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An Automated Technique for Carotid Far Wall 

Classification using Grayscale Features and Wall Variability 

 

Abstract 

Purpose. This paper describes a Computer Aided Diagnostic (CAD) method for identification of 

symptomatic and asymptomatic carotid ultrasound images to be applied for the early diagnosis of 

atherosclerosis, on images that could contain a light plaque.  

Methods. The proposed system (called Atheromatic™) automatically computes the Intima 

Media Thickness (IMT) far wall region from the input image using AtheroEdge™, calculates 

nonlinear features based on Higher Order Spectra (HOS), and uses these features and IMT and 

IMT wall variability (IMTVpoly). Each image is associated to a feature vector that is then labeled 

as symptomatic or asymptomatic (Sym/Asym) by using a multi-classifiers system. 

Results. We used a database of 118 patients and the highest accuracy of 99.1% was registered by 

the Support Vector Machine classifier using seven features. These features, relevant to 

discriminate Sym/Asym, included IMT and IMTVpoly, along with the bispectral entropies of the 

distal wall image at the angles of 77°, 78°, and 79°. 

Conclusions. Classification in Sym/Asym of the distal carotid wall is feasible and accurate and it 

could be useful to the early detection of atherosclerosis and to identify the patients with potential 

higher cardiovascular risk. 

 

Keywords—Atherosclerosis, classification, automatic wall segmentation, intima-media 

thickness variability, ultrasounds. 
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I. INTRODUCTION 

Carotid atherosclerosis is an inflammatory progressive disease in which stenosis occurs due to 

the formation of plaques 1. Pieces of plaque can result in embolization, which can lead to heart 

attack and stroke 2. Recent global statistics from the World Health Organization (WHO) 

estimates that by 2030, about 23.6 million people may die due to cardiac diseases like heart 

disease and stroke 3. Generally, the patients are chosen for surgery based on symptoms and 

degree of stenosis. However, low stenotic plaques may cause symptoms 4 and highly stenotic 

plaques may be asymptomatic 5.  Hence, in order to assist the vascular surgeons to decide the 

accurate treatment, it is necessary to differentiate symptomatic (Sym) and asymptomatic (Asym) 

classes correctly. 

The assessment of Sym/Asym patients is eased by the use of Computer Aided Diagnostic 

(CAD) tools. Most of the CAD studies6-8 have proposed classification techniques that use 

grayscale features from plaque regions. This is because the composition of plaques from Sym 

patients is significantly different from that from Asym patients 9. Our objective, in this work, was 

to develop an early tissue classification technique that characterizes the early changes in the Far 

Wall Region (FWR) of the CCA in order to differentiate Sym vs. Asym groups before the wall 

plaque onset, because studies have shown that progressive atherosclerotic lesion starts with the 

intimal wall region thickening10. We have used the variability of the carotid intima-media 

thickness (IMT), called the IMTVpoly, as one of the features11,12. Measurement of IMT from B-

mode images manually is prone to intra and interobserver variability and time consuming. 

Among the CAD-based IMT measurement algorithms13, there are several automated systems14-17. 

Since our aim was to build a fully automated system, we chose the well-validated and previously 

published Completely Automated Multi-resolution Edge Snapper (CAMES)17 algorithm for 
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CCA FWR segmentation and subsequent LI and MA interface determination in this work. Figure 

1 provides an explained echographic appearance of the B-Mode longitudinal images of a carotid 

artery along with the interfaces that are considered in this study. 

 The general framework of the proposed system (a class of Atheromatic systems) is as follows: 

(a) automatic segmentation of the FWR; (b) extraction of Higher Order Spectra (HOS) based 

features, IMT and IMTVpoly from the FWR; (c) determination of ground truth of whether the 

segmented region belongs to Sym or Asym class based on prior presence or absence of 

symptoms; (d) development of classifiers using extracted features plus the ground truth labels. 

The following are the novel features of the proposed technique: (1) Development of an 

automated classification tool for the classification of automatically delineated FWR; (2) 

Grayscale feature extraction using non-linear HOS methods; (3) Determination and use of 

IMTVpoly feature; (4) Development of an optimum classifier using a combination of HOS 

features, IMT and IMTVpoly; (5) Evaluation of classifier performance on FWR images. 

II. MATERIALS 

The study was conducted at the Department of Radiology, Azienda Ospedaliero Universitaria di 

Cagliari, Italy, and approval by the Institutional Review Board was obtained. We prospectively 

considered 59 patients (35 males, 24 females; mean age 56 years, range 37-73 years) that were 

examined between February 2011 and August 2011. The patients were subdivided into Sym and 

Asym. A subject was considered as Sym in the case of occurrence of transient ischemic attack 

(TIA) or stroke. TIA was regarded as an episode of neurological dysfunction, (hemiparesis, 

hemiparesthesia, dysarthria, dysphasia or monocular blindness) not exceeding 24 hours. If the 

episode of neurological dysfunction surpassed 24 hours it was treated as a stroke. Sym subjects 

were examined within 6 months from the TIA\Stroke event. Asym subjects did not show any 
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neurological symptom but had one of the following conditions: coronary artery disease, aortic 

interventions, lower leg artery surgery, or diabetes and age > 50 years. Patients with suspected 

embolism from a cardiac source, follow-up after intra-cerebral aneurysms,  brain tumors, carotid 

endarterectomy, or with posterior cerebrovascular symptoms were discarded. 

118 images were obtained from 37 Sym and 22 Asym consecutive in-patients. One image from 

left and one from right carotid were taken from each subject. In the Sym cases, we treated the 

carotid ipsilateral to the symptom as Sym and the one on the other side as Asym. Therefore, there 

were 37+44=81 Asym and 37 Sym carotids. Color Duplex Ultrasound Scanning (CDUS) using 

Esaote MyLab 70 modality (Milan, Italy) with a 10 MHz linear-array transducer was used to take 

the images of arteries.  

III. METHODS 

The proposed CAD system comprises of an online system (right side of Fig. 2), which predicts 

the class label of an incoming patient’s test image. The prediction is done by using the classifiers 

trained by an offline learning system (left side of Fig. 2) and the grayscale feature vector 

extracted from the test image. The offline classification system consists of a classification phase 

which computes the training parameters of the classifier. In both systems, the HOS based 

features are obtained from the automatically segmented FWR regions, IMT and IMTVpoly. We 

evaluated the Support Vector Machine (SVM), Decision Tree (DT), Radial Basis Probabilistic 

Neural Network (RBPNN) and K-Nearest Neighbor (KNN) classifiers as the offline learning 

classifiers using significant features selected by t-test and the respective ground truth class labels 

(0/1 for Asym/Sym). A training set of images was used for developing the learning classifiers and 

a test set for evaluating the built classifiers. Ten-fold cross validation scheme was used to 

evaluate the performance of the classifier.  The predicted class of the unknown image and its 
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corresponding ground truth were compared to evaluate sensitivity, specificity, and accuracy. In 

case of online software implementation, the system automatically extracts the wall region from 

an unknown image, evaluates the clinically significant features, and the optimal classifier uses 

the features and its training parameters to identify the unknown class. 

 

A. Acquisition Protocol and Image Pre-Processing 

The images were acquired by standardizing the following settings of the ultrasound scanner: 

i. dynamic range (which corresponds to the input dynamic of the ultrasound signal before 

digital discretization and before conversion into grayscale) equal to 35 dB. 

ii. Persistence of the frame set to medium in order to allow a frame-rate higher than 40 

frames/s. 

iii. Time gain compensation curve (TGC) adjustment (the TGC is a logarithmic amplifier 

that is used to enhance echoes originated at a higher depth. This prevents the intensities 

of deepest echoes to be too small when converted to grayscale. The TGC gains can be 

adjusted by the sonographer. We considered the TGC settings as optimal when the 

anterior and posterior adventita layers had same brightness). 

iv. Overall gain of the grayscale set accordingly to represent the adventita layers higher 

contracts but avoiding the saturation of the image. 

v. Linear correspondence of the ultrasound signal to the gray level (which means that the 

correspondence of the digitalized value of the ultrasound signal was translated into a 

gray level by using a linear function). 

vi. Insonation with ultrasound beam orthogonal to the arterial wall 

As a pre-processing step, normalization of image was performed according to a previously 



Carotid Far Wall Classification 

6 
 

6 

published technique18 after the pre-requisite ultrasound settings were carried out so that all the 

images produce comparable and reproducible features and classification results irrespective of 

their different acquisition conditions. As a result of pre-processing, intensities of the adventitia 

layer and blood will be in the range of 190-195 and 0-5, respectively due to linear scaling of 

intensities.   

B. Far Wall Region (FWR) Segmentation  

 CAMES measures the IMT by using the morphological characteristics of the CCA in two 

steps. In Step 1, we first reduce the image to half (called down sampling process17), despeckle 

the down-sampled image, and then capture the edges of ADF using derivative of Gaussian Kernel 

with known apriori scale, and then up-sample the evaluated  ADF profile to estimate the Region 

of Interest (ROI) for Step 2 (Fig. 3A-3C). This profile is used to build the ROI by extending the 

profile in order to create a mask that includes the entire distal wall and part of the lumen. The 

basic rationale behind this step is to generate a mask which covers fully the far wall region and 

part of the lumen. Since in this study we had images with light plaques, we had to change the 

ROI size of the original CAMES version, which was suitable only for arteries without plaque. 

The far wall region we need consists of the medial layer, intima layer and part of the lumen. The 

height of the ROI is about one third the lumen size. On a healthy human subject, the lumen is 

one cm (~ 10 mm). We take about 1/3rd the size of the lumen (which roughly corresponds to 

three times the size of the far wall), which is about three mm. Since the mm to pixel conversion 

is approximately 16 pixels per mm, we thus get approximately 48 pixels. We took our ROI size 

to 

€ 

ΔROI  = 50 pixels, to include possible light plaques. Hence, compared to the original CAMES 

version, the ROI vertical size was changed from 30 pixels to 50 pixels. No further technical 

changes were made to the original version of CAMES. In Step 2, ROI is considered, and in order 
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to enhance the intensity edges First Order Absolute Moment (FOAM) operator is used and 

finally, the LI and MA borders are heuristically determined (Fig. 3D-3F). Our fully automated 

system was able to recognize the carotid artery with 100% accuracy in less than one second17. 

The wall region we considered is bounded at the bottom by the adventitia profile that is 

automatically traced (Fig. 3.C). Therefore, what we considered to be the far wall region (FWR) 

is the grayscale region between the traced LI and MA wall borders (Fig. 4). The LI profile is 

more irregular in the case of the Sym images, and this irregularity has been quantified using the 

IMTVpoly feature. Fig. 4 shows sample carotid Sym and Asym wall images and the corresponding 

zoomed FWRs. 

C. Grayscale and Wall Variability Feature Extraction   

 Studies have shown that changes in the intimal wall region are correlated with the occurrence 

of symptoms10. We have characterized these changes using non-linear entropy features based on 

the HOS of these images. IMT can help to determine the anatomic extent of atherosclerosis 

which is then used to assess cardiovascular and cerebrovascular risks19. Further, an increase in 

the IMT is one of the earlier clinical signs of an ongoing atherosclerotic process20. Moreover, 

variability in the IMT value may be associated with atherosclerosis symptomaticity12. The 

features were extracted using Matlab custom developed codes. 

Higher Order Spectra (HOS)-Based Features 

Higher Order Spectra is a nonlinear method21. Prior to HOS feature extraction, the pre-

processed images were first subjected to Radon transform, which converts a two-dimensional 

image into a one-dimensional data at various angles. In this study, we have performed Radon 

transform for every 1º and then calculated the HOS features. First, we determined the bispectrum 

which is a complex value and is described as 
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where X(f) is the Fourier transform of the signal, X* is the complex conjugate, and E[.] is the 

expectation operation. Bispectrum is evaluated in the principal domain region (Ω) and is 

multiplication of the three Fourier coefficients X(f1), X(f2), and X(f1+f2). The non-redundant 

region is defined as a subset of the support of the function which suffices to calculate the 

function in the whole region. Fourier transform of real signals result in symmetry. So, the total 

information may be obtained from half of the component.  The entire information can be 

obtained from the triple products terms of HOS which can be evaluated from the non-redundant 

region. The bispectrum phase entropy22 was then calculated as: 

ePRes = p(ψ n )logp((ψ n ))n∑   (2) 

where, 

p(ψ n ) =
1
L Ω∑ l(φ(B( f1, f2 ))∈ψ n )   (3) 

ψ n = {ϕ | −π + 2πn / N ≤ϕ < −π + 2π (n +1) / N},
n = 0,1,...,N −1

 (4) 

where L is the number of points within the non-redundant region, φ  is the phase angle of the 

bispectrum, and l(.) is an indicator function which gives a value of 1 when the phase angle is 

within the range depicted by nψ  in equation (4).  

Two bispectral entropies are defined as: 

Normalized Bispectral Entropy (e1Res): 

e1Res = − pilog(pi )i∑  (5) 

where, 

pi =
B( f1, f2 )
B( f1, f2 )Ω∑

 (6) 
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Normalized Bispectral Squared Entropy (e2Res): 

e2Res = − qjlog(qj )j∑  (7) 

where, 

qj =
B( f1, f2 )

2

B( f1, f2 )
2

Ω∑
 (8) 

The total number of HOS features calculated was 540 (180 x 3). The original image was fed to 

the Radon transform. It rotates the image about its centre in various angles and evaluates the line 

integrals along the parallel paths.  So, in the Radon domain, the lines of the image will become 

points.  Hence, the 2D image is converted into a 1D parallel beam projection at different 

angles. Then the bispectrum was evaluated for every 1 degree. The variation in the gray levels 

of the image can be deciphered by the entropies. Bispctrum is a complex value with real and 

imaginary part. Bispectrum entropy (eRes (78º), eRes (79º)) is the spectral entropy evaluated 

from the real part of bispectrum 52. Similarly, the entropy of the phase component of the 

bispectrum (ePRes (64º), ePRes (65º)) estimates the variation in the phase of the image.   

IMT and IMTV variability  

Polyline Distance Measure (PDM)23 was used to estimate the length between LI and MA 

borders, which indicates the IMT. PDM evaluates the length of each vertex of one boundary to 

the segments of the second boundary. Let us assume two boundaries B1 and B2. The length d(v,s) 

between a vertex v=(x0,y0) on B1 and a segment s whose endpoints, v1=(x1,y1), and, v2=(x2,y2), on 

B2 can be explained as: 

d(v, s) =
d⊥

min d1,d2{ }
⎧
⎨
⎪

⎩⎪

0 ≤ λ ≤1
λ < 0,λ >1

 (9) 

where d1 and d2 are the Euclidean distances between the vertex v and the endpoints of s; λ is 
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the length along the vector of the segment s; ⊥d is the perpendicular length between v and s. The 

polyline length from vertex v to the contour B2 is termed as )},({min),(
2

2 svdBvd
Bs∈

= . The length 

between the vertices of B1 to the sections of B2 is considered as the total distances from the 

vertices of B1 to the smallest segment of B2: 

d(B1,B2 ) = d(v,B2 )
v∈B1
∑   (10) 

Similarly, d(B2,B1) can be estimated by swapping the boundaries. The distance between 

boundaries is given by: 

D B1,B2( ) = d B1,B2( )+ d B2,B1( )
# of vertices of B1 +  # of vertices of B2( )

  (11) 

Where B1 is the LI boundary, B2 as the MA boundary, D(B1, B2) indicates the IMT measure. 

We have quantified wall variability by a new feature proposed in this work called the IMTVpoly 

which is calculated by evaluating the standard deviation of the IMT. The variability in the 

distance measurements was first computed as:  

σ 2 B1,B2( ) = d v,B2( )− d B1,B2( )( )2
v∈B1
∑    (12) 

σ 2 B2,B1( ) = d v,B1( )− d B2,B1( )( )2
v∈B2
∑  (13) 

and the IMTVpoly was calculated by 

IMTVpoly =
σ 2 B1,B2( )+σ 2 B2,B1( )

# vertices of B1 + # vertices of B2

 (14) 

The main advantage of using PDM is that the measured distance is robust because it is not 

dependent on the number of points on each contour and the variability is unbiased. 

IV. CLASSIFIERS 

Different supervised classifiers use different techniques to learn the data patterns from samples 
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belonging to different classes in the training dataset. Since every classifier is different in its 

approach, no single classifier can be considered the best for a particular dataset. Hence, we have 

evaluated the performance of several classifiers in this study. Support Vector Machine (SVM)24 

is a commonly used supervised classifier. Given a set of training data, SVM aims to determine a 

separating hyperplane that separates the data belonging to the two different groups with a highest 

separation between the hyperplane and the data closest to the hyperplane. In order to separate the 

non-linear data, kernel functions are availed to map the initial data to a higher dimensional 

feature space where they become linearly separable25. SVM classifiers have a simple geometric 

interpretation, yield a sparse solution and are less prone to over-fitting. The Radial Basis 

Function (RBF) kernel and polynomial kernels of varying orders were used in this work.  

 In the Radial Basis Probabilistic Neural Network (RBPNN), the radial basis layer yields a 

distance vector by estimating the distances between the test feature vector and training feature 

vectors.  The next competitive layer adds these contributions for each input groups and yields a 

output which is the vector of probabilities. The compete transfer function at the output of the 

second layer chooses the maximum of these probabilities to evaluate the unknown data class. In 

K-Nearest Neighbor (KNN) classifier, unknown data is assigned to the class that is the most 

common to its K nearest neighbors. In Decision Trees (DT), tree is built using the input features, 

and various rules are generated from the tree. The unknown class is predicted using these rules.  

V. RESULTS 

A. Selected Features 

Our feature extraction algorithm led to 542 features for each image. Hence, we applied a 

feature reduction and selection strategy, in order to keep the most relevant feature for 

classification and in order to avoid having collinear variables. In fact, collinear variables might 
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decrease the power of the classifiers by forcing to unneeded over-modeling of the data26. 

Preliminary, we tested if the single features had normal distribution using the Quantile-Quantile 

plot (Q-Q plot) and the Goodness-of-fit χ2 test and found that we could not reject the hypothesis 

of normal distributions. Then, we applied a one-way ANOVA to the features. We considered the 

pathology as independent variable and we assessed which features could be considered as 

statistically different between the Sym and Asym groups. We considered a feature to be 

statistically significant (i.e., different between the two groups) if the p value was lower than 0.05. 

All variables with p value higher than 0.05 were not considered for classification. This feature 

reduction approach was already used in several multivariate and metabolomics studies26, because 

the ANOVA analysis is quite robust to violation of the hypothesis of normal distribution of the 

variables27. Table I presents the seven features selected out of the 542 initially extracted features. 

As highlighted under Section III. C, IMT and IMTVpoly features characterize the early 

atherosclerotic process19,20. Therefore, even though the p-value is not less than 0.05 for IMT and 

IMTVpoly, on using them in classifiers, we found that they significantly improved the accuracy. 

We feel that the novel combination of these features have better separated the samples belonging 

to the two classes, and, resulted in the highest accuracy. Two clinically significant phase entropy 

based features were extracted for Radon transform angles θ = 640 and θ = 650. (ePRes(640) and 

ePRes(650)). Three normalized bispectral entropies extracted at θ = 770,  θ = 780, and θ = 790 

(e1Res(770), e1Res(780) and e1Res(790)) were also significant. In the case of IMTVpoly, the Sym 

images showed a higher variability than the Asym images.	  	  

 

B. Classification Results 

To obtain more generalized and robust performance measures, ten-fold cross validation 
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method was used for resampling wherein the dataset is split into ten folds. In the first run, first 

nine folds were availed for training the classifier and the last one fold was availed for testing and 

evaluation of the performance measures. This procedure was repeated nine more times by taking 

different fold as testing data every time. The averages of those obtained in each run is considered 

as the overall performance of the classifier. This procedure was stratified such that the ratio of 

the samples belonging to the two classes remained the same in every run i.e., in each run, 34 Sym 

and 73 Asym images were used for training, and 3 Sym and 8 Asym images were used for testing. 

The average sensitivity, specificity, accuracy, and PPV values obtained by feeding all the 

features except the IMTVpoly and IMT feature and by feeding all features including IMT and 

IMTVpoly into the classifiers are presented in Table II. It is evident that the classifiers show 

improved performance when IMT and IMTVpoly are included in the training process.  An average 

sensitivity and specificity of 100% and accuracy of 99.1% was reported using SVM classifier 

with polynomial kernel of order 3. Thus, these two features are more sensitive in capturing the 

possible plaque onset information. This is because the plaque deposit usually covers the LI 

border, and thus, the LI border has more variability, which is captured by IMTVpoly. Moreover, 

we also used features extracted from manually segmented FWRs in these classifiers and obtained 

the same accuracy of 99.1% emphasizing the reliability of our CAMES segmentation paradigm.  

SVM classifier uses two parameters (i) sigma (σ) and (ii) cost function. Sigma helps to control 

the degree of nonlinearity and C assists in controlling the over-fitting of the model. We have 

evaluated, C = 100, σ = 0.001, and number of support vectors = 9 using grid search method in 

order to obtain the highest classification accuracy. In the case of the fuzzy classifier, the clusters 

were based on each of the seven input features i.e. the input membership functions, and eight 

rules were obtained. In the RBPNN classifier, biases were fixed to ln0.5 / s , where s=spread 
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constant of RBPNN, which was 0.1 for maximum accuracy. In KNN classifier, we achieved the 

maximum accuracy for K=5. 

We repeated the same classification scheme by using the IMT alone, then IMTVpoly alone, and 

the combination of IMT and IMTVpoly. The SVM classifier showed an average accuracy equal to 

about 85%, thus evidencing how the texture features of the FWR are more efficient in capturing 

the information contained in the ultrasound image that the IMT and IMTVpoly alone. 

 

VI. DISCUSSION 

Previously developed CAD systems were mainly devoted to plaque classification. Kyriacou et 

al.6 reviewed many CAD algorithms that were developed to classify the detected plaques. 

Christodoulou et al.7 obtained shape features and 61 textures from manually segmented ROIs of 

230 plaque images, used them in a modular neural network, and presented a classification 

accuracy of 73.1%. Mougiakakou et al.8 used 21 first-order statistical features and Laws' texture 

energy features extracted from 54 Sym and 54 Asym plaques in a novel hybrid neural network 

and obtained a high accuracy of 99.1%. This high accuracy was achieved only after manual 

segmentation of the plaque. In 2005, Kyriacou et al.28 used morphological features and ten 

texture along with statistical and neural classifiers and presented 71.2% of classification 

accuracy. Later, they determined the normalized pattern spectra for binary and grayscale models, 

and used them in SVM and probabilistic neural network classifiers. The highest accuracy of 

73.7% was registered by SVM on evaluating 137 cases in each class. In 2009, Seabra et al. 14 

extracted Rayleigh parameters, morphological, histogram and texture features from 102 Asym 

and 44 Sym plaques. One hundred and fourteen significant features were derived from various 

images, called normalized, noiseless, envelope, and speckle images. Again, manual ROI 
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selection was done.  

In our previous work30,31, using combination of higher order spectra (HOS), textures and 

discrete wavelet transform features using Portugal database we obtained an average sensitivity of 

97%, an accuracy of 91.7%, and specificity of 80%. We reported the classification accuracies of 

93.1% and 85.3%, respectively. 

Hence, by summarizing, the aforementioned CAD studies shoed either low accuracy or a 

considerable number of features to perform classification. Moreover, mostly any previous study 

required manual delineation of the ROI, thus introducing inter-operator variability. In this regard, 

our Atheromatic™ system presents relatively high classification accuracy using a small feature 

set extracted from automatically segmented FWR. Moreover, the novelty of our work lies in the 

fact that we studied the FWR by using the IMT and IMTVpoly features of the distal wall instead of 

the plaque regions and obtained a high accuracy of 100% to differentiate Sym and Asym cases 

based on early changes in the FWR. The key points of our study can be summarized as follows: 

(1) by using a reduced feature set (seven features) we could obtain high classification 

performance; (2) the technique is suitable to be tested in a clinical environment, because the 

clinician simply has to feed the ultrasound image to get the classification (the entire process of 

segmentation and classification requires less than 20 minutes); (3) the high classification 

performance indicates that this system could be further explored as a possible adjunct diagnostic 

system; (4) the system is totally user independent and, thus, it doesn't introduce inter-operator 

variability into the classification results. 

Since atherosclerotic lesions begin in the artery wall, in this work, we characterized the subtle 

textural changes in the automatically segmented wall region of carotid images of Sym and Asym 

patients using powerful non-linear HOS features, IMT and IMT wall variability. We included in 
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the study patients with either TIA/stroke and discarded all the patients with possible confounding 

factors at cerebral level (i.e. patent foramen ovale or atrial septal defect, suspected pulmonary 

embolism, etc…). Therefore, we assumed that the origin of the TIA/stroke was directly 

correlated to the ipsilateral carotid.  

We demonstrated that Atheromatic™ features using SVM classifier presented a high 

classification accuracy of 99.1%. We make the following conclusions from our study: (a) 

textural changes in the far wall of carotid ultrasound images can help in accurate Sym vs. Asym 

classification; (b) the most commonly studied wall variability feature IMTVpoly and IMT can be 

powerful features for far wall region classification; and (c) high accuracy can be achieved using 

far wall regions that were automatically segmented using our published validated automated 

CAMES algorithm. 

Although the dataset size used in this study can be increased over time, we have demonstrated 

good accuracy. However, more validation is needed on large datasets collected from other 

institutes with different gain settings. Our future work also includes the use of significant 

features such as Carotid Artery Wall Thickness (CAWT) and fractal dimension, for Sym and 

Asym classification, and the possible extension of the technique to 3D characterization. We also 

intend to study this technique on plaque ROIs. 

 

References 

1. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999;340. 

2. Carter-Monroe N, Yazdani S, Ladich E, et al. Introduction to the Pathology of Carotid 

Atherosclerosis: Histologic Classification and Imaging Correlation. In: Suri JS, Kathuria 

C, Molinari F, editors. Atherosclerosis Disease Management: Springer New York; 2011. 

p 3. 



Carotid Far Wall Classification 

17 
 

17 

3. Organization WH. Cardiovascular disease. 2012. 

4. Polak JF, Shemanski L, O'Leary DH, et al. Hypoechoic plaque at US of the carotid 

artery: an independent risk factor for incident stroke in adults aged 65 years or older. 

Cardiovascular Health Study. Radiology 1998;208. 

5. Inzitari D, Eliasziw M, Gates P, et al. The causes and risk of stroke in patients with 

asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid 

Endarterectomy Trial Collaborators. N Engl J Med 2000;342. 

6. Kyriacou EC, Pattichis C, Pattichis M, et al. A review of noninvasive ultrasound image 

processing methods in the analysis of carotid plaque morphology for the assessment of 

stroke risk. IEEE Trans Inf Technol Biomed 2010;14. 

7. Christodoulou CI, Pattichis CS, Pantziaris M, et al. Texture-based classification of 

atherosclerotic carotid plaques. Medical Imaging, IEEE Transactions on 2003;22. 

8. Mougiakakou SG, Golemati S, Gousias I, et al. Computer-aided diagnosis of carotid 

atherosclerosis based on ultrasound image statistics, laws' texture and neural networks. 

Ultrasound Med Biol 2007;33. 

9. AbuRahma AF, Wulu JT, Jr., Crotty B. Carotid plaque ultrasonic heterogeneity and 

severity of stenosis. Stroke 2002;33. 

10. Virmani R, Kolodgie FD, Burke AP, et al. Lessons from sudden coronary death: a 

comprehensive morphological classification scheme for atherosclerotic lesions. 

Arterioscler Thromb Vasc Biol 2000;20. 

11. Cheng X, Zhou Y, Jin Y, et al. Intima-medial thickness homogeneity in the common 

carotid artery: measurement method and preliminary clinical study. J Clin Ultrasound 

2012;40. 



Carotid Far Wall Classification 

18 
 

18 

12. Saba L, Meiburger KM, Molinari F, et al. Carotid IMT Variability (IMTV) and Its 

Validation in Symptomatic versus Asymptomatic Italian Population: Can This Be a 

Useful Index for Studying Symptomaticity? Echocardiography 2012;29. 

13. Molinari F, Zeng G, Suri JS. A state of the art review on intima-media thickness (IMT) 

measurement and wall segmentation techniques for carotid ultrasound. Computer 

Methods and Programs in Biomedicine 2010;100:201. 

14. Molinari F, Zeng G, Suri J. Greedy technique and its validation for fusion of two 

segmentation paradigms leads to an accurate intima-media thickness measure in plaque 

carotid arterial ultrasound. The Journal for Vascular Ultrasound 2010;34. 

15. Molinari F, Meiburger KM, Saba L, et al. Constrained snake vs. conventional snake for 

carotid ultrasound automated IMT measurements on multi-center data sets. Ultrasonics 

2012;52. 

16. Molinari F, Meiburger KM, Saba L, et al. Fully automated dual-snake formulation for 

carotid intima-media thickness measurement: a new approach. J Ultrasound Med 

2012;31. 

17. Molinari F, Pattichis CS, Zeng G, et al. Completely automated multiresolution edge 

snapper--a new technique for an accurate carotid ultrasound IMT measurement: clinical 

validation and benchmarking on a multi-institutional database. IEEE Trans Image 

Process 2012;21. 

18. Elatrozy T, Nicolaides A, Tegos T, et al. The effect of B-mode ultrasonic image 

standardisation on the echodensity of symptomatic and asymptomatic carotid bifurcation 

plaques. Int Angiol 1998;17. 



Carotid Far Wall Classification 

19 
 

19 

19. Lorenz MW, Markus HS, Bots ML, et al. Prediction of clinical cardiovascular events 

with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 

2007;115. 

20. Touboul PJ, Hennerici MG, Meairs S, et al. Mannheim carotid intima-media thickness 

consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th 

Watching the Risk Symposium, 13th and 15th European Stroke Conferences, Mannheim, 

Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007;23. 

21. Nikias CL, Petropulu AP. Higher-order spectra analysis: a nonlinear signal processing 

framework: PTR Prentice Hall; 1993. 

22. Acharya UR, Molinari F, Sree SV, et al. Automated diagnosis of epileptic EEG using 

entropies. Biomedical Signal Processing and Control 2012;7. 

23. Saba L, Molinari F, Meiburger KM, et al. What is the correct distance measurement 

metric when measuring carotid ultrasound intima-media thickness automatically? 

International Angiology 2012,31. 

24. Sánchez A VD. Advanced support vector machines and kernel methods. Neurocomputing 

2003;55. 

25. Muller K, Mika S, Ratsch G, et al. An introduction to kernel-based learning algorithms. 

Neural Networks, IEEE Transactions on 2001;12. 

26. Molinari F, Rosati S, Liboni W, et al. Time-Frequency Characterization of Cerebral 

Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals. Eurasip J Adv Sig 

Pr 2010. 



Carotid Far Wall Classification 

20 
 

20 

27. Blaise BJ, Navratil V, Domange C, et al. Two-dimensional statistical recoupling for the 

identification of perturbed metabolic networks from NMR spectroscopy. Journal of 

proteome research 2010;9. 

28. Kyriacou E, Pattichis MS, Christodoulou CI, et al. Ultrasound imaging in the analysis of 

carotid plaque morphology for the assessment of stroke. Stud Health Technol Inform 

2005;113. 

29. Seabra J, Pedro LM, Fernandes EFJ, et al. Ultrasonographic characterization and 

identification of symptomatic carotid plaques. Conf Proc IEEE Eng Med Biol Soc 

2010;2010. 

30. Acharya UR, Faust O, Sree VS, et al. Understanding symptomatology of atherosclerotic 

plaque by image-based tissue characterization. Comput Methods Programs Biomed 

2013;110. 

31. Acharya UR, Mookiah MR, Vinitha Sree S, et al. Atherosclerotic plaque tissue 

characterization in 2D ultrasound longitudinal carotid scans for automated classification: 

a paradigm for stroke risk assessment. Med Biol Eng Comput 2013;51. 

 



Carotid Far Wall Classification 

21 
 

21 

Figure Legends 

 

Fig. 1 Echographic appearance of a CCA in longitudinal projection  

 

 

Fig. 2. The proposed system. 
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Fig. 3. (A) Original B-mode image. (B) Downsampled and despeckled image with recognized 

near and far adventitia profiles (C) Traced ADF profile (D) The region of interest around the 

automatically traced ADF (E) FOAM operator (F) Final LI and MA tracings. 

 

 

Fig. 4. (S) and (A) show sample Sym and Asym wall images. They show the traced LI and MA 

wall borders (S_FWR) and (A_FWR) show the corresponding zoomed wall Far Wall Regions 

(FWR). 
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TABLE I 

RANGE (MEAN ± STANDARD DEVIATION) OF THE SELECTED FEATURES 

Feature Asym Sym 
p-

value 

e1Res (77º) 0.327±0.075 0.299±0.059 0.023 

e1Res (78º) 0.329±0.074 0.299±0.056 0.019 

e1Res (79º) 0.330±0.074 0.299±0.052 0.018 

ePRes (64º) 3.568±0.010 3.557±0.028 0.044 

ePRes (65º) 3.566±0.014 3.559±0.024 0.040 

IMT 1.001±0.324 1.134±1.507 0.102 

IMTVpoly 0.155±0.118 0.172±0.204 0.902 
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TABLE II 

PERFORMANCE OF THE ATHEROMATIC SYSTEM 

(A: ACCURACY; SN: SENSITIVITY; SP: SPECIFICITY) (ALL VALUES IN %) 

 

All features of Table I 

except 

IMTVpoly and IMT 

All features including 

Table I 

Classifier A PPV Sn Sp A PPV Sn Sp 

SVM 

Linear 91.8 89.2 83.3 95 97.3 97.5 93.3 98.8 

Poly Order 

1 

90 85 80 93.8 97.3 97.5 93.3 98.8 

Poly Order 

2 

90 85 80 93.8 98.2 97.5 96.7 98.8 

Poly Order 

3 

90 87.5 76.7 95 99.1 100 96.7 100 

RBF 89.1 83.3 76.7 93.8 99.1 100 96.7 100 

Other classifiers 

KNN 88.2 80.8 80 91.3 92.7 93.3 80 97.5 

RBPNN 5 82.7 67.5 60 89.1 96.7 63.3 98.8 

DT 5 80 67.6 66.7 89.1 89.3 73.3 95 

 
 


