn be the eigenvalues @ andB, respec-
tively. Then the eigenvalues éf® B turn out to be{A;pi }; jcne. Therefore we have

z n1_

LA2=Y A%, Re(2d) < ——;

&2 jg\T (2 ma

_ z N2,

{(B,2) _i;\lui , Re(z) < et
{(A®B2) = ¥ Afu’={(A2(B2), %e(z)<fmax{r:_1A,E :

i,jeN2
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wheren; = dim My, n, = dim M, andma, mg are the orders oA andB. Then the
product structure of (A® B, z) implies that it can have poles of order two. Let us
now focus on the special cag®é = 2 = zo:

UA@=E%E+M®,9ME<—m+a
{(B,2) = (ziBzo) +h(2), Re(2) < —20+5¢; (2)
{(AwB 2= B MDD b oihr) o) < 2t e

@+mﬂ+' (z+20)

whereCa,Cg are constants that depend just on the principal symbd\, Bf while

ha, hg are holomorphic functions which depend on the whole symb&, 8. From

@), itis clear thaf (A® B, z) has a pole of order two. Moreover, we observe that the
coefficient of the pole of order one depends on the whole syofbdandB. Finally,
applying J. Aramaki's Theorem 3.1, frofd (2) one obtains

CACB)\zolog(/\) B (hA(Zo) —hs(—2) n CaCs
2 VA

Nacs(A) ~ ) A% O(Ad),

3
whered > 0. Simple examples of operatofsand B for which (3) holds areA =
—4g+1,B=—-Ay + 1, wheredy, Ay are the Laplace Beltrami operators associated
to Riemanniann structures &, M, respectively. We will extend{3) to all posi-
tive bisingular elliptic operators, expressing the contstén the Weyl asymptotics in
terms of the crossed vector-valued symbols.

The paper is organized as follows. In Secfibn 1 we shortlgltéasic properties
of bisingular operators; we refer the readertg|[26, 28] farendetails. Sectionl 2 is
devoted to the definition of complex powers of suitable lgjgiar operators; we in-
troduce the-function in this setting and we study its meromorphic egten. The
main result, concerning the asymptotics of the countingtion of selfadjoint el-
liptic positive bisingular operators, is stated in secfBbrin sectio 4, we show the
connection with Dirichlet divisor problem, which we recatexr from the point of
view of Spectral Theory.

1 Bisingular operators

We start with the definitions of bisingular symbols and lgsilar symbols with ho-
mogeneous principal symbol. In the following; always denotes a bounded open
domain ofR"™.

Definition 1.1 We defineS™™(Q;, Q,) as the set ofS*(Q1 x Q; x R™ x R"2)
functions such that, for all multiindes;, 3; and for all compact subs&t C Q;, i =
1,2, there exists a positive const&y, 4, g, g, K, k, SO that

108208200 02a(x1, %0, 81, £2)| < Coay iy o (E0)™ 1981 (&) ™ 1921,

forallx € Kj, & € R",i=12. Asusual{&) = (1+ |§|2)%.
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S*7%(0Q4,Q2) is the set of smoothing symbols. Followirig [28], we introdube
subclass of bisingular operators with homogeneous préhsymbol.

Definition 1.2 Leta € S™'™(Q1,Q,); ahas a homogeneous principal symbol if

i) there existsam, .(X1,X%2,§1,&2) € S™M(Qq, Q7) such that

a(x1, Xz, té1,&2) =t™a(xy, xe, &1,&2),  Vxa,%,&2, V|&|>1,t>0,
a— Yn(&)am,. € S (Q) Qy), ¢y cut-off function of the origin

Moreover,am, . (X1,%2,&1,D2) € LEF(QZ), so, being a classical symbol @y, it
admits an asymptotic expansion w.r.t. f3evariable.
i) there existsa m, (X1,X2,&1,&2) € S™™(Q4, Q) such that

a(x1, X2, &1,t85) =tM™a(xy, X2, €1,&2), VX1, X0, &1, V|&>1t>0,
a—Yn(&)am € S Q1 Qy), s cut-off function of the origin

Moreover,a. m, (X1, %2, D1,&2) € L' (Q1), S0, being a classical symbol @y, it
admits an asymptotic expansion w.r.t. fievariable.

i) The symbolsay, . anda n, have the same leading term, so there exagism,
such that

amy.- — Ya(&2)am.m, € S L(Q, Qy),
am, — Y1(&1)am m, € ST (Q1, Qy),

and
a— ham,. — Ya m, + Y1ram m, € ST (Qp, Q).

The set of symbols with homogeneous principal symbol is dﬂmssg}l’"h(ﬂl, Q7).
We will shortly write that the principal symbol @fis {am, .,a m,}.

We can observe a similarity, at least formal, between bidargsymbols with homo-
geneous principal symbol ar815 classical symbols, see, e.q.l[7), 25].

We define bisingular operators via their left quantizatirinear operatorA :
CZ(Q1 xQy) — C”(Q1 x Qy) is a bisingular operator if it can be written in the form

A(U)(X1,%2) =Op(a) (X1, %2)
1

= G o oy @ R 10,1, £)0(61, E)0E10E

If a€ S™M(Qq, Q) orae ™ (Q1,Q;), then we writeA € L™™(Q;, Q,) and
Ac Lg‘,l’mZ(Ql, Q,) respectively. The above definition can be extended to théymto
of closed manifolds; we refer t¢_[28] for the details of thenswuction of global
operators and the corresponding calculus.
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Definition[1.2 implies that, for every operatare Lot™(Q4,Qy), we can define
functionso™, g™, g™:™ such that

o™ (A) T*Q1\ {0} — LiP(Q2)
(X1,€1) = @m,..(X1,X%2, é1,D2),
g5 2 (A) T*Q\ {0} — L*(Q1)
(X2,&2) — @ m,(X1,%2,D1,&2),
oMM (A) T* 1\ {0} x T* D5\, {0} — C
(X1,X2,€1,&2) — amy,m, (X1, %2, &1, €2).

(4)

Moreover, denoting by (P)(x, &) the principal symbol of a preudodifferential
operatolP on a closed manifold, the followingpmpatibility relationholds

a(07™(A)(x1,&1)) (X2, &2) =0(05 2 (A) (X2, &2)) (%1, 1)
=0™"M2(A)(x1,%2, €1, &2) = @my,m, (X1, %2, €1, &2).

Remark 11f we consider the product of closed manifolsllg x My, then the whole
symbol is a local object, in general. Nevertheless, siyiliarthe calculus on closed
manifolds, it is possible to give an invariant meaning toftivections [4) as functions
defined on the cotangent bundle, see [28].

(®)

As in the case of the calculus on closed manifolds, it is fbssbd define adapted
Sobolev spaces and then to prove some continuity results.

Definition 1.3 LetM;, M, be two closed manifolds. The Sobolev spbid®:™ (M1 x
M) is defined by

H™M (My x Mp) = {u € . (My x M) | Op((&1)™ (&)™) (u) € L2(Mg x M2)}.

If ue H™™(My x M) then||ul|m,,m, = [|Op((&1)™ (&2)™)(u)||2. Using the formal-
ism of tensor product, we can also wiite

H™M (Mg x Ma) = H™ (M1)® H™ (Mp).
Similarly to Sobolev spacdds(M), we have

i) HMM (Mg x My) — Hm(r”é(Ml x My) is a continuous immersion ify > n,
i=12.

i) H™M2(M; x My) < H™™2(M; x My) is a compact immersion ify > ny, i =
1,2.

Proposition 1.1 A pseudodifferential operator AL™:™(M; x M) can be extended
to a continuous operator

A HSY (Mg x M) — HST™M2 (M) % My).

Furthermore, the norm of the operator can be estimated tissngeminorms of the
symbol. It is also possible to prove the following propasiti

1 For definition of®, see[[32].
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Proposition 1.2 Let Ae L™™(M; x M) be a bisingular operator; if m< 0 (i =
1,2), then there exists M N such that|Al|oo < sup| ¥i<n Pi(a(x1, X2, &1, €2))|, where
{pi(*) }ien are the seminorms of the &chet space™®™ (M, My).

An operatorA € L™™ (M x My) is elliptic if am..,a m,,am; m,, the three com-
ponents of its principal symbol, are invertible in their daimof definition. Explicitly:

Definition 1.4 LetA € Lpt"™ (Mg x My); Ais elliptic if

i) o™M(A)(vy,v2) # 0 for all (vi,v2) € T*Mp\ {0} x T*M2\ {0};
i) a7 (A)(v1) € LT2(M,) is invertible for allvy € T*My \ {0};
iii) ai"i(A)(vz) € Ly (My) is invertible for allv, € T*Mz \ {0};

wherea™ ™ (A), o™ (A), 052 (A) are as in[(#).

In [28], it is proved that, ifA satisfies Definitiof 114, theA is a Fredholm operator.
This property is a corollary of the following theorem:

Theorem 1.1 Let A< Lp™ (M1 x M) be elliptic; then there exists an operatorB
Lor @~ ™ (M1 x My) such that

AB=1d+Ky,

BA=1d 4Ky,

whereld is the identity map and KK, are compact operators. Moreover, the symbol
of Bis b= {o/™(A)"1,05%(A)~1}.

The proof of Theorem 111 is an easy consequence of the glebsibw of the follow-
ing lemma:

Lemma 1.1 Let Ac L™:™2(Q; x Q) and Be L™™(Q; x Q5), then

{(@0 D)4 (80D). ey} = {8y, 08, By @ my 08, by }

where
(aog, b)(x1,%2,D1,&2)(u) = a(x1,%2, D1, &2) o b(X1,X2,D1,&2)(U)  Vue CZ (1),
(aog, b)(x1,X2,&1,D2) (V) = a(x1, %2, &1,D2) o b(x1, X2, €1,D2) (V)  Wv e CT(Q2).

In first row the composition is in the spac&(Q) of pseudodifferential operators
on Qq, in second row, it is in the spacé€’ Q).

2 Complex powers of bisingular operators

In this section we define complex powers of a subclass otiglljisingular operators.
The first step is to give a suitable definitidnelliptic operators w.r.t. a sector of the
complex plane\.

Definition 2.1 Let A be a sector of’; we say thag € S (Mg, M) is A-elliptic
w.r.t. A if there exists a positive constaRtsuch that
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i)
(™M™ (A)(Vi,v2) —A) e ST (Mg, My),
forall |vi| >R, i=1,2,and forallA € A.
ii)
07 (A) (V1) — A 1dw, € Lo (My),
is invertible for alljv4| > Rand for allA € A.
i)
052 (A)(V2) — A ldw, € Lt (M),
is invertible for alljvz| > Rand for allA € A.

In the following, in order to define the complex powerAfwe assume that is a
sector of the complex plane with vertex at the origin, that is

N ={zeC]largz) € [n—0,—m+ 0]}.

arg=1m—0

arg=—1m+0

Lemma 2.1 Letae S™™(Q,, Q,) beA-elliptic. For all K; C Q;, i = 1,2, there exist
Co > land a set

1
Qs 5, ={ze C\A | a<51>m1<52>'m < |7 < co(&1)™(&2)™} (6)
such that
spec¢a(xy, X2, €1,€2)) = {A € Cla(xy, %2, €1,62) —A =0} C Qg 4,
VX € Q;,& e R";
moreover,

(A — Bmymy (X1, %2, €1, &2)) ] < C(IA| + (E)™ (&)™),
|(Bmy, — Aldgy, ) | < CUA|+ (E)™ (&)™) L,

[(m — Aldg, ) | < C(A|+ (E)™ (&)™) L,

vx €Ki,&§ e RMA € C\ Qg ¢,,i=1,2,

Where(aml’. —A Idgl)fl stands for the symbol of the operat@m, . (X1, %2, &1,D2) —
A ldg,)~1, and similarly for(a,m, — A 1dg, ) ™.
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The proof of LemmaZ2]1 is essentially the same of the one ofrhar.5 in[22].
Next, we prove that, ifA A-elliptic, then we can define a parametrix @ —

A 1d). Actually, we prove that, fofA | large enough, the resolvei— A Id)~* exists.

Restricting ourselves to differential operators, we cduoltbw formally the idea of

Shubin ([31], ch. I1) of parameter depending operatorsgeneral pseudodifferential

operators, it is well know that this idea does not work, 5&%.[1

Theorem 2.1 Let A< L™ (M; x My) beA-elliptic. Then there exists RR*, such
that the resolventA — A 1d) 1 exists forA € Ar={A € A | |A| > R}. Moreover,

I(A=A1d) Y= O(A[ ), A €A

Proof First, we look for an inverse gfA — A Id) modulo compact operators, that is
an operatoB(A ) such that:

(A—A)oBA)=1d+Ry(A), ARi(A) e L 171(Myx My), -
B(A)o(A—A)=1d+Ry(A), ARx(A)e L 171(MyxMy),

uniformly w.r.t. A € A. In order to find such an operator, we make the principal
symbol explicit:

a—»>A= psyn'(a,) —A +C, Cg Sﬁnlil’mzil(ML M2)7

where psynia) = Y1am, . + Poa m, — Y1P28m, m,- AS we have noticed in Theorem
[1.3, we can write the symbol of the inverse (modulo compaetatprs) of an el-
liptic operator. In this case we need to be more careful bexafithe paramete.
Following the same construction as in Theofen 1.1, we obtain

b(A) = {((a7™(A) ~ A ldw,) ™, (02 (A) — A Idw,) 7} )

The above definitior {8) is consistent in view of theellipticity and of the following
relation

o ((07™(A) = A ldw,) " (x1,€1)) (%2, &2) = (@mpm, — A) (X1, X2, &1, &2),
a((03%(A) = A ldw,) (X, &2) ) (X1, &1) = (Bmy.m, — A) ™ (Xe, X2, &1, &2).

Using the rules of the calculus and Lemmal 2.1, we can chedkBiie) satisfies
conditions [7). By parameter ellipticity, we get tHai(A) andR(A) are compact
operators fod € A, namely

(A—A1d)oB(A) = Id+Ry(A),

(A=A 1d)oB(A) = Id+Rx(A), ©)

AR1(A),ARz(A) € SH71(My x My) uniformly w.r.t.A € A. SoB(A) is a parametrix
and its symbob(A) has the following form

b(A) = —(@mym, (X1, X2, &1, 82) — A) " (&2) Ya(&1)

+ (amy, — A ldwy) " (xa, X2, &1, €2) Y (&2)

+ (& m, — A ldwy) " (xa, X2, &1, &2) W (&2),
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where (am,. — A IdMZ)*l(xl,xz,El,Ez) is the value of the symbol of the operator
(Am, . (X1,%2,&1,D2) — A Idw,) "L at(xp, &), and similarly for(a. m, — A ldm,) 1. Fur-
thermore, denoting bss (A ) the symbol ofR3(A ), we easily obtain

ri(A) = (a—psyna))ob(A) + (psym(a) o b(A)) — 1, (10)
hencery(A) € S1=1(My, M) is the asymptotic sum of terms of the type
05.10;2gDIDEZb(A) g e S™ M2 (M1, Mp).

Clearly (am,.m, (X1, X2, &1, &2) —A)~1=0(]A|~1). By the theory of pseudodifferential
operators on closed manifolds, the same property holdsésymbols of the opera-
tors (am, . (X1, X2, €1,D2) — A 1dw,) 1 and (@ m, (X1, X2, D1, &2) — A 1dm,) 1 and their
derivatives. Thusi(A) = O(]A|~1), as a consequence of the calculus. By Proposition
[L.2, this implies|Ry || 2 = O(]A|~1), and the same is true for the operaRar So we
can choosd large enough such th&, R, have norm less than 1. In this way, using
Neumann series, we prove th{&— A Id) is one to one and onto, therefore invertible,
by the Open Map Theorem. Again, by Neumann series, we oBigin such that
@) is fulfilled with Ry, R, smoothing and still with norn®(A ~1). Now notice that
A[B(A)—B(A)] € s™~L-M~1for all A € A. Furthermore, if we multiply both
equations in[{)7) byA— A 1d)~* we obtain

(A=A 1d) T =B(A)+BA)R1(A) + Ro(A)(A —A)IR(A).

Hencel|(A—A1d)~| =O(|A|~1) andA?[(A—A)~1—B(A)] is a smoothing operator
in L=°~°(My x My), uniformly w.r.t.A.

In order to define complex powers of an elliptic bisingulaegior, we introduce
some natural assumptions.

Assumptions 1 1. Ae S™™(My,My) is A-elliptic.
2. 0(A)NA =0 (in particular A is invertible).
3. A has homogeneous principal symbols.

Remark 2If we consider aA-elliptic operatorA € Lpt"™ (Mg x Mp) with my > 0
(i=1,2), thena(A) is either discrete or the whole @f, because the resolvent is
a compact operator[([81], Ch. I). Since by Theoffeni 2.1 we ktiwat for largeA
the resolvent is well defined, it turns out that the spectmf#) is discrete. Then,
modulo a shift of the operator, we can find a suitable sectch that Assumptiorig 1
is fulfilled.

Definition 2.2 Let A be an operator fulfilling Assumptiofi$ 1. Then, we can define
. |_ Z(pn -1
A= 21 Jons AYA—Ald) " dA, fRe(z) <O, (11)
whereN; =AU{ze C| |7 < &}.
The Dunford integral in[(111) is convergent becafjé&— A Id)~1|| = O(|A|~1) for A
large enough. As usual, we next define

AZ:=A, oA Me(z—k) <O.
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Remark 3In Assumptions1l we requird N o(A) = 0, therefore in particular the
operator must be invertible. It is possible to define complewers of non invertible
operator as well, provided the origin is an isolated pointhaf spectrum, see, e.g.,
[4]. For example, one can define the complex power& ef —A ® —A on the torus
St x St, even ifA has an infinite dimensional kernel.

Theorem 2.2 If A € L™:™ (M1, My) satisfies Assumptiohk 1, theheAL™zMZ(M; x
M.) and it has homogeneous principal symbol. Moreover, by Caiitieore

afzmz,mzz = (a"h,nh)za

afz“nlz,- = (am1.,-)zv (12)
&z = (@ m)%

Proof As a consequence of a general version of Fubini’s Theorenmtiey by a*
the symbol ofA?, we obtain

2_ %T/I%A‘E/\Z(a% Id)"1dA, 9Re(z2) <0

where (a— A Id)~! is the symbol of the operatdA — A Id)~1. By Theoreni 21,
we know thatx\z{(A—A Id)~t — B(A )} € L=7°(My x M2) so, up to smoothing
symbols, we have

aZ%T./;W AZ(B(2))dA

i (13)

- /QELEZ AZ(B(A))dA,

whereQ;, ¢, is as in Lemm@2]1 and the second equality id (13) follows bydbg

integral formula. Now, by Lemnia 2.1 and by the explicit forfrbo) ), we getA?
L™zMZ(M; x My). In order to show tha#* has homogeneous principal symbol, we
write

(b(A)) =yn(a™(A) -2 'sz) Y+ yp(0™(A) - Aldw,) !
— (o™ ™ (A) = A) (D),
whereAc(A) € ST™~L-M—1(M; M,), VA € A. We split integral in[(I3) so that

= 5x [y A(0™(A) — Aldw,) (14)
o= [y p, AZW2(0™2(A) — A ldw ) ~1dA (15)

— 27 Jaen AL W(0™ ™2 (A) — A)~TdA (16)

+o7 Jyea, AC(A)dA. (17)

The theorem follows from theory of complex powers on closeaghifolds for the
integrals[(T#) and(15), and from Cauchy Theorem for intefi&). Finally, we notice
that integral[(1l7) gives a symbol of ordemz— 1, myz— 1).

2n equation[(IRpF, , ., 8% m,, &, zm, represent respectively; ™ (A?), a5 22 (A7), g™#MZ(AZ), while
(8my..)?, (& m,)? are complex powers of the operatarf™ (A), 052 (A) and(am, m,)? is the complex power
of the functiong™.-™m (A).
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We now introduce the functiofi(A, z) of an elliptic operator that satisfies Assump-
tions[1. The proof of the following property is similar to thase of compact mani-
folds (seel[31], ch. I1).

Proposition 2.1 Let Ae L™™(M; x M), m > 0, i = 1,2, be a selfadjoint operator
satisfying Assumptios$ 1. Then we have

A(u) = Af(fi,u),
i€
where{Aj}cn is the spectrum of A, anffj } ;i are the corresponding orthonormal
eigenfunctions. We define
n2

. ny
A2 =S A% Re(z) <min{ - — ——=1
{A7)i= 3 Ay () <min{- L2

The definition of{ (A, z) in the general case is the following:

Definition 2.3 Let A € L™™(M; x M) be an operator satisfying Assumptidds 1
then

{(Az) = / Kaz(X1,X2,X1,%2)dxadXe, Re(z)my < —ng, Re(Z)mp < —ny,
. M1><M2

whereKaz is the kernel ofA% The integral is well defined i#ie(z)my < —np and
MRe(z)my < —ny since, in this casé)’ is trace class.

Theorem 2.3 Kaz(x1,X2,¥1,Y2) is a smooth function outside the diagonal. Further-
more, Kaz(X1, X2, X1, X2) restricted to the diagonal can be extended as a meromorphic

function on the half plangze C | 9te(z) < min{—gL, — {2} + &} with, at most, poles
at the point gole = min{—%, —%}. The pole can be of order two;i}l = % other-

wise it is a simple pole.

Proof By definition, the kernel oA? has the form
1 ' ;
Kaela, 000, 00) = e [ [ @000 61800606 (19

First, let us consider the cagg > 2. Then, if9e(z) < —gt, A7 € LM*™?(My x
Mz) C L-Mm~&~M2~¢(M; x My); hence it is trace class and the integral of the kernel is

finite. We can writea® = aZ, , + a7, af € S™* 1™2(M;,M,) and we have then

1 . ,
K 06X) = e /an /\51\21 (B + )10z (19)

1 , ,

(2mm)Mtn2 Amy dé&1dé,.

T e g (e + 8 )20

The second integral in_(19) is an holomorphic functionff(z) < _:1_11 + ¢ since

we integrate w.r.t. thé€, variable on a compact set. The same conclusion holds for
the integral ohﬁ_ onthe se{(&1,&2) | |€1] > 1,8, € R™} because it has ordémyz—
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1,mp2). In order to analyze the integral &f, ., we switch to polar coordinates and
we obtain

1
d =-— / d6,d&s. 20
/I‘QHZ El‘>la'mlz El EZ mz+ng JrM Jsm—-1 am]_Z, 1 EZ ( )

Clearly [20) can be extended as a meromorphic functiofzanC | $e(z) < —21—11 +
€}, and, moreover, by (12), we get

. ni . 1 *:1—11
||mn <Z+ Hl) KAZ(X]_,XZ) - *m‘/]]&nz Snlfl aml,. deldfz

_ 1
z— my

The casem— < ”2 is equivalent, by exchanging, andm.

The case—1 2 is a bit more delicate, since we have to analyze the whole
principal symbol. First we write

1 3
Kaz (X7 X) = W ./Rnl k2 (arzmz,- + a-z,mzz - a'rz'nlz,mzz) +

(& = &z — &z + Byzimyz) 461082
The definition of principal symbol implies that the secondrten (21) belongs to
gmz-tmz-1(My,My), hence the second integral is well definedfat(z) < — i + ¢

and holomorphic fofRe(z) < —2L + &. Now we have to analyze the integral of the
principal symbol. SplittindR™ x R" into the following four regions

{(&1,&) | [&1] < 1,]1&| <1}, {(&2,&2)||&1] <T1,]&| > T},
{(&1,&2) [ 1&1] > 1,182 < 1}, {(&2,&2) | |&1] > T1,]&2| > T},

(21)

one gets

/Rnl RM (afzn12f + a'ZamZZ - afZThZ,mzZ) dEldEZ =

(Mmtmp)ztng+np , o
(m12+ nl)(l']’122+ n2) /Snl—l Sm2-1 a’m12,m22 1d6,
R 2, deyd
- (Mmz+n) ~/\€2\<r sn-1 8m;z. 061082
-[-mzernz (22)
(m22+ n2 /{1\<r /Snz 1 ’mzzdeldfl
-[-m]_Z+n1 )
m12+ nl /52\>T /S”l 1 o amlzamzz)deldfl
-[-mzernz 5
(mpz+ny) /51\>T /S”z 1 & mpz amlz;mzl)deldfl
+h(2),

whereh(z) is an holomorphic function fofie(z) < e+ €. The evaluation of the
integrals in [2R) are similar to Proposition 3.3 in [25], afteorem 2.2 in[[B]. This
concludes the proof.
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SinceM;, M; are closed manifolds, TheorémP.3 implies the following:

Corollary 2.1 Let Ae L™™(M; x Mz) be an operator satisfying Assumptidds 1;
then (A, 2) is holomorphic forRe(z) < min{—gL, —2} and can be extended as a
meromorphic function on the half plafie(z) < min{—fn—ll, —%} + £. Moreover, the

Laurent coefficients af (A, z) at z= zyple = Min —%, —%} are

. np _ 1 . 7%
lein% (z+ ﬂ) {(A2) = ~ e, //MlxM2 /an /Snrl am, 1d61d&,, (23)

if

. Ny 1 ~2
| — AZ)=—F7 m2d6xd 24
ZJT% (Z+ mz) Z( 72) (Zn)nl+n2m2 //I\;Ip<Mz /I‘in ~/Sn271 &.m, 92 El, ( )

if N2 o Ny
Ifmz>m1'

H
3R

re(A) :ZIerll(z+I)2Z(A, 2) =

1 . ) (25)
(2m)M+2 (mymp) //M1><Mz /Snl—l /Snrl(aml,mz) d6de’,
im @AY - ) TR TR, @0
where
TR]_’Z(A) =
1 . 1 v |
2 rlmnw(ﬁ.//mlxmz /\Ez\gr/s"rl(aml") —res(A)logT) 27)

+(2mﬁliﬂqm(%//l\/llxw /\gl\grfgng—l(a’m?)il —resi(A) logT)

and

. 1 .
TR(A) = gt /M - /S it o2 B, 1002, 16106, (28)
e np
()

In 232), (ami,.)' and(a.,mz)' are the symbols of the complex powers of the operators
am, - (X1,X%2, §1,D2) anda. m, (X1,X%2, D1, &2). In order to obtain the terms in_(26)), (27),
(28), we notice that the constantin (22) is arbitrary and the Laurent coefficients
clearly do not change if we change the partitiorR3f x R™, therefore we can lat
tend to infinity. In this way both the fourth and fifth integal(22) vanish, due to the
continuity of the integral w.r.t. the domain of integratidrne evaluation is similar to
the proof of Theorem 2.9 in [3] and of Proposition 3.3[in![25].
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3 Weyl's formula for bisingular operators

In this section we study Weyl's formula for positive selfaidit bisingular operators
that satisfy Assumptioris 1. In the sequel we use the follgWineorem, proved by J.
Aramaki [1]:

Theorem 3.1 Let P be a positive selfadjoint operator satisfying Assuoms{1. If
{(P,z) has the first left pole at the poin{zo and

d\'* 1
PZ+Z J— (dz) z+ 2z’

extends to an holomorphic function on the half plges C | Re(z) < —zp+ €},
then, setting

Ne(A)= 5 1,
teo(P),t<A
we have
p A d )\5
~ | el 206

for a certaind > 0.

Theorem 3.2 Let Ae L™:™ (M3 x M) be a positive selfadjoint bisingular satisfying
Assumptiongl1, then

Cl/\IIOQ( )+C’A'+O()\' %) for i =2 = |
Na(A) ~ CZ/\”“2+O(A”“2 52) for%>% . Aow, (29)

for certaing > 0, i =1,2,3. The constants{CC},C;, Cs depend only on the principal
symbol of A.

Proof We use J. Aramaki's Theordm 8.2, which gives the asymptota,0A ) know-
ing the first left pole of the zeta function. As a simple apaiiicn we get[(2P) with

= :m [/ Ny R C PR
:m/fwhxmz/@uﬂ Snz,l(a"h,nb)fldeldez;

TRi2(A )+TRe( nﬂ]z//MlxMz/S"l - (am.m,) 'd61d6;  (30)
C2= (2mMtnzn, n1+”2n2 //MIX,\,,2 /Rnl /S”Z (@m) ”2d92d51,

C= 2mprieng ”1+“2n1 //MlxM2 /]an /snl . 1d91d52

3 The Aramaki’s Theorem actually requires another assummtiothe decay of (2){ (P,2) on vertical
strips. In this case such condition is fulfilled, in view oétrelationship betweefr-function, heat trace and
gamma function, se¢ [13,21].

C =
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Remark 4In this paper we are focused just on bisingular operators hitmoge-
neous principal symbol, since our aim is the study of theesponding Weyl's for-
mulae. We do not introduce classical bisingular operatodsvee do not investigate
the relationship between the poles of théunction and Wodzicki Residue defined in
[26]. Nevertheless, extending the results of sedilon 2assital bisingular operators,
one can prove that, for a classical elliptic bisingular aperA € L™™ (M3 x My)
that admits complex powers,

Wreg(A) := mymplim (z— 1)%¢(A,2),

where WreéA) is the bisingular Wodzicki residue defined by Nicola and Rodn
[26].

4 Examples

First we consider the operatdr= —A @ —A on the toruss* x S*. We clearly have
o(A) = {nzmz}(nlm)eNz. Hence the spectrum is countable and consists only of eigen-
values. The eigenvaluf0} has an infinite dimensional eigenspace, while all other
eigenspaces have dimension four. Therefore we get

Na(A) = 4, (31)
) O<n;mZ§)\

Let us define the functiod(h) : N — N so thatd(h) is equal to the number of ways
we can writeh = m- n, with m, n natural positive numbers or, equivalently, it is equal
to the number of divisors df. This function is often called Dirichlet divisor function.
By a simple computation, we obtain

Na(A?) =4D(A) =43 d(n). (32)
n<A

Noticing that{ (A) = 4{r(22){r(22), wherelr(z) is Riemann zeta-function, we can
easily find the coefficients of the asymptotic expansion aadhave

D(A) ~Alog(A)+(2y— 1A +0(AY %), A = o, (33)

where

[1]
y = TIm) [Z% - Iogr] (34)

is the well known Euler-Mascheroni constant. The asymptpansior((33) is well
known (seel[17] for an overview on Dirichlet divisor problesee also[18,19]). It is
still an open question to understand the behavior of reneairid [15], G. H. Hardy
proved thaD(A %) is a lower bound for the third term. The best approximatioani
by M. Huxley in [16], isO(A¢(logA )%), where

131 18627

c:= 216"~ 0,3149038462 d := 3320 +1~3,238822115
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The conjecture is that the remaindeGs %1).

Itis nevertheless interesting to investigate the link l@stmDirichlet divisor func-
tion and the above results on the spectral properties oftaldeioperators. Let us
notice that in[(3lL) we have a slight abuse of notation, sk¢k) was only defined
for positive operators. In this cage= —A ® —A is non-negative, but has a non trivial
kernel. In other words we actually consider

Na = Nao(1d~Reera)

wherePRera is the projection on the kernel @. This definition is compatible with
the definition of complex powers of non invertible operator§4]. The variant of

our theory to such a setting, which is possible, will be ndadied here. Rather, let
us now consider the operatd¢ := (—A +c¢) ® (—A+c), ¢ > 0, defined on the torus

St x SL. Clearly, A; satisfies Assumptiors 1; thus we can apply Thedrem 3.2. It is
easy to see that the eigenvaluespgfare { (n® + c¢)(n? + C)}(nmen2, €ach one with
multiplicity four. Hence '

N(Ac; A?) = 4¢{ real numbers of the forrm? + c)(m? +c) |
(nP4c)(mP+c) <A, nme N} =4Dg(A).

1
By TheoreniZR, we know that—1—1(A; 2) = (622(A))~2 so the constar€; in
(20) can be easily evaluated

1 1
=3 (2m)2

(2m)?4=2. (35)

Since in this case we know the eigenvalue of the opera(A:) turns into

(1]
TRi2(Ac) =2lim l Z 1 —2Iogr]

e 1250 (c+i2)

(1] 1
=4lim —logt| = 4y;.
e [% (c+i2)3 ] i

We have named this constagtbecause of the link with the usual constant of Euler-
Mascheroni in [34). Notice that, letting tend to 0, goes to+oo; while, if c tends
to infinity, ¢ goes to—. Finally, we obtain

Nl

(36)

Dc(A) = %N(Ac;#)
~Alog(A) 4 (2ye— 1A +0(A1%), A = w.

(37)

In this case, knowing exactly the eigenvalues of the operate can check our es-
timate with a numerical experiment. We have checked (37)Dfgi\) with A =
10.000.000. In the second column of the Table 1 there is the estinfatieeccoef-
ficient of first term of the asymptotic expansion obtainedlite software Maple 15,
in the third the coefficient obtained Hy {37), and in the fauhte error. We can notice
that the error increases with This is not surprising, since_(B5) does not depend.on
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Table 1 1st. term approximation

c 1st. term with Maple| 1st. term in[(3F) error

2 1,024846785 1 0,024846785
3 0,9916281891 1 0,008371811
4 0,968979304 1 0,031020696
5 0,951859819 1 0,048140181
6 0,938130598 1 0,061869402
7 0,926687949 1 0,073312051
8 0,916888721 1 0,083111279
9 0,908326599 1 0,091673401
10 0,900728511 1 0,099271489
11 0,893902326 1 0,106097674
12 0,887707593 1 0,112292407
13 0,882038865 1 0,117961135
14 0,876815128 1 0,123184872
15 0,871972341 1 0,128027659
16 0,867459966 1 0,132540034
17 0,863235614 1 0,136764386
18 0,859265437 1 0,140734563
19 0,855520776 1 0,144479224
20 0,851977951 1 0,148022049

Table 2 2nd. term approximation

c 2nd. term with Maple| 2nd. term in[(3¥) error

2 0,40048285 0,401484386 | 0,001001536
3 -0,13493765 -0, 1339381238 | 0,000999526
4 -0,499994550 -0,498993281 | 0,001001269
5 -0,775928050 -0,774926584 | 0,001001466
6 -0,997216950 -0,996213733 | 0,001003217
7 -1,181650650 -1,180647904 | 0,001002746
[} -1,339595550 -1,3385899520 | 0,001005598
9 -1,477600650 -1,476592538 | 0,001008112
10 -1,600067350 -1,599058126 | 0,001009224
11 -1,710092450 -1,7090842470 | 0,001008203
12 -1,809939750 -1,808931287 | 0,001008463
13 -1,901308850 -1,9002985710 | 0,001010279
14 -1,985505550 -1,9844949070 | 0,001010643
15 -2,063562050 -2,0625496430 | 0,001012407
16 -2,136292950 -2,1352865400 | 0,001006410
17 -2,204381450 -2,2033750580 | 0,001006392
18 -2,268373150 -2,2673662890 | 0,001006861
19 -2,328729950 -2,3277195600 | 0,001010390
20 -2,385833550 -2,3848212840 | 0,001012266

In order to make the error smaller, we should increase thebeuwf digits at which
we truncate the serieB¢(A). In Table[2 we analyze the coefficient of the second
term. In this case the error is essentially independent tifis is due to the fact that
(39) does depend an

Our spectral approach to Dirichlet Divisor function suggdbat otherdVeyl's
formula techniquege. g. Fourier Integral Operator) could be useful to attdek t
Dirichlet Divisor conjecture.
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