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COMBINATORIAL PRESENTATION OF MULTIDIMENSIONAL

PERSISTENT HOMOLOGY

W. CHACHOLSKI1 M. SCOLAMIERO F. VACCARINO2

Abstract. A multifiltration is a functor indexed by Nr that maps any mor-

phism to a monomorphism. The goal of this paper is to describe in an explicit
and combinatorial way the natural Nr-graded R[x1, . . . , xr]-module structure

on the homology of a multifiltration of simplicial complexes. To do that we

study multifiltrations of sets and vector spaces. We prove in particular that the
Nr-graded R[x1, . . . , xr]-modules that can occur as R-spans of multifiltrations

of sets are the direct sums of monomial ideals.

1. Introduction

Let Nr be the poset of r-tuples of natural numbers with partial order given by
(v1, . . . , vr) ≤ (w1, . . . , wr) if and only if vi ≤ wi for all 1 ≤ i ≤ r. A functor
F : Nr → Spaces, with values in the category of simplicial complexes, is called a
multifiltration if, for any v ≤ w in Nr, the map F (v ≤ w) : F (v) → F (w) is a
monomorphism. Such a multifiltration is called compact if colimNrF is a finite
complex. Compact multifiltrations are the main objects we are studying in this ar-
ticle. By applying homology with coefficients in a ring R to F we obtain a functor
Hn(F,R) : Nr → R-Mod with values in the category of R-modules. The category
of functors indexed by Nr with values in R-Mod is equivalent to the category of
Nr-graded modules over the polynomial ring R[x1, . . . , xr]. The aim of this paper
is to describe this R[x1, . . . , xr]-module structure on Hn(F,R) in a way that is
suitable for calculations. One very efficient way of doing it would be to give the
minimal free presentation of Hn(F,R). This however we are unable to do directly.
Instead we are going to describe two homomorphisms of finitely generated and free
Nr-graded R[x1, . . . , xr]-modules A → B → C whose composition is the zero ho-
momorphism (this sequence is a chain complex), and Hn(F,R) is isomorphic to the
homology of this complex. Since the modules involved are finitely generated and
free and the homomorphisms preserve grading, these homomorphisms are simply
given by matrices of elements in R. In our case the coefficients of the matrices are
either 1, −1 or 0 and they can be explicitly expressed in terms of the multifiltra-
tion (we give a polynomial time procedure of how to do that in Section 5). One
can then use standard computer algebra packages to study algebraic invariants of
the module Hn(F,R), in particular one can get its minimal free presentation as
well as a minimal resolution, the set of Betti numbers and the Hilbert function.
These invariants can be used then to study point clouds according to the theory of
multidimensional persistence (see for example [1, 2]). Our procedure reduces the
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computation of Hn(F,R) to the computation of the homology of a chain complex
of free Nr-graded R[x1, . . . , xr]-modules. This is the starting point in [2] where the
authors explain how to calculate this homology in polynomial time. One of our
aims has been to show that such calculations can be done effectively for arbitrary
compact multifiltrations and not only for the so called one critical which are studied
in [2].

The theory of multidimensional persistence is interesting both from an applied
and theoretical point of view. From the applied perspective it is useful to construct
algorithms that characterize and distinguish multifiltrations of data sets or net-
works according to topological features (see [4]). From a theoretical point of view,
multidimensional persistence modules are Nr-graded R[x1, . . . , xr]-modules built
from a multifiltration. It is interesting to study how the combinatorial structure of
the multifiltration is reflected in the module structure and that is what we address
in this paper. We start with discussing the multifiltrations of sets in Section 3.
We recall the structure of such multifiltrations, how can they be decomposed into
indecomposable parts and how to classify the indecomposable pieces. We use it
to give an algorithm for producing a free presentation of a multifiltration of sets.
In Section 4 we then study the effect of taking the R-span functor on multifiltra-
tions of sets. We explain why the obtained multifiltrations of R-modules are rather
special and prove that they correspond to sums of monomial ideals. Since the R-
span functor commutes with colimits, free presentations for multifiltrations of sets
can be used to obtain free presentations of monomial ideals. These presentations
are used in Section 5 to obtain the desired description of the R[x1, . . . , xr]-module
structure on Hn(F,R). We conclude by pointing out, in Section 6, that for multifil-
trations indexed by N2 a presentation of the module Hn(F,R), as the cokernel of a
homogeneous homomorphism, is an easier task. In this case, the kernel of B → C
is free and therefore, given our previous results, it is sufficient to choose a set of
free generators of this kernel to find a presentation of Hn(F,R). The problem of
identifying such a set of free generators in an algorithmic and combinatorial way is
left as an open question.

2. notation

2.1. The symbols Sets, Spaces, and R-Mod denote the categories of respectively
sets, simplicial complexes, and R-modules, where we always assume that R is a
commutative ring with identity. The R-linear span functor which assigns to a set
S the free module R(S) =

⊕
S R is denoted by R : Sets→ R-Mod.

2.2. By definition a simplicial complex X is a collection of subsets of a set X0

(called the set of vertices of X) such that: for any x in X0, {x} ∈ X and if σ ∈ X
and τ ⊂ σ, then τ ∈ X. An element σ in X is called a simplex of dimension
|σ| − 1. A complex is called finite if X0 is a finite set. A morphism between two
simplicial complexes f : X → Y is by definition a map of sets f : X0 → Y0 such
that f(σ) is a simplex in Y for any simplex σ in X. A morphism f : X → Y is a
monomorphism if and only if the function f : X0 → Y0 is injective.

Let us choose an order < on the set X0. For n ≥ 0, the symbol Xn denotes the
set of strictly increasing sequences x0 < · · · < xn of elements in X0 for which the
subset {x0, . . . , xn} ⊂ X0 is a simplex in X. Such a sequence is called an ordered
simplex of dimension n. For 0 ≤ i ≤ n + 1, by forgetting the i-th element in a
sequence x0 < · · · < xn+1 we get an element in Xn. The obtained map is denoted
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by di : Xn+1 → Xn. By applying the R-span functor and taking the alternating
sum of the induced maps we obtain:

RXn+1
∂n+1:=

∑n+1
i=0 (−1)idi−−−−−−−−−−−−−→ RXn

∂n:=
∑n
i=0(−1)

idi−−−−−−−−−−−→ RXn−1

where for n = 0, the R-module RX−1 is taken to be trivial. It is a standard fact
that the composition ∂n∂n+1 is the trivial map and hence the image im(∂n+1) is
a submodule of the kernel ker(∂n). The quotient ker(∂n)/im(∂n+1) is called the
n-th homology of X and is denoted by Hn(X,R). The isomorphism type of this
module does not depend on the chosen ordering on X0. Note that this is not a
functor on the entire category of simplicial complexes. However if f : X → Y is
a monomorphism, then we can choose first an ordering on Y0 and then use it to
induce an ordering on X0 so the function f : X0 → Y0 is order preserving. With
these choices, by applying f to ordered sequences element-wise, we obtain a map of
sets fn : Xn → Yn which commutes with the maps di. In this way we get an induced
map of homology modules that we denote by Hn(f,R) : Hn(X,R)→ Hn(Y,R).

2.3. The symbol R[x1, . . . , xr] denotes the Nr-graded polynomial ring with coeffi-
cients in a ring R. The category of Nr-graded R[x1, . . . , xr]-modules with the degree
preserving homomorphisms is denoted by R[x1, . . . , xr]-Mod and we use bold face
letters to denote such modules.

A monomial in R[x1, . . . , xr] is a polynomial of the form xv11 · · ·xvrr . Its grade is
given by v = (v1, . . . , vr). Such a monomial is also written as xv. An Nr-graded ideal
in R[x1, . . . , xr] is called monomial if it is generated by monomials. An Nr-graded
R[x1, . . . , xr]-module isomorphic to the ideal of R[x1, . . . , xr] generated by a single
monomial xv is called free on one generator v and denoted by < xv >. An Nr-
graded R[x1, . . . , xr]-module which is isomorphic to a direct sum of free modules on
one generator is called free. The R-module Hom(< xv >,< xw >) is either trivial
if v 6≥ w, or is isomorphic to R if v ≥ w. We use this to identify the R-module of
homomorphisms between free modules Hom(⊕t∈T < xvt >,⊕s∈S < xws >) with
the set of S × T matrices of elements in R whose (s, t) entry is 0 if vt 6≥ ws. Thus
to describe a degree preserving homomorphism between two finitely generated and
free Nr-graded R[x1, . . . , xr]-modules we need to specify:

• A matrix M of elements in R.
• Two functions, one that assigns to every row of M an element in Nr and

the other that assigns to every column of M an element in Nr. The values
of these functions are called grades of the respective rows and columns.
The grades of the columns correspond to the grades of the generators of
the domain of the homomorphism and the grades of the rows correspond
to the grades of the generators of the range of the homomorphism.

• The matrix M should satisfy the following property: the entry correspond-
ing to a row with grade w and a column with grade v is zero if v 6≥ w.

2.4. Let I be a small category. The symbol Fun(I, C) denotes the category of
functors indexed by I with values in a category C and natural transformations as
morphisms. We use the symbol NatC(F,G) to denote the set of natural transfor-
mations between two functors F,G : I → C. Recall [3] that the colimit of a functor
F : I → C is an object colimIF in C together with morphisms pi : F (i)→ colimIF ,
for any object i in I. These morphisms are required to satisfy the following uni-
versal property. First, for any α : i → j in I, pjF (α : i → j) = pi. Second, if
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qi : F (i) → X is a sequence of morphisms in C indexed by objects of I fulfilling
the equality qjF (α : i → j) = qi for any morphism α in I, then there is a unique
f : colimIF → X such that qi = fpi for any object i in I.

If I is the empty category, colimIF is called the initial object and denoted by ∅.
The initial object has the property that, for any object X in C, the set of morphisms
morC(∅, X) has exactly one element. If I is a discrete category, then colimIF is
called the coproduct and denoted either by

∐
i∈I F (i) or

⊕
i∈I F (i). The second

notation is used only in the case the coproduct is taken in an additive or abelian
category, as for example in R-Mod.

2.5. An object X in C is called decomposable if it is isomorphic to a sum X1

∐
X2

where neither X1 nor X2 is the initial object. It is indecomposable if it is neither
initial nor decomposable. An object X is called uniquely decomposable if the
following two conditions hold. First, it is isomorphic to a coproduct

∐
i∈I Xi where

Xi is indecomposable for any i. Second, if X is isomorphic to
∐
i∈I Xi and to∐

j∈J Yj , where Xi’s and Yj ’s are indecomposable, then there is a bijection φ : I → J
such that Xi and Yφ(i) are isomorphic for any i in I.

In the category of sets the initial object is the empty set, the coproduct is the
disjoint union, a set is decomposable if it contains at least two elements, and is
indecomposable if it contains exactly one element. For F : I → Sets, its colimit
is the quotient of

∐
i∈I F (i) by the equivalence relation generated by xi in F (i) is

related to xj in F (j) if there are morphisms α : i→ k and β : j → k in I for which
F (α)(xi) = F (β)(xj).

2.6. The symbol Nr denotes the poset of r-tuples of natural numbers with partial
order given by (v1, . . . , vr) ≤ (w1, . . . , wr) if and only if vi ≤ wi for all 1 ≤ i ≤ r.
The initial element (0, . . . , 0) in Nr is denoted simply by 0. Recall that the partial
order on Nr is a lattice. This means that for any finite set of elements S in Nr, there
are elements min(S) and max(S) in Nr (not necessarily in S) with the following
properties. First, for any v in S, min(S) ≤ v ≤ max(S). Second, if u and w are
elements in Nr for which u ≤ v ≤ w, for any v in S, then u ≤ min(S) and max(S) ≤
w. Furthermore any non-empty subset S of Nr has an element v such that if w < v,
then w is not in S. Such elements are called minimal in S and may not be unique.
A functor F indexed by the poset Nr that maps any morphism to a monomorphism
is called a multifiltration. We will denote the colimit of a functor F indexed
by Nr by colimF. A multifiltration F : Nr → Sets/R-Mod is called one critical
if for any element x in colimF , the set {v ∈ Nr | x is in the image of pv : F (v) →
colimF} has a unique minimal element which we denote by vx and call the critical
coordinate of x (see [2]). A functor F : Nr → Sets/Spaces is called compact if
colimF is a finite set/simplicial complex.

2.7. Let v be an element in Nr. The functor morNr (v,−) : Nr → Sets is called free
on one generator. For example morNr (0,−) : Nr → Sets is the constant functor
with value the one point set. Since Nr is a poset, the values of a free functor on
one generator are either empty, or the one point set. A functor F : Nr → Sets is
called free if it is isomorphic to a disjoin union of free functors on one generator.
Note that any free functor is a multifiltration.

Composition with the R-span functor R : Sets→ R-Mod, is denoted by the same
symbol R : Fun(Nr,Sets) → Fun(Nr, R-Mod) and called by the same name the R-
span functor. Recall that this R-span functor is the left adjoint to the forget the

4



R-module structure functor. This implies that the R-span functor commutes with
colimits, in particular it maps the initial object to the initial object and commutes
with coproducts.

The functor RmorNr (v,−) : Nr → R-Mod is also called free on one generator.
A functor F : Nr → R-Mod is called free if it is isomorphic to the R-span of a free
functor with values in Sets or equivalent, if it is isomorphic to a direct sum of free
functors on one generator.

2.8. Recall that the category of functors Fun(Nr, R-Mod) is equivalent to the cate-
gory of Nr-graded modules R[x1, . . . , xr]-Mod. We are going to identify these cat-
egories using the following explicit equivalence which assigns to a functor F : Nr →
R-Mod, the Nr-graded R[x1, . . . , xr]-module given by F := ⊕v∈NrF (v), where xi
acts on component F (v) via the map F (v ≤ v+ei) where ei is the i-th vector in the
standard base. Via this identification, the free functor RmorNr (v,−) : Nr → R-Mod
is mapped to the free module < xv >.

3. Functors with values in Sets

The aim of this section is to prove several basic properties of functors of the form
F : Nr → Sets. Many of these properties are well known. We start with:

3.1. Proposition. A functor F : Nr → Sets is indecomposable (see 2.5) if and only
if the set colimF contains exactly one element.

Proof. If the values of F are not all empty, then colimF is not empty. Further more
if F = G

∐
H, then colimF = (colimG)

∐
(colimH). This shows that if colimF

contains exactly one point, then F is indecomposable. On the other hand we can
decompose F as

∐
x∈colimF F [x] where, for any point x in colimF , F [x] : Nr → Sets

is the subfunctor of F whose values are given by F [x](v) := {y ∈ F (v) | pv(y) = x}
(see 2.4). Observe that not all the values of F [x] are empty. This describes F as a
coproduct of indecomposable functors. Thus if F is indecomposable, then colimF
has to contain only one element. �

The argument in the above proof shows more:

3.2. Corollary. Any functor F : Nr → Sets is uniquely decomposable as F =∐
x∈colimF F [x].

In this paper we are not interested in all functors indexed by Nr with values in
Sets, but those that map any morphism to a monomorphism. Such functors are
called multifiltrations of sets (see 2.6) and here is their characterization:

3.3. Proposition. A functor F : Nr → Sets is a multifiltration if and only if the
map pv : F (v)→ colimF is a monomorphism for any v in Nr.
Proof. Recall that colimF is the quotient of

∐
v∈Nr F (v) by the equivalence relation

generated by xv in F (v) is related to xw in F (w), if there is u ≥ v and u ≥ w such
that F (v ≤ u)(xv) = F (w ≤ u)(xw). Note that since Nr is a lattice, the described
relation is already en equivalence relation. Thus two elements of F (v) are mapped
to the same element in colimF if and only if they are mapped to the same element
via F (v ≤ u) for some u and the proposition follows. �

3.4. Corollary. A functor F : Nr → Sets is an indecomposable multifiltration if
and only if the set F (v) has at most one element for any v in Nr and there is u for
which F (u) is not empty.
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Proof. Assume first F is an indecomposable multifiltration. By Proposition 3.1,
colimF is the one point set. The multifiltration assumption implies that F (v) is a
subset of colimF for any v (see 3.3). Consequently the set F (v) can not contain
more than one element. Since colimF is not empty, the values of F can not be all
empty either. This shows one implication.

Recall that any element in colimF is of the form pv(x) for some v in Nr and x in
F (v). Assume that colimF has at least two elements, which we write as pv(x) and
pw(y). The elements F (v ≤ max{v, w})(x) and F (w ≤ max{v, w})(y) therefore
also have to be different. Consequently the set F (max{v, w}) has more than one
element. �

Indecomposable multifiltrations of sets are therefore exactly the non empty sub-
functors of the free functor morNr (0,−) on one generator given by the origin 0 in
Nr (see 2.7).

Note that since there is a unique map from any set to the one point set, according
to 3.4 , if F : Nr → Sets is an indecomposable multifiltration, then, for any G : Nr →
Sets, there is at most one natural transformation G→ F . Thus the full subcategory
of Fun(Nr,Sets) given by the indecomposable multifiltrations is a poset. This is the
inclusion poset of all the non empty sub-functors of the free functor morNr (0,−).
Our next goal is to describe this poset. We do that using the notion of the support
of a functor F : Nr → Sets:

supp(F ) := {v ∈ Nr | F (v) 6= ∅}
For example supp(morNr (v,−)) = {w ∈ Nr | v ≤ w}. Not all subsets of Nr can be
a support. If v belongs to supp(F ), then so does any w ≥ v. Subsets of Nr that
satisfy this property are called saturated.

3.5. Proposition. The function (F : Nr → Sets) 7→ supp(F ) is an isomorphism
between the poset of indecomposable multifiltrations of sets and the inclusion poset
of saturated non-empty subsets of Nr.

Proof. Observe first that if there is a natural transformation F → G, then if F (v)
is not empty, then neither is G(v). This means that supp(F ) ⊂ supp(G) which
shows that the function F 7→ supp(F ) is a function of posets.

To define the inverse of the support function, choose a saturated subset S in Nr
and an element v in Nr. Set:

Ψ(S)(v) :=

{
{v} if v ∈ S
∅ if v 6∈ S

Since S is saturated, if Ψ(S)(v) is not empty, then neither is Ψ(S)(w) for any v ≤ w.
We can therefore define Ψ(S)(v ≤ w) : Ψ(S)(v)→ Ψ(S)(w) to be the unique map.
This defines a functor which by Corollary 3.4 is an indecomposable multifiltration.
The construction Ψ gives a map of posets between the saturated subsets in Nr and
indecomposable multifiltrations.

Note that supp(Ψ(S)) = S. Furthermore, for any F : Nr → Sets, there is a
unique natural transformation F → Ψ(supp(F )) which becomes an isomorphism
if F is an indecomposable multifiltration. This shows that Ψ is the inverse of the
support function. �

Our next step is to describe the set of saturated subsets of Nr. For any subset S
of Nr define gen(S) := {v ∈ S | if w < v, then w 6∈ S} and call it the minimal set
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of generators of S. For example gen(supp(morNr (v,−))) = {v}. Furthermore 3.5
implies that an indecomposable multifiltration F : Nr → Sets is free (necesarily on
one generator) if and only if gen(supp(F )) consists of one element. This can be
generalised to arbitrary multifiltrations:

3.6. Proposition. A multifiltration F : Nr → Sets is free if and only if it is one
critical (see 2.6).

Proof. We have a decomposition F =
∐
x∈colimF F [x]. Note that supp(F [x]) =

{v ∈ Nr | x is in the image of pv : F (v) → colimF}. Thus by definition, F is one
critical if and only if gen(supp(F [x])) are one element sets, i.e., if the functors F [x]
are free on one generator, for every x in colimF . �

Directly from the definition of the minimal set of generators it follows that: (1)
elements in gen(S) are not comparable; (2) any element in S is comparable to some
element in gen(S). This first property implies gen(S) is finite, since:

3.7. Lemma. If S is an infinite subset in Nr, then it contains an infinite chain,
i.e., a sequence of the form v1 < v2 < · · · .
Proof. We argue by induction on r. The case r = 1 is clear since N is totally
ordered. Assume r > 1. Consider the projection onto the last r − 1 components
pr : Nr → Nr−1. If the image pr(S) is finite, then for some v in Nr−1 the intersection
S ∩ pr−1(v) is infinite so it contains an infinite chain as it can be identified with a
subset of N. Assume pr(S) is infinite. By induction, it contains an infinite chain
v1 < v2 < · · · . It follows that there is a sequence of elements in S of the form
(a1, v1), (a2, v2), . . .. Define i1 to be an index for which ai1 = min{a1, a2 . . .} and
set x1 := (ai1 , vi1). Define i2 to be an index for which ai2 = min{aj | j > i1} and
set x2 := (ai2 , vi2). Note that x1 < x2. Continue by induction to obtain a chain
x1 < x2 < · · · in S. �

3.8. Proposition. The function S 7→ gen(S) is a bijection between the set of sat-
urated subsets of Nr and the set of all finite subsets of Nr whose elements are not
comparable.

Proof. For a subset T in Nr, define:

sat(T ) := {v | there is u in T such that v ≥ u}
We are going to prove that the function T 7→ sat(T ) is the inverse to S 7→ gen(S).
Since any element in S is comparable to some element in gen(S), it follows that
S ⊂ sat(gen(S)). In the case S is saturated, sat(gen(S)) ⊂ S and hence these two
sets are equal.

Consider an element v in gen(sat(T )). Since v is in sat(T ), u ≤ v for some u
in T . If u 6= v, then by definition of gen(sat(T )), u could not belong to sat(T ),
which is a contradiction. Thus u = v and v belongs to T . This shows the inclusion
gen(sat(T )) ⊂ T . Assume T consists of non-comparable elements. Let v be in T
and w < v. Then w can not belong to sat(T ), otherwise, for some u in T , u ≤ w
and we would have two comparable elements v and u in T . It follows that v belongs
to gen(sat(T )). We can conclude that T ⊂ gen(sat(T )) and hence these two sets
are equal. �

3.9. Corollary. Let R be a commutative ring with a unit. The poset of indecompos-
able multifiltrations of sets is isomorphic to the inclusion poset of monomial ideals
in R[x1, . . . , xr].
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Proof. Let F : Nr → Sets be a functor. Define Ψ(F ) to be the monomial ideal in
R[x1, . . . , xr] given by:

Ψ(F ) := 〈xv | v ∈ gen(supp(F ))〉

If there is a natural transformation F → G, then supp(F ) ⊂ supp(G). We claim
that in this case there is an inclusion:

Ψ(F ) = 〈xv | v ∈ gen(supp(F ))〉 ⊂ 〈xv | v ∈ gen(supp(G))〉 = Ψ(G)

To see this let v be in gen(supp(F )). We show that there is u in gen(supp(G)) such
that u ≤ v. That would imply xv is divisible by xu proving the claim. If v belongs
to gen(supp(G)) there is nothing to prove. Assume that this is not the case. Since
v belongs to supp(G), there is u in supp(G) for which indeed u ≤ v. In this way
Ψ defines a functor from Fun(Nr,Sets) to the inclusion poset of monomial ideals in
R[x1, . . . , xr]. The restriction of Ψ to indecomposable multifiltrations is a function
of posets.

On the other hand let I be a monomial ideal in R[x1, . . . , xr], consider the set
SI := {v ∈ Nr|xv ∈ I}. This is a saturated subset of Nr because if u ≤ v and
xu is in I then xv must also be in I. We define Φ(I) to be the indecomposable
multifiltration associated to SI (see 3.5). If there is an inclusion of ideals I ⊆
J , then SI ⊆ SJ and again by 3.5 we have an inclusion Φ(I) ⊆ Φ(J). In this
way we obtain a functor Φ between the poset of monomial ideals to the poset
of indecomposable multifiltrations. Given a functor F : Nr → Sets there is a
unique natural transformation F → Φ(Ψ(F )) and this is an isomorphism if F is
an indecomposable multifiltration as both of these functors have the same support.
If I is a monomial ideal in R[x1, . . . xr] then it is also immediate to verify that
Ψ(Φ(I)) = I. �

According to Propositions 3.5 and 3.8 the function F 7→ gen(supp(F )) is a
bijection between the set of indecomposable multifiltrations of sets and finite non-
empty subsets of Nr whose elements are not comparable. We finish this section with
giving a constructive formula for the inverse to this function. Let T be a subset
of Nr. Define FT : Nr → Sets to be a functor given by the following coequalizer in
Fun(Nr,Sets):

FT := colim

 ∐
v0 6=v1∈T

morNr (max{v0, v1},−)
π0 //

π1

//
∐
v∈T

morNr (v,−)


where on the component indexed by v0 6= v1 ∈ T , the map πi, is given by the
unique natural transformation morNr (max{v0, v1},−) → morNr (vi,−) induced by
vi ≤ max{v0, v1}.

3.10. Proposition. If T ⊂ Nr is not empty, then the functor FT is an indecom-
posable multifiltration whose support is given by sat(T ).

Proof. Let u be an element in Nr. The set FT (u) is a quotient of
∐
v∈T morNr (v, u)

and hence FT (u) 6= ∅ if and only if
∐
v∈T morNr (v, u) 6= ∅, implying the equality

supp(FT ) = sat(T ). In particular if T is non-empty, then neither is supp(FT ).
Let v0 ≤ u and v1 ≤ u be two different elements in

∐
v∈T morNr (v, u). These

inequalities give an element max{v0, v1} ≤ u in
∐
v0 6=v1∈T morNr (max{v0, v1},−)

which is mapped via πi to vi ≤ u. The elements v0 ≤ u and v1 ≤ u are therefore
8



sent, via the quotient map, to the same element in FT (u). The set FT (u) can there-
fore have at most one element and hence, according to 3.4, FT is an indecomposable
multifiltration. �

3.11. Corollary. If F is an indecomposable multifiltration, then it is isomorphic to
Fgen(supp(F )).

We can use the above construction to give a presentation of any multifiltration.
Here is a procedure of how to do that. Let F : Nr → Sets be a multifiltration.
For any v in Nr, index elements of F (v) by elements of colimF as follows: y in
F (v) has index x in colimF if pv(y) = x. Let F [x] be the subfunctor of F whose
elements have index x ∈ colimF (see the proof of 3.1). It is an indecomposable
multifiltration. Recall that F =

∐
x∈colimF F [x]. The functor F is then isomorphic

to: ∐
x∈colimF

Fgen(supp(F [x]))

Since we are going to use this presentation, we need to introduce notation de-
scribing the involved functors.

• For any x in colimF , define:

GF [x] :=
∐

v∈gen(supp(F [x]))

morNr (v,−)

KF [x] :=
∐

v0 6=v1∈gen(supp(F [x]))

morNr (max{v0, v1},−)

• Recall that there are natural transformations π0[x], π1[x] : KF [x] → GF [x]
induced by v0 ≤ max{v0, v1} and v1 ≤ max{v0, v1}.
• Since F [x] is indecomposable, there is a unique natural transformation de-

noted by pF,x : GF [x]→ F [x]. This natural transformation has the univer-
sal property describing F [x] as the colimit of the diagram:

KF [x]
π0[x] //

π1[x]
// GF [x]

By summing over all x in colimF , we obtain functors GF : =
∐
x∈colimF GF [x],

KF : =
∐
x∈colimF KF [x] and natural transformations π0, π1 : KF → GF and

pF : =
∐
x∈colimF pF,x : GF → F . The natural transformation pF has the uni-

versal property describing F as the colimit of the diagram:

KF
π0 //

π1

// GF

Although the natural transformations pF,x are unique, the construction F 7→ GF
is not functorial. Nevertheless we attempt to define it also for a natural transforma-
tion α : F → G. Consider the map of sets colimα : colimF → colimG. Since for any
v in Nr, the following square commutes, we get an inclusion α(F [x]) ⊆ G[colimα(x)]

F (v)
α(v) //

pv
��

G(v)

pv
��

colimF
colimα // colimG

9



It follows that the set {w ∈ gen(supp(G[colimα(x)]) | w ≤ v} is not empty for any
v in gen(supp(F [x])). We can order this set using the lexicographical order and de-
fine wα,x,v to be the smallest element of this set. Since wα,x,v ≤ v, there is a unique
natural transformation morNr (v,−) → morNr (wα,x,v,−). Define α : GF → GG to
be the natural transformation which on the summand morNr (v,−) indexed by x
in colimF and v in gen(supp(F [x])) is given by the composition of morNr (v,−)→
morNr (wα,x,v,−) and the inclusion into GG of the summand morNr (wα,x,v,−) in-
dexed by colimα(x) in colimG and wα,x,v in gen(supp(G[colimα(x)]). Because of
these choices we obtain a commutative diagram of natural transformations:

GF α //

pF

��

GG
pG

��
F

α // G

Explicitly:

morNr (v,−)� _

summand indexed by x and v

��

// morNr (wα,x,v,−)� _

summand indexed by colimα(x) and wα,x,v

��∐
x∈colimF

∐
v∈gen(supp(F [x]))

morNr (v,−)
α //

pF

��

∐
x∈colimG

∐
v∈gen(supp(G[x]))

morNr (v,−)

pG

��∐
x∈colimF F [x]

α // ∐
x∈colimGG[x]

It is important to point out that the assignment (α : F → G) 7→ (α : GF → GG) is
not a functor. It is not true in general that β α equals β α.

4. Set valued vs. R-Mod valued functors

Let R be a commutative ring with identity. Recall that we identify the cat-
egory of functors Fun(Nr, R-Mod) with the category of Nr-graded R[x1, . . . , xr]-
modules by assigning to F : Nr → R-Mod the Nr-graded R[x1, . . . , xr]-module
given by F = ⊕v∈NrF (v) (see 2.8). Via the above identification the free functor
RmorNr (0,−) (see 2.7) is mapped to the module R[x1, . . . , xr]. Thus sub-functors
of RmorNr (0,−) are identified with Nr-graded ideals in R[x1, . . . , xr]. Among these
sub-functors there are the R-spans of indecomposable multifiltrations of sets and
among the Nr-graded ideals in R[x1, . . . , xr] there are the monomial ideals. Note
that for an indecomposable multifiltration of sets F : Nr → Sets, the Nr-graded
ideal RF ⊂ R[x1, . . . , xr] coincides with the monomial ideal Ψ(F ) given in the
proof of Corollary 3.9. It thus follows from this corollary that the sub-functors of
RmorNr (0,−) that are identified with monomial ideals are exactly the R-spans of
indecomposable multifiltrations of sets. Since monomial ideals are indecomposable
R[x1, . . . , xr]-modules, then so are the R-spans of indecomposable multifiltrations
of sets. These are the easiest indecomposable multifiltrations of R-modules. The
following is a key fact about their finite sums:
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4.1. Proposition. Let {Fi : Nr → Sets}1≤i≤n and {Gj : Nr → Sets}1≤j≤m be two
finite families of indecomposable multifiltrations of sets. If ⊕ni=1RFi : Nr → R-Mod
and ⊕mj=1RGj : Nr → R-Mod are isomorphic as functors with values in R-Mod,
then n = m, and there is a permutation σ of {1, . . . , n} for which Fi : Nr → Sets
and Gσ(i) : Nr → Sets are isomorphic for any i.

Proof. First note that if F,G : Nr → Sets are indecomposable multifiltrations, then
the map RNatSets(F,G) → NatR-Mod(RF,RG), induced by the R-span functor, is
an isomorphism of R modules (this is not true if F is a multifiltration but not
indecomposable). Consequently the R module NatR-Mod(RF,RG) is isomorphic to
R if supp(F ) ⊂ supp(G) or it is trivial if supp(F ) 6⊂ supp(G).

We proceed by induction on n to prove the proposition. Assume n = 1. Since
RF and ⊕mj=1RGj are isomorphic, then so are their colimits which as R modules
are isomorphic to respectively R and ⊕mj=1R. For commutative rings the rank of a
free module is a well define invariant and hence m = 1. The functors RF and RG1

are therefore isomorphic and by the discussion above supp(F ) and supp(G) are the
same subsets of Nr. We can then use 3.5 to get F and G are isomorphic.

Assume n > 1. Consider the subsets supp(Fi) ⊂ Nr for 1 ≤ i ≤ n and choose
among them a maximal one T with respect to the inclusion. By permuting we can
assume that:

supp(Fi) = T , if 1 ≤ i ≤ n′ and supp(Fi) 6= T , if n′ < i ≤ n

Let φ : ⊕ni=1 RFi → ⊕mj=1RGj and ψ : ⊕mj=1 RGj → ⊕ni=1RFi be inverse iso-
morphisms. Since the restriction of φ to F1 is non trivial, there is j such that
T = supp(F1) ⊂ supp(Gj). By the same argument, since the restriction of ψ to
Gj is not trivial, there is l for which supp(Gj) ⊂ supp(Fl). As we chose T to be a
maximal among the supports of Fi’s, we get l ≤ n′ and supp(Gj) = T . Again by
permuting if necessary we can assume that:

T = supp(Gi), if 1 ≤ i ≤ m′ and T 6⊂ supp(Gi), if m′ < i ≤ m

This means that φ maps the submodule ⊕n′i=1RFi ⊂ ⊕ni=1RFi to the submodule

⊕m′j=1RGj ⊂ ⊕mj=1RGj . Furthermore the restriction of φ : ⊕n′i=1 RFi → ⊕m
′

j=1RGj
is an isomorphism whose inverse is given by the restriction of ψ. We therefore
get that their colimits ⊕n′i=1R and ⊕m′j=1R are also isomorphic and hence n′ = m′.
Moreover, by taking the quotients, we obtain an isomorphism between ⊕ni>n′RFi
and ⊕mj>n′RGj . The proposition now follows from the inductive assumption. �

The above proposition can be restated in the form:

4.2. Corollary.

(1) Let {Ii}1≤i≤n and {Jj}1≤j≤m be monomial ideals in R[x1 . . . , xr]. If the
Nr-graded R[x1, . . . , xr] modules ⊕ni=1Ii and ⊕mj=1Jj are isomorphic, then
m = n and there is a permutation σ of {1, . . . , n} for which Ii = Jσ(i).

(2) Let F,G : Nr → Sets be compact multifiltrations (see 2.6). Then F and
G are isomorphic if and only if their R-spans RF,RG : Nr → R-Mod are
isomorphic.

The statement 4.2.(2) is not true if the functors F and G are not multifiltrations:

11



4.3. Example. Let F1, F2 : N → Sets be functors with the same values F1(0) =
F2(0) = {a, b, c, d}, F1(1) = F2(1) = {e, f} and F1(n) = F2(n) = {g} for n ≥ 2,
however with different maps which are given by the following diagrams:

F1(0) // F1(1) // F1(2)

a �
))b

� // e � // g

c � // f
,

55

d
+

55

F2(0) // F2(1) // F2(2)

a �
))b

� // e � // g

c
,

55

f
,

55

d
+

55

Although the functors F1 and F2 are not isomorphic, their R-spans RF1 and RF2

are.

The following example illustrates the fact that not all (indecomposable) multi-
filtrations of R-modules are R-spans of (indecomposable) multifiltrations of sets.

4.4. Example. Consider the multifiltration F : N2 → R-Mod which on the square
{v ≤ (2, 2)} ⊂ N2 is given by the following commutative diagram:

R
α // R⊕R id // R⊕R

0

OO

// R

β

OO

β // R⊕R

id

OO

0 //

OO

0

OO

// R

γ

OO

and for w in N2 \ {v ≤ (2, 2)}, the map F (min(w, (2, 2)) ≤ w) is an isomorphism.
Assume further that α, β, and γ are monomorphisms and their images are pairwise
different submodules of R⊕R. Then this functor is not isomorphic to the R-span
of any functor with values in Sets. Note further that in this case F is an inde-
composable multifiltration of R-modules whose colimit is free of rank 2 (compare
with 3.1).

Being one critical (see 2.6) for multifiltrations of sets is equivalent to being free
(see 3.6). This is not true for multifiltrations of R-modules if r > 2:

4.5. Example. Consider the multi filtration F : N3 → R-Mod which on the cube
{v ≤ (1, 1, 1)} ⊂ N3 is given by the following commutative diagram:

R2 α // R4

0 //

??

R2

β
==

0

OO

// R2

γ

OO

0

OO

//

>>

0

OO

==

and for w in N3 \ {v ≤ (1, 1, 1)} the map F (min(w, (1, 1, 1)) ≤ w) is an isomor-
phism. Then this functor is one critical, it is not free, and it is not the R-span of
a multiflitration of sets.
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For bifiltrations (r = 2) we have the following positive result:

4.6. Proposition. Assume R is a field. A bifiltration F : N2 → R-Mod is free if
and only if it is one critical.

Proof. One implication holds more generally for all r. If F : Nr → R-Mod is
free, it is the R-span of a free functor G : Nr → Sets. Thus F is isomorphic to⊕

x∈colimGRmor(vx,−). Since the R-span functor commutes with colimits, we can

identify colimF with R(colimG). Consider an element y =
∑n
i=1 cixi in colimF

where xi belongs to colimG. Note that:

{v ∈ N2 | y ∈ F (v)} =

n⋂
i=1

{v ∈ N2 | xi ∈ G(v)}

It follows that this set has a unique minimal element given by max{vxi | 1 ≤ i ≤ n}.
This shows that F is one critical.

Assume now that F : N2 → R-Mod is one critical. To show that it is free it would
be enough to prove that it is the R-span of a multifiltration of sets since in this
case this multifiltration of sets would be also one critical and therefore free by 3.6.
Define G(0, 0) to be a base of F (0, 0). Since F ((0, 0) ≤ (1, 0)) : F (0, 0) → F (1, 0)
is an inclusion, we can extend that base of F (0, 0) to a base G(1, 0) of F (1, 0). We
can proceed by induction on n and define in this way a sequence of sets

G(0, 0) ⊂ G(1, 0) ⊂ · · ·G(n, 0) ⊂ · · ·
whose R-span gives the functor F restricted to N × {0} ⊂ N2. We continue again
by induction. Assume that k > 1 and we have constructed a functor:

G : N× {v ∈ N | v < k} → Sets

whose R-span is isomorphic to the restriction of F . By the same argument as
before, since F ((0, k − 1) ≤ (0, k)) : F (0, k − 1) → F (0, k) is an inclusion we can
extend the base G(0, k − 1) of F (0, k − 1) to a base G(0, k) of F (0, k). Assume
n > 0 and that we have defined a functor:

G : N× {v ∈ N | v < k} ∪ {v ∈ N | v < n} × {v ∈ N | v ≤ k} → Sets

whose R-span is isomorphic to the restriction of F . Since F is one critical the
intersection of the images of F (n − 1, k) and F (n, k − 1) in F (n, k) coincide with
the image of F (n− 1, k − 1). It follows that the induced map:

colim(F (n, k − 1)←↩ F (n− 1, k − 1) ↪→ F (n− 1, k))→ F (n, k)

is an inclusion. Here the assumption r = 2 is crucial. We can then extend the
subset:

colim(G(n, k − 1)←↩ G(n− 1, k − 1) ↪→ G(n− 1, k)) ↪→ F (n, k)

to a base G(n, k) of F (n, k). In this way we get a desired functor

G : N× {v ∈ N | v ≤ k} → Sets

whose R-span is isomorphic to F . �

We finish this section with a procedure of obtaining a free presentation of the
Nr-graded R[x1, . . . , xr]-module RF associated to the R-span of a multifiltration
F : Nr → Sets. In the first 3 steps we recall from the end of Section 3 how to build
a presentation of F .
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• Decompose F into indecomposable components
∐
x∈colimF F [x].

• For any x, find the set Tx := gen(supp(F [x])).
• Recall that F can be described as the coequalizer of two natural transforma-

tions π0, π1 : KF → GF between free functors. Explicitly F is isomorphic
to the colimit of the following diagram:

∐
x∈colimF

 ∐
v0 6=v1∈Tx

morNr (max{v0, v1},−)
π0[x] //

π1[x]
//
∐
v∈Tx

morNr (v,−)


where on the component indexed by v0 6= v1 ∈ Tx, the map πi, is given by
the unique natural transformation morNr (max{v0, v1},−) → morNr (vi,−)
induced by vi ≤ max{v0, v1}.
• Since the R-span functor commutes with colimits, we get that the module
RF is isomorphic to the coequalizer of the following two maps π0 and π1

between free Nr-graded R[x1, . . . , xr]-modules (see 2.3):

⊕
x∈colimF

 ⊕
v0 6=v1∈Tx

< xmax{v0,v1} >
π0[x] //

π1[x]
//
⊕
v∈Tx

< xv >


where πi[x], on the component indexed by v0 6= v1 ∈ Tx, is given by the
inclusion < xmax{v0,v1} >↪→< xvi >. Thus the columns of the matrix
representing πi[x] have all entries zero except one which is one.
• The moduleRF is then isomorphic to the cokernel of the difference π0−π1.

Note that the columns of the matrix M(Fx) representing π0−π1 are vectors
of the form: one entry is 1, one entry is −1, and all other entires are zero.

To summarize, with a multifiltration F : Nr → Sets we have associated the fol-
lowing invariants:

(1) a set colimF ;
(2) for any x in colimF , a finite subset Tx := gen(supp(F [x])) of Nr;
(3) for any x in colimF , a |Tx| ×

(|Tx|
2

)
matrix M(Fx), representing the map

π0[x] − π1[x] whose columns are vectors of the form: one entry is 1, one
entry is −1, and all other entires are zero.

These invariants can be used to get the Nr-graded R[x1, . . . , xr]-module associated
to the R-span RF as the cokernel of the map:⊕

x∈colimF

 ⊕
v0 6=v1∈Tx

< xmax{v0,v1} >
M(Fx)−−−−→

⊕
v∈Tx

〈xv〉


5. Functors with values in Spaces

Let F : Nr → Spaces be a multifiltration of simplicial complexes, X := colimF ,
and R a commutative ring with identity. Let us choose an ordering on the set of
vertices of X. Since F is a multifiltration, we can restrict this ordering to the set
of vertices of F (v), for any v in Nr. In this way the maps F (v ≤ w) are order
preserving and we can form a functor of ordered n-simplices to get a multifiltration
of sets Fn : Nr → Sets (see 2.2) which assigns to any v in Nr the set F (v)n of
ordered n-simplices in F (v). These functors, for various n’s, are connected via the
natural transformations given by the maps di : Fn+1(v) → Fn(v) which forget the
i-th element of an ordered simplex (see 2.2). By applying the R-span functor and
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taking the alternating sum of the induced maps we obtain a diagram of natural
transformations in Fun(Nr, R-Mod):

RFn+1
∂n+1:=

∑n+1
i=0 (−1)idi−−−−−−−−−−−−−→ RFn

∂n:=
∑n
i=0(−1)

idi−−−−−−−−−−−→ RFn−1

The composition of these maps is trivial and hence we can form a homology func-
tor Hn(F,R) : Nr → R-Mod which in general may not be a multifiltration. This
could be done in two stages. First we could take the cokernel of the first dif-
ferential coker(∂n+1 : RFn+1 → RFn) and then the kernel of the induced map
∂n : coker(∂n+1) → RFn−1 or we could take the kernel of the second differential
ker(∂n : RFn → RFn−1) and then the cokernel of the induced map ∂n+1 : RFn+1 →
ker(∂n). Let us consider the case of n = 0. Recall that since RF−1 is assumed to be
the trivial functor (see 2.2), H0(F,R) is given by the cokernel coker(d0−d1 : RF1 →
RF0). This cokernel is simply the coequalizer of the two maps d0, d1 : RF1 → RF0.
As the R-span functor commutes with colimits, we then get an isomorphism be-
tween H0(F,R) and the R-span of the following functor with values in the category
of sets:

colim

 F1

d0 //

d1

// F0


This is a special property of the 0-th homology. If n ≥ 1, then it is not true in general
that the functors Hn(F,R), coker(∂n+1 : RFn+1 → RFn), and ker(∂n : RFn →
RFn−1) are R-spans of functors with values in the category of sets, even if R is a
field as the following example illustrates:

5.1. Example. Consider the two multifiltrations of spaces F,G : N2 → Spaces
which on the square {v ≤ (2, 2)} ⊂ N2 are described in Figure 1 and for w in
N2 \ {v ≤ (2, 2)}, the maps induced by (min{w1, 2},min{w2, 2}) ≤ w are the
identities.

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

F : Nr → Spaces

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

G : Nr → Spaces

Figure 1. multifiltrations with values in Spaces

In the multifiltration F : Nr → Spaces there are no 2-simplices and hence
H1(F,R) = ker(∂1 : RF1 → RF0). On the square {v ≤ (2, 2)} ⊂ N2, the func-
tors ker(∂1 : RF1 → RF0) and coker(∂2 : RG2 → RG1) are given respectively by
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the diagrams:

R

(
1
1

)
// R⊕R id // R⊕R

0

OO

// R

(
1
0

) OO (
1
0

)
// R⊕R

id

OO

0 //

OO

0

OO

// R

(
0
1

)
,

OO

R

(
1
0

)
// R⊕R id // R⊕R

0

OO

// R

(
0
1

) OO (
0
1

)
// R⊕R

id

OO

0 //

OO

0

OO

// R

(
−1
−1

)OO

By Example 4.3 both of the functors are not the R-span of any multifiltration of
sets.

We now assume that F : Nr → Spaces is a compact multifiltration of spaces. It
follows that X = colimF is a finite complex. Since in general the functor Hn(F,R)
is not the R-span of a multifiltration of sets we cannot directly use the construction
in Section 4 to compute a free presentation of the module Hn(F,R). Instead our
goal is to describe the module Hn(F,R) in such a way that one can use very
efficiently standard commutative algebra software or an algorithm presented in [2]
which often is faster. As it was pointed out in [2] this efficiency is a consequence
of homogeneity and the fact that matrices involved are very simple. We proceed as
follows:

(1) Consider the decomposition Fn−1 =
∐
σ∈Xn−1

Fn−1[σ] (see 3.2). Define

Dn−1 :=
∐
σ∈Xn−1

morNr (0,−) and φ : Fn−1 → Dn−1 to be the coproduct

of the unique inclusions
∐
σ∈Xn−1

(Fn−1[σ] ↪→ morNr (0,−)). Note that

Dn−1 is a free functor.
(2) Information about F together with the presentations and natural transfor-

mations given at the end of Section 3 and in step (1) can be organized into
the following commutative diagrams for any 0 ≤ i ≤ n+ 1 and 0 ≤ j ≤ n:

GFn+1

pFn+1 //

di

��

Fn+1

di

��
KFn

π0 //
π1

// GFn

αj

��

pFn // Fn

dj

��
Dn−1 Fn−1? _

φoo

(3) This leads to the following natural transformations:

GFn+1

dn+1

��
···d0

��
KFn

π0 //
π1

// GFn

αn

��

···α0

��
Dn−1
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(4) By applying the R-span functor and additivity we get two homomorphisms
of Nr-graded free R[x1, . . . , xr]-modules:

RKFn ⊕RGFn+1

[π0−π1
∑n+1
i=0 (−1)idi] // RGFn

∑n
j=0(−1)

jαj // RDn−1

5.2. Proposition. The composition of the above homomorphisms is trivial and the
homology of this complex is isomorphic to Hn(F,R).

Proof. Consider the complex whose homology is Hn(F,R):

RFn+1

∑n+1
i=0 (−1)idi // RFn

∑n
i=0(−1)

idi // RFn−1

Since φ : Fn−1 ↪→ Dn−1 is an inclusion and pFn+1
: GFn+1 → Fn+1 is a surjection,

the bottom row of the following commutative diagram is also a complex whose
homology is isomorphic to Hn(F,R):

RKFn ⊕RGFn+1

projection

��

[π0−π1
∑n+1
i=0 (−1)idi] // RGFn

pFn

��

∑n
j=0(−1)

jαj // RDn−1

GFn+1

∑n+1
i=0 (−1)idipFn+1 // RFn

∑n
i=0(−1)

iφdi // RDn−1

Recall that RFn is the cokernel of the map π0 − π1 : RKFn → RGFn. This
implies the top row of the above diagram is also a complex whose homology is
isomorphic to Hn(F,R) proving the proposition. �

An important fact is that the above sequence of free Nr-graded R[x1, . . . , xr]-
modules that computes Hn(F,R) can be easily and explicitly described in terms
of the original multifiltration of spaces. Here are the involved modules:

RKFn =
⊕
σ∈Xn

⊕
v0 6=v1∈gen(σ)

< xmax{v0,v1} >

RGFn =
⊕
σ∈Xn

⊕
v∈gen(σ)

< xv >

RDn−1 =
⊕

σ∈Xn−1

R[x1, . . . , xr]

and here is how to find the matrices associated to the maps in this sequence
(see 2.3 for our convention to describe homomorphisms between free Nr-graded
R[x1, . . . , xr]-modules).

• Let σ be a simplex in Xn or Xn+1. Consider the set {v ∈ Nr | σ ∈ F (v)}.
This is a saturated set and hence admits a finite minimal set of generators
which we denote by gen(σ). This set coincides with gen(supp(F [σ])) and its
elements are exactly the minimal elements of the set {v ∈ Nr | σ ∈ F (v)}.
• The matrix

[
π0 − π1

∑n+1
i=0 (−1)idi

]
is a concatenation of two matrices

one for π0 − π1 and one for
∑n+1
i=0 (−1)idi.

• The matrix for π0 − π1 is a block diagonal. The blocks are indexed by
simplices in Xn and the block corresponding to σ in Xn is of the size

|gen(σ)| ×
(|gen(σ)|

2

)
. The entry in this block indexed by v in gen(σ) and

v0 6= v1 in
(
gen(σ)

2

)
has row grade v and column grade max{v0, v1}. Its value

is 1 if v = v0, −1 if v = v1, and 0 otherwise.
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• The rows of the matrix for
∑n+1
i=0 (−1)idi are indexed in the same way and

have the same grades as the rows of the matrix for π0 − π1. The columns
of the matrix for

∑n+1
i=0 (−1)idi are divided into blocks indexed by simplices

in Xn+1. The columns in the block corresponding to σ in Xn+1 are indexed
by gen(σ). The corresponding element in gen(σ) is the grade of the column.
Each column has exactly n + 2 non-zero entries which are either 1 or −1.
For a column indexed by v in gen(σ), the non-zero entries occur in the
row blocks corresponding to the simplices di(σ). In each such block there
is only one non-zero entry and is equal to (−1)i and occurs in the row
corresponding to the minimal element with respect to the lexicographical
order in the set {w ∈ gen(di(σ)) | w ≤ v}.
• The matrix for

∑n
j=0(−1)jαj has rows indexed by simplices in Xn−1. All

the rows have grade 0. The columns are divided into blocks indexed by
simplices in Xn. The columns in the block corresponding to σ in Xn are
indexed by gen(σ). The corresponding element in gen(σ) is the grade of the
column. The entry in this matrix in the row indexed by τ in Xn−1 and the
column indexed by v in gen(σ) for σ in Xn has value (−1)i if τ = di(σ) and
0 otherwise. Note that in any row, the entries in the same column block
have the same value but different grades.

We will now show our procedure to compute the module H1(F,R) with an
example.

5.3. Example. Consider the multifiltration F : N2 → Spaces which on the square
{v ≤ (2, 2)} ⊂ N2 is described in Figure 2 and for w in N2 \ {v ≤ (2, 2)}, the
maps induced by min(w, (2, 2)) ≤ w are the identities. The simplicial complex
X = colimF is given by the complex F (2, 2) and we choose an ordering of its
vertices as indicated also in Figure 2.

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)0

1 2

3

0

1 2

3

0

1 2

3

1 2

3

0

1 2

3

0

1 2

Figure 2

The functors H1(F,R) : N2 → R-Mod on the square {v ≤ (2, 2)} ⊂ N2 is given
by the following commutative diagram:

R
1 // R

1 // R

0

OO

// R

0

OO

0 // R

1

OO

0 //

OO

0

OO

// R

1

OO
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We will now go through the steps presented above and construct the elements
needed in Proposition 3.11 to compute H1(F,R):

• X0 = {0, 1, 2, 3}, X1 = {0 < 1, 0 < 2, 1 < 2, 1 < 3, 2 < 3},
X2 = {1 < 2 < 3}, and Xn = ∅ for n ≥ 3.

• For an ordered simplex σ in X, the minimal set of generators gen(σ), or-
dered by the lexicographical order, is given by the tables:

σ 0 1 2 3
gen(σ) (0,2) (2,0) (0,2) (1,1) (2,0) (0,2) (1,1) (2,0) (0,2) (1,1)

σ 0 < 1 0 < 2 1 < 2 1 < 3 2 < 3
gen(σ) (0,2) (2,0) (0,2) (2,0) (1,1) (2,0) (0,2) (1,1) (0,2) (1,1)

σ 1 < 2 < 3
gen(σ) (1,2) (2,1)

• We thus have:

RKF1 2〈x(1,2)〉 ⊕ 〈x(2,1)〉 ⊕ 2〈x(2,2)〉
RGF1 4〈x(0,2)〉 ⊕ 3〈x(1,1)〉 ⊕ 3〈x(2,0)〉
RGF2 〈x(1,2)〉 ⊕ 〈x(2,1)〉
RD0 4R[x1, x2]

• The matrix associated to π0 − π1 : RKF1 → RGF1 with the block de-
composition and the column and row grades is given by:

0 < 1 0 < 2 1 < 2 1 < 3 2 < 3
(2, 2) (2, 2) (2, 1) (1, 2) (1, 2)



0 < 1
(0, 2) 1 0 0 0 0
(2, 0) −1 0 0 0 0

0 < 2
(0, 2) 0 1 0 0 0
(2, 0) 0 −1 0 0 0

1 < 2
(1, 1) 0 0 1 0 0
(2, 0) 0 0 −1 0 0

1 < 3
(0, 2) 0 0 0 1 0
(1, 1) 0 0 0 −1 0

2 < 3
(0, 2) 0 0 0 0 1
(1, 1) 0 0 0 0 −1
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• The matrix associated to
∑2
j=0(−1)jdi : RGF2 → RGF1 with the block

decomposition and the column and row grades is given by:

1 < 2 < 3
(1, 2) (2, 1)



0 < 1
(0, 2) 0 0
(2, 0) 0 0

0 < 2
(0, 2) 0 0
(2, 0) 0 0

1 < 2
(1, 1) 1 1
(2, 0) 0 0

1 < 3
(0, 2) −1 0
(1, 1) 0 −1

2 < 3
(0, 2) 1 0
(1, 1) 0 1

• The matrix associated to
∑1
j=0(−1)jαj : RGF1 → RD0 with the block

decomposition and the column and row grades is given by:

0 < 1 0 < 2 1 < 2 1 < 3 2 < 3
(0, 2) (2, 0) (0, 2) (2, 0) (1, 1) (2, 0) (0, 2) (1, 1) (0, 2) (1, 1)


0 0 −1 −1 −1 −1 0 0 0 0 0 0
1 0 1 1 0 0 −1 −1 −1 −1 0 0
2 0 0 0 1 1 1 1 0 0 −1 −1
3 0 0 0 0 0 0 0 1 1 1 1

6. Presentations of bifiltrations

Assume that R is a field. For a general multifiltration of spaces, to get a pre-
sentation of its homology, one can apply a standard algebra software to the exact
sequence given in 5.2. In the case of a bifiltration F : N2 → Spaces one can try to
be more efficient. Instead of applying the software directly to the complex given
in 5.2, one can first use the fact that the polynomial ring R[x1, x2] has the projec-
tive dimension 2. This implies that the kernel of any map between free modules
is free. In particular the kernel Z of the map

∑n
j=0(−1)jαj : RGFn → RDn−1

is free. Let φ : RKFn ⊕ RGFn+1 → Z be the map that fits into the following
commutative diagram:

RKFn ⊕RGFn+1
φ //

[π0−π1
∑n+1
i=0 (−1)idi]

33Z �
� // RGFn

The map φ : RKFn ⊕RGFn+1 → Z is a free presentation of Hn(F,R). To take
a full advantage of this idea, one would need to be able to describe in an efficient
way a set of free generators of Z. As of writing this paper, we have not found a
method for doing it.
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