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Abstract—In recent years magnetic-based technologies, like
NanoMagnet Logic (NML), are gaining increasing interest as
possible substitutes of CMOS transistors. The possibility to mix
logic and memory in the same device, coupled with a potential low
power consumption, opens up completely new ways of developing
circuits. The major issue of this technology is the necessity
to use an external magnetic field as clock signal to drive the
information through the circuit. The power losses due to the
magnetic field generation potentially wipe out any advantages
of NML logic. To solve the problem new clock mechanisms
were developed, based on spin-transfer torque current and on
voltage-controlled multiferroic structures that use magnetoelastic
properties of magnetic materials, i.e. exploiting the possibility
of influencing magnetization dynamics by means of the elastic
tensor. In particular the latter shows an extremely low power
consumption.

In this paper we propose an innovative voltage-controlled mag-
netoelastic clock system aware of the technological constraints
risen by modern fabrication processes. We show how circuits can
be fabricated taking into account technological limitations and we
evaluate the performance of the proposed system. Results show
that the proposed solution promises remarkable improvements
over other NML approaches, even though state-of-the-art ideal
multiferroic logic has in theory better performance. Moreover,
since the proposed approach is technology-friendly, it gives a
substantial contribution toward the fabrication of a full magnetic
circuit and represents an optimal trade off between performance
and feasibility.

Index Terms—NanoMagnets Logic, Magneto-Elastic effect,
Low Power

I. INTRODUCTION

The continuous scaling of transistors is the reason behind

the incredible development that CMOS technology has under-

gone in the last decades. While this scaling process is reaching

its physical limits, new technologies are studied as possible

CMOS substitutes. Particularly, magnetic-based technologies

are of increasing interest due to the very low power con-

sumption expected and the possibility to combine memory

and logic in the same device. Among these technologies,

NanoMagnet Logic (NML) was one of the first studied and

demonstrated at experimental level [1][2][3]. Single domain

nanomagnets, which have only two stable states thanks to

magnetic anisotropy, are used to represent the logic values
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“0” and “1” (Figure 1.A). Circuits are built placing magnets

in close proximity to each other: To reach the minimum

energy state horizontally coupled magnets align themselves

antiferromagnetically, while vertically coupled magnets align

themselves ferromagnetically [4], as can be seen from Figure

1.A. We also demonstrated that even a multidomain element

may behave in a similar way, in the so called Quasi-Single

Domain Logic (QSDL), helping to reach interesting results

with low resolution cost-effective lithographic capabilities

[5]. In this way information propagates through the circuit

and logic gates can be built. In particular, by changing the

shape of the magnets it is possible to build AND/OR gates

[6]. Moreover, exploiting the antiferromagnetic coupling of

horizontally placed magnets, it is possible to implement an

inverter by placing an odd number of magnets in a row [4].

NML circuits shows also a good tolerance to process variations

[7] due to errors in the fabrication processes [8][9].
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Fig. 1. NanoMagnet Logic fundamentals. A) Single domain nanomagnets
are used to represent the logic values “0” and “1”. In the classical approach a
current which flows through a wire placed under the magnets plane generates
the magnetic field that is used has clock signal. B) STT-current induced
clocking for NML logic. MTJs junctions are used as basic elements and a
current flowing through the magnets is used as clock. C) Multiferroic NML
logic. The basic elements is a multilayered structure made by a piezoelectric
material and a magnetic layer. D) Multiphase clock system. Three clock
signals with a phase difference of 120 degrees are applied to specific area of
the circuit called clock zones. E) Magnetization evolution in a NML circuit
where the multiphase clock system is applied.

Unfortunately, an external magnetic field is necessary to

help the magnets to switch from one stable state to the other

[10]. This magnetic field in the most classical approach is

generated by a current (I) flowing through a wire placed under

the magnets plane (Figure 1.A). The generated magnetic field

is therefore parallel to the short side of the magnets, so when

it is applied, magnets are forced in an intermediate unstable

state with the magnetization vector rotated along the short

side. When the magnetic field is removed magnets realign

themselves following the input magnet. This mechanism is

called “clock” [4]. Several solutions have been proposed in
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literature, as discussed in section II, based on current induced

magnetic field [4][11], on STT-current induced clocking [12]

and on multiferroic structures [13]. In this work we propose

an alternative solution [14], where the basic element is a

simple magnet and not a multiferroic structure. Magnets are

deposited on a piezoelectric layer (PZT) driven by two parallel

electrodes buried inside or deposited on top of the PZT itself.

After a background description in section II, the basic idea

is described in Section III while in Section IV the circuit

layout is shown. In Section V the performance of the proposed

Magnetoelastic clock are shown and compared to the other

NML technologies. The work presented in this paper provides

three important contributions to the NML circuits theory (1).

It demonstrates that the performance in terms of speed and

power consumption are much better than other NML systems;

(2) we show that, while from a pure theoretical point of view

this solution has lower performance than a pure multiferroic

structure, it is instead feasible with current technological

processes and represents therefore a good trade off between

performance and technological feasibility. Finally, (3) we reach

the results through accurate simulations of realistic structures

constrained by technological procedures currently available

and ready to be experimentally demonstrated.

II. BACKGROUND ON NML CLOCKING

Even the magnetic field induced by a Magnetic Force

Microscope (MFM) tip, used to investigate the static magne-

tization configuration of the system, may be used to switch

a single element, as already shown in [15]. However to

propagate the information through the circuit a further mech-

anism is required. During the removal of the magnetic field,

when magnets are switching, there can be errors due to the

influence of external factors like thermal noise [16]. This is

true also applying the so called adiabatic switching, that means

a slow rise and fall time for the magnetic field. This problem

originates when too many elements are cascaded, while when

the number is limited the information safely propagates with

a small error probability.

To solve this problem a multiphase clock system must be

applied at the circuit (Figure 1.D) [11]. Three clock signals

with a phase difference of 120 degrees are applied to different

areas of the circuit, called clock zones. These areas are

composed by a limited number of magnets. As shown in Figure

1.D, at every time instant when magnets of a clock zone are

switching (SWITCH phase) magnets on their left are in the

HOLD phase, they are in a stable state and act like an input for

the switching magnets. Elements of the clock zone on the right

are in the RESET state and have no influence on the switching

magnets. At the next time step (Figure 1.D) the situation

is repeated but the switching clock zone is the next in the

sequence, therefore information propagates through the circuit

avoiding errors. Ideally every clock zone must be wide exactly

as one magnet. With this solution the error probability would

be reduced at the minimum possible value and at the same time

it would be possible to reach the maximum clock frequency

[17]. The downside of this solution is that a precise spatial

control is required to influence only one element and not its

neighbors. Moreover, the pipeline level of the circuit greatly

increases and this can reduce the throughput in sequential

circuits [18]. As a consequence, the number of elements for

each clock zone must be carefully chosen considering speed

and reliability constraints, but also technological and circuit

architecture issues [19].

The clock frequency obtainable are in the range of 50MHz-

500MHz [20][12][21], depending on the clocking technology

chosen, so it is lower than the frequency obtainable with

CMOS [22] or with emerging technologies based on molecular

structures [23][24]. However, the main interest beyond Nano-

Magnet Logic is the expected very low power consumption,

lower than the expected power consumption of ultimate scaled

CMOS transistors [25][26]. The power consumption is lower

than CMOS if only the energy required to switch the magnets

is considered. Nonetheless if the losses in the clock generation

system are considered as well, this is no more true and most

of the advantages of this technology are wiped out [19]. In

[4] a current of 545mA in a copper wire of 1µm width is

considered necessary to switch all the magnets, leading to a

very high power consumption due to Joule losses. Moreover,

using this approach the local control of a clock zone is

difficult to reach, because the magnetic field of one clock

zone influences also the neighbors clock zones [7]. To solve

this problem new clocking technologies were studied. An

STT-current induced clock was proposed as a suitable way

to reset the magnets (Figure 1.B) [12][27]. In this NML

implementation Magnetic Tunnel Junctions (MTJs) are used

as basic cells. MTJs are multilayer structure composed by an

insulator layer sandwiched between two magnetic layers. This

is the same structure used in Magnetic RAM, and allows to

reset every element with a current flowing “through“ each

element. The advantages of this approach are many: Much

lower power consumption, built-in read/write system, perfect

local control of each element and the possibility to use the

well developed MRAM technology. Another solution recently

proposed uses multiferroic [13] structures as base elements

(Figure 1.C) [17][21]. The basic dots are composed by 40nm

of piezoelectric material (PZT - lead zirconate titanate [28])

and a 10nm magnetic layer. Every element is then controlled

by applying a voltage of few millivolt (mV). When the voltage

is applied the strain of the magnetic layer, induced by the

coupled piezoelectric material, makes the magnetization vector

rotate toward the short side of the magnet, working as a reset

mechanism. This system allows to reach the highest possible

frequency with the lowest possible power consumption, with,

at the same time, the possibility to use a voltage instead of a

current to control the circuit.

While this approach is a very good solution for NML logic,

that might allow in the future to exploit the full potential of

NML logic, it presents two major problems that makes the

fabrication of the circuit quite difficult. The aspect ratio of

every element is very low, with a difference of two nanometers

between the two sides. Since most of the properties of nano-

magnets depend on their aspect ratio, changing it drastically

implies a change on how the correspondent circuit works. With

a so small difference between the shorter and the longer side

of magnets, the presence of unavoidable process variations
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can easily alter the magnets behavior, leading to improper

magnets behavior. Moreover, a very precise local control on

magnets is required, making the application of the electric

field and the related electrodes fabrication quite complex,

and currently almost unfeasible. The solution here discussed

aims at a feasible structure, which unavoidably contraints the

results, but that still has remarkable performance and potentials

for improvements.

III. MAGNETOELASTIC CLOCK SYSTEM

A. Structure description

The basic idea is shown in Figure 2. A magnetic thin film

is deposited above a piezoelectric substrate and it is patterned

through lithography (Figure 2.A). When an electric field is

applied to the substrate, the piezoelectric material increases

its length. If the piezoelectric figure of merit is such that

the resulting strain is large enough to induce a stress on

the ferromagnetic layer which is above the film mechanical

stiffness, a strain is produced in the nanomagnet too. Of course

this depends on both materials choice (properties) and on

device geometry, as shown in detail further in the article. The

induced stress-anisotropy causes the magnetization vector to

rotate along the direction of the applied strain (Figure 2.B)

This is the direct mapping of the clock principle that drives

NanoMagnet Logic.
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Fig. 2. Magnetoelastic clock for NanoMagnet Logic. A) No voltage
applied. B) Voltage applied to the PZT substrate. The strain induced in the
nanomagnets change their magnetization. C) First demonstration of a magnet
switched with the strain induced by a piezoelectric layer, with electrodes
placed on top and on the bottom of the PZT [29].

It is a rather simple idea that was already demonstrated

in a simplified form in [29]. In [29] an electric field was

applied using two parallel electrodes placed on top and on

the bottom of a piezoelectric (PZT - Lead Zirconate Titanate)

substrate (Figure 2.C). Relatively big (380x150 nm2) Nickel

magnets where successfully switched by applying a small

voltage (1.5V). Table I shows a comparison among the more

common piezoelectric materials, PZT, BT (Barium Titanate),

ZnO (Zinc Oxide) and PVDF (polyvinylidenfluoride). PZT

is clearly the best choice for this kind of applications, as

discussed in the following.

When applying the same concept of [29] to NML logic some

issues arise. Electrodes placed on top of the PZT substrate are

difficult to contact, because the surface of the PZT must be

patterned with nanomagnets. Moreover with this configuration

the electric field is perpendicularly applied, while the strain is

parallel to the PZT surface. In this way the strain and the elec-

tric field are coupled through the d31 coefficient (d coefficients,

normally expressed in pm/V, describe the coupling between

strain and electric field in the stress-charge tensor). PZT d31

TABLE I
COMPARISON BETWEEN PIEZOELECTRIC THIN FILMS. D31 AND D33 ARE

THE TWO MAIN PIEZOELECTRIC COEFFICIENTS. EfMAX IS DIELECTRIC

STRENGTH AND ǫr IS THE DIELECTRIC CONSTANT.

d31 d33 EfMAX ǫr
(pm/V) (pm/V) (MV/m)

PZT -30 to -80 50 to 150 >50 300 to 1300
BT -33 82 2 1250 to 10000

ZnO 0.26 5.9 25 to 40 10.9
PVDF 23 -33 5 12

is much lower than the d33 coefficient, that applies when

the voltage and the strain lie along the same direction. The

solution that we propose comprises electrodes placed under

the piezoelectric layer (Figure 2). As a consequence electric

field and strain lie along the same direction and they are

therefore coupled through the d33 coefficient. The remarkable

consequence is that a lower voltage is required to generate the

same strain and the power consumption is reduced. Moreover

with this configuration electrodes can be contacted from the

bottom, without interfering with nanomagnets that are placed

on top of the PZT layer and resulting in a great process

simplification. Further details on the structure are given in

Section IV.

B. Choice of magnetic material and magnet sizes

In order to choose the proper magnetic material and the

nanomagnets geometry the maximum and minimum stress

that can be applied must be accurately evaluated. To evaluate

the maximum stress first of all the maximum strain due to

dielectric rigidity must be considered as in equation (1):

ξMAX RIG = EfMAX · d (1)

where EfMAX = 20MV/m is the maximum electric field

that the PZT layer can tolerate without electrical breakdown,

and d = d33 = 150pm/V is longitudinal piezoelectric

coefficient that relates the strain induced with the applied field.

The previous value (ξMAX RIG) must be compared with the

maximum strain achievable in the piezoelectric layer due to

structural limitations (ξMAX STRUCT ), as in equation (2)

ξMAX = min(ξMAX RIG, ξMAX STRUCT ) (2)

where ξMAX STRUCT = 500 · 10−6 [30]. Between these two

components the more constraining in the PZT is the maximum

strain due to the dielectric rigidity. Once the maximum strain

(ξMAX ) is known it is possible to evaluate the maximum

stress applicable to the magnets (σMAX PIEZO), making the

assumption that the former are thin enough to make the PZT

strain totally transferred on them (equation (3)):

σMAX PIEZO = YMagnet · ξMAX (3)

where YMagnet is the Young modulus of the magnetic material

chosen. But we also need to consider the fracture stress

of the magnets, which depends on the selected material.

Consequently, the maximum stress that can be transferred to

the magnets is indicated (equation (4)):

σMAX = min(σMAX STRUCT , σMAX PIEZO) (4)
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Fig. 3. Comparison between the minimum required stress and the maximum applicable stress for different magnetic materials. A) Iron. B) Cobalt. C) Nickel.
D) Terfenol. E) Nickel considering a process variation of +/- 10%. F) Terfenol considering a process variation of +/- 10%.

where σMAX STRUCT is the maximum mechanical stress that

can be applied to the magnets. The minimum stress is related

to the height of the energy barrier between the two stable

states, which depends on magnetic shape anisotropy. Shape

anisotropy is related to magnets shape: If magnets have an

aspect ratio different from 1, at the equilibrium magnetization

will lie along the longer side of the magnets. In this case

the height of the energy barrier between the two stable states

depends on the aspect ratio of the magnets. The minimum

applicable stress is therefore the stress that generates a stress

anisotropy at least equal to the shape anisotropy [17]:

1

2
µ0NdM

2

sV =
3

2
λsσV (5)

where Nd is the demagnetization factor [31], Ms is the

saturation magnetization, V is the volume and λs is the

magnetostrictive coefficient. The minimum applicable stress

is therefore:

σMIN =
µ0NdM

2

s

3λs

(6)

TABLE II
MAGNETIC MATERIALS COMPARISON. MS IS THE SATURATION

MAGNETIZATION, λ100 AND λ111 ARE THE MAGNETOSTRICTIVE

COEFFICIENTS, WHILE Y IS THE YOUNG MODULUS AND σ (ABBREVATION

FORM OF σMAX STRUCT ) IS THE FRACTURE STRESS.

Magnetic Ms λ100 λ111 Y σ

material (106A/m) (·10−6) (·10−6) (GPa) (MPa)

Iron 1.71 -7 -7 211 540
Cobalt 1.45 -62 -62 209 225
Nickel 0.49 -46 -24 214 100

Terfenol 0.8 600 600 80 28

NML logic requires the use of single domain nanomagnets,

that means with sides shorter than 100nm for typical soft

ferromagnets. In literature magnets are normally 50x100 nm2

[32] or 60x90 nm2 [4]. We choose therefore a shorter side of

the magnets of 50nm with a thickness of 10nm. The magnets

aspect ratio determines the value of the shape anisotropy, i.e.

the height of the energy barrier. To have a reasonably small

value of error probability (p < e−30
≈ 10−13), the energy

barrier at room temperature must be at least

∆E = 30KbT ≈ 1.24 · 10−19J (7)

This means that the value of the shape anisotropy must be at

least equal to ∆E

1

2
µ0NdM

2

s V = ∆E (8)

From this equation it is possible to evaluate the value of

Nd and therefore the minimum value of aspect ratio. The

minimum aspect ratio is 1.06, that means minimum sizes for

the magnets of 50x53x10 nm3. Smaller magnets will have

an energy barrier lower than 30KbT , and therefore the error

probability will be too high. To choose a suitable magnetic

material we have evaluated the minimum stress necessary to

reset the magnets starting from an aspect ratio of 1.06 to 2,

comparing this value to the maximum applicable stress. Table

II shows the main characteristics of some magnetic materials.

Results of the analysis are shown in Figure 3. For most

classical magnetic materials, like Iron or Cobalt, there is no

range in which the circuit can work properly. Figure 3.A shows

the results obtained for Iron, the minimum required stress,

evaluated from equation 6, is always bigger than the maximum

applicable stress. This is caused because Iron is a material

with negligible magnetostriction. The same thing happens for

Cobalt as shown in 3.B. Cobalt has higher magnetostriction

than Iron, but its saturation magnetization is much higher, as

shown in Table II. As a consequence Cobalt cannot be used

for this application as well as Iron. Figure 3.C shows the

results obtained for Nickel. Results show a range in which

the device can operate, from 1.06 to 1.28 aspect ratio (53-64
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nm). Things change dramatically if a high magnetostrictive

material, like the Terfenol, an alloy of Iron and Dysprosium

(TbxDy1−xFe2) is considered ( Figure 3.D). In this case the

working range increases a lot, from 1.06 to 1.57 aspect ratio

(53-78.5 nm). Moreover the required stress is lower than the

required stress for the Nickel (100 MPa for Nickel, 28 MPa

for Terfenol).

Although both Nickel and Terfenol can be suitable targets

for this technology, the limited operative range of Nickel

can be a problem if process variations are considered. For

example considering a process variation of +/-10% different

results are obtained, as shown in Figure 3.E. The central

curve represents the minimum stress in normal conditions,

evaluated from equation 6. The lower and upper curves rep-

resent the minimum required stress, evaluated from equation

6 considering a variation of -10% (lower curve) and +10%

(higher curve) of the shorter magnets side. The value of stress

to be applied to the circuit must be chosen according to

the central curve, which represents how the minimum stress

varies with the aspect ratio, in normal conditions. If a random

process variation will cause a random variation in one or

more magnets aspect ratio, the operating points will shift up

or down. The consequence is that another value of stress,

different from the design parameters, will be required. If the

working point shifts outside the limits, magnets will not be

reset properly. As a consequence the aspect ratio must be

chosen in a way that, in case of random shifting due to process

variations, it still falls in the acceptable range (between 0

and the maximum applicable stress). Figure 3.E shows the

working range of Nickel considering process variations of +/-

10%. There is only one point that lies in the operative range,

correspondent to an aspect ratio of 1.16. A negative variation

due to the process increases the minimum aspect ratio. This

can be understood by equation (8). A negative aspect ratio

reduces the magnet volume. Since the value of ∆E is constant,

the demagnetization factor Nd increases, and so does the

correspondent value of minimum aspect ratio [31]. This means

that Nickel is very sensitive to process variations, it tolerates

variations lower than 10%. Figure 3.F shows the working

range for Terfenol instead. The minimum value for the aspect

ratio becomes 1.16 while the maximum becomes 1.42. This

means that Terfenol has a very good working range and can

tolerate process variations even near +/-20%. We can conclude

from these analyses that high magnetostriction materials, like

Terfenol, are the best candidates for this application.

As a consequence, then, in this work we choose to use

nanomagnets made of Terfenol, with sizes of 50x65x10 nm3.

Comparing this geometry with the one proposed in [17] the

difference between the smaller and bigger magnet is higher

(15nm instead of 2nm) and magnets are simple single layer

structures. This means that they are easier to fabricate and also

tolerant to process variations.

IV. CIRCUIT LAYOUT

The layout of the circuit must take into account two impor-

tant problems: Signal propagation and fabrication processes.

A. The process

The solution that we propose is shown in Figure 4.A.

Parallel electrodes are buried under a PZT layer, and nano-

magnets are deposited directly on top of it. This solution

is technology-friendly because it is compatible with CMOS

planar technology and, supposing to have a high end resolution

lithographic system, can be fabricated. After the deposition of

metal to create the electrodes, the PZT is deposited on top

of them either by means of a sol-gel process or by means

of sputtering. The processes used for PZT deposition create a

layer with a very small roughness (less than 3nm). Electrodes

can be fabricated with platinum or copper, however in case of

copper a seed-layer of Titanium Oxide (TiO2) must be used.

Nanomagnets can be fabricated by depositing a thin film of

magnetic material on top of it and then patterning the film

using lithography. The small roughness of the PZT substrate

has no influence on the magnets, neither in the magnetic mate-

rial deposition and in the following lithographic phase, neither

on the magnetic properties of the deposited material. The

fabrication process is relatively simple but the problem arising

is how the electric field will be distributed in the piezoelectric

layer. Figure 4.E shows a Comsol Multiphysics [33] simulation

of the structure, which enlights the distribution of the electric

field. Electrodes are 50nm width while the distance among

them is 250nm. According to the ITRS roadmap the Metal

1 pitch, the center-to-center distance between two neighbor

metal lines in case of the lowest interconnection level, is

54nm for the 2013 year. This is a value compatible with the

requirement of this clock solution and it also leaves space

for further scaling. The applied voltage is 1V and an electric

field of 3-4MV/m is generated almost uniformly between the

two electrodes. In correspondence of the electrodes the electric

field abruptly decreases and reaches a value of about 2MV/m

near the borders. The strain of the PZT is proportional to the

electric field, so it is clear that the strain will be smaller near

the areas corresponding to the electrodes. However, due to

mechanical continuity, the higher strain of the central area will

induce a strain also in the area exactly above the electrodes,

where the electric field has a very low value. This issue could

be improved reducing the distance between the electrodes and

the PZT surface. However, from the technological point of

view, it is more complex to fabricate. From the results of

Figure 4.C the strain can be approximated as uniformly applied

in the area between the two electrodes. The consequence is

that, to obtain working circuits, magnets must not be placed

in the area correspondent to the electrodes. An alternative

structure is shown in Figure 4.B, where electrodes are placed

on top of PZT. The distribution of the electric field is similar

to the previous case (Figure 4.F): Also in this case the electric

field varies in the range of 3-4MV/m with an applied voltage

of 1V. The main problem of the previous solution (Figure

4.A) is that PZT is fabricated on top of the electrodes (made

of Copper). Nonetheless PZT requires high temperature (600

Celsius degrees) processes, which can oxidize the Copper.

Moreover, a seed-layer is required to attach the PZT on the

electrodes. Platinum can be used instead of Copper but is

expensive. This second solution has the advantage that the PZT
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Fig. 4. Magnetoelastic clock system. A) Proposed structure. Parallel electrodes buried under the PZT layer generate the electric field. The strain transfers
to the magnets that are reset. Input and output propagate vertically from each corner. Shielding blocks are used to avoid propagation errors. B) Alternative
structure: Electrodes are placed on top of the PZT layer. C) Universal NAND/NOR gates. Every gate is high 3 magnets and with a variable width of 3 or 5
magnets. D) Circuit design example: 2 to 1 multiplexer. Each row is composed by many clock zones of area 3x3 or 3x5 magnets. Alternate rows are shifted
to allows signal propagation. E) Comsol Multiphysics simulation of the structure with buried electrodes. The electric field (and as a consequence the strain)
is almost uniform between the two electrodes. F) Comsol Multiphysics simulation of the structure with electrodes on top of the PZT.

is fabricated before the electrodes. Circuits structure remains

the same, because even in this case magnets cannot be placed

in the area of the electrodes. Another advantage of placing

electrodes on top of the PZT layer is that they can be contacted

from above, making the fabrication of wires for the clock

distribution network easier. Additional layers can be used to

route clock wires, similarly to what happens in CMOS chips.

B. Logic gate organization

We therefore base our design on 2 input AND/OR gates [6],

as shown in Figure 4.A, B. AND/OR gates are made by three

magnets, the shape of the central magnet is changed to obtain

the desired logic function, the corner is cut so that the magnet

get a preferred direction for the magnetization. The advantage

of this solution is that inputs come from vertical directions (up

or down), where there are no electrodes. Another point is that

in NML logic the horizontal coupling is antiferromagnetic, i.e.

every magnet has the inverted value of its predecessor. So, if

the number of magnets in the clock zone (the zone between

two electrodes) is odd, the signal is inverted. Placing therefore

an AND/OR gate in a clock zone with a width equal to an odd

number of elements generates a universal NAND/NOR gate

that can be used as basic block to build any circuit. Ideally

the width of the clock zone should be equal to one magnet

to obtain the maximum possible clock frequency, as shown

in [17]. However this approach has two disadvantages: It

increases the latency of the circuit and it makes the fabrication

of the structure and the signal propagation almost impossible.

Increasing the latency of the circuit reduces the throughput

in presence of sequential circuits [34]. Moreover, the distance

between the electrodes will be smaller and the whole structure

more difficult to fabricate. Also, since magnets cannot be

placed over the area of the electrodes, with a width of one

magnets there is not enough space to propagate the output

signal of the logic gate. We therefore choose a width of the

gate of 3 or 5 magnets, as shown in Figure 4.C.

C. Signal propagation in gates

Inputs come from up-left and bottom-left corners, output of

the AND/OR gate is propagated to the up-right and down-right

corners. In this way signals can propagate to the others parts of

the circuit avoiding the area of the electrodes. Helper/shielding

blocks [35] are used to help the signal propagation and to

reduce the error probability. With a width of 5 magnets the

critical path (the maximum number of magnets between input

and output) is higher, 7 magnets instead of 5 magnets in case

of a width equal to 3 elements. Since the clock frequency

depends on the critical path, with a width of 5 magnets the

clock frequency will be lower but the structure is bigger and

easier to fabricate. Sizes bigger than these are not possible,

because, not only the clock frequency would be much lower,

but the length of the critical path would be too big, increasing

the error probability during magnets switching.

D. Complete layout

A circuit example, a 2to1 multiplexer, is shown in Figure

4.D. Clock zones are made by mechanically isolated cells of

3x5 or 3x3 magnets. Every cell is an independently actuated

clock zone, where logic gates or interconnection wires can

be placed. To create this layout it is possible to pattern the

PZT substrate, removing the PZT (Figure 5) [36][37]. It is

possible to dig through the PZT until the bottom, or to remove

only a part of the PZT to mechanically isolate the areas.

In both solutions a perfect mechanical isolation is obtained,

but probably the complete removal of the PZT will reduce

parasitic parameters. Clearly, the resolution of the optical

lithography must be quite high to remove only a small area

of the piezoelectric layer. Theoretically, it would be sufficient

to remove few nanometers between the clock zones, but it is

quite difficult to obtain this result using lithographic processes

currently available.
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PZT PZTPZT

SILICON SUBSTRATE

SOLUTION 2:
PARTIAL PZT 

REMOVAL

SOLUTION 1:
TOTAL PZT
REMOVAL

SILICON SUBSTRATE

PZT PZTPZT

Fig. 5. PZT can be patterned to obtain mechanically isolated cells. Two
solutions are possible: Complete or partial removal of the PZT.

E. Overall signal propagation

Signal propagation happens through the corner of each

clock zone, to avoid the area of the electrodes. To allow

this, there must be a shifting in each row of clock zones,

as can be seen from Figure 4.D. With this layout the width

of the clock zone must therefore be chosen according to the

size of the electrodes. With 3 magnets zone, electrodes must

have an ideal width of 30-40 nm, while in 5 magnets clock

zones electrodes can be approximately 70-100 nm wide, a size

that can be reached in scaled CMOS technology. Since this

approach is based on universal NAND/NOR gates, in principle

every kind of circuit can be implemented, moreover the circuit

layout is quite regular, and this always helps the technological

fabrication as well as the circuit physical design.

F. Technology scaling

One of the advantages of this clock solution is that it is

feasible with available technological processes. The structure

sizes reflect this choice. However, like in CMOS, scaling can

reduce the circuit area and improve power consumption as

discussed in Section V. The minimum sizes of the NAND

gate however cannot be changed. Every NAND gate must be

at least 3x3 magnets, but it is possible to reduce the magnet

sizes. The energy barrier must be higher than 30KbT to have

a reasonably small value of error probability. This pose a limit

to the minimum values of magnet sizes. As shown in [7]

magnets can be as smaller as 15x30x5 nm3, and still have an

energy barrier of 30KbT . Thus, provided to have lithographic

processes with high enough resolution, it is possible to further

scale magnets reducing their size to half the actual value,

reducing consequently the circuit area by 4 times.

V. PERFORMANCE ANALYSIS

To verify the effectiveness of the solution proposed in this

work we have accurately estimated its performance both in

terms of timing and of power consumption. Figure 6 shows

the timing characteristics obtained through Magpar [38] sim-

ulations. Magpar is a finite element simulator that allows the

evaluation of the magnetoelastic effect applied to the dynamics

of a magnetic circuit.

A. Timing

In Figure 6.A the time required to reset the magnets is

indicated. About 1 ns is necessary to completely reset the

magnets. Figure 6.B shows that also the switching time

(TSWITCH) of every magnet is near 1 ns. The clock frequency

can therefore be estimated starting from these data. The clock

period must last enough to allow the reset of the magnets and

their successive realignment. So, as a first approximation, the

minimum clock period can be calculated as in equation 9:

Tck = TRESET +N ∗ TSWITCH (9)

where N is the number of magnets in the critical path (5 con-

sidering a 3x3 NAND, 7 considering a 5x5 NAND). However

the situation is more complex, because in a chain of magnets

one element starts to switch before its neighbor has reached

a stable state. So the clock period is not directly the sum

of N switching times. As a consequence the maximum clock

frequency obtainable is around 200MHz for 3x3 NAND/NOR

gates and 150MHz for 3x5 NAND/NOR gates. The frequency

is lower than the one obtained in [17], but this is due to the

higher number of elements in the critical path.

Fig. 6. A) Nanomagnets RESET time. B) Nanomagnets SWITCH time. Both
times are in the order of 1ns.

B. Power consumption

It is worth remarking, however, that speed is not the major

advantage of NML logic. This technology is particularly in-

teresting for the expected low power consumption obtainable.

There are two main sources of power consumption: The energy

required to force the magnets in the RESET state and the losses

in the clock generation system. As explained in Section III the

energy required to RESET a magnet is about 180KbT , which

correspond to 0.85aJ. The origin of this lies in the fact that an

abrupt switching was applied to achieve the maximum circuit

speed. Using an adiabatic switching (i.e. very slow rise and fall

time for the clock signals, in the order of many nanoseconds)

this energy can be reduced to 30KbT , greatly reducing the

obtainable circuit speed.

In NML circuits the major source of power consumption are

the losses in the clock generation system. In the magnetoelestic

clock case, power consumption depends mainly on the energy

required to charge the parasitic PZT capacitance. With this

purpose we show the equivalent circuit of a NAND/NOR gate

is shown in Figure 7.A.

The capacitor (Cpzt) represents the parasitic capacitance of

the PZT substrate. Since the PZT is an insulator, it has an

considerable parasitic resistance (Rpzt). This resistance is used

to evaluate the leakage current between the two electrodes of

the capacitor. The resistance value is around 1018Ω, so the
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L

Fig. 7. A) NAND/NOR equivalent circuit. B) Possible example of contact
via for electrodes.

leakage current can be assumed equal to 0. The capacitor

is connected to the voltage source through resistances that

represent the on-chip interconnections. The exact evaluation

of these resistances is not possible at this development stage,

since we do not know the complete on-chip layout of inter-

connection wires. However, it can be assumed that the most

important contribution to the resistance is due to VIAs used

for the direct connection with the electrodes. This assumption

is based on the fact that VIAs have the smallest section and the

higher resistance, while global interconnections have normally

a much wider section and therefore much smaller resistance.

A possible example of interconnection made using an array

of VIAs is shown in Figure 7.B. Assuming a VIA made of

copper with a width (W) of 40nm, a length (L) of 40nm and an

height (H) of 1µm, the obtained resistance is 10Ω. In case 4

VIAs are connected in parallel, the whole resistance is divided

by 4, leading to a value of 2.5Ω.

When a capacitor is charged, part of the energy is dissipated

on the parasitic resistance due to the joule effect. This energy

can be evaluated as shown in the equation (10)

E =

∫ t2

t1

V 2

R
· (e

−t
RCpzt )2dt (10)

where t1 and t2 are respectively the beginning and the end of

the time period considered, V is the applied voltage, Cpzt the

capacitance and R the interconnection wires resistance. The

applied voltage can be evaluated as equation (11)

V =
wNAND · σ

Y · d33
(11)

where σ is the applied stress, Y is the Young modulus of the

magnetic material and d33 is the piezoelectric coefficient of

the PZT. The capacitance can be approximately evaluated as

equation (12)

Cpzt =
ǫ0 · ǫr · tPZT · hNAND

wNAND

(12)

where ǫr is the relative dielectric constant of the PZT, tPZT

is the thickness of the PZT and hNAND and wNAND are

the height and the width of the NAND gate. Considering a

NAND/NOR gate with a size of 3x3 Terfenol magnets and

a PZT thickness of 40nm, the voltage is 0.368V while the

capacitance is 0.678fF. It is worth noting that the ǫr of the PZT

is quite high, thus further advantages are expected by studying

other materials with similar propertis but smaller dielectric

constant. The circuit time constant τ , given by the product

RCpzt, rules the circuit dynamic behavior. The resulting value

of τ is around few fs (10−15s), so each NAND/NOR gate can

theoretically work at THz. However, the magnets dynamic is

much slower and is in the order of nanoseconds (Figure 6),

so it limits the overall circuit speed.

When the time constant value is much smaller than the

integration period (t2 − t1), equation (10) becomes the well

known equation (13)

Eclock =
1

2
· Cpzt · V

2 (13)

which tells us that in the charging process half of the energy

supplied is dissipated on the resistance. Similarly to the CMOS

case the other half energy is dissipated on the resistance in the

discharging process, and the total energy dissipation is then

given by equation (14)

Eclock = Cpzt · V
2 (14)

Two important facts must be observed: First, this is an energy,

so its independent from the value of frequency used; second,

the energy value is totally independent from the resistance

value, so it is not necessary to evaluate the parasitic resistance

of interconnections. To be fair, the choice of properly setting

up a RLC resonant circuit could help reducing the energy

consumption. However, here the aim is to analyze the worst

case scenario, so we assume that all the energy is dissipated

on the resistance. In this case the energy dissipated in the

parasitic resistance is therefore 91 aJ, while 6aJ are required

to RESET magnets, leading to a total power consumption of

97aJ for a NAND/NOR gate.

Scaling magnets size can reduce the global power consump-

tion of the circuit. With magnets of sizes currently reachable,

the energy barrier is 180KbT . Reducing for example their

sizes to 15x30x5 nm3 causes a reduction of the energy barrier

to 30KbT . Smaller magnets means also smaller clock zones.

With smaller clock zones a lower voltage can be used, reducing

therefore power losses due to the RC circuit dynamic.

TABLE III
POWER COMPARISON AMONG THE MAIN NML IMPLEMENTATIONS

CONSIDERING BOTH NANOMAGNETS SWITCHING AND CLOCK LOSSES.

Energy (fJ) Clock (MHz)

a Magnetic Field 62 50-100
b STT-current 11 100-200
c Multiferroic 0.004 500
d Magnetoelastic 0.097 200

e CMOS 28nm 0.857 ∼200MHz
f CMOS 28nm 1.304 ∼1GHz

Clock solutions at a glance. Finally a comparison between

the different clock systems is mandatory. Table III shows the

total energy consumption and the obtainable frequencies for

a NAND gate based on a NML logic implementations. In

case of magnetic field clocked NML an adiabatic switching is

considered, therefore the energy required to reset magnets is

taken equal to 30KbT for each magnet. The energy losses due

to Joule effect was also estimated. The wire has a section of

about 400x400nm and a length of about 200nm, it is made of

copper and the current value is 2mA (extrapolated from [4]).

This leads to an energy consumption of 62fJ for a NAND
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gate (table III.a). The frequency achievable, due to the use

of adiabatic switching, is in the range of 50-100MHz [20].

For STT-current induced clock data are obtained from Das

and co-workers [12]. An energy of 1,6fJ is necessary to reset

the magnets that gives a total of 11fJ for a NAND gate (table

III.b). This system is much better than the magnetic-field based

clock. Frequencies obtainable are among the highest in the

range of 100-200MHz [27]. Considering instead multiferroic

logic, data shown in [17] indicates a total energy required

to operate a NAND gate of about 4 aJ (table III.c), at

least 3-orders better than the current based approaches. The

frequencies is also relatively high, at about 500MHz. Finally,

In our magnetoelastic case we obtain an energy consumption

of 97aJ and a maximum frequency of 200MHz (table III.d).

Although these values are far better than the current based

approaches, a pure multiferroic logic still appears to show

better performance, at least in ideal conditions. The reason is

easy to understand as the NAND gate in this case is made by

7 magnets, while a pure multiferroic approach requires just

3 magnets. However, one important fact can be underlined:

The technique we propose represents an easier and more

feasible technological approach and circuits could be already

fabricated with high resolution techniques. In this work we

are considering a realistic and feasible layout and a realistic

process, differently from the previous multiferroic study.

A final interesting outcome can be observed from table

III lines e and f , where the energy consumption of a 28nm

CMOS NAND gate is shown for the same frequency used

for the magnetic case (200MHz) and for a typical frequency

in 28nm based circuits (1GHz). Data in the CMOS case are

obtained using an industrial technology. The CMOS NAND

has an input capacitance of around 0.55fF, which is slightly

smaller than our capacitance, but the supply voltage is much

bigger, around 0.9V. As a consequence the dynamic power

consumption is 12nW at 200MHz, i.e. an energy of 117aJ.

In CMOS technology the impact of leakage currents must

be considered as well: in the NAND case the energy due

to leakage assumes a value around 740aJ. If adiabatic tech-

niques are used with CMOS transistors the dynamic energy

consumption can be reduced, while the leakage energy remains

big. Further transistors scaling does not help because, while

the dynamic energy consumption is reduced, leakage energy

consumption is predicted to increase. It is than clear that NML

circuits, in particular considering the magnetoelastic clock,

hold a considerable advantage in terms of power consumption,

which is one order of magnitude lower.

VI. CONCLUSIONS

We have proposed a magnetoelastic clock system for Nano-

Magnet Logic that uses a piezoelectric layer to strain the

magnets and change their magnetization. We demonstrated

that power consumption is 100 times smaller than current-

based clock systems and also the clock frequency obtainable is

higher. This clock solutions has also a lower power consump-

tion compared to scaled CMOS transistors. Mostly important,

this solution was designed keeping in mind the technological

processes and their current limitations. Actually our solution

does not reach the performance of a full multiferroic system

in theoretical conditions, but shows remarkable improvements

being feasible with current technological limitations, marking

then a difference with respect to previous proposed solutions.

Moreover the structure shows a good tolerance to process

variations, which is always a remarkably important point for

the fabrication of a real working circuit.

This solution soundly enhances the knowledge on NML

logic, addressing its main issues, the high power consumption

of the clock generation system and the necessity to have a

local control on a limited circuit area. At the same time

it allows to make a huge step toward the fabrication of a

complex magnetic circuits. Our efforts are now directed to

the experimental demonstration of the results shown here.

VII. ACKNOLEDGEMENTS

We thank Nanofacility Piemonte and Compagnia di San Paolo for the support.

We would like to thank χLab laboratory (Materials and Processes for Micro & Nano

Technologies - Chivasso) for their technical support regarding piezoelectric materials.

REFERENCES

[1] A. Imre, L. Ji, G. Csaba, A.O. Orlov, G.H. Bernstein, and W. Porod.
Magnetic Logic Devices Based on Field-Coupled Nanomagnets. 2005

International Semiconductor Device Research Symposium, page 25,
December 2005.

[2] J. Pulecio and S. Bhanja. Magnetic cellular automata coplanar cross
wire systems. Journal Applied Physics, 107(3), 2010.

[3] D.K. Karunaratne and S. Bhanja. Study of single layer and multilayer
nano-magnetic logic architectures. J. Appl. Phys, 111, 2012.

[4] M. Niemier and al. Nanomagnet logic: progress toward system-level
integration. J. Phys.: Condens. Matter, 23:34, November 2011.

[5] A. Chiolerio, P. Allia, and M. Graziano. Magnetic dipolar cou-
pling and collective effects for binary information codification in cost-
effective logic devices. Journal of Magnetism and Magnetic Materials,
(324):3006–3012, 2012.

[6] M.T. Niemier, E. Varga, G.H. Bernstein, W. Porod, M.T. Alam, A. Din-
gler, A. Orlov, and X.S. Hu. Shape Engineering for Controlled Switching
With Nanomagnet Logic. IEEE Transactions on Nanotechnology,
11(2):220–230, March 2012.

[7] M. Vacca, M. Graziano, and M. Zamboni. Majority Voter Full Charac-
terization for Nanomagnet Logic Circuits. IEEE T. on Nanotechnology,
11(5):940–947, September 2012.

[8] S. Bhanja, M. Ottavi, F. Lombardi, and S. Pontarelli. QCA circuits for
robust coplanar crossing. Journal of Electronic Testing, 23(2):193–210,
2007.

[9] M. Awais, M. Vacca, M. Graziano, and G. Masera. Quantum dot
Cellular Automata Check Node Implementation for LDPC Decoders.
IEEE Transaction on Nanotechnology, 12(3):368–377, 2013.

[10] M.T. Alam, M.J. Siddiq, G.H. Bernstein, M.T. Niemier, W. Porod, and
X.S. Hu. On-chip Clocking for Nanomagnet Logic Devices. IEEE

Transaction on Nanotechnology, 2009.

[11] M. Graziano, A. Chiolerio, and M. Zamboni. A Technology Aware
Magnetic QCA NCL-HDL Architecture. pages 763–766, Genova, Italy,
2009. IEEE.

[12] J. Das, S.M. Alam, and S. Bhanja. Low Power Magnetic Quantum
Cellular Automata Realization Using Magnetic Multi-Layer Structures.
J. on Emerging and Selected Topics in Circuits and Systems, 1(3):267–
276, September 2011.

[13] M. Fiebig. Revival of the magnetoelectric effect . Journal of Physics

D: Applied Physics, (38):123–152, 2005.

[14] M. Vacca, M. Graziano, A. Chiolerio, A. Lamberti, M. Laurenti,
D. Balma, E. Enrico, F. Celegato, P. Tiberto, and M. Zamboni. Electric
clock for NanoMagnet Logic Circuits . In: Anderson, N.G., Bhanja,

S. (eds.), Field-Coupled Nanocomputing: Paradigms, Progress, and

Perspectives. LNCS, Springer, Heidelberg., vol. 8280, 2014.

[15] A. Chiolerio, P. Martino, F. Celegato, S. Giurdanella, and P. Allia.
Enhancement and correlation of MFM images: effect of the tip on the
magnetic configuration of patterned Co thin films. IEEE Transactions

on Magnetics, 46(2):195–198, 2010.



10

[16] G. Csaba and W. Porod. Behavior of Nanomagnet Logic in the Pres-
ence of Thermal Noise. In International Workshop on Computational

Electronics, pages 1–4, Pisa, Italy, 2010. IEEE.
[17] M. S. Fashami, J. Atulasimha, and S. Bandyopadhyay. Magnetization

Dynamics, Throughput and Energy Dissipation in a Universal Multifer-
roic Nanomagnetic Logic Gate with Fan-in and Fan-out. Nanotechnol-

ogy, 23(10), February 2012.
[18] M. Graziano, M. Vacca, D. Blua, and M. Zamboni. Asynchrony in

Quantum-Dot Cellular Automata Nanocomputation: Elixir or Poison?
IEEE Design & Test of Computers, 28(5):72–83, September 2011.

[19] M. Vacca, M. Graziano, and M. Zamboni. Nanomagnetic Logic
Microprocessor: Hierarchical Power Model. IEEE Transactions on VLSI

Systems, 21(8):1410–1420, August 2012.
[20] N. Rizos, M. Omar, P. Lugli, G. Csaba, M. Becherer, and D. Schmitt-

Landsiedel. Clocking Schemes for Field Coupled Devices from Mag-
netic Multilayers. In International Workshop on Computational Elec-

tronics, pages 1–4, Beijin, China, 2009. IEEE.
[21] J. Atulasimha and S. Bandyopadhyay. Hybrid spintronic/straintronics:

A super energy efficient computing scheme based on interacting mul-
tiferroic nanomagnets . 2012 12th IEEE International Conference on

Nanotechnology, August 2012.
[22] A. Pulimeno, M. Graziano, and G. Piccinini. UDSM Trends Com-

parison: From Technology Roadmap to UltraSparc Niagara2. IEEE

Transactions on VLSI systems, 20(7), July 2012.
[23] A. Pulimeno, M. Graziano, D. Demarchi, and G. Piccinini. Towards a

molecular QCA wire: simulation of write-in and read-out systems. Solid

State Electronics, 77:101–107, 2012.
[24] A. Pulimeno, M. Graziano, A. Saginario, V. Cauda, D. Demarchi, and

G. Piccinini. Bis-ferrocene molecular QCA wire: ab-initio simulations of
fabrication driven fault tolerance. IEEE Transaction on Nanotechnology,
12(4):498–507, May 2013.

[25] G. Csaba, P. Lugli, and W. Porod. Power Dissipation in Nanomagnetic
Logic Devices. In International Conference on Nanotechnology, pages
346–348, Munic, Germany, 2004. IEEE.

[26] I. Ercan and N.G. Anderson. Heat dissipation bounds for nanocomput-
ing: Theory and application to QCA. In Nanotechnology (IEEE-NANO),

2011 11th IEEE Conference on, pages 1289–1294, 2011.
[27] J. Das, S.M. Alam, and S. Bhanja. Ultra-Low Power Hybrid CMOS-

Magnetic Logic Architecture . Trans. on Computer And Systems, 2011.
[28] B. Xu, R.G. Polcawich, S. Trolier-McKinstry, Y. Ye, and L.E. Cross.

Sensing characteristics of in-plane polarized lead zirconate titanate thin
films . Applied Physics Letter, 75(26), December 1999.

[29] T. Chung, S. Keller, and G.A. Carman. Electric-field-induced reversible
magnetic single-domain evolution in a magnetoelectric thin film .
Applied Physics Letter, (94), 2009.

[30] K. Roy, S. Bandyopadhyay, and J. Atulasimha. Switching dynamics of a
magnetostrictive single- domain nanomagnet subjected to stress . Phys.

Rev. B, (83):1–15, 2011.
[31] A. Aharoni. Demagnetizing factors for rectangular ferromagnetic prisms.

Journal of Applied Physics, 83(6):3432–3434, March 1998.
[32] D.K. Karunaratne and S. Bhanja. Study of single layer and multilayer

nano-magnetic logic architectures . Journal Of Applied Physics, (111),
2012.

[33] Comsol Multiphysics. http://www.comsol.com/.
[34] M. Vacca, M. Graziano, and M. Zamboni. Asynchronous Solutions for

Nano-Magnetic Logic Circuits. ACM J. on Emerging Tech. in Comp.

Systems, 7(4), December 2011.
[35] D.B. Carlton, N.C. Emley, E. Tuchfeld, and J. Bokor. Simulation Studies

of Nanomagnet-Based Logic Architecture. Nanoletters, 8(12):4173–
4178, November 2008.

[36] S. Guillon, D. Saya, L. Mazenq, L. Nicu, C. Soyer, J. Coste-
calde, and D. Remiens. Lead-zirconate titanate (PZT) nanoscale
patterning by ultraviolet-based lithography lift-off technique for nano-
electromechanical systems applications . 2011 International Symposium

on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar

Materials, July 2011.
[37] C. Huang, Y. Chen, Y. Liang, T. Wu, H. Chen, and W. Chao. Fabrication

of Nanoscale PtOx /PZT/PtOx Capacitors by E-beam Lithography and
Plasma Etching with Photoresist Mask . Electrochemical and Solid-State

Letters, 2006.
[38] W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, and

V. Tsiantos. Scalable Parallel Micromagnetic Solvers for Magnetic
Nanostructures. Comp. Mat. Sci., (28):366–383, 2003.

Marco Vacca received the Dr.Eng. degree in electronics engineering from
the Politecnico di Torino, Turin, Italy, in 2008. In 2013, he got the Ph.D.
degree in electronics and communication engineering. He is currently working

as an Research Assistant in the Politecnico di Torino. Since 2010, he has
been teaching Design of Digital Circuits and Power Electronics. His research
interests include quantum-dot cellular automata and others beyond-CMOS
technologies.

Mariagrazia Graziano received the Dr.Eng. degree and the Ph.D in Elec-
tronics Engineering from the Politecnico di Torino, Italy, in 1997 and 2001,
respectively. Since 2002 she is a researcher and since 2005 Assistant Professor
at the Politecnico di Torino. Since 2008 she is adjunct Faculty at the University
of Illinois at Chicago. Her research interests include design of CMOS ”beyond
CMOS” devices, circuits and architectures. She is author and co-author of
more than 90 published works.

Luca Di Crescenzo received the Dr.Eng. degree in Electronics from the
University of LAquila in 2010, magna cum laude. In 2012 he received the
MoS degree in Electronics Engineering at the Polytechnic University of Turin.
His main research interests include Physical Design Automation, custom
architectures design for Machine Vision and Image Processing applications.
He is currently working at T3LAB as a research engineer.

Alessandro Chiolerio received his Dr.Eng. degree in Materials Engineering
in 2005 and his Ph.D. degree in Electron Devices in 2009 at Politecnico di
Torino, Italy. Now he is Researcher at the Istituto Italiano di Tecnologia,
doing research in the field of Smart Materials platform and functional
nanocomposites for space sensor applications and flexible electronics. He is
leader of 2 European, 1 regional and 1 industrial projects, co-author of more
than 50 papers on international journals, 12 chapters and 5 patents.

Andrea Lamberti graduated in Physical Engineering at the Politecnico of
Torino in 2009. In 2013 he received the PhD degree in Electronic Devices
in the same institution working on metal-oxide nanostructures for energy
applications. Currently, he is working as fellow researcher on the study
of innovative materials and technological processes for the fabrication of
M/NEMS biosensors.

Davide Balma received his Dr.Eng. in Physics of Advanced Technologies
from University of Turin, Italy, in 2008 and his Ph.D. degree in Electronic
Devices from Polytechnic of Turin in 2011. From January 2012 he is a post
doc scientist at the EPFL and his research interests include MEMS fabrication
technologies and piezoelectric materials and devices.

Giancarlo Canavese received his Dr.Eng. degree in Mechanical Engineering
in 2004 and his Ph.D. degree in Biomedical Engineering in 2008 from
Politecnico di Torino, Italy. He is a researcher at the Italian Institute of
Technology in Torino. His areas of interest include piezoresistive composite
materials, characterization of piezoelectric materials and devices, MEMS
technologies and distribute tactile sensors for robotic applications.

Federica Celegato received her Dr.Eng. degree in Materials Science in 2003.
From 2005 she works as Technical Collaborator to research activity at INRIM
Electromagnetics Division, for characterization of magnetic thin films for
spintronics. She has taken part in many international and national projects.
She is co-author of about 60 publications.

Emanuele Enrico received the Dr. degree in physics from the Univerit di
Torino, Turin, Italy, in 2008. In 2012 he got the Ph.D. degree in Metrology:
Science and Techniques of the Measurements. He is currently working as
a Technician in the Istituto Nazionale di Ricerca Metrologica and is vice-
responsible of the laboratory Nanofacilty Piemonte. His research interests
include quantum electronics and micro and nano fabrication technologies.

Paola Tiberto is a senior researcher at the Istituto Nazionale per la Ricerca
Metrologica (INRIM) since 1994. She focused her scientific activity on
phase transformation in metastable ferromagnetic alloys, magnetotransport
properties of thin films and multilayer, study of magnetisation process in
materials obtained by means of non-equilibrium technique, nanolithography
process for patterning magnetic thin films. She is author of more than 170
scientific papers.

Luca Boarino received the Dr.Eng. in Physics in 1987 at University of Torino.
He joined INRiM, working on phothermal spectroscopy in semiconductors,
porous silicon and on gas doping in silicon nanostructures. From 2009 he is
founder and responsible of Nanofacility Piemonte INRiM. He is author of
more than 120 publications.

Maurizio Zamboni got his Dr.Eng. degree in 1983 and the Ph. D. degree in
1988 at the Politecnico di Torino. He joined the Electronics Department of
the Politecnico di Torino in 1983 and he is now Full Professor of Electronics.
His research activity focuses on multiprocessor architectures design, in IC
optimization for Artificial Intelligence, low-power circuits and innovative
beyond CMOS technologies. He is co-author of more than 120 scientific
papers and three books.


