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WINDOW-DEPENDENT BASES FOR EFFICIENT

REPRESENTATIONS OF THE STOCKWELL TRANSFORM

Abstract. Since its appearing in 1996, the Stockwell transform (S-transform)
has been applied to medical imaging, geophysics and signal processing in gen-

eral. In this paper, we prove that the system of functions (so-called DOST

basis) is indeed an orthonormal basis of L2 pr0, 1sq, which is time-frequency

localized, in the sense of Donoho-Stark Theorem (1989). Our approach pro-

vides a unified setting in which to study the Stockwell transform (associated

to different admissible windows) and its orthogonal decomposition. Finally, we
introduce a fast – O pN logNq – algorithm to compute the Stockwell coeffi-

cients for an admissible window. Our algorithm extends the one proposed by

Y. Wang and J. Orchard (2009).

U. Battisti

Dipartimento di Matematica,
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1. Introduction

Let f be a signal with finite energy, that is f P L2 pRq, and let ϕ be a window
in L2 pRq. Then, following M. W. Wong and H. Zhu [34], we define the Stockwell
transform (S-transform) Sϕ f as

pSϕ fq pb, ξq “ p2πq
´1{2

ż

R
e´2πi tξ f ptq |ξ|ϕ pξ pt´ bqq dt, b, ξ P R.(1.1)

It is possible to rewrite the S-transform with respect to the Fourier transform of
the analyzed signal:

pSϕ fq pb, ξq “

ż

R
e2πi bζ pf pζ ` ξq pϕ

ˆ

ζ

ξ

˙

dζ, b, ξ P R, ξ ‰ 0,(1.2)

where pf is the Fourier transform of the signal f , given by

pf pξq “ pF fq pξq “ p2πq
´1{2

ż

R
e´2πi tξ fptqdt, ξ P R.

We fix some notation: we denote with qf or F´1 f the inverse Fourier transform of a
signal f . N “ t0, 1, . . .u is the set of non negative integers, Z “ t. . . ,´1, 0, 1, . . . , u
is the set of integers.
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The S-transform was initially defined by R. G. Stockwell, L. Mansinha and R.
P. Lowe in [29] using a Gaussian window

g ptq “ e´t
2
{2, t P R.

In this case,

pSg fq pb, ξq “ p2πq
´1{2

ż

R
e´2πi tξ f ptq |ξ| e´pt´bq

2ξ2{2 dt, b, ξ P R,(1.3)

which, in the alternative formulation, becomes

pSg fq pb, ξq “

ż

R
e2πi ζb pf pζ ` ξq e´2π2ζ2{ξ2 dζ, b, ξ P R, ξ ‰ 0.(1.4)

The natural discretization of (1.4), introduced in [29], is given by

pSg fq pj, nq “
N´1
ÿ

m“0

e2πimj{N pf pm` nq e´2π2m2
{n2

,(1.5)

where j “ 0, . . . , N ´ 1 and n “ 1, . . . , N ´ 1. For n “ 0, it is set

pSg fq pj, 0q “
1

N

N´1
ÿ

k“0

fpkq, j “ 0, . . . , N ´ 1.

In the literature, (1.5) is called redundant (discrete) Stockwell transform. Un-
fortunately, the redundant Stockwell transform has a high computational cost
– O

`

N2 logN
˘

. To overcome this problem, R. G. Stockwell introduced in [27],
without a mathematical proof, a basis for periodic signals with finite energy, i.e.
L2 pr0, 1sq, given by

ď

pPZ
Dp “

ď

pPZ
tDp,τu

βppq´1
τ“0 .(1.6)

This basis, precisely defined in Section 3, is adapted to octave samples in the fre-
quency domain. The decomposition of a periodic signal f in this basis is called in
the literature the discrete orthonormal Stockwell transform (DOST). The related
coefficients

fp,τ “ pf,Dp,τ qL2pr0,1sq ,

are called DOST coefficients.
In this paper we prove that this basis is not suited to the standard S-transform

with Gaussian window (1.1), rather to an S-transform associated with a characteris-
tic function (boxcar window). This fact was already pointed out by R. G. Stockwell
himself in [27] and [28]. The computational complexity of the algorithm suggested
by R. G. Stockwell was still high: OpN2q. In 2009, Y. Wang and J. Orchard [33]
proposed a fast algorithm which reduces drastically the complexity to OpN logNq;
the same complexity of the FFT. This achievement allowed a wider application of
the S-transform to image analysis.

We provide an adapted basis of L2 pr0, 1sq on which to decompose the Stockwell
transform with a general admissible window ϕ. Assume that we can find such a
basis Eϕp of L2 pr0, 1sq, depending on the choice of ϕ. Then, by linearity, we can
write

pSϕ fq pb, ξq “
ÿ

p

cϕp
`

SϕE
ϕ
p

˘

pb, ξq(1.7)

where

f “
ÿ

j

cϕpE
ϕ
p .

An ideal basis would satisfy the following properties:
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(i) Eϕp is an orthonormal basis of L2 pr0, 1sq, so that

cϕp “
`

f,Eϕp
˘

L2pr0,1sq
;

(ii)
`

SϕE
ϕ
p

˘

pb, ξq is local in time;

(iii)
`

SϕE
ϕ
p

˘

pb, ξq is local in frequency;
(iv) we can find a fast algorithm – O pN logNq – to compute the coefficients

`

f,Eϕp
˘

L2pr0,1sq
.

We prove that (1.6) is indeed an orthonormal basis of L2 pr0, 1sq satisfying conditions
(i), (ii), (iii) and (iv) if ϕ “ qχ “ F´1 χp´ 1

3 ,
1
3 q

. In particular, we prove that1

E qχ
p,τ “ Dp,τ .

Moreover, in Proposition 11 we clarify the connection between the Stockwell coef-
ficients and the value of the S-transform with window qχ.

Let ϕ be an admissible window, we introduce the basis

Eϕp,τ ,(1.8)

such that2

`

SϕE
ϕ
p,τ

˘

pb, ν ppqq “ Dp,τ pbq ,(1.9)

where ν ppq is the center of the p-frequency band where the basis Dp,τ in (1.6) is
supported. In Section 6, we introduce a fast – O pN logNq – algorithm to compute
the coefficients

`

f,Eϕp,τ
˘

L2pr0,1sq
.

Unfortunately, for a general admissible window ϕ, the basis (1.8) fails to be orthog-
onal. Nevertheless, under a mild condition on ϕ, we prove that it forms a frame,
which in general is not tight. So, by abstract theory of frames, we obtain that the
coefficients in (1.7) are

´

f, ĄEϕp,τ
¯

L2pr0,1sq
,

where ĄEϕp,τ is the dual frame of Eϕp,τ .
This paper is organized as follows: in Section 2, we provide a brief survey on the

S-transform in the context of time-frequency analysis. In particular, we point out
the similarities and the differences between Fourier transform, short-time Fourier
transform and wavelet transform. In Section 3, we prove that (1.6) is a basis of
L2 pr0, 1sq and we highlight its time-frequency local properties. In Section 4, we
decompose the Stockwell transform with a general window using (1.6). Moreover,
we determine the explicit expression of pSϕDp,τ q. In Section 5, we provide a dis-
cretization of the S-transform. In Section 6, we determine the basis (1.8) adapted
to a general admissible window ϕ. We propose an algorithm which evaluates the
coefficients related to the basis (1.8) of computational complexity OpN logNq. This
algorithm extends the one proposed by Y. Wang and J. Orchard in [33].

1See Remark 3 for the precise statement.
2Equality (1.9) must be interpreted with care, we refer to Section 6 for the precise statement.
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2. A Brief Survey on the S-transform

In many practical applications it is important to analyze signals, i.e. extracting
the time-frequency content of a signal. Given a signal f in L2 pRq, we can precisely
extract its frequency content using the Fourier transform F

pf pξq “ pF fq pξq “ p2πq
´1{2

ż

R
e´2πi tξ fptq dt, ξ P R.

Unfortunately, due to uncertainty principle, it is impossible to retain at the same
time precise time-frequency information. In the past years, many techniques arose
trying to deal with the uncertainty principle in order to obtain a sufficiently good
time-frequency representation of a signal. The short-time Fourier transform

pSTFTϕ fq pb, ξq “ p2πq
´1{2

ż

R
e´2πi tξ f ptqϕ pt´ bq dt, b, ξ P R

is one of the standard tools. Loosely speaking, taking the short-time Fourier trans-
form of a signal f at a certain time b is like taking the Fourier transform of the
signal f cut by a window function ϕ centered in b, see for example [13], [17]. It is
possible to invert the short-time Fourier transform using the following theorem.

Theorem 1. Let f be a signal in L2 pRq and ϕ a window in L2 pRq. Then

pf pξq “

ż

R
pSTFTϕ fq pb, ξq db, ξ P R.

Notice that the width of the analyzing window remains fixed. Due to the Nyquist
sampling theorem, it would be natural to consider a window whose width depends
on the analyzed frequency. To accomplish this task, in [29], the S-transform Sg was
introduced as

pSg fq pb, ξq “ p2πq
´1{2 |ξ|

ż

R
e´2πi tξ f ptq e´pt´bq

2ξ2{2 dt, b, ξ P R.(2.1)

Notice that the width of the Gaussian window e´pt´bq
2ξ2{2 shrinks as the analyzed

frequency increases, providing a better time-localization for high frequencies. It is
possible to rewrite the Stockwell transform with respect to the Fourier transform
of the signal f as

pSg fq pb, ξq “

ż

R
e2πi ζb pf pζ ` ξq e

´
2π2ζ2

ξ2 dζ, b, ξ P R, ξ ‰ 0.(2.2)

In [29] it has been stated an inversion formula similar to Theorem 1.

Theorem 2. Let f be a signal in L2 pRq . Then

pf pξq “

ż

R
pSg fq pb, ξq db, ξ P R.

Many extensions of this transform have been suggested in the last years. See for
example [10, 18, 19, 34, 35]. We here recall the one introduced in [34].

Definition 1. Let f be a signal in L2 pRq and let ϕ be a window function in L2 pRq.
Then, we call

pSϕ fq pb, ξq “ p2πq
´1{2

ż

R
e´2πi tξ f ptq |ξ|ϕ pξ pt´ bqq dt, b, ξ P R(2.3)

the Sϕ-transform of the signal f with respect to the window ϕ.

It is possible to recover the original definition (2.1) taking ϕ to be the Gaussian

window ϕ ptq “ e´t
2
{2. The S-transform has been recently extended to the multi-

dimensional case by the second author [26]. Theorem 2 still holds for the S-transform
(2.3).
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See [4, 7, 12, 16, 20, 22, 24, 36] for some applications of the S-transform to signal
processing.

Heuristically, we can think at the S-transform as a short-time Fourier transform
in which the width of the analyzing window varies with respect to the analyzed
frequency. Therefore, the S-transform can also be interpreted as a particular non
stationary Gabor transform, see [1].

We can give an equivalent definition of the S-transform using the following propo-
sition.

Proposition 3. Let f be a signal in L2 pRq and let ϕ be a window in L2 pRq. Then

pSϕ fq pb, ξq “ e´2πi bξ
´

F´1
ζ ÞÑb fξ

¯

pbq , b, ξ P R, ξ ‰ 0,

where

fξ pζq “ pf pζq pϕ

ˆ

ζ ´ ξ

ξ

˙

, ζ P R, ξ ‰ 0.

The following inversion formula has been proven in [34].

Theorem 4. Let ϕ be a function in L1 pRq X L2 pRq such that

cϕ “

ż

R
|pϕ pξq|2 dξ

|ξ ` 1|
ă 8.

We say that ϕ is an admissible window for the S-transform and we call cϕ the
admissibility constant. Then

cϕ
`

f, f 1
˘

L2pRq “

ż

R

ż

R
pSϕ fq pb, ξq pSϕ f 1q pb, ξq db

dξ

|ξ|
,

for all f and f 1 in L2 pRq.

At this point, it is useful to recall the wavelet transform Wϕ f of a signal f in
L2 pRq with respect to the window ϕ

pWϕ fq pb, aq “

ż

R
f ptq |a|´1{2

ϕ pa´1 pt´ bqq dt, @b, a P R.

See for example [3, 9, 23] for details on wavelet analysis and filter banks.

Theorem 5. Let ϕ be a window in L2 pRq such that

cϕ “

ż

R
|pϕ pξq|2 dξ

|ξ|
ă 8.

We say that ϕ is an admissible wavelet and we call cϕ the admissibility constant.
Then

cϕ
`

f, f 1
˘

L2pRq “

ż

R

ż

R
pWϕ fq pb, aq pWϕ f 1q pb, aq db

da

a2
,

for all f and f 1 in L2 pRq.

Notice the similarities between Theorem 4 and Theorem 5. This follows from a deep
connection among Stockwell transform, short-time Fourier transform and wavelet
transform. In fact, these transforms are related to the affine Weyl-Heisenberg group
studied in [21]. This connection has been highlighted in the multi-dimensional case
by the second author in [25]. In [15, 30], the connections between Stockwell trans-
form and wavelet transform are pointed out. The affine Weyl-Heisenberg group is
also connected to the definition of α-modulation spaces, see [2, 8, 14], which rep-
resents, at the level of coorbit theory, a sort of interpolation between Modulation
spaces and Besov spaces. A different group approach to the Stockwell transform
has been studied in [6].
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Figure 1. DOST basis functions in increasing frequency p-bands.
Black line = real, red line = imaginary. See Figure 2 in [27] for a
comparison.

3. A Time-Frequency Localized Basis

In this section, we prove that the system of functions (1.6), proposed by R. G.
Stockwell in [27], is indeed an orthonormal basis of L2 pr0, 1sq.

For p “ 0, we define

νp0q “ 0, βp0q “ 1, τp0q “ 0,

for p “ 1

νp1q “ 1, βp1q “ 1, τp1q “ 0,

for all p ě 2

νppq “ 2p´1 ` 2p´2, βppq “ 2p´1, τppq “ 0, . . . , βppq ´ 1.

Setting, for each p, the p-frequency band

rβppq, 2βppq ´ 1s “

„

νppq ´
βppq

2
, νppq `

βppq

2
´ 1



,

we obtain a partition of N; notice that νppq is the center of each p-frequency band.
We recall here the definition of the so-called DOST functions, introduced in [27]:

D0 ptq “ 1, t P R,

D1 ptq “ e2πi t, t P R,
and

Dp “ tDp,τ ptquτ“0,...,βppq´1 , t P R,

where

Dp,τ ptq “
1

a

βppq

νppq`βppq{2´1
ÿ

f“νppq´βppq{2

e2πi fte´2πi fτ{βppq, t P R.
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Figure 2. DOST basis functions in the same p-band (p “ 5).
Black line = real, red line = imaginary. See Figure 1 in [27] for a
comparison.

For all negative integers p, we set

Dp,τ ptq “ D´p,τ ptq, τ “ 0, . . . , β p|p|q ´ 1.

For each p P N, νp´pq “ ´νppq and βp´pq “ βppq. In the sequel we call
ď

pPZ
Dp(3.1)

Stockwell basis.
Notice that, in the original paper [27], each Dp,τ had a multiplicative factor

eτπi. Since this factor is not crucial in proving that (3.1) is a basis of L2 pr0, 1sq,
we have decided to drop it. In (5.17), we clarify the role of this multiplicative
factor. In Figure 1 and Figure 2 we draw the DOST basis functions without this
multiplicative factor. In Figure 2 notice that, with our choice, these functions are
self-similar in each p-band, in contrast to the ones defined in [27]. Moreover, we
have slightly changed the notation in the frequency domain. The kth element of
the Fourier basis is e2πi kt, while, in the original paper, the kth element is e´2πi kt.
The convention we adopt seems closer to the standard Fourier analysis.

Theorem 6.
Ť

pPZDp is an orthonormal basis of L2 pr0, 1sq.

Proof. In the sequel, we consider positive p. For negative p, all results hold true
using the adjoint property. We recall that te2πi ktukPZ is an orthonormal basis of
L2 pr0, 1sq and we notice that Dp,τ ptq is a finite linear combination of e2πi kt with k
in the p-frequency band

Ip “

„

νppq ´
βppq

2
, νppq `

βppq

2
´ 1



.

Hence, we can conclude that

pDp,τ , Dp1,τ 1qL2pr0,1sq “ 0, if p ‰ p1, @τ, τ 1,
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since the p-band and the p1-band are disjoint. So, we can focus on the case p “ p1.
The proof is divided into three steps.

Step I - }Dp,τ }L2pr0,1sq “ 1.

Consider the inner product

}Dp,τ }
2
L2pr0,1sq “ pDp,τ , Dp,τ qL2pr0,1sq

“
1

βppq

ż 1

0

¨

˝

νppq`βppq{2´1
ÿ

f“νppq´βppq{2

e2πi fte´2πi fτ{βppq

˛

‚

¨

˝

νppq`βppq{2´1
ÿ

f 1“νppq´βppq{2

e´2πi f 1te2πi f
1τ{βppq

˛

‚dt.

Since te2πi ktukPZ is an orthonormal basis,

}Dp,τ }
2
L2pr0,1sq “

1

βppq

f“νppq`βppq{2´1
ÿ

f“νppq´βppq{2

ż 1

0

1 dt “ 1.

Step II -
Ť

pPZDp is an orthonormal set.

If p ‰ p1 the L2-scalar product vanishes, so we can suppose p “ p1. It is convenient
to consider j “ f ´ βppq.

Dp,τ ptq “
1

a

βppq

βppq´1
ÿ

j“0

e2πi pβppq`jqte´2πi pβppq`jqτ{βpbq

“
1

a

βppq

βppq´1
ÿ

j“0

e2πi pβppq`jqte´2πi τj{βppq.(3.2)

The orthonormality of the Fourier basis implies

(3.3) pDp,τ , Dp,τ 1qL2pr0,1sq “
1

βppq

βppq´1
ÿ

j“0

e2πi pτ
1
´τqj{βppq.

Now, we need the following lemma.

Lemma 1. Let k P Nzt0u. Then

2k´1
ÿ

j“0

e2πi jm{2
k

“ 0, m “ ˘1, . . . ,˘p2k ´ 1q.(3.4)

Proof. Notice that (3.4) is a truncated geometric series with ratio e2πim{2
k

. There-
fore, the well known formula for geometric progression implies that

2k´1
ÿ

j“0

e2πi jm{2
k

“
1´ e2πim2k{2k

1´ e2πim{2k
“ 0.

Since m “ ˘1, . . . ,˘p2k´1q, the denominator in the above equation never vanishes.
�

Let pτ 1 ´ τq “ m in (3.4), then Lemma 1 implies that

pDp,τ , Dp1,τ 1qL2pr0,1sq “ δ0pp´ p
1qδ0pτ ´ τ

1q,

i.e.
Ť

pPZDp is an orthonormal set.

Step III -
Ť

pPZDp is a basis of L2 pr0, 1sq.
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Notice that

Dp Ď spante2πi ktukPrβppq,2βppq´1s.

Hence, to prove the assertion it is sufficient to show that the elements of the set
tDp,τuτ“0,...,βppq´1 are a basis of spante2πi ktukPrβppq,2βppq´1s. Since we deal with fi-

nite dimensional vector spaces, we prove that the functions tDp,τu
βppq´1
τ“0 are linearly

independent; that is

βppq´1
ÿ

τ“0

cτDp,τ “ 0 ùñ cτ “ 0, @τ “ 0, . . . , βppq ´ 1.(3.5)

Since te2πi pβppq`jqtuj“0,...,βppq´1 is a basis, we can consider the projection of (3.5)

on each term te2πi pβppq`jqtuj“0,...,βppq´1 of the Fourier basis. We obtain the system

βppq´1
ÿ

τ“0

cτe
´2πi τj{βppq “ 0, j “ 0, . . . , βppq ´ 1.(3.6)

Notice that (3.6) can be written as the linear system
¨

˚

˚

˚

˚

˚

˝

1 1 . . . 1

1 e´2πi {βppq . . . e´2πi pβppq´1q{βppq

1 e´2πi 2{βppq . . . e´2πi 2pβppq´1q{βppq

...
...

. . .
...

1 e´2πi pβppq´1q{βppq . . . e´2πi pβppq´1q2{βppq

˛

‹

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˚

˝

c0
c1
c2
...

cβppq´1

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

0
0
0
...
0

˛

‹

‹

‹

‹

‹

‚

(3.7)

The square matrix in (3.7) is a Vandermonde matrix with entries
 

e´2πi l{βppq
(βppq´1

l“0
. Since the entries are all distinct the determinant of the

Vandermonde matrix is non zero and the unique solution of the linear system (3.7)

is the zero vector. That is the functions tDp,τu
βppq´1
τ“0 are linear independent. �

Lemma 1 implies the following corollary.

Corollary 1. For each p P Z and each τ, τ 1 “ 0, . . . , βp|p|q ´ 1 we have

Dp,τ

ˆ

τ 1

βppq

˙

“
a

βppqδ0pτ
1 ´ τq.

Proof. Let us suppose p positive. Then

Dp,τ

ˆ

τ 1

βppq

˙

“
1

a

βppq

βppq´1
ÿ

j“0

e
2πi pβppq`jq

´

τ 1´τ
βppq

¯

“
1

a

βppq

βppq´1
ÿ

j“0

e2πi jpτ
1
´τq{βppq.

Letting pτ 1´ τq “ m, we apply Lemma 1 and we obtain the assertion. For negative
p we use the adjoint property. �

The DOST functions are not dilations nor translations of a single function. Nev-
ertheless, for each p,

Dp ptq “

$

&

%

1
a

βppq

βppq´1
ÿ

j“0

e2πi pβppq`jqpt´τ{βppqq

,

.

-

τ“0,...,βppq´1

is formed by translations of τ{βppq of the same function. Roughly speaking, we can
state that the DOST basis is not self similar globally, but it is self similar in each
band, see Figure 2. Hence, the S-transform in this setting appears different from the
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wavelet transform because the mother wavelet changes as the frequencies increases,
in contrast to the usual formulation.

R. G. Stockwell proposed this basis because it is an efficient compromise between
frequency localization in low frequencies and time localization for high frequencies.
The price to pay is that, on one hand, for high frequencies, we do not have a
precise frequency localization, but just a localization in a certain band, which is
wider as the frequency increases and, on the other hand, in low frequencies, we lose
time localization. In fact, for high frequencies, the basis Dp,τ are, in large sense,
local at t “ τ{βppq. It is not true that Dp,τ has compact support in time, but the
energy is concentrated near the point t “ τ{βppq. We prove that basis Dp,τ are
0.85-concentrated in the neighborhood

Ip,τ “

„

τ

βppq
´

1

2βppq
,
τ

βppq
`

1

2βppq



,

in the sense of the Donoho-Stark Theorem [11, 5].

Proposition 7. For each Dp,τ ptq we have

}Dp,τ }L2pIp,τ q
“

˜

ż
2τ`1
2βppq

2τ´1
2βppq

|Dp,τ |
2dt

¸1{2

ą 0, 85,

i.e. the L2-norm is concentrated in the interval

Ip,τ “

„

τ

βppq
´

1

2βppq
,
τ

βppq
`

1

2βppq



.

Since }Dp,τ } “ 1, we can also state that the L2-norm of Dp,τ is less that 0, 15 out
of Ip,τ . For τ “ 0, Ip,0 must be considered as an interval in circle, that is

Ip,0 “

„

0,
1

2βppq

˙

Y

ˆ

1´
1

2βppq
, 1



.

Proof. Since in each p-band the basis functions are a translation of τ{βppq of the
same function, we can prove the property for a fixed τ . For simplicity, we consider
τ “ 0. In order to take in account just one integral, we extend by periodicity the
function for negative t and we evaluate

ż 1
2βppq

´ 1
2βppq

|Dp,τ ptq|2 dt.(3.8)

Notice that

|Dp,0|2 “Dp,0ptq ¨Dp,0ptq

“
1

βppq

¨

˝

βppq´1
ÿ

j“0

e2πi pβppq`jqt

˛

‚¨

¨

˝

βppq´1
ÿ

k“0

e´2πi pβppq`kqt

˛

‚

“
1

βppq

βppq´1
ÿ

m“´βppq`1

pβppq ´ |m|qe2πimt.(3.9)

Equation (3.9) can be proven by induction on the size of the band. Writing (3.9)
in terms of cosine and sine we obtain

|Dp,0|2

“
1

βppq

βppq´1
ÿ

m“´βppq`1

pβppq ´ |m|qpcosp2πmtq ` i sinp2πmtqq
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“1`
1

βppq

βppq´1
ÿ

m“1

pβppq ´mq ppcosp2πmtq ` cosp´2πmtqq ` i psinp2πmtq ` sinp´2πmtqqq

“1`
2

βppq

βppq´1
ÿ

m“1

pβppq ´mq cos p2πmtq .

Therefore,
ż 1

2βppq

´ 1
2βppq

|Dp,0 ptq|2 dt

“

ż 1
2βppq

´ 1
2βppq

dt`
2

βppq

ż 1
2βppq

´ 1
2βppq

βppq´1
ÿ

m“1

pβppq ´mq cosp2πmtq dt

“
1

βppq
`

2

βppq

βppq´1
ÿ

m“1

pβppq ´mq
sinp2πmtq

2πm

ˇ

ˇ

ˇ

ˇ

1
2βppq

´ 1
2βppq

“
1

βppq
`

4

βppq

βppq´1
ÿ

m“1

pβppq ´mq
sin

´

2πm
2βppq

¯

2πm
.

By the Maclaurin expansion of sinpxq,

ż 1
2βppq

´ 1
2βppq

|Dp,0|2 dt “
1

βppq
`

4

βppq

βppq´1
ÿ

m“1

pβppq ´mq

˜

2πm 1
2βppq `Rmpηq

2πm

¸

,

where Rmpηq is the Lagrange rest. Using Leibniz summation formula we obtain

ż 1
2βppq

´ 1
2βppq

|Dp,0 ptq|2 dt –
1

βppq
`

2

β2ppq

βppq´1
ÿ

m“1

pβppq ´mq

“
1

βppq
`

2

β2ppq

ˆ

βppqpβppq ´ 1q ´
1

2
βppqpβppq ´ 1q

˙

“
1

βppq
`

1

βppq
pβppq ´ 1q “ 1.

We have to take in account the rests Rmpηq. Since

sup

∣∣∣∣ d3

dt3
rsinp2πmtqs

∣∣∣∣ “ p2πmq3,
we can conclude that

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

4

βppq

βppq´1
ÿ

m“1

pβppq ´mq
Rmpηq

2πm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď
4

βppq

βppq´1
ÿ

m“1

pβppq ´mq

2πm

p2πmq3

6p2βppqq3

ď
π2

3β4ppq

βppq´1
ÿ

m“1

pβppq ´mqm2

ď
π2

3β4ppq

ˆ

βppq2

6
pβppq ´ 1qp2βppq ´ 1q ´

βppq2

4
pβppq ´ 1q2

˙

ď
π2pβppq ´ 1q

3β2ppq

ˆ

βppq

3
´

1

6
´
βppq

4
`

1

4

˙
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ď
π2

36

βppq2 ´ 1

βppq2

ď
π2

36
ă 0, 275.

Hence, finally
˜

ż 1
2βppq

´ 1
2βppq

|Dp,0 ptq|2 dt

¸1{2

ě p1´ 0, 275q1{2 ě
a

0, 725 ą 0, 85.

�

4. Diagonalization of the S-transform

In this section, for the sake of clarity, we write Sϕ-transform instead of S-
transform to emphasize the window dependence. We focus our attention to
L2 pr0, 1sq. Using Fourier series, it is well known that if f P L2 pr0, 1sq, then

fptq “
ÿ

kPZ
f̂pkqe2πi kt, a.e.,

and

}f}L2pr0,1sq “

˜

ÿ

kPZ
|f̂pkq|2

¸
1
2

.

We define the Hilbert space pY, p , qY , } }Y q:

Y “

#

ÿ

kPZ
ckpξqe

2πi pk´ξqb | ckpξq P L
2

ˆ

R,
1

|ξ|

˙

, and
ÿ

kPZ
}ck}

2
L2pR, 1

|ξ| q
ă 8

+

,

pg, g1qY “

ż 1

0

ż

R
gpb, ξqg1pb, ξq

dξ

|ξ|
db, g, g1 P Y,

}g}Y “
b

pg, gqY “

˜

ÿ

kPZ
}gk}

2
L2pR, 1

|ξ| q

¸
1
2

, gpb, ξq “
ÿ

kPZ
gkpξqe

2πi pk´ξqb, a.e. .

In view of Theorem 4, we introduce pZ, p , qZ , } }Zq the Hilbert space of admis-
sible windows:

Z “

"

ϕ P S 1pRq |
ż

|pϕ pξq |2
dξ

|1` ξ|
ă 8

*

,(4.1)

`

ϕ,ϕ1
˘

Z
“

ż

pϕ pξq pϕ1 pξq
dξ

|1` ξ|
, ϕ, ϕ1 P Z,

}ϕ}Z “
b

pϕ,ϕqZ “

ˆ
ż

|pϕ pξq |2
dξ

|1` ξ|

˙1{2

.

Theorem 8. We define

S : L2 pr0, 1sq ˆ pZ XS pRqq ÝÑ Y

pf, ϕq “

˜

ÿ

kPZ

pf pkq e2πi kt, ϕ

¸

ÞÝÑ
ÿ

kPZ

pf pkq
`

Sϕ
`

e2πi k¨
˘˘

pb, ξq

where, in view of Proposition 3, we set

`

Sϕ e
2πi k¨

˘

pb, ξq “e´2πi bξ F´1
ζ ÞÑb

˜

pϕ

ˆ

ζ ´ ξ

ξ

˙

δkpζq

¸

pbq.

Then S : L2 pr0, 1sq ˆ pZ XS pRqq ÝÑ Y is continuous.
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Proof. We start considering Spe2πi k¨, ϕq “
`

Sϕ e
2πi k¨

˘

. By definition,

`

Sϕ e
2πi k¨

˘

pb, ξq “e´2πi bξ F´1
ζ ÞÑb

˜

pϕ

ˆ

ζ ´ ξ

ξ

˙

δkpζq

¸

pbq

“e´2πi bξ F´1
ζ ÞÑb

˜

pϕ

ˆ

k ´ ξ

ξ

˙

δkpζq

¸

pbq

“e´2πi bξ
pϕ

ˆ

k ´ ξ

ξ

˙

e2πi kb

“e2πi bpk´ξq pϕ

ˆ

k ´ ξ

ξ

˙

.

We observe that
›

›

›

›

›

pϕ

ˆ

k ´ ¨

¨

˙

›

›

›

›

›

2

L2pr0,1s, 1
|ξ| q

“

ż

R

∣∣∣∣∣pϕ
ˆ

k ´ ξ

ξ

˙

∣∣∣∣∣
2

1

|ξ|
dξ

“

ż

R

∣∣∣pϕ pω ´ 1q
∣∣∣2 |ω|
|k|

|k|

|ω|2
dω

“

ż

R

∣∣∣pϕ pwq∣∣∣2 dw

|w ` 1|
“ }ϕ}

2
Z .(4.2)

Therefore,
›

›S
`

e2πi k¨, ϕ
˘
›

›

2

Y
“
›

›Sϕ e
2πi k¨

›

›

2

Y
“ }ϕ}

2
Z .

The functions
 

e2πi kt
(

kPZ are orthonormal in L2 pr0, 1sq. Notice that

´

Sϕ e
2πi k¨,Sϕ e

2πi k1¨
¯

Y
“

ż 1

0

e2πi pk´k
1
qbdb

ż

R
pϕ

ˆ

k ´ ξ

ξ

˙

pϕ

ˆ

k1 ´ ξ

ξ

˙

dξ

|ξ|

“ }ϕ}
2
Z δ0pk ´ k

1q.(4.3)

Using the definition of S and equation (4.3), we conclude that if

fptq “
ÿ

kPZ
f̂pkqe2πi kt, a.e.,

then

} pSϕ fq p¨, ¨q }
2
Y “ pSϕ f, Sϕ fqY

“
ÿ

kPZ

ÿ

k1PZ

´

f̂pkqSϕ e
2πi k¨, f̂pk1qSϕ e

2πi k1¨
¯

Y

“
ÿ

kPZ

´

f̂pkqSϕ e
2πi k¨, f̂pkqSϕ e

2πi k¨
¯

Y

“
ÿ

kPZ
|f̂pkq|2

›

›Sϕ e
2πi k¨

›

›

2

Y

“ }ϕ}
2
Z }f}

2
L2pr0,1sq.

Therefore, S : L2 pr0, 1sq ˆ pZ ˆS pRqq Ñ Y is a continuous operator. �

Lemma 2. Let S : L2 pr0, 1sq ˆ pZ XS pRqq Ñ Y defined as in Theorem 8. Then,
since S pRq X Z is dense in Z, we can extend by continuity S to the whole of Z.

Remark 1. Theorem 8 is the discrete counterpart of Theorem 5 in the case of
periodic functions.
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In Section 3, we proved that the DOST functions form an orthonormal basis of
L2 pr0, 1sq. Let us assume that ϕ belongs to Z defined in (4.1). Then, by Theorem
8, Sϕ : L2 pr0, 1sq Ñ Y is continuous. So, we can write

pSϕ fq “
´

Sϕ
ÿ

pf,Dp,τ qL2pr0,1sqDp,τ

¯

“
ÿ

pf,Dp,τ qL2pr0,1sq pSϕDp,τ q

“
ÿ

fp,τ pSϕDp,τ q ,(4.4)

where

fp,τ “ pf,Dp,τ qL2pr0,1sq

and the sum in (4.4) is over all Dp,τ functions. Hence, in order to understand the
Sϕ-transform of a general function f P L2 pr0, 1sq, it is sufficient to evaluate the
coefficients fp,τ and determine once for all the Sϕ-transform of Dp,τ .

Notice that, for p ą 0,

Dp,τ ptq “
1

a

βppq

βppq´1
ÿ

j“0

e2πi pβppq`jqpt´τ{βppqq

“
1

a

βppq

βppq´1
ÿ

j“0

T´τ{βppqMβppq`j1 ptq .

Hence, we can write

pFDp,τ q pξq “
1

a

βppq

βppq´1
ÿ

j“0

`

F T´τ{βppqMpβppq`jq 1
˘

pξq

“
1

a

βppq

βppq´1
ÿ

j“0

`

M´τ{βppq T´βppq´j F 1
˘

pξq

“
1

a

βppq

βppq´1
ÿ

j“0

`

M´τ{βppq T´βppq´j δ0
˘

pξq

“
1

a

βppq

βppq´1
ÿ

j“0

e´2πi τ
βppq ξ δ0 pξ ´ βppq ´ jq

“
1

a

βppq

βppq´1
ÿ

j“0

e´2πi pβppq`jq τ
βppq δβppq`jpξq.(4.5)

Let us compute the Sϕ-transform of a basis function Dp,τ with a general window
ϕ belonging to Z. We assume pϕ continuous. By Theorem 8 and equation (4.5), we
obtain

e2πi bξ pSϕDp,τ q pb, ξq

“F´1
ζ ÞÑb

˜

pϕ

ˆ

ζ ´ ξ

ξ

˙

pFDp,τ q pζq

¸

pbq

“F´1
ζ ÞÑb

¨

˝

βppq´1
ÿ

j“0

e´2πi pβppq`jqτ{βppq

a

βppq
pϕ

ˆ

ζ ´ ξ

ξ

˙

δpβppq`jqpζq

˛

‚pbq

“F´1
ζ ÞÑb

¨

˝

βppq´1
ÿ

j“0

e´2πi pβppq`jqτ{βppq

a

βppq
pϕ

ˆ

βppq ` j ´ ξ

ξ

˙

δpβppq`jqpζq

˛

‚pbq



WINDOW-DEPENDENT BASES FOR EFFICIENT REPRESENTATIONS OF THE STOCKWELL TRANSFORM15

“

¨

˝

βppq´1
ÿ

j“0

e´2πi pβppq`jqτ{βppq

a

βppq
pϕ

ˆ

βppq ` j ´ ξ

ξ

˙

e2πi bpβppq`jq

˛

‚pbq .(4.6)

We set, for each fixed window ϕ, cϕp,j : RÑ R as

cϕp,jpξq “ pϕ

ˆ

βppq ` j ´ ξ

ξ

˙

, ξ ‰ 0.(4.7)

Hence, (4.6) simplifies into

pSϕDp,τ q pb, ξq “ e´2πi bξ

¨

˝

βppq´1
ÿ

j“0

e2πi pβppq`jqpb´τ{βppqq
a

βppq
cϕp,j pξq

˛

‚, ξ ‰ 0.(4.8)

Equations (4.8) and (4.4) provide an explicit expression of the Sϕ-transform of
a periodic signal f in terms of its Stockwell coefficients fp,τ . Notice that if ϕ̂ is
not a continuous function then equation (4.6), (4.7) and equation (4.8) must be
understood as a.e. equivalences.

5. Discretization of the Sϕ-transform

Let us consider an admissible window and a dyadic decomposition of the fre-
quency domain (see Section 3). We study the Sϕ-transform of the periodic signal f
at ξ “ νppq. Some conditions on the window ϕ are necessary in order to evaluate
Sϕ-transform punctually.

Assumptions 1. Let pϕ be a function in L8pRq such that pϕ|p´ 1
3 ,

1
3 q

is continuous,

and such that

pϕ pξq ‰ 0, |ξ| ă
1

3
,

pϕ pξq “ 0, |ξ| ą
1

3
, a.e.

lim
ξÑ´ 1

3
`
pϕ pξq “ c ă 8.

Notice that ϕ belongs to the set of admissible windows Z.

In the sequel we want to evaluate pϕ punctually. So, we need to perform a regu-
larizing procedure.

Lemma 3. Let ϕ be an admissible function satisfying Assumption 1. Then it is
possible to construct a sequence of continuous functions tϕRu

8

R“1 such that 3

pϕR is continuous ,

pϕR pξq Ñ pϕ pξq , punctually,(5.1)

ϕR pξq Ñ ϕ pξq , in the set of admissible windows Z.(5.2)

Moreover, we can suppose that

pϕR pξq “ 0, ξ P Rz
ˆ

´
1

3
´

2

3βpRq
,

1

3

˙

,(5.3)

pϕR pξq “ pϕ pξq , ξ P

ˆ

´
1

3
,

1

3
´

2

3β pRq

˙

.(5.4)

3Notice that, if ϕ satisfies (5.3) and (5.4), then (5.1) implies (5.2) by means of Lebesgue’s
Convergence Theorem.
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Proof. We can consider the smooth function

ωR pξq “

$

&

%

0 , ξ P Rz
´

´ 1
3 ´

2
3βpRq ,

1
3

¯

,

1 , ξ P
´

´ 1
3 ,

1
3 ´

2
3βpRq

¯

.

Since ϕ satisfies Assumption 1, we can define

r

pϕ pξq “

"

limξÑ´ 1
3
` pϕ pξq ξ ď ´ 1

3 ,

pϕ pξq , ξ ą ´ 1
3 .
.

Then ϕRptq “ F´1
ξ ÞÑt

´

ωR pξq rpϕ pξq
¯

has the desired properties. �

Let ϕ be an admissible window satisfying Assumption 1 and tϕRu
8

R“1 a sequence
as in Lemma 3. Then, by equation (4.8), we can write

pSϕR Dp1,τ q pb, νppqq “ e´2πibνppq

¨

˝

βpp1q´1
ÿ

j“0

e2πipβpp
1
q`jqpt´τ{βpp1qq

a

βpp1q
cϕRp1,jpνppqq

˛

‚.(5.5)

Clearly, it is crucial to understand the values cϕRp1,jpνppqq, which depend on the

window ϕ only if |p| ď R and |p1| ď R.

Proposition 9. Let ϕ be an admissible window satisfying Assumption 1 and
tϕRu

8

R“1 be the associated sequence defined in Lemma 3. Then

cϕRp1,jpνppqq “ 0, @j “ 0, . . . , βpp1q ´ 1 if p1 ‰ p, |p| ď R, |p1| ď R.(5.6)

Proof. We restrict ourselves to positive p1. For p1 ă 0, it suffices to consider the
adjoint.

Let |p| ă R, as in (5.6). In view of the properties of ϕR, in particular (5.3), the
condition

(5.7)

ˆ

βpp1q ` j

νppq

˙

´ 1 R

ˆ

´
1

3
´

2

3β pRq
,

1

3

˙

,

p ‰ p1, j “ 0, . . . , βpp1q ´ 1

implies relation (5.6). If p is negative, then νppq ă 0 and
ˆ

βpp1q ` j

νppq

˙

´ 1 ă ´1 ď ´
1

3
´

2

3βpRq
,

hence (5.7) is fulfilled for all j “ 0, . . . , βpp1q ´ 1.
If p positive, recalling the definition of βpp1q and νpp1q, condition (5.7) turn into

(5.8)
2

3

ˆ

βpp1q

βppq
`

j

βppq

˙

´ 1 R

ˆ

´
1

3
´

2

3β pRq
,

1

3

˙

,

j “ 0, . . . , βpp1q ´ 1, p ‰ p1.

If p ‰ p1, then we have to consider two cases.

Case I - p1 ă p.

The definition of βpp1q implies that βpp1q ď βppq{2. Therefore,

2

3

ˆ

βpp1q

βppq
`

j

βppq

˙

´ 1 ď
2

3

ˆ

1

2
`

j

βppq

˙

´ 1

ď ´
2

3
`

2

3

j

βppq
ď ´

2

3
`

2

3

βpp1q ´ 1

βppq
ď ´

2

3
`

1

3
´

2

3βppq
ď ´

1

3
´

2

3βpRq
.

Case II - p1 ą p.
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We have βppq ď βpp1q{2, so we can write

2

3

ˆ

βpp1q

βppq
`

j

βppq

˙

´ 1 ě
2

3

ˆ

2`
j

βppq

˙

´ 1 ě
1

3
`

2

3

j

βppq
ě

1

3
.

Thus, (5.8) is fulfilled in both cases. �

Let ϕ be an admissible window satisfying Assumption 1 and tϕRu be as in
Lemma 3. Then, by Proposition 9, the expression (5.5) assumes a simplified form
since it vanishes for all p1 ‰ p, provided |p1| ď R and |p| ď R. When p “ p1 we have

pSϕR Dp,τ q pb, νppqq “ e´2πi bνppq

¨

˝

βppq´1
ÿ

j“0

e2πi pβppq`jqpb´τ{βppqq
a

βppq
cϕRp,j pνppqq

˛

‚.(5.9)

Assume that cϕRp,j pν ppqq “ 1 for all j “ 0, . . . , β ppq ´ 1, then, via (5.9)

pSϕR Dp,τ q pb, νppqq “ e´2πi bνppqDp,τ pbq.(5.10)

In order to extend (5.10) to all Dp,τ , we introduce the following proposition.

Proposition 10. Set qχ “ F´1 χ be such that

pF qχq pξq “ χ pξq “

"

0 ξ P
`

´8,´ 1
3

‰

Y
“

1
3 ,`8

˘

1 ξ P
`

´ 1
3 ,

1
3

˘ .(5.11)

Then qχ satisfies Assumption 1 and

pS
qχR Dp,τ q

`

b, νpp1q
˘

“ e´2πi bνppqDp,τ pbqδ0
`

p´ p1
˘

, for all |p| ď R, |p1| ď R,

(5.12)

where tqχRu
8

R“1 is a sequence converging to qχ as in Lemma 3.

Proof. It follows from the definition of cϕp,j and by (5.10). �

In order to extend the punctual evaluation (5.12) to all periodic signal in
L2 pr0, 1sq we need to introduce another regularizing procedure in the frequency
domain.

Definition 2. We define the Fourier multiplier

TR : L2 pr0, 1sq Ñ L2 pr0, 1sq(5.13)

f “
ÿ

kPZ
f̂ pkq e2πi kt ÞÑ

ÿ

|k|ă2βpRq

f̂ pkq e2πi kt.(5.14)

Proposition 11. Let f be a periodic signal and tqχRu
8

R“1 defined as in Proposition
10 and TR as in Definition 2. Then

pS
qχR TRfq

ˆ

τ

β ppq
, νppq

˙

“ p´1qτ
a

βppqfp,τ , τ “ 0, . . . , βppq ´ 1, |p| ď R,

(5.15)

where

fp,τ “ pf,Dp,τ qL2pr0,1sq .

Proof. Since the functions pDp,τ q form an orthonormal basis of L2 pr0, 1sq, we have

fptq “
ÿ

p1,τ 1

pf,Dp1,τ 1qL2pr0,1sqDp1,τ 1ptq, a.e..

Notice that

pTRfq ptq “
ÿ

|p1|ďR

βpp1q´1
ÿ

τ 1“0

fp1,τ 1Dp1,τ 1ptq,
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where fp1,τ 1 “ pf,Dp1,τ 1qL2pr0,1sq. By linearity,

pS
qχR TRfq

ˆ

τ

β ppq
, νppq

˙

“
ÿ

|p1|ďR

βpp1q´1
ÿ

τ 1“0

fp1,τ 1 pSqχR Dp1,τ 1q

ˆ

τ

β ppq
, νppq

˙

.

If |p| ď R, by Proposition 10,

pS
qχR TRfq

ˆ

τ

β ppq
, νppq

˙

“

βppq´1
ÿ

τ 1“0

fp,τ 1 pSqχR Dp,τ 1q

ˆ

τ

β ppq
, νppq

˙

.(5.16)

In Corollary 1 we proved that

Dp,τ 1

ˆ

τ

βppq

˙

“
a

βppqδ0pτ ´ τ
1q.

Therefore, (5.16) turns into

pS
qχR TRfq

ˆ

τ

βppq
, νppq

˙

“ e´2πi νppq τ
βppq fp,τ Dp,τ

ˆ

τ

βppq

˙

“ e´2πi νppqτ{βppq
a

βppqfp,τ .

Since νppq “ ˘3{2βppq,

e´2πi νppqτ{βppq “ e¯3πi τ “ p´1qτ .

Therefore, finally,

pS
qχR TRfq

ˆ

τ

βppq
, νppq

˙

“ p´1qτ
a

βppqfp,τ , |p| ď R.(5.17)

�

The definition of qχR in (5.11) implies that

}qχR ´ qχ}Z Ñ 0.

Moreover, it is immediate that, for all f P L2 pr0, 1sq, }TRf ´ f}L2pr0,1sq Ñ 0. There-

fore, by the continuity properties of S, proven in Theorem 8, for all f P L2 pr0, 1sq

}pS
qχRTRfq ´ pSqχfq}Y Ñ 0, RÑ8.(5.18)

Equations (5.17) and (5.18) clarify the representation of the S-transform of a peri-
odic signal f via the Stockwell coefficients fp,τ . Moreover, (5.17) explains the role
of the multiplicative factor p´1qτ in front of the basis functions Dp,τ used by R. G.
Stockwell in [27].

Remark 2. In the paper we have always considered a symmetric partition of the
frequency from the positive and negative side. Actually, the algorithm is slightly
different: see [31, 32, 33] for details.

6. Window Adapted Basis Construction

In this section we determine a basis of L2pr0, 1sq adapted to an admissible window
ϕ satisfying Assumption 1. As explained in the introduction, we want to find a
basis Eϕp such that SϕE

ϕ
p is local both in time and in frequency and such that the

evaluations of all coefficients fϕp “ pf,E
ϕ
p qL2pr0,1sq is fast – O pN logNq. In Section

3, we proved that Dp,τ is a basis of L2 pr0, 1sq which is local both in time and
in frequency. Moreover, in Section 5, we showed that the natural discretization of
the time-frequency domain in this setting is given by the dyadic decomposition in
the frequency domain and the τ{βppq grid in the time domain. So, it is natural to
change our task in finding a basis Eϕp,τ such that

`

SϕE
ϕ
p,τ

˘

pb, νppqq “ e´2πi bνppqDp,τ pbq.(6.1)
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Figure 3. Eϕp,τ basis functions in increasing frequency p-bands.
Black line = real, red line = imaginary. pϕ is a truncated Gaussian
window with µ “ 0 and σ “ 1. Notice the similarities with Figure
1. Indeed, in this case the ratio pδ{Mq

2
is approximately 0.8836

and pM{δq
2

is approximately 1.13173, see Theorem 14.

As in the previous section, in order to obtain the punctual evaluation (6.1), we
introduce a sequence tϕRu

8

R“1 as in Lemma 3. In order to keep the notation easier,
we set

cϕp,j pνppqq “ cϕRp,j pνppqq , |p| ď R.

Notice that this definition makes sense in view of (5.4).

Theorem 12. Let ϕ be an admissible window satisfying Assumption 1 and

Eϕp,τ ptq “
1

a

βppq

βppq´1
ÿ

j“0

“

cϕp,jpν ppqq
‰´1

e2πi pβppq`jqpt´
τ

βppq q.(6.2)

Then

(6.3)
`

SϕR E
ϕ
p,τ

˘

pb, νppqq “ e´2πi bνppqDp,τ pbq, |p| ď R.

Moreover,
ď

pPZ
Eϕp ,

where

Eϕp “
 

Eϕp,τ
(

τ“0,...,βp|p|q´1

is a basis of L2 pr0, 1sq.

Remark 3. Take qχ as in (5.11), then

cqχp,j pν ppqq “ 1,
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Figure 4. Eϕp,τ basis functions in the same frequency p-band
(p “ 5). Black line = real, red line = imaginary. pϕ is a truncated
Gaussian window with µ “ 0 and σ “ 1. See Figure 2 for compar-
ison.

for all p and j. So, by (6.2) and (3.2),

E qχ
p,τ ptq “

1
a

βppq

βppq´1
ÿ

j“0

”

cqχp,jpν ppqq
ı´1

e2πi pβppq`jqpt´
τ

βppq q

“
1

a

βppq

βppq´1
ÿ

j“0

e2πi pβppq`jqpt´
τ

βppq q

“Dp,τ ptq.

Hence, the functions Eϕp,τ are a proper generalization of the DOST functions.

Proof. By equation (4.8), it follows that the functions Eϕp,τ do satisfy (6.3). So, we

only need to prove that
Ť

pPZE
ϕ
p is a basis of L2 pr0, 1sq.

Notice that

Eϕp Ď span
 

e2πi kt
(

kPrβppq,2βppq´1s
“ span tDp,τuτ“0,...,βppq´1 .

It is sufficient to check that Eϕp is a linear independent set. Let us assume that

there exist tατu
βppq´1
τ“0 such that

βppq´1
ÿ

τ“0

ατE
ϕ
p,τ ptq “ 0.

Then, by (6.3), for |p| ď R, we obtain

0 “

¨

˝SϕR

βppq´1
ÿ

τ“0

ατE
ϕ
p,τ

˛

‚pb, νppqq
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Figure 5. Eϕp,τ basis functions with p “ 4 and τ “ 4 with differ-
ent windows. Black line = real, red line = imaginary. The Fourier
transform of pϕ is χp´1{3,1{3q in the first plot, then a truncated
Gaussian with varying µ and σ.

“

βppq´1
ÿ

τ“0

ατ
`

SϕR E
ϕ
p,τ

˘

pb, νppqq

“ e´2πi bνppq

βppq´1
ÿ

τ“0

ατ Dp,τ pbq.

Hence,

βppq´1
ÿ

τ“0

ατDp,τ pbq “ 0.(6.4)

Since Dp,τ is a basis, (6.4) implies that ατ are all zeros. That is, Eϕp,τ are linear
independent. �

Proposition 13. Let Eϕp,τ as in Theorem 12 and let f be a finite signal. Then the
evaluation of the coefficients

fϕp,τ “
`

f,Eϕp,τ
˘

L2pr0,1sq

has computational complexity OpN logNq, where N is the length of f .

Proof. By Plancharel’s Theorem we can write

fϕp,τ “
`

f,Eϕp,τ
˘

L2pr0,1sq
“

´

f̂ , yEϕp,τ
¯

l2pZq
.

Using the explicit expression of the basis Eϕp,τ , we obtain

fϕp,τ “

¨

˝f̂ ,
1

a

βppq

βppq´1
ÿ

j“0

“

cϕp,jpνppqq
‰´1

e´2πi pβppq`jqpτ{βppqqδβppq`jp¨q

˛

‚

l2pZq
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Figure 6. Decompositions of a given test signal on different win-
dowed basis.

“
1

a

βppq

βppq´1
ÿ

j“0

pfpβppq ` jq
“

cϕp,jpνppqq
‰´1

e2πi pβppq`jqpτ{βppqq

“

¨

˝Rϕf̂ ,
1

a

βppq

βppq´1
ÿ

j“0

e´2πi pβppq`jqpτ{βppqqδβppq`jp¨q

˛

‚

l2pZq

“

´

F´1Rϕf̂ , Dp,τ

¯

L2pr0,1sq
,

where Rϕ is a sequence in Z such that

(6.5) Rϕpβppq ` jq “
“

cϕp,jpνppqq
‰´1

for all p and related j. Hence,

(6.6) fϕp,τ “
`

f,Eϕp,τ
˘

L2pr0,1sq
“

´

f̃ , Dp,τ

¯

L2pr0,1sq

where f̃ “ F´1Rϕf̂ . Given f̃ , computing (6.6) using the FDOST-algorithm intro-

duced in [33] has complexity O pN logNq and computing f̃ via FFT has complexity
O pN logNq. So, the computational complexity remains O pN logNq. �

Remark 4. It is worth checking explicitly the computational complexity of the
algorithm. To perform this task, we start evaluating the column vector fϕp given by

fϕp “tf
ϕ
p,τu

βppq´1
τ“0

“

!

`

f,Eϕp,τ
˘

L2pr0,1sq

)βppq´1

τ“0

“

"

´

f̂ , yEϕp,τ
¯

l2pZq

*βppq´1

τ“0
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“

$

’

&

’

%

¨

˝f̂ ,
1

a

βppq

βppq´1
ÿ

j“0

“

cϕp,jpνppqq
‰´1

e´2πi pβppq`jqpτ{βppqqδβppq`jp¨q

˛

‚

l2pZq

,

/

.

/

-

βppq´1

τ“0

“

$

&

%

1
a

βppq

βppq´1
ÿ

j“0

pfpβppq ` jq
“

cϕp,jpνppqq
‰´1

e2πi pβppq`jqpτ{βppqq

,

.

-

βppq´1

τ“0

“

$

&

%

1
a

βppq

βppq´1
ÿ

j“0

pfpβppq ` jq
“

cϕp,jpνppqq
‰´1

e2πi jpτ{βppqq

,

.

-

βppq´1

τ“0

“

´

F´1
j ÞÑτ

´´

Rϕ pf
¯

|βppq,...,2βppq´1pjq
¯¯

pτq

where Rϕ is defined as in (6.5). Therefore, first we have to perform the FFT of the
signal f (O pN logNq), and the multiplication by Rϕ (OpNq), then at each p band
we need to use the FFT to perform the anti Fourier transform with computational
complexity O pβppq log βppqq. Summing up the contribution of each p-band we obtain
the computational complexity of OpN logNq.

The basis
 

Eϕp,τ
(

p,τ
is in general not orthogonal nor normal. Nevertheless, we

can normalize it setting

Fϕp,τ ptq “
Eϕp,τ ptq

}Eϕp,τ }L2pr0,1sq
,(6.7)

so that
›

›Fϕp,τ
›

›

L2pr0,1sq
“ 1.

Notice that

(6.8)
›

›Eϕp,τ
›

›

L2pr0,1sq
“

›

›

›
Eϕp,τ 1

›

›

›

L2pr0,1sq
“ Nϕ

p

depends just on the p-band, not on τ .
The basis

 

Fϕp,τ ptq
(

p,τ
fails in general to be orthogonal. Nevertheless, assuming

a mild condition on ϕ, we can prove that it is a frame.

Theorem 14. Let ϕ be an admissible window function satisfying Assumption 1,
and such that

inf
ξPp´1{3,1{3q

∣∣∣pϕpξq∣∣∣ ě δ ą 0(6.9)

sup
ξPp´1{3,1{3q

∣∣∣pϕpξq∣∣∣ ďM ă 8(6.10)

then the basis
Ť

pPZ F
ϕ
p is a frame of L2 pr0, 1sq, where

Fϕp “
 

Fϕp,τ
(

τ“0,...,βp|p|q .

In particular
ˆ

δ

M

˙2

}f}
2
L2pr0,1sq ď

ÿ

p,τ

∣∣∣`f, Fϕp,τ˘L2pr0,1sq

∣∣∣2 ď ˆ

M

δ

˙2

}f}
2
L2pr0,1sq .

Proof. Notice that under the hypothesis (6.9), (6.10), by (6.8)

(6.11)
1

M
ď Nϕ

p ď
1

δ
, @p P Z.
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Observe, by a slight variation of (6.6), that

`

f, Fϕp,τ
˘

L2pr0,1sq
“

´

F´1
ĂRϕf̂ , Dp,τ

¯

L2pr0,1sq

where ĂRϕ is a sequence such that

ĂRϕpβppq ` jq “
Rϕpβppq ` jq

Nϕ
p

“

”

cϕp,jpνppqq
ı´1

Nϕ
p

,

where Nϕ
p is as in (6.8).

If the window ϕ satisfies condition (6.10), by (6.11), we have

sup
kPZ

!
∣∣∣ĂRϕpkq∣∣∣) ď M

δ
ă 8,(6.12)

inf
kPZ

!∣∣∣ĂRϕpkq∣∣∣) ě δ

M
ą 0.(6.13)

Hence, since
Ť

pPZDp is an orthonormal basis and since F is a unitary operator

from L2 pr0, 1sq to l2pZq, we obtain

ÿ

p,τ

∣∣∣`f, Fϕp,τ˘L2pr0,1sq

∣∣∣2 “ÿ

p,τ

∣∣∣∣´F´1
ĂRϕf̂ , Dp,τ

¯

L2pr0,1sq

∣∣∣∣2 “ ›

›

›
F´1

ĂRϕf̂
›

›

›

2

L2pr0,1sq

“

›

›

›

ĂRϕf̂
›

›

›

l2pZq
ď

ˆ

sup
kPZ

!
∣∣∣ĂRϕpkq∣∣∣)˙2

›

›

›
f̂
›

›

›

2

l2pZq
ď

ˆ

M

δ

˙2

}f}
2
L2pr0,1sq ,

and

ÿ

p,τ

∣∣∣`f, Fϕp,τ˘L2pr0,1sq

∣∣∣2 “ÿ

p,τ

∣∣∣∣´F´1
ĂRϕf̂ , Dp,τ

¯

L2pr0,1sq

∣∣∣∣2 “ ›

›

›
F´1

ĂRϕf̂
›

›

›

2

L2pr0,1sq

“

›

›

›

ĂRϕf̂
›

›

›

l2pZq
ě

ˆ

inf
kPZ

!
∣∣∣ĂRϕpkq∣∣∣)˙2

›

›

›
f̂
›

›

›

2

l2pZq
ě

ˆ

δ

M

˙2

}f}
2
L2pr0,1sq .

�

Since
Ť

pPZ F
ϕ
p forms a frame, it is possible to obtain abstractly the canonical

dual frame, we denote ĄFϕp,τ . So, following the same scheme of Proposition 11 and
equation (6.3), we have

pSϕRTRfq

ˆ

τ

βppq
, νppq

˙

“

˜

SϕTR
ÿ

p1,τ 1

´

f, ĆFϕp1,τ 1
¯

L2pr0,1sq
Fϕp1,τ 1

¸

ˆ

τ

βppq
, νppq

˙

“
ÿ

|p1|ďR

βpp1q´1
ÿ

τ 1“0

´

f, ĆFϕp1,τ 1
¯

L2pr0,1sq

´

SϕRF
ϕ
p1,τ 1

¯

ˆ

τ

βppq
, νppq

˙

“
ÿ

p1ďR

βpp1q´1
ÿ

τ 1“0

´

f, ĆFϕp1,τ 1
¯

L2pr0,1sq

e´2πi τ
βppqνpp

1
q

Np1
Dp1,τ 1

ˆ

τ

βppq
, νppq

˙

“ p´1q
τ
a

βppq

´

f, ĄFϕp,τ
¯

L2pr0,1sq

Np
, |p| ď R.

Remark 5. Notice that, when in equations (6.9) and (6.10) δ “ M , we a have
a tight-frame. In the case of the DOST basis, i.e. E qχ

p,τ “ Dp,τ it is clear that
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δ “ M “ 1. So Dp,τ is a tight-frame. Actually, we have proven more: Dp,τ is an
orthonormal basis.
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Analysis. Birkhäuser Boston, Inc., Boston, MA, 2001.
[18] Q. Guo, S. Molahajloo, and M. W. Wong. Modified Stockwell transforms and time-frequency

analysis. In New developments in pseudo-differential operators, volume 189 of Oper. Theory

Adv. Appl., pages 275–285. Birkhäuser, Basel, 2009.
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Basel, 2007.
[35] Y. Yan and H. Zhu. The generalization of discrete Stockwell transform. 19th European Signal

Processing Conference (EUSIPCO 2011), 2011.

[36] H. Zhu, B. Goodyear, M. Lauzon, R. Brown, G. Mayer, A. Law, L. Mansinha, and J. Mitchell.
A new local multiscale Fourier analysis for medical imaging. Med. Phys., 30(6):1134–41, 2003.


	1. Introduction
	2. A Brief Survey on the S-transform
	3. A Time-Frequency Localized Basis
	4. Diagonalization of the S-transform 
	5. Discretization of the S-transform 
	6. Window Adapted Basis Construction
	Acknowledgements
	References

