
Politecnico di Torino

Porto Institutional Repository

[Article] Effects of disorder on electron tunneling through helical edge states

Original Citation:
Pietro Sternativo; Fabrizio Dolcini (2014). Effects of disorder on electron tunneling through helical
edge states. In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS, vol.
90 n. 12, 125135-1-125135-13. - ISSN 1098-0121

Availability:
This version is available at : http://porto.polito.it/2564946/ since: September 2014

Publisher:
American Physical Society (APS)

Published version:
DOI:10.1103/PhysRevB.90.125135

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/76523296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://porto.polito.it/view/publication/PHYSICAL_REVIEW=2E_B,_CONDENSED_MATTER_AND_MATERIALS_PHYSICS.html
http://porto.polito.it/2564946/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1103/PhysRevB.90.125135
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2564946


PHYSICAL REVIEW B 90, 125135 (2014)

Effects of disorder on electron tunneling through helical edge states

Pietro Sternativo1 and Fabrizio Dolcini1,2,*

1Dipartimento di Scienza Applicata e Tecnologia del Politecnico di Torino, I-10129 Torino, Italy
2CNR-SPIN, Monte S.Angelo, via Cinthia, I-80126 Napoli, Italy

(Received 6 August 2014; revised manuscript received 7 September 2014; published 19 September 2014)

A tunnel junction between helical edge states, realized via a constriction in a quantum spin Hall system, can be
exploited to steer both charge and spin current into various terminals. We investigate the effects of disorder on the
transmission coefficient Tp of the junction by modeling disorder with a randomly varying (complex) tunneling
amplitude �p = |�p| exp[iφp]. We show that, while for a clean junction Tp is only determined by the absolute
value |�p| and is independent of the phase φp , the situation can be quite different in the presence of disorder: phase
fluctuations may dramatically affect the energy dependence of Tp of any single sample. Furthermore, analyzing
three different models for phase disorder (including correlated ones), we show that not only the amount but also
the way the phase φp fluctuates determines the localization length ξloc and the sample-averaged transmission.
Finally, we discuss the physical conditions in which these three models suitably apply to realistic cases.

DOI: 10.1103/PhysRevB.90.125135 PACS number(s): 73.23.−b, 73.43.Jn, 71.23.−k

I. INTRODUCTION

Theoretical predictions [1] and experimental evidence [2]
have shown that the one-dimensional conducting channels
emerging at the edges of a quantum spin Hall effect (QSHE)
system are helical, so that along one boundary spin-up
electrons propagate, say rightwards, and spin-down electrons
propagate leftwards [3,4].

A spectacular effect connected to such a helical nature is
the topological protection from scattering off nonmagnetic
impurities, which ideally makes helical edge states perfectly
conducting one-dimensional (1D) channels. This property has
inspired various investigations about the effects of disorder
on helical states. On the one hand, various studies have
tested such robustness to disorder when inelastic scattering
is included [1,5–8], possibly in interplay with Rashba im-
purities [9–13], or when time-reversal symmetry is broken
either by magnetic impurities [14–17] or by applied magnetic
fields [18–20]. On the other hand, it also been realized that dis-
order itself can cause an ordinary insulator to undergo a phase
transition to a topological insulator (topological Anderson
insulator) [21–24]. In turn, such a transition may be strongly
modified when disorder exhibits spatial correlations [25].

An important consequence of the helical property is
that QSHE edge states represent a promising platform for
applications to spintronics [26]. In particular, it has been
predicted that charge and spin currents can be steered in
multiterminal devices exploiting a tunnel coupling between
the four edge states [27–45]. Typically, such tunnel coupling
is modeled as a clean quantum point contact. However, various
sources of disorder may arise when creating a constriction in
a QSHE quantum well. Indeed, due to the Klein tunneling
characterizing the Dirac spectrum of the helical states, simple
gating would not be effective to create a constriction, which,
instead, has to be realized through lithographic techniques
combined with an etching process. In doing that, oxides tend
to form at the border of the etched region, leading to a randomly
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varying electric potential. In addition, the geometrical profile
of the constriction may exhibit roughness, resulting in a
randomly varying width of the constriction. Furthermore, a
top gate is needed to drive the system into the QSHE regime,
and the dielectric layer separating the metallic gate from the
quantum well is typically an amorphous insulator that naturally
leads to local potential fluctuations. Disorder is thus an intrinsic
feature in helical tunnel junctions that has to be accounted for.

So far, analytical predictions about disorder effects are
mostly available for short tunnel junctions. In that limit, the
spin texture of the helical states has been shown to strongly
affect the localization length [44], whereas the presence of
a magnetic field, whose breaking of time-reversal symmetry
induces backscattering along the edge states, leads to a peak
in the noise correlations [45]. As far as finite-length tunnel
junctions are concerned, results for disorder are mostly limited
to numerical approaches that analyzed the transmission coef-
ficient of individual samples [34]. A thorough investigation
covering both single-sample and intrinsic disorder properties
of helical tunnel junctions is still lacking. Furthermore, already
in the time-reversal symmetric case, it would be desirable for
a comparison with experiments to analyze how and to what
extent the various disorder sources affect the transmission
coefficient.

In this paper we address these problems, analyzing the
effects of disorder on the QSHE setup depicted in Fig. 1,
using an effective 1D model, presented in Sec. II, that assumes
a randomly varying (complex) electron-tunneling amplitude
between the helical edge states. We first analyze in Sec. III the
properties of individual samples and show that the disorder on
the absolute value and on the phase of the tunneling amplitude
may have quite different effects on the transmission coefficient
of a disordered sample. In particular, while in a clean tunnel
junction the phase is unimportant, for a disordered junction
it plays a major role in realistically relevant regimes. We
then address in Sec. IV the localization length, the sample-
independent intrinsic disorder property that determines the
length scale over which the transmission decays as a function
of the sample length. We show that not only the typical amount
of phase fluctuations but also the way the phase fluctuates
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FIG. 1. (Color online) A constriction etched in a four-terminal
quantum spin Hall effect setup induces an electron-tunnel coupling
between the helical edge states. Vertical arrows inside the circles
indicate electron spin orientation. A fluctuating width along the
longitudinal direction x causes geometrical disorder, while electrical
disorder can originate from the presence of oxides (small red dots)
produced by the etching process and/or from the potential fluctuations
(bigger green dots) due to the amorphous dielectric separating the
conducting channel from the top gate.

strongly affects the localization length ξloc. In particular, we
analyze three different models for phase fluctuations, including
the case of correlated disorder, and show three different
behaviors for the predicted energy dependence of ξloc. Also,
we discuss how these differences impact the sample-averaged
transmission. Finally, in Sec. V we discuss how the proposed
models apply in realistic implementations of helical tunnel
junctions and compare our results to the case of a conventional
disordered quantum wire.

II. MODEL

For a long and clean constriction it has been shown [34,46]
that, starting from the two-dimensional (2D) Bernevig-
Hughes-Zhang (BHZ) model defined on a stripe of width
W , one can obtain an effective 1D model defined on the
basis of the edge modes, which turn out to be coupled
via a tunneling amplitude related to their wave-function
overlap. Such an overlap roughly decays exponentially with
the transversal width W of the junction. A straightforward
way to account for the geometrical disorder due to the profile
roughness is to adopt such a basis and to assume a width W (x)
that fluctuates along the longitudinal direction x, resulting
in a randomly varying tunneling amplitude. Notice that, as
is well known, there are, in fact, two types of tunneling
amplitudes, �p(x) and �f (x), related to spin-preserving (p)
and spin-flipping (f) processes, respectively, both ensuring
time-reversal symmetry [6,27,31,33–36,43,47,48]. The model
presented here can, in principle, include both, although we
shall be mainly interested in the effects of the first coupling �p,
which is expected to be dominant. Furthermore, the disorder
arising from the oxides formed when etching the constriction
and from the inhomogeneities of the amorphous dielectric
can be regarded as a series of randomly distributed electric
potential centers, each coupling to the edge-state densities
in two different ways, VT (x) and VB(x), depending on the
transversal distance from the top and bottom edges, and
randomly varying along the longitudinal direction x.

We describe the helical edge states by four electron field
operators, namely, �R↑(x),�L↓(x) for the upper edge and
�R↓(x),�L↑(x) for the lower edge, characterized by a linear

spectrum Dirac Hamiltonian [1,2],

Ĥ0 = −i�vF

∑
α=R/L=±

α
∑

σ=↑,↓

∫
dx : �†

ασ (x) ∂x�ασ (x) : ,

(1)

with α = R/L = ± denoting the chirality for right and left
movers, respectively [49], σ = ↑,↓ is the spin component, and
: · : indicates the normal ordering. The most general tunneling
terms that preserve time-reversal symmetry are given by

Ĥtun =
∑

σ=↑,↓

∫
dx[�p(x) �

†
Lσ (x) �Rσ (x) + H.c.]

+
∑

α=R/L=±
α

∫
dx [�f (x) �

†
α↓(x) �α↑(x) + H.c.],

(2)

where �p(x) and �f (x) describe the randomly varying tun-
neling amplitudes related to spin-preserving and spin-flipping
processes, respectively [6,27,31,33–36,43]. The coupling with
a potential that randomly fluctuates in space reads

Û =
∫

dx{eVT (x)[ρ̂R↑(x) + ρ̂L↓(x)]

+ eVB (x)[ρ̂R↓(x) + ρ̂L↑(x)]}, (3)

where ρ̂ασ (x) = : �†
ασ (x)�ασ (x) : is the electron chiral den-

sity. Equation (3) can also be rewritten as

Û =
∫

dx[ Vp(x) ρ̂c(x) + Vf (x) ĵs(x)/vF ], (4)

where

Vp/f (x) = [VT (x) ± VB(x)]/2 (5)

couple to the charge density ρ̂c = e(ρ̂R↑ + ρ̂L↑ + ρ̂R↓ + ρ̂L↓)
and to the spin current ĵs = evF (ρ̂R↑ + ρ̂L↓ − ρ̂L↑ − ρ̂R↓),
respectively. The full Hamiltonian for the disordered junction
thus reads

Ĥ = Ĥ0 + Ĥtun + Û . (6)

Far away from the constriction the helical edge states propagate
freely and are eventually injected or absorbed by the four
metallic electrodes (see Fig. 1), each kept at a chemical
potential μi (i = 1, . . . 4). Denoting by x0 and xf the left
and right extremal longitudinal coordinates of the constriction,
the system is disorder free (�p,�f ,Vp ,Vf ≡ 0) for x < x0

and x > xf , whereas within the finite length L = xf − x0 of
the constriction region the tunneling amplitudes �p(x) ,�f (x)
and the potentials Vp(x),Vf (x) fluctuate randomly along the
longitudinal direction x.

In Ref. [43] it has been shown for model (6) that, even
though the p-tunneling and f-tunneling terms in Eq. (2)
do not commute, the four-terminal scattering matrix S as
well as the related transconductance matrix G exhibit a
factorization into p and f processes. More specifically, each
entry of G is factorized into a product of two terms, one
depending on only the profile of �p(x) and Vp(x) and the
other depending on only �f (x) and Vf (x). Thus, if a bias
voltage V is applied to, say, terminal 2 in Fig. 1, the
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resulting currents entering terminals 1, 3, and 4 are

I (1) = (1 − Tp)
e2

h
V, (7)

I (3) = Tp Tf

e2

h
V, (8)

I (4) = Tp (1 − Tf )
e2

h
V. (9)

Here

Tp = Tp[�p(x); Vp(x); E], (10)

Tf = Tf [�f (x); Vf (x)] (11)

are the transmission coefficients related to spin-preserving
(p-sector) and spin-flipping (f-sector) tunneling processes,
respectively, and can be operatively determined via
Eqs. (7)–(9).

The separate dependence of Tp and Tf , described by
Eqs. (10) and (11), holds for any static profile of �p/f and
Vp/f that fluctuates randomly in space (elastic coupling). In
the opposite limit, where an additional degree of freedom that
is spatially localized and that dynamically couples to the edge
states, inelastic backscattering can occur [8].

A. Eliminating potentials Vp(x) and Vf (x) via a gauge
transformation

A priori, in both sectors ν = p,f , the model is characterized
by three real parameters, namely, a (complex) tunneling
amplitude �ν(x) = |�ν(x)| exp[iφν(x)] and a (real) potential
Vν(x). In fact, only two parameters are sufficient. Indeed, we
show below that the potential Vν(x) can be reabsorbed into the
phase φν of the tunneling amplitude via a gauge transformation
φν(x) → φ′

ν(x), where the renormalized phases read

φ′
ν(x) = φν(x) − 2

∫ x

x0

eVν(x ′)
�vF

dx ′ ν = p,f. (12)

Thus, while the potential in Eqs. (3) and (4) alone does
not couple the two edges directly, it does affect their
tunneling term (2). Importantly, the phase φ′

ν(x) depends
nonlocally on the related potential Vν . In particular, a constant
potential Vν(x) ≡ Vν yields a phase φ′

ν(x) ∼ −2eVνx/�vF

that varies linearly in space, whereas a δ-like potential
Vν(x) = V 0

ν δ(x − xj ) centered at xj yields a phase jump at xj ,
φ′

ν(x) ∼ −2eV 0
ν θ (x − xj )/�vF , where θ (x) is the Heaviside

step function. This implies that different profiles for the phase
φν have to be adopted to account for various types of Vν(x)
disorder [50].

A suitable way to prove that the potentials Vν(x) can
be gauged away is to exploit the equation of motion for
the electron fields obtained in Ref. [43]. For this purpose,
we introduce a four-component electron field operator � =(
�R↑,�L↑,�R↓,�L↓

)T
and rewrite the Hamiltonian (6) in a

compact form as

H = �vF

∫
dx �†{−i∂x(σ0 ⊗ τz)

+ σ0 ⊗ τz[τ · bp,E(x)] + [σ · bf (x)] ⊗ τz}�, (13)

where σ = (σx,σy,σz) and τ = (τx,τy,τz) are two sets of
Pauli matrices acting on the spin space (σ = ↑,↓) and on
the chirality space (α = R,L), respectively; σ0 and τ0 are the
2 × 2 identity matrices in the related spaces, and

bf (x) = (|�f (x)| cos φf (x),|�f (x)| sin φf (x),eVf (x))
�vF

, (14)

bp,E(x) = 1

�vF

(−i |�p(x)| sin φp(x), i |�p(x)| cos φp(x) ,

eVp(x) − E) (15)

are two local “magnetic” fields, determined by the tunnel
junction parameter profiles and acting on the spin and the
chirality spaces, respectively. Finally, E is the energy measured
with respect to the Dirac point of the Hamiltonian (1). Notice
that bp,E and bf enter the Hamiltonian (13) in a way that
time-reversal symmetry is not broken [51].

The stationary solutions �(x,t) = e−iEt/��E(x) of the
Heisenberg equation i� ∂t�(x,t) = [�(x,t) ,Ĥ] obtained
from (13) fulfill the equation of motion

i
∂

∂x
�E(x)

= {[σ · bf (x)] ⊗ τ0 + σ0 ⊗ [τ · bp,E(x)]}�E(x), (16)

whose solution is factorized as a direct product,

�E(x) = (Uf (x; 0) ⊗ Up,E(x; 0)) �(0), (17)

where the two “evolution” operators

Uf (x; 0) = T exp

[
−i

∫ x

0
dx ′σ · bf (x ′)

]
, (18)

Up,E(x; 0) = T exp

[
−i

∫ x

0
dx ′τ · bp,E(x ′)

]
(19)

are applied to the four-component field operator �(0) at the
space origin. Here T denotes the space ordering and plays a role
similar to time ordering in time-dependent perturbation theory.
As a consequence, the total transfer matrix of the junction also
factorizes into a direct product,

M = mf ⊗ mp, (20)

where

mf = Uf (xf ; x0), (21)

mp = e−iτzkExf Up,E(xf ; x0)e+iτzkEx0 (22)

determine the transmission coefficients (10) and (11), related
to spin-preserving and spin-flipping processes, via the rela-
tions [43]

Tp = |(mp)22|−2, (23)

Tf = |(mf )22|2. (24)

We now notice that the random potentials Vp(x) and Vf (x)
appear in the equations of motion (16) through the z compo-
nents of the vectors bf (x) and bp,E(x) [see Eqs. (14) and (15)].
Thus, introducing the field

� ′
E(x) = (

e
i
∫ x

x0

eVf (x′ )
�vF

σz ⊗ e
i
∫ x

x0

eVp (x′ )
�vF

τz
)
�E(x), (25)
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it is straightforward to verify that, if �E(x) fulfills Eq. (16),
then � ′

E fulfills a similar equation,

i
∂

∂x
� ′

E(x)

= {[σ · b′
f (x)] ⊗ τ0 + σ0 ⊗ [τ · b′

p,E(x)]}� ′
E(x), (26)

with new vectors

b′
f (x) = (|�f (x)| cos φ′

f (x),|�f (x)| sin φ′
f (x),0)

�vF

, (27)

b′
p,E(x) = ( − i |�p(x)| sin φ′

p(x), i |�p(x)| cos φ′
p(x) ,−E)

�vF

.

(28)

In Eqs. (27) and (28) the potentials Vp/f have disappeared from
the z components [see Eqs. (14) and (15) for comparison] and
have been absorbed into renormalized phases of the tunneling
amplitudes,{

�ν = |�ν | eiφν

Vν
→

{
�′

ν = |�ν | eiφ′
ν

Vν ≡ 0
, (29)

where φ′
ν(x) is given by Eq. (12). For the � ′

E field the transfer
matrices m′

f and m′
p are defined as in Eqs. (21) and (22),

upon replacing (Uf , Up,E) → (U′
f , U′

p,E), where the latter
evolution operators are defined as in Eqs. (18) and (19) with
bf → b′

f and bp,E → b′
p,E . From Eq. (25) one can easily

show that

U′
f (xf ; x0) = e

i
∫ xf
x0

eVf (x′ )
�vF

σz Uf (xf ; x0), (30)

U′
p,E(xf ; x0) = e

i
∫ xf
x0

eVp (x′ )
�vF

τz Up,E(xf ; x0) (31)

and that the transmission coefficients are independent of the
gauge transformation, as expected.

III. SINGLE SAMPLES

A. Introduction

The factorization result (20), valid for any arbitrary profile of
the tunneling amplitudes and potentials, implies the separate
dependence of coefficients Tp and Tf on the disorder profiles
�p(x),Vp(x) and �f (x),Vf (x), respectively [see Eqs. (10)
and (11)]. This enables us to analyze the effects of disorder
in sectors ν = p,f separately, without loss of generality. In
particular, because the spin-preserving tunneling amplitude is
typically bigger than the spin-flipping one, |�p| > |�f |, and
because Tp exhibits a richer energy dependence than Tf , [43]
we shall consider henceforth the p sector, for which the spin
index acts as a dummy degeneracy variable. Furthermore,
because the potential Vp can be reabsorbed via the gauge
transformation (29) into the phase of the tunneling amplitude
[see Eq. (12)], we shall discuss, without loss of generality, the
effects of disorder of the (complex) tunneling amplitude �p.

We start our analysis by investigating the transmission
coefficient of individual disordered samples. To illustrate
the effects of disorder, it is first worth recalling the result
for the clean junction case, characterized by a constant
�p(x) ≡ |�p| exp[iφp] over the whole junction length L,
as investigated in Ref. [43]. In that case the transmission
coefficient Tp is independent of the value of the phase φp

and depends on only the absolute value �0
p := |�p| of the

tunneling amplitude. In particular, while for a short junction
(L < ξ0 with ξ0 := �vF /�0

p) the transmission coefficient is
trivially energy independent, for an elongated junction (L >

ξ0) the energy �0
p determines the crossover from a “subgap”

region (E < �0
p) with very low transmission to a “supragap”

region (E > �0
p), where transmission is finite and exhibits

an oscillatory behavior related to the finite length L of the
junction. In the limit of an infinitely long junction, �0

p would
be an actual gap in the spectrum, so that ξ0 is the evanescent
wave decay length associated with such an energy gap. We thus
focus here on the effects of disorder in the more interesting
case of an elongated junction L > ξ0.

For this purpose, we perform a coarse graining of the tunnel
junction, dividing the length L of the tunnel region into a
sequence of N intervals [xj−1; xj ] (with j = 1, . . . ,N and
xN = xf ), characterized by a size lp = L/N corresponding
to the typical disorder fluctuation length scale. Then, in each
interval j we generate local model parameters according to
specific distributions (see below), thereby determining its local
transfer matrix m(j )

p . The transfer matrix mp of the whole
sample is then obtained as the product of the transfer matrices
in each interval [52],

mp =
1∏

j=N

m(j )
p . (32)

The m(j )
p ’s of each interval can be computed exactly for the case

of locally constant tunneling amplitude and also for the case of
a phase φp varying linearly within the interval (see the
Appendix). The transmission coefficient Tp of the disordered
sample, obtained from (32) through Eq. (23), depends both on
the fluctuation strength of the tunneling amplitude and on the
length scales L, ξ0, and lp. Here we shall focus on the regime
lp < ξ0 < L, which is physically more relevant, as we shall
discuss later.

B. Roles of the absolute value and phase of the tunneling
amplitude with disorder

In the presence of disorder, the roles of the absolute value
|�p(x)| and of the phase φp(x) can be quite different from
those for the clean junction case. In particular, while in the
clean case Tp is independent of the phase, in the disordered
case the fluctuations of φp(x) dramatically affect Tp.

We illustrate this point with an illuminating example,
namely, the case where �p in each interval j are chosen
from a Gaussian distribution in the complex plane. Then, the
absolute value |�p| follows the Rayleigh distribution, and
the phase φp is uniformly distributed between 0 and 2π .
We have analyzed independently the effects of these two
distributions on the transmission coefficient Tp. Explicitly,
Fig. 2 shows Tp of a disordered sample in the cases where
(i) |�p| is Rayleigh distributed and φp is kept constant (solid
blue curve) and (ii) φp(x) fluctuates uniformly and |�p| is
constant (dashed red curve). For comparison, the case of a
clean junction is described by the thin black curve, and the
Rayleigh distribution is taken with an average value 〈|�p|〉 =
�0

p equal to the absolute value �0
p of the clean case. As one can
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Tp

E / Γp
0

FIG. 2. (Color online) Transmission coefficient for a disordered
tunnel junction where the (complex) tunneling amplitude �p =
|�p| exp[iφp] is randomly varying. The disorder on the absolute value
|�p| (solid blue curve) has different effects than the disorder on the
phase φp (dashed red curve). For comparison, the thin black line
denotes the clean case. Here L/ξ0 = 5 and N = 10, corresponding
to the regime lp � ξ0 < L.

see, the fluctuations of the absolute value |�p| leave essentially
unaltered the qualitative features of the clean case. Indeed, the
particle-hole symmetry Tp(E) = Tp(−E) of the transmission
coefficient is preserved, and the crossover between a low-
transmission subgap region and a high-transmission supragap
region is still present, possibly with a slight quantitative change
of the “gap” |�p| and a modification of the Tp oscillations in
the supragap region. In contrast, the disorder of the phase
φp breaks the particle-hole symmetry of the clean case and
introduces transmission peaks in the subgap region, whose
width decreases when L/ξ0 increases. The origin of these
peaks can be qualitatively understood in analogy to the case
of barriers in quantum interference problems. In the simplest
case of a tunneling amplitude with a phase jump in the middle
of the junction, for instance, the two halves of the junction play
the role of a series of two barriers, located very close to each
other, with equal transmission coefficients (here determined by
|�p|L/2) but with a difference in the transmission-amplitude
phases (here determined by �φp and E): perfect resonances
are then known to arise even when each individual barrier is
not perfectly transmitting, provided that the phase difference
fulfills specific conditions (here �φp = π and E = 0). In a
more general case where phase fluctuations occur at various
junction positions and are not necessarily equal to π , as in
Fig. 2, peaks do not reach exactly 1 and may occur at different
values of energy E.

The phase disorder thus significantly modifies the clean-
case scenario, replacing the crossover between the two regions
with a sequence of maxima and minima and breaking the
particle-hole symmetry. While the specific shape of Tp is
sample dependent, the qualitative features described in Fig. 2
are present in any sample in the same regime of parameters,
namely, lp � ξ0 < L.

The difference in the role of |�p| and φp becomes par-
ticularly striking in the regime lp � ξ0 < L, where disorder
fluctuates over a length scale much smaller than the typical
electronic scale characterizing the clean junction at E = 0.
In this limit the integral in Eq. (2) exhibits a slowly varying

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0Tp

E / Γp
0

 Δ
p
=0

 Δ
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FIG. 3. (Color online) Transmission coefficient for a disordered
tunnel junction with L/ξ0 = 3 and N = 500, corresponding to the
regime lp � ξ0 < L. The absolute value |�p| varies according to
the Rayleigh distribution, and the phase is uniformly picked in
a range [−�φp/2; �φp/2]. While the fluctuations of the absolute
value |�p| of the tunneling amplitude do not modify the clean-
case result significantly, the amount �φp of phase fluctuation may
have a dramatic impact. In particular, while for �φp < π minor
modifications appear on Tp , when �φp � 2π (corresponding to
a Gaussian-distributed tunneling amplitude), the phase fluctuations
wash out the tunneling term, so that the transmission coefficient
becomes energy independent and tends to 1.

component [the electron field �(x)] and a rapidly fluctuating
term [the tunneling amplitude �p(x)], and the electron probes
only the space-averaged disorder 〈�p〉x , which is a statistical
estimate of the distribution average itself. Thus, when only |�p|
fluctuates, one has 〈�p〉x � 〈|�p|〉 exp[iφp] = �0

p exp[iφp],
and the clean-case result is recovered. In contrast, if φp

fluctuates by an amount of about 2π , then for any value of
�p, also −�p is equally likely to occur, so that 〈�p〉x � 0.
The phase fluctuations completely wash out the tunneling
term, so that the transmission becomes energy independent
and tends to 1. This is illustrated in Fig. 3, which displays
the transmission coefficient for a sample where both |�p| and
φp are disordered over a length lp = L/500. In particular,
the former is Rayleigh distributed, and the latter is uniformly
sampled within a range �φp. As one can see, when �φp � π ,
the transmission coefficient does not significantly change with
respect to the clean case (see thin black curve in Fig. 2
for comparison), whereas when �φp approaches 2π , the
transmission coefficient rapidly rises towards 1, becoming
independent of E.

These results about single samples indicate that, already
with the customary assumption of a Gaussian-distributed
tunneling amplitude �p (i.e., a Rayleigh-distributed |�p| and
a uniformly distributed φp), the fluctuations of the phase
have a much more significant impact on Tp than those of
the absolute value. Also, as we shall discuss in Sec. V, the
Rayleigh distribution used in Figs. 2 and 3 in fact already
greatly overestimates the actual amount of fluctuations of |�p|
of realistic systems. For these reasons, we shall henceforth
neglect the disorder on |�p| and focus on the phase. In the next
section we show that different models for the phase fluctuations
may lead to strongly different results also for the localization
length of disordered tunnel junctions.
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IV. LOCALIZATION LENGTH AND SAMPLE AVERAGING

This section is devoted to the investigation of intrinsic
disorder effects on helical tunnel junctions, i.e., effects that
do not depend on the specific sample. The localization
length ξloc is an intrinsic property of disorder that determines
the exponential decay of the transmission coefficient of a
disordered sample with its length L,

Tp(E) ∼ e−2L/ξloc(E). (33)

It can be computed as a Lyapunov exponent [53–55]: Denoting
by λmax(M) the maximal eigenvalue of the transfer matrix for

a system with M disordered intervals, one has

ξ−1
loc := 1

lp
lim

M→∞
ln |λmax(M)|

M
, (34)

where lp is the length of each interval. In practice, a
convergence is reached for values of M ∼ 103, and one can see
that ξloc is sample independent, in agreement with Oseledec’s
theorem [54,56].

To identify how disorder affects ξloc, it is first necessary to
specify the length dependence of the transmission in the clean
case, which is not necessarily a conducting system. Indeed,
from the expression for Tp for a clean junction [43],

Tp(E) =

⎧⎪⎪⎨
⎪⎪⎩

[
1 + �0

p

2

E2−�0
p

2 sin2
(

L
ξ0

√
E2

�0
p

2 − 1
)]−1

for |E| > �0
p,

[
1 + �0

p

2

�0
p

2−E2
sinh2

(
L
ξ0

√
1 − E2

�0
p

2

)]−1
for |E| < �0

p,

(35)

one can straightforwardly read off the “localization length” for
the clean case,

ξcl(E) =
{

ξ0
(
1 − (

E/�0
p

)2)−1/2
for |E| < �0

p,

∞ for |E| > �0
p,

(36)

where ξ0 = �vF /�0
p is the decay length of the clean-case wave

function at E = 0. Below we show how the behavior (36) is
modified in the presence of disorder.

A. Localization length: Comparison between three different
models for phase fluctuations

The results of Sec. III obtained for single samples suggest
that, in the regime lp < ξ0 < L, the fluctuations of the phase of
the tunneling amplitude matter more than those of its absolute
value. Here we analyze three models for phase fluctuations
and show that they lead to quite different predictions for the
localization length of disordered tunnel junctions. In Sec. V
we shall discuss which model better suits which situation. The
three models differ in the way the phase φp is assumed to vary
from one interval to another and are schematically depicted in
Fig. 4.

(a) Uncorrelated Gaussian (u-G) model. The phase φp

is generated independently from one interval to another,
according to a uniform distribution “ran” between −π and
π [see Fig. 4(a)]:

φ(j )
p = ran(−π ; +π ). (37)

The name “Gaussian” originates from the fact that, when the
values of a complex tunneling amplitude �p = |�p| exp[iφp]
are generated from a Gaussian distribution, Eq. (37) is the
distribution for their phases.

(b) Correlated random-walk (c-RW) model. The phase
φ

(j+1)
p in the (j + 1)th interval deviates only by an amount

�φp from the phase in φ
(j )
p in the j th interval; namely, it is

generated as

φ(j+1)
p = φ(j )

p + ran

(
−�φp

2
; +�φp

2

)
. (38)

The phase randomly evolves by “steps” of (at most) ±�φp/2
to the “right”/“left” with respect to the value in the previous
interval, similar to a random walk [see Fig. 4(b)]. When the
step parameter �φp → 2π , the c-RW model reduces to the
u-G model.

(c) Correlated linear and continuous (c-LC) model. The
phase φp is assumed to vary linearly within each interval lp,

(a) u-G model (uncorrelated Gaussian)

(b) c-RW model (correlated Random-walk)

(c) c-LC model (Linear and Continuous)

π

−π

0

π

−π

0

π

−π

0

φ(j)
p

lp

FIG. 4. (Color online) Three different models of disorder fluctua-
tions for the phase φp of the tunneling amplitude [see Eqs. (37)–(39)].
The horizontal axis represents the longitudinal coordinate along the
junction, divided into N intervals with size lp .
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with a random slope −2k
(j )
p . However, the phase is assumed to be continuous, so that the extremal values of φp in the j th interval

have to match the ones of the neighboring intervals j ± 1 [see Fig. 4(c)]. This amounts to setting

φ(j )
p (x) = −2k(j )

p (x − xj−1) − 2lp

j−1∑
i=1

k(i)
p for xj−1 � x � xj . (39)

We shall assume that the k
(j )
p ’s are generated from a Gaussian

distribution, with a vanishing average and with a standard
deviation SD(kp), which is the parameter characterizing this
model. When 2lp SD(kp) � 2π , the clean case is recovered.

We have computed the localization length as a function of
the energy E for these three models, obtaining quite different
results, as shown in Fig. 5. All the curves refer to an interval
length lp = 2ξ0. For comparison, the localization length ξcl(E)
of the clean case [see Eq. (36)] is plotted with a dotted black
curve and exhibits a single lobe within the gap.

For the u-G model (black solid curve), ξloc has a non-
monotonous energy dependence: this type of disorder trans-
forms the single lobe of the clean case into a “Fraunhofer-like”
pattern of lobes, with decreasingly high maxima, which extend
also in the supragap region and are separated by energy
values of infinite localization length. These energy values
correspond to resonances related to the length scale lp of
the disorder. Indeed, although in each interval j the phase
fluctuates randomly, for the particular energy values E =
±

√
�0

p

2 + (mπ�vF /lp)2 (m = 1,2, . . .) the transfer matrix
m(j )

p becomes proportional to the identity matrix, independent
of the local random value φ

(j )
p of the phase (see the Appendix).

In contrast, the c-RW model (red dashed curve) leaves
the clean case behavior essentially unchanged, with the only
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FIG. 5. (Color online) The (inverse) localization length ξloc, in
units of ξ0, plotted as a function of energy for the three different
models of phase fluctuations depicted in Fig. 4 and described in
the text. The quite different behaviors are discussed in the text. The
disorder length scale is lp = 2ξ0 for all models. For the c-RW model
�φp = π/2, and for the c-LC model the parameter is SD(kp) = 2/ξ0.
The dotted black curve represents the clean-case result ξ0/ξcl(E) [see
Eq. (36)].

visible effect of smoothening the transition at E = �0
p from the

subgap to the supragap region, where the localization length
is reduced to a finite value with respect to the clean case.
Notice that the phase-step parameter �φp of the c-RW model
[see Eq. (38)] has been purposely chosen to be smaller but
not much smaller than 2π (�φp = π/2) to emphasize that the
result of the clean case is rather robust to such phase disorder,
unless �φp really approaches 2π .

Finally, the c-LC model of phase fluctuations (blue thin
solid curve) transforms the sharp lobe of the clean case
into a smooth Gaussian-like energy profile, with a standard
deviation roughly given by �vF SD(kp). Any signature of
crossover between a subgap region and a supragap region has
disappeared. In comparison with the clean case (dotted black
curve), the c-LC disorder lowers the maximum and broadens
the curve; that is, it increases the localization length at low
energies and reduces it for high energies. Here the model
parameter has been chosen to be SD(kp) = 2/ξ0, so that across
each interval lp the phase may change up to ∼2π .

The comparison between the results of these three models
indicates that the localization length of the clean junction is
robust to disorder of phase fluctuations, unless their typical
amount �φp is significantly close to 2π . Indeed, one can
show that, when �φp � 2π , the three models lead to quite
similar results, which do not qualitatively deviate from the
clean case. In contrast, when �φp ∼ 2π , the way the phase
varies from one interval to another does matter in determining
ξloc, as is apparent from the different behaviors of the u-G
model (black solid curve) and the c-LC model (blue thin
solid curve) in Fig. 5. We observe that, while both models
deviate from the clean case, at a given value of ξ0/L the
c-LC model exhibits the most striking difference. Indeed, the
effect of a linearly varying phase is to produce a local shift
of the electron energy E → E − �vF k

(j )
p , related to the phase

variation rate −2k
(j )
p in Eq. (39). Such an energy shift does

not occur for piecewise constant phase fluctuations, as can
be seen by comparing the expressions for the electron field
evolution operator Up,E within a given interval j in the two
cases, explicitly given in the Appendix [Eqs. (A2) and (A3) and
Eqs. (A8) and (A9)]. Because the transmission coefficient is
strongly energy dependent, such an energy shift can effectively
displace the local transmission of that interval from the subgap
regime to the supragap regime and vice versa, even when
|�p| is not fluctuating. When the sequence of all intervals
is considered, for a value of energy E corresponding to the
subgap (supragap) region of the clean case, a c-LC disordered
sample also exhibits intervals in the conducting supragap
(subgap) regime. This is the reason why for the blue thin solid
curve ξloc(E) increases (decreases) for |E| < �0

p (|E| > �0
p),

compared to the thin dotted black curve for the clean case.
At a more formal level, this effect stems from the fact that a
linearly varying phase φp results in a space-dependent bp,E(x)
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vector (15), so that the matrices τ · bp,E(x) and τ · bp,E(x ′)
at any two different points do not commute, even within
each interval. Space ordering T in Eq. (19) is thus crucial in
determining the evolution operator Up,E and gives rise to the
local energy shift E → E − �vF k

(j )
p . In contrast, for piecewise

constant φp(x) and τ · bp,E(x), space ordering can be dropped
within each interval, and no shift arises.

B. Sample averaging

The energy dependence of the localization length directly
impacts sample-averaged quantities. Denoting by (. . .) the
average over samples with different disorder realizations, the
sample-averaged transmission coefficient Tp, the “typical”
transmission coefficient

T typ
p = exp[ln Tp], (40)

and the transmission fluctuations

δTp =
√

(Tp − Tp)2 (41)

can be compared with ξloc. The result is shown in Fig. 6 for
phase fluctuations following the u-G model [Fig. 6(a)] and
the c-LC model [Fig. 6(b)]. As one can see, Tp (black solid
line) and T

typ
p (red dashed line) are different (in particular,

T
typ
p < Tp), a typical signature that 1D disordered systems

are not self-averaging [53]. Furthermore, the fluctuations δTp

(blue dotted line) are of the order of the average transmission
and, as expected for mesoscopic samples, do not decrease
with an increasing number of samples. For the u-G model, all
three quantities follow the Fraunhofer-like energy pattern of
ξ0/ξloc(E), shown in Fig. 5 and given in Fig. 6(a) as a thin black
line as a guide to the eye. The transmission coefficient reaches
1, and its fluctuations δTp vanish at the energy values for which
ξloc diverges. For the c-LC model, the fluctuations δTp exhibit
a local minimum at E = 0, as shown in Fig. 6(b). Its origin
can be understood in terms of the energy-shift effect E → E −
�vF k

(j )
p that arises in this model and is discussed above. For a

given value of SD(kp), the energy ranges in which Tp is less af-
fected by such disorder-induced shift are small energies |E| �
�0

p and very high energies |E| � �0
p, where the local transmis-

sion is likely to remain in the subgap region and in the supragap
region, respectively, despite the fluctuating shift. This is why
δTp are minimal in these ranges. When, however, the amount
of the fluctuating energy shift becomes much bigger than the
clean-case gap �0

p (i.e., for �vF SD(kp) � �0
p), the minimum at

E = 0 increases, and the fluctuations δTp become energy inde-
pendent. We also notice that, while in a single sample the phase
fluctuations typically lead to a Tp that is not particle-hole sym-
metric (see the red dashed curve in Fig. 2), Fig. 6 shows that
particle-hole symmetry is recovered upon sample averaging.

V. DISCUSSION

A. Geometrical vs electrical disorder

We now want to discuss the previous results in terms
of realistic systems, identifying situations where the three
models of phase fluctuations can be applied. As observed
in the Introduction, in realistic implementations of helical
edge-state tunnel junctions, disorder has mainly two origins.

(a)

ξ0/ξloc

Tp

exp[lnTp]

δTp
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ξ0/ξloc

Tp

exp[lnTp]
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FIG. 6. (Color online) Energy dependence of sample-averaged
transmission: the average transmission Tp (black solid curve), the
typical transmission T

typ
p [see Eq. (40); red dashed curve], and the

transmission fluctuations δTp [see (41); blue dotted curve]. Here
lp = 2ξ0, N = 6, and averaging has been performed over 6 × 103

samples. (a) The u-G model and (b) the c-LC model for phase
fluctuations (see Fig. 4). In both cases the behavior of ξ0/ξloc has
also been reported (thin black solid curve) as a guide to the eye. The
disorder parameter for the c-LC model is SD(kp) = 2/ξ0.

One is the presence of roughness in the borders delimiting the
constriction, which causes the width W (x) of the junction to
fluctuate along the longitudinal direction x. We shall refer
to that as the “geometrical disorder.” The second origin
is the presence of locally fluctuating potentials due to the
oxides arising at the etching process and/or to the amorphous
dielectric below the top gate. We shall refer to the latter as the
“electrical disorder.”
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FIG. 7. (Color online) Various sources of disorder in a helical
tunnel junction: (a) geometrical disorder and (b) and (c) electrical
disorder. See text for details. For the geometrical disorder the
fluctuations δW of the width are typically smaller than the average
width (δW � W ), so that |�p| � 〈|�p|〉 is weakly disordered.
However, the difference δs(j ) = δs

(j )
1 − δs

(j )
2 between opposite profile

lengths may cause fluctuations on the phase φp of the tunneling
amplitude. In (b) and (c) the shaded area represents the typical
profile of electrical disorder along the longitudinal direction of the
helical tunnel junction. (b) and (c) describe the cases of long- and
short-range potential, respectively, compared to the typical potential
center distance lp . The red dashed curves represent the equivalent
formulation in terms of the phase of the tunneling amplitude after
applying the gauge transformation equation (12).

Concerning the geometrical disorder, it is worth mentioning
that current lithographic techniques allow one to obtain an
extremely precise profile. Thus, although some roughness
is ultimately unavoidable due to lithographic resolution
(∼20 nm), one can quite reasonably treat the local width
W (x) as a fluctuating variable that is sharply peaked around its
average value W ∼ 100–300 nm [see Fig. 7(a)]. Because W (x)
determines the local absolute value |�p(x)| of the tunneling
amplitude, one can fairly claim that the distribution of |�p(x)|
is also sharply peaked around its average value. The Rayleigh
distribution (i.e., the distribution of the absolute value of a com-
plex Gaussian variable) is not particularly peaked, for its stan-
dard deviation is proportional to its average value, SD(|�p|) �
0.52 〈|�p|〉, and it overestimates the actual fluctuations of
|�p(x)|. Nevertheless, even when the fluctuations of |�p(x)|
are assumed to follow such a distribution, the transmission
coefficient turns out to be essentially unaltered with respect
to the clean case, as we have shown in Sec. III. We conclude
that, for practical purposes, one can fairly approximate the
absolute value as being locked to its average value, |�p(x)| ≡
�0

p, corresponding to the sharply peaked average width. To
estimate the phase fluctuations, one observes that the local
tunneling amplitude �p(x) is related to the overlap integral

between the two uncoupled edge-state wave functions �(x,y)
over a local randomly varying area A(x) ∼ lpW (x) centered
around a longitudinal point x over the typical roughness length
scale lp. Because the wave functions are of the form �(x,y) =
eikxϕ(y), where ϕ(y) is a real function that transversally
decays, the only contribution to phase fluctuations is roughly
�φ

(j )
p ∼ kδs(j ), where δs(j ) is the difference between the

lengths of the two edge profiles around x [see Fig. 7(a)]. For the
helical states the Dirac spectrum is centered around k = 0, so
that for a 1 meV energetic electron one has k ∼ 106 m−1, while
the roughness δs is limited by a lithographic resolution of 20
nm. It is thus reasonable to assume that �φ

(j )
p < 1 and that the

phase fluctuations due to geometrical disorder are fairly small.
They can be accounted for by either the c-RW model (with
a parameter �φp < 1) or the c-LC model [with a parameter
SD(kp) lp < 1]. In this limit small steplike variations and linear
variations with a small slope are equivalent. For the above
reasons, we believe that in realistic junctions geometrical
disorder due to roughness does not play a major role.

For the electrical disorder the scenario is richer. Let us
consider the random potential Vp(x), which consists of the
sum of various electric potential sources, and denote by λp

the typical extension range of these potential centers and
by lp their average distance from each other (notice that
the value of lp for the electrical disorder can, of course,
differ from the roughness length scale mentioned above
for the geometrical disorder). There can be two limiting
configurations, depicted in Figs. 7(b) and 7(c): in the case
with λp � lp [Fig. 7(b)], the average of the potential over the
distance lp is fairly representative of the potential distribution
at such a length scale. Thus, in defining a coarse-grained
disorder one can assign a constant value of the potential to
the interval (denoted by black thick lines). In contrast, in
the opposite regime λp � lp [Fig. 7(c)] the inhomogeneous
distribution of strongly peaked potential centers cannot be
replaced by the averaged potential over lp. However, this
difference can be reworded in terms of the phase φp of the
tunneling amplitude. Indeed, as shown in Sec. IV A, with
the gauge transformation (29) one can eliminate the potential
Vp(x) by introducing a renormalized phase φp → φ′

p of the
tunneling amplitude, given by the integral of Vp [see Eq. (12)].
Thus, in the first case λp � lp one obtains a linearly varying
phase [dashed red line in Fig. 7(b)], and the c-LC model
applies. In the second case, λp � lp, the phase exhibits jumps
at the potential source centers [dashed red line in Fig. 7(c)]. The
height of such phase jumps depends on the typical strength of
the potential peaks, �φp ∼ e

∫
lp

dxVp(x)/�vF . The situation
of sharp and strong peaks (�φp ∼ 2π ) can be described by
the u-G model, whereas for weaker peaks one can simply
replace Eq. (37) for the u-G model by a uniform distribution
with �φp < 2π , similar to what has been done in the analysis
of Fig. 3.

Experimental conditions. Tunnel junctions in QSHE can
be realized by lateral etching of HgTe/CdTe [2] and
InAs/GaSb [57] quantum wells, and lithographic techniques
can be exploited to tailor arbitrary shapes. The presence of the
top gate enables one to enter the QSHE regime and to tune
the Fermi level EF . For constriction widths W ∼ 100–200 nm
in the HgTe/CdTe case, one obtains a tunneling amplitude
magnitude |�0

p| ∼ 0.25–2.5 meV [34,36,46]. These energy
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values are well below the bulk gap and are experimentally
accessed [2]. Using the value of the Fermi velocity vF �
0.5 × 106 m/s [4]. a length scale ξ0 = �vF /|�0

p| ∼ 0.1–1 μm
is obtained. For InAs/GaSb quantum wells, smaller values for
ξ0 may be expected due to a Fermi velocity vF � 2 × 104 m/s
that is more than one order of magnitude smaller than that
in HgTe/CdTe edge states. [57] Thus, for an L ∼ 1μ m long
junction, one has ξ0/L ∼ 0.1–1. The geometrical disorder and
the electrical disorder discussed above thus occur over a typical
length scale lp < ξ0, whose value depends on the specific
fabrication method.

B. Differences from a disordered quantum wire

Formal analogies arise between the disordered tunnel junction
of helical states and the problem of a 1D disordered quantum
wire. Indeed, the �p(x) term and the Vp(x) term play the roles
of backward scattering (BS) and forward scattering (FS) in a
disordered wire, respectively.

There are, however, various aspects that distinguish the
problem of a tunnel junction of helical edge states from the
case of a quantum wire. In the first instance, far away from
the constriction region the helical states eventually separate,
enabling one to separately measure the backscattering and the
transmitted currents, given by Eqs. (7) and (8), respectively,
for an injection from, e.g., terminal 2 [58]. This separation is
not possible in a quantum wire.

Second, while in a quantum wire impurities are typically
distributed everywhere, here disorder is effective over only
the finite length L of the constriction because topological
protection from disorder occurs away from the tunnel junction.

Furthermore, in quantum wires the disorder effects should
be compared with the disorder-free case, which is a clean
conducting wire with a roughly energy-independent transmis-
sion coefficient. As a consequence, only one typical electron
length scale can be compared with the disorder fluctuation
length scale, namely, the Fermi wavelength λF of a traveling
wave in the clean case at the Fermi energy, which is of the
order a few angstroms. In contrast, a clean tunnel junction
with a uniform tunneling �p(x) ≡ �0

p exp[iφp] exhibits a
much richer structure. Indeed, one can identify the subgap
region |E| < �0

p, characterized by decaying electron waves
with a wavelength that takes the minimal value ξ0 = �vF /�0

p

at E = 0 and diverges at E = �0
p, and the supragap region

|E| > �0
p, characterized by traveling waves with a wavelength

decreasing in energy down to a behavior λE � �vF /E for high
energies. This causes the energy dependence of the clean-case
localization length (36). When investigating the disorder
effects in a tunnel junction, such rich energy dependence of
the clean case becomes crucial.

Finally, in a disordered quantum wire, FS and BS terms have
the same physical origin, namely, the presence of impurities
in the wire, and are associated with the k � 0 and k � 2kF

Fourier components of the impurity potential, respectively,
so that disorder always involves both terms. In contrast, in a
tunnel junction �p(x) is mainly due to the geometrical disorder
and Vp(x) is due to the electrical disorder, and we have argued
above that the former disorder is significantly less relevant than
the latter. This difference has severe physical implications,

which can be described by invoking the gauge transforma-
tion (29) that casts the FS term Vp into the renormalized phase
φ′

p [see Eq. (12)] of a new BS term �′
p = |�p| exp[iφ′

p]. Now,
if the original �p is a Gaussian-distributed BS term, then the
new �′

p obtained after the gauge is also a Gaussian-distributed
variable. The FS term is thus effectively canceled by the local
correlation of the original BS term �p(x)�∗

p(x ′) = g0δ(x − x ′)
and does not play any role. This is, indeed, the case of
a quantum wire [59]. However, if the original BS can be
considered to be not disordered, the FS term indirectly induces
a fluctuating BS term �′

p via Eq. (29). The nonlocality of the
gauge transformation (12) maps an uncorrelated disorder on
the FS term Vp, Vp(x)V ∗

p (x ′) = v0δ(x − x ′), to a correlated
non-Gaussian disorder on the BS term �p, whose space
correlations are related to the distribution parameter v0 of
the FS term Vp. This effect causes the strikingly different
behaviors of the localization length in the u-G and the c-LC
models, described by the black solid curve and the red dashed
curve in Fig. 5. Notice that this phenomenon is essentially
different from the more customary case of the Anderson model
with correlated disorder, where correlations are introduced
directly on the disordered potential [60–64], and is more
similar to the case of periodic-on-average systems [65].

VI. CONCLUSIONS

We have analyzed the effects of disorder on a tunnel junc-
tion of helical edge states (Fig. 1) using an effective 1D model
where the tunneling amplitude �p(x) = |�p(x)| exp[iφp(x)]
is randomly varying along the longitudinal direction of the
junction. The analysis of the transmission coefficient Tp of
individual samples has shown that the disorders of the absolute
value |�p| and of the phase φp of the tunneling amplitude
lead to quite different effects, the latter being typically more
relevant in the physical regime lp < ξ0 < L, as shown in Fig. 2.
In particular, in the regime lp � ξ0 < L, the fluctuations
of φp can even suppress tunneling strongly, leading to an
energy-independent transmission coefficient (see Fig. 3). This
is in striking contrast to the behavior of a clean junction, where
the transmission coefficient is independent of the value of the
phase.

Furthermore, we have also shown that, when phase fluctu-
ates by an amount of about �φp ∼ 2π , the way the phase
fluctuates also becomes important. In particular, we have
analyzed three different models for phase fluctuations (see
Fig. 4), and we have shown that the energy dependence of
the localization length ξloc(E) is dramatically different for
the three cases, as illustrated in Fig. 5. Furthermore, the
sample-averaged transmission, displayed in Fig. 6, turns out to
be different. Finally, we have discussed the physical situations
where these three models apply in realistic tunnel-junction
implementations, and we have outlined the differences with
respect to disordered quantum wires.
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APPENDIX: TRANSFER MATRIX FOR THE THREE
PHASE-DISORDER MODELS

The tunnel region is divided into N intervals [xj−1; xj ]
(j = 1, . . . N), characterized by the disorder length scale lp.
Here x0 and xN = xf are the left and right extremal points
of the tunnel region, respectively. Within each interval the
absolute value of the tunneling amplitude is assumed to take a
constant value,

|�p(x)| ≡ ∣∣�(j )
p

∣∣ xj−1 � x < xj . (A1)

The phase φp(x) fluctuates from one interval to another
according to the three different models described in Sec. IV A.

The transfer matrix of the sample is obtained from the
evolution operator through Eq. (22), where the evolution
operator Up,E(xf ; x0) is provided below for the three phase
fluctuation models.

1. Models u-G and c-RW

For the u-G and c-RW models the phase takes a constant
value φ

(j )
p within each interval, given by Eqs. (37) and (38),

respectively. The total evolution operator across the junction
is given by

Uμ

p,E(xf ; x0) =
1∏

j=N

Uμ

p,E(xj ; xj−1), (A2)

where xN = xf and μ = u-G, c-RW, and

Uμ

p,E(xj ; xj−1) = T e
−i

∫ xj
xj−1

τ ·b(j )
p,E (x ′) dx ′ = e−i lpτ ·b(j )

p,E =
⎧⎨
⎩

τ0 cos
(
k̃

(j )
E lp

) − iτ · b(j )
p,E

sin(k̃(j )
E lp)

k̃
(j )
E

for |E| >
∣∣�(j )

p

∣∣,
τ0 cosh

(
q̃

(j )
E lp

) − iτ · b(j )
p,E

sinh(q̃(j )
E lp)

q̃
(j )
E

for |E| <
∣∣�(j )

p

∣∣ (A3)

is the evolution operator in the j th interval. Here

k̃
(j )
E =

√
E2 − ∣∣�(j )

p

∣∣2

�vF

for |E| >
∣∣�(j )

p

∣∣,
(A4)

q̃
(j )
E =

√∣∣�(j )
p

∣∣2 − E2

�vF

for |E| <
∣∣�(j )

p

∣∣,
and

b(j )
p,E =

(−i
∣∣�(j )

p

∣∣ sin φ
(j )
p , i

∣∣�(j )
p

∣∣ cos φ
(j )
p (x) ,−E

)

�vF

.

2. Model c-LC

For this model the phase φp(x) varies linearly within each
interval according to Eq. (39). The related bc-LC

p,E (x) vectors in
Eq. (15) oscillate in space, and as a consequence, the matrices
τ · bc-LC

p,E (x) and τ · bc-LC
p,E (x ′) at any two different points do not

commute, even within the same interval j , so that

T e
−i

∫ xj
xj−1

τ ·bc-LC(j )
p,E (x ′) dx ′ �= e

−i
∫ xj
xj−1

τ ·bc-LC(j )
p,E (x ′) dx ′

. (A5)

This makes the evaluation of the time-ordered exponential
in Eq. (19) a priori nontrivial. To circumvent this problem,
we observe that the linearly continuous behavior (39) can be
rewritten as

φc-LC
p (x) = φ0

p − 2
∫ x

x0

kp(x ′) dx ′, (A6)

where φ0
p is a constant and kp(x) is a random piecewise

constant function,

kp(x) ≡ k(j )
p xj−1 � x < xj . (A7)

The phase (A6) can thus be regarded as the result (12) of
an applied gauge transformation (25), upon setting φ′

p(x) =
φc-LC

p (x) and Vp(x) = �vF kp(x)/e. Then, the evolution oper-
ator for the c-LC model is easily written [see Eq. (31)] as

Uc-LC
p,E (xf ; x0) = e

i
∫ xN
x0

kp(x ′)τz

1∏
j=N

Up,E(xj ; xj−1), (A8)

with

Up,E(xj ; xj−1) =
⎧⎨
⎩

τ0 cos
(
k̃

(j )
E lp

) − iτ · b(j )
p,E

sin(k̃(j )
E lp)

k̃
(j )
E

for
∣∣E − �vF k

(j )
p

∣∣ >
∣∣�(j )

p

∣∣,
τ0 cosh

(
q̃

(j )
E lp

) − iτ · b(j )
p,E

sinh(q̃(j )
E lp)

q̃
(j )
E

for
∣∣E − �vF k

(j )
p

∣∣ <
∣∣�(j )

p

∣∣. (A9)

Here

k̃
(j )
E =

√(
E − �vF k

(j )
p

)2 − ∣∣�(j )
p

∣∣2

�vF

for
∣∣E − �vF k(j )

p

∣∣ >
∣∣�(j )

p

∣∣,
(A10)

q̃
(j )
E =

√∣∣�(j )
p

∣∣2 − (
E − �vF k

(j )
p

)2

�vF

for
∣∣E − �vF k(j )

p

∣∣ <
∣∣�(j )

p

∣∣
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are the local wave vectors, and

b(j )
p,E =

( − i
∣∣�(j )

p

∣∣ sin φ0
p, i

∣∣�(j )
p

∣∣ cos φ0
p , �vF k

(j )
p − E

)
�vF

are the local magnetic fields that the gauge transformation would transform into the bc-LC(j )
p,E fields.
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