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The GN-Model of Fiber Non-Linear Propagation
and its Applications

P. Poggiolini,Member, IEEE, G. Bosco,Member, IEEE, A. Carena,Member, IEEE, V. Curri, Member, IEEE,
F. Forghieri,Member, IEEE

Abstract—Several approximate non-linear fiber propaga-
tion models have been proposed over the years. Recent re-
consideration and extension of earlier modeling efforts has led
to the formalization of the so-called Gaussian-Noise (GN) model.

The evidence collected so far hints at the GN-model as being
a relatively simple and, at the same time, sufficiently reliable tool
for performance prediction of uncompensated coherent systems,
characterized by a favorable accuracy vs. complexity trade-off.

This paper tries to pull together the recent results regarding
the GN-model definition, understanding, relations vs. other mod-
els, validation, limitations, closed form solutions, approximations
and, in general, its applications and implications in link analysis
and optimization, also within a network environment.

Index Terms—coherent systems, uncompensated transmission,
non-linear effects, GN-model, PM-QAM

I. I NTRODUCTION

T HE advent of coherent-detection systems supported by
digital-signal-processing (DSP) has made it possible to

carry outelectronicfiber chromatic-dispersion (CD) compen-
sation. This in turn has permitted to avoidoptical dispersion
compensation, or dispersion management (DM), thus allowing
the exploitation of the so-called ‘uncompensated’ transmission
(UT) technique.

The UT scenario has proved quite advantageous in a number
of ways. Repeaters, not needing to support the insertion
of dispersion-compensating units, have become simpler and
hence cheaper and better performing. More important, it was
recognized early on that links based on UT are less impacted
by non-linearity than DM links. As a result, UT has become
the solution of choice for green-field installations, as well
as for overhauling and upgrading existing links where DM
removal is practically and economically feasible.

Finally, as a subtler by-product of UT adoption, it has been
recognized that certain perturbative models of fiber non-linear
propagation, which did not work satisfactorily with DM, can
instead provide rather accurate system performance prediction
with UT. In particular, recent re-consideration and extension
of earlier modeling efforts has led to the formalization of the
so-called Gaussian-Noise (GN) model.

The GN-model is just one of several perturbative models
that have been proposed over the years. However, the GN-
model has proved itself a relatively simple and, at the same
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time, sufficiently reliable tool for performance prediction over
a wide range of system scenarios, effective for both system
analysis and design.

This paper tries to pull together the recent results regarding
the GN-model definition, understanding, relations vs. other
models, validation, limitations, closed-form solutions, approx-
imations and, in general, its applications and implications
in link analysis and optimization, also within a network
environment.

Overall, the fiber non-linearity modeling effort is far from
over and new models or variations on existing ones are being
published at an increasing rate. This is a positive process and
certainly the next few years will see continuous improvement
and refinement, most likely leading to ever more effective
models.

The paper is structured as follows.
In Sect. II an overview of certain classes of perturbative

models and of the most common assumptions made to de-
rive them is proposed. In Sect. III, the GN-model reference
formulas are introduced and a physical interpretation of the
model is proposed. The incoherent GN-model (IGN-model),
a simplified variant to the GN-model, is presented and dis-
cussed. Sect. IV is devoted to the use of the GN-model to
assess system performance. A discussion of the impact on
system performance evaluation of possible inaccuracy in non-
linearity estimation is proposed. Sect. V focuses on a broad-
range simulative validation of the GN-model. The errors and
limitations due to the approximations used by the model are
studied in detail. Sect. VI collects various analytical closed-
form results obtained from the GN-model. Sect. VII deals
with the derivation from the GN-model of practical simplified
system design rules, which are then validated vs. experimental
results and discussed. In Sect. VIII, the GN-model is used to
obtain non-linear optical channel throughput estimates. The
throughput of practical links is also evaluated and discussed.
The potential effectiveness of DSP-enabled non-linear mitiga-
tion techniques is investigated in Sect. IX, based on the GN-
model. Sect. X is devoted to the use of the GN-model in the
context of the control and optimization of transparent flexible
optical networks. Comments and conclusion follow.

A complete list of the acronyms used in this paper is
provided in Appendix A.

II. A N OVERVIEW OF SOMEUT PERTURBATIVE MODELS

Many approximate fiber non-linear propagation models have
been proposed and studied over the years [3]-[47], addressing
very different link and system scenarios as technology evolved.
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Here we collect those models that are specific to UT and
that appear to be more directly related to the GN-model. We
also discuss a few other models that are less similar to the
GN-model but have certain features that are of relevance in
the context of the discussion of the GN-model. We follow a
similar classification as in [34], [36], with some changes and
the addition of more recent developments.

We first introduce three of the most common assumptions
made in deriving approximate non-linear propagation models
for UT.

A. Most common modeling assumptions

The majority of non-linear propagation models make the
assumption that non-linearity is relatively small, i.e., that it is
a perturbationas compared to the useful signal. Thanks to this
assumption, model derivation can exploitperturbation tech-
niques, which allow to find approximate analytical solutions to
the non-linear Schroedinger equation (NLSE) or the Manakov
(ME) equation [1], [2]. Clearly, the perturbation assumption
breaks down at highly non-linear regimes. However, both sim-
ulations and experiments have shown it to be sufficiently well
verified within the range of optimal system launch powers. Its
validity will be discussed in Sect. V. All models mentioned in
the following are perturbation analysis models, although the
specific perturbation technique may differ.

A second assumption is that the transmitted signal statisti-
cally behaves as stationary Gaussian noise. We call this the
‘signal-Gaussianity’ assumption. This assumption is certainly
not verified at the Tx output. However, it can be argued that,
as the signal propagates along a UT link and gets thoroughly
dispersed, it tends to take on an approximately Gaussian-like
distribution.

Another common assumption is that the signal disturbance
generated by non-linearity, which we call throughout this paper
non-linear interference(NLI), manifests itself asadditive
Gaussian noise(AGN).

All these assumptions are just tentativeapproximationsthat
have been used to derive models that typically do not aim at
being exact solutions of the non-linear propagation problem.
Like the GN-model, they generally aim at being practical
tools, sufficiently accurate to be used for system analysis and
design. Given the approximations involved, their effectiveness
must be established a posteriori through proper validation.
This is discussed in Sect. V, where the GN-model predictive
performance is extensively tested over a broad range of system
scenarios. The model inaccuracy due to the above assumptions
and, in particular, to the signal Gaussianity assumption, is
thoroughly analyzed.

B. Model classes

We first introduce those models that lead to results that are
close or coincident with those of the GN-model. They make
use ofall three assumptionsmentioned in Sect. II-A

The earliest of these models dates back to 1993 [28]. It was
based on directly postulating that all non-linearity was pro-
duced by FWM acting among the overall WDM signal spectral

components, assumed ‘incoherent’. Remarkably, though lim-
ited to single-polarization and to a rectangular overall WDM
spectrum, the results of this early effort essentially agree with
those obtained through the GN-model under such limitations.
In 2003, [29] showed that, based on a perturbation approach
outlined in [10], similar results to those found in [28] could
be re-derived.

A 1997 paper [39] found an approximate solution to the
NLSE in terms of a truncated Volterra series (VS) in frequency
domain. These results were later used (in 2002) to derive a
PSD of NLI [40] and to discuss fiber capacity in [41], in a
single-polarization scenario. The found model equations are
very similar to the GN-model for single-polarization.

More recently, another approach was proposed, based on
ideally slicing up the signal spectrum into discrete spectral
components, whose non-linear beating during propagation is
then analytically assessed. We call it the Spectral Slicing
(SpS) approach. Spectral slicing is naturally found in OFDM
systems, so SpS was first used to model non-linearity limited
to these systems (2008-2011) [30]–[32]. These papers obtained
what could be viewed as a specialized version of the GN-
model for OFDM.

The SpS approach was also taken up aiming at general
WDM systems (including OFDM as a special case). In this
approach, spectral slicing is introduced early in the derivation
but then it is removed through a suitable transition to contin-
uous spectra. This effort (2011 to now [33]-[36]) led to the
first appearance of the GN-model in its current form.

Two further papers, devoted specifically to detailed re-
derivations of the GN-model, were also recently published
(2011-2013) [37]-[38]. Both independently confirm the GN-
model main equations and provide some generalizations.
Specifically, [37] is based on an modified version of the
first-order regular-perturbation method (RP1), which had been
shown in [12] to be equivalent to the VS method. Paper [38]
uses a variation on the SpS approach.

An interesting question is why the earlier instances of these
models did not enjoy widespread attention when originally
published many years ago. The answer appears to be that they
did not work well for the DM systems of the time. Specifically,
it appears that the signal-Gaussianity assumption does not hold
up well, or not at all, in DM systems where, contrary to UT,
dispersion is not allowed to accumulate.

A separate class of proposed models employs a time-domain
(TD) perturbation approach, which was introduced in 2000
[42], [43]. In 2012, this approach was substantially re-visited
and extended [44], [45]. The interesting feature of the TD
models is that they they do not need to rely on the signal-
Gaussianity assumption, ideally making it possible for them
to overcome the GN-model limitations induced by the signal-
Gaussianity assumption (see Sect. V-C).

However, without signal-Gaussianity, rather complex equa-
tions are found. In order to achieve simpler results, further
assumptions and approximations are typically necessary. For
instance, in [43] an approximate closed-form relation for the
total NLI noise power for a single-channel is found, but
a ‘phase-incoherence’ assumption (roughly corresponding to
the signal-Gaussianity assumption) is needed to derive it.



102

Incidentally, the final formula bears substantial similarity to
Eq. (37) of this paper, derived through the GN-model, showing
once more that result convergence is found among different
models when the same assumptions are made.

Over the last few months, various other models have been
proposed. These include a discrete-time single-channel model
based on deriving analytical results from the split-step algo-
rithm [46]. Another proposal makes use of a more conventional
perturbative approach: however, instead of seeking a result
in terms of an additive NLI disturbance, it looks at phase
disturbance, akin to self- and cross-phase modulation (SPM
and XPM) [47].

As a whole, research on the topic of non-linearity modeling
is quite active and new models and results may be expected
in the near future1.

III. T HE GN MODEL REFERENCEFORMULA

The GNRF suppliesGNLI(f), that is, the PSD of NLI at
the end of the link. In this section, the GNRF is introduced,
first in a general form, capable of dealing with a very wide
variety of systems, and then in a simpler form, valid under
restrictive system constraints, which however makes it easy to
extract an intuitive physical explanation of the phenomena it
describes. Finally, a simplified variant to the GN-model will
be introduced and its features discussed.

A. The general form of the GNRF

The symbols most frequently used in the following are listed
here for convenience:

• z: the longitudinal spatial coordinate, along the link [km]
• α: fiber field loss coefficient [km−1], such that the signal

power is attenuated asexp(−2αz)
• g(z): fiber field gain coefficient [km−1], possibly z-

dependent, such that the signalpower is amplified over
a stretch ofz km as

∫ z

0
exp(2g(z′))dz′

• Γ: lumped power gain, such as due to an EDFA
• β2: dispersion coefficient in [ps2∙km−1]
• β3: dispersion slope in [ps3∙km−1]
• βDCU : lumped accumulated dispersion in [ps2]
• γ: fiber non-linearity coefficient [W−1∙km−1]
• Ls: span length [km]
• Leff : span effective length [km]
• Ns: total number of spans in a link
• GWDM(f): PSD of the overall WDM transmitted signal
Note that in this paper all PSDs are assumed to beunilat-

eral.
As mentioned in Sect. II, the derivation of the GNRF was

extensively dealt with in [34]-[38] and will not be addressed
here. This version of the GNRF makes the following assump-
tions:

• the transmitted signals are dual-polarization
• a ‘span’ consists of a single fiber type.

1After submission and first revision of this paper, various new theoretical
contributions have appeared on non-linearity modeling. They are too recent
to take their results into account here. However, we include them in the
bibliography for future reference, as they appear to contain significant new
results [48]-[51].

Note that the latter restriction is only apparent: if an actual
link has a span that harbors more than one fiber type, such
span can be formally broken up into multiple spans, one for
each fiber type.

The GNRF can then be written as follows [35]:

GNLI(f) =
16
27

∞∫

−∞

∞∫

−∞
GWDM(f1)GWDM(f2)GWDM(f1 + f2 − f)

∣
∣
∣
∣

Ns∑

n=1
γn

[
n−1∏

k=1

exp
(∫ Ls,k

0
3gk (ζ) dζ

)
exp (−3αkLs,k) Γ3/2

k

]

[
Ns∏

k=n

exp
(∫ Ls,k

0
gk (ζ) dζ

)
exp (−αkLs,k) Γ1/2

k

]

exp
(
j4π2 (f1 − f) (f2 − f) ∙

∑n−1
k=1 [β2,k Ls,k + π (f1 + f2) β3,k Ls,k + βDCU,k]

)

∫ Ls,n

0

[
exp

(∫ z

0
2gn (ζ) dς − 2αnz

)

exp
(
j4π2 (f1 − f) (f2 − f) ∙

[β2,n + πβ3,n(f1 + f2)] z)] dz |2df1df2

(1)
whereΓk is lumped power-gain placed immediately following
thek-th span andgk is the possible distributed field-gain (such
as due to Raman amplification) occurring along thek-th span.
In general, integer subscripts such ask, n, indicate to which
span a certain quantity is referred.

This equation can take into account lumped dispersive
elements placed at the end of each span, through the parameter
βDCU . However, the presence of such elements may cause
the signal-Gaussianity assumption to degrade. In this paper
we will always assumeβDCU=0 (pure UT) and leave the
investigation of any inaccuracy issues in the presence of
lumped dispersive elements for future investigation.

B. Physical interpretation of the GN-model

Eq. (1) is quite general but rather involved. To discuss the
physical interpretation of the GN-model, we further assume
that:

• the link is made up of identical spans (thehomogenous
link assumption)

• the loss of each span, including the last one, is exactly
compensated for by optical amplification (thetransparent
link assumption).

As a result, the GNRF can be written as:

GNLI(f) = 16
27γ2L2

eff ∙
∞∫

−∞

∞∫

−∞
GWDM(f1) GWDM(f2) GWDM(f1 + f2 − f)∙

ρ (f1, f2, f) ∙ χ (f1, f2, f) df2 df1

(2)

Then, the formula can be given the following physical
interpretation: the NLI PSD generated at a frequencyf , that is
GNLI(f), is the integrated result of all the ‘infinitesimal’ non-
degenerate FWM products occurring among any three spectral
components of the transmitted signal, located atf1, f2 and
f3 = (f1 + f2 − f).

In fact, the integrand factor:

GWDM(f1)GWDM(f2)GWDM(f1 + f2 − f) (3)
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is directly related to the FWM process as it is the product of
three signal frequency components that act as a ‘pumps’ for the
FWM process itself. Fig. 1 shows four instances of such triads
of pumps, all creating NLI at frequencyf . The integrand factor
ρ (f1, f2, f) can be shown to be the non-degenerate FWM
efficiency of their beating, assumed to be normalized so that
its maximum is 1. Its general definition, as it applies to Eq. (2),
is:

ρ (f1, f2, f) =

∣
∣
∣
∣
∫ Ls

0
e

∫ z

0
2g(ζ) dζ

e−2αz

ej4π2(f1−f)(f2−f)[β2+πβ3(f1+f2)]zdz
∣
∣
∣
2
/

L2
eff

(4)

with:

L2
eff =

∣
∣
∣
∣
∣

∫ Ls

0

e

∫ z

0
2g(ζ) dζ

e−2αzdz

∣
∣
∣
∣
∣

2

(5)

The specific form taken on byρ depends on the type of am-
plification used. For example, assuming lumped amplification
(EDFA-like), ρ takes on the following closed-form [53]:

ρ (f1, f2, f) =
∣
∣
∣
∣
∣

1 − e−2αLsej4π2(f1−f)(f2−f)[β2+πβ3(f1+f2)]Ls

2α − j4π2(f1 − f)(f2 − f) [β2 + πβ3(f1 + f2)]

∣
∣
∣
∣
∣

2

L−2
eff

(6)

with:
Leff =

(
1 − e−2αLs

)
/2α (7)

In the case of distributed amplification Eqs. (4)-(5) generate
different expressions forρ (see Sect. VI) but this does not
affect its physical meaning.

Finally, the factorχ is:

χ (f1, f2, f) =

sin2(2Nsπ2(f1−f)(f2−f)[β2+πβ3(f1+f2)]Ls)
sin2(2π2(f1−f)(f2−f)[β2+πβ3(f1+f2)]Ls)

(8)

Note that if the link consists of a single span, thenχ = 1.
Therefore this factor clearly has the role of accounting for
NLI accumulation in multi-span links. In fact, it takes into
account the coherent interference at the Rx location of the NLI
produced in each span. It is sometimes called ‘phased-array
factor’ since it is formally identical to the radiation pattern of a
phased-array antenna. A similar interference pattern, with the
same analytical form, emerged in the context of conventional
FWM calculations [53], [54] and was discussed in detail in
[30] in the context of OFDM systems. The factorχ is quite
important and will be discussed in various other sections of
this paper.

We would like to remark that the GNRF, in either its more
general (1) or its simpler form (2), is not derived using thea
priori assumption that the dominant non-linear phenomenon is
FWM. All recent detailed derivations [35], [37], [38] actually
start from the Manakov equation and rigorously apply only
the three assumptions discussed in Sect. II-A, which do
not specifically pre-suppose FWM. It is at the end of the
derivation, i.e.,a posteriori, that the integrand function within
the GNRF can be recognized as representing an infinitesimal
non-degenerate FWM contribution, as described above.

Fig. 1. Four instances of signal frequency component triads (yellow bars)
contributing to creating FWM-induced NLI at frequencyf (red bar). The two
top triads generate MCI, the third from top XCI and the bottom one SCI.

This physical interpretation, which ascribes all NLI to
FWM, brings about the question of whether the non-linear
phenomena taxonomy formerly used for DM systems, such as
SPM, XPM, and XPolM, can still be related to UT systems as
represented through the GN-model. This topic was discussed
in some depth in [36]. There, it was argued that NLI has fea-
tures quite different from those implied by the old taxonomy.
As an example, although in the GN-model it is still possible
to single out the NLI produced by one channel onto itself, it
would be somewhat misleading to call it SPM because NLI
behaves approximately as additive Gaussian noise, far from
the highly structured and deterministic pulse-distortion effect
caused by SPM.

In [36], a possible alternative taxonomy was proposed,
consisting of three categories: self-channel interference (SCI),
cross-channel interference (XCI) and multi-channel interfer-
ence (MCI). Specifically:

• SCI is the NLI perturbing a given channel, produced by
that channel onto itself

• XCI is the NLI perturbing a given channel, produced by
the non-linear interaction of that channel withoneother
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channel
• MCI is the NLI perturbing a given channel, produced by

the non-linear interaction of that channel withtwo other
channelsor by three channels other than the affected one.

Note that all these noise categories approximately manifest
themselves as additive Gaussian noise: what makes them
different is just their spectral origin, as shown in Fig. 1. There
is however, a practical distinction: typically MCI is negligible.
This circumstance can be used for instance to help in the
derivation of approximate closed-form GNRF solution (Sect.
VI). For more details on this taxonomy, see [36], Sect. VI.

C. The IGN-model

In the previous section we have shown that the GNRF
accounts for the coherent interference that occurs at the Rx
among the NLI generated in each single span. As discussed in
Sect. III-B, in the transparent and homogenous link scenario
such interference shows up as the GNRF integrand factorχ.

We introduce here an alternative model which coincides
with the GN-model over each single span but makes the further
approximation of completely neglecting coherent interference
among NLI generated in different spans. This model is called
the incoherentGN-model, or IGN-model. According to it, the
total NLI PSD at the end of the link is simply:

Ginc
NLI

(f) =
Ns∑

n=1

Gn
NLI

(f) (9)

where Gn
NLI

(f) is the NLI PSD generated in then-th span
alone, then propagated through the link all the way to the Rx.
It can be written as:

Gn
NLI

(f) = 16
27γ2

nL2
eff,n

n−1∏

k=1

e
6
∫ Ls,k

0
gk(ζ) dζ

e−6αkLs,k Γ3
k

Ns∏

k=n

e
2
∫ Ls,k

0
gk(ζ) dζ

e−2αkLs,k Γk

∞∫

−∞

∞∫

−∞
GWDM(f1)GWDM(f2)GWDM(f1 + f2 − f)

ρns
(f1, f2, f) df1df2

(10)

where the integer subscriptsn, k, indicate the span to which
a certain quantity is referred.

Eqs. (9)-(10) constitute the generalized incoherent-GNRF,
or IGNRF. Assuming a transparent and homogeneous link,
the IGNRF greatly simplifies to:

Ginc
NLI

(f) = 16
27γ2L2

effNs∙
∞∫

−∞

∞∫

−∞
GWDM(f1)GWDM(f2)GWDM(f1 + f2 − f)∙

ρ (f1, f2, f) df1df2

(11)

D. Comparison of GN vs. IGN model

The approximation leading to the IGN model appears at first
quite drastic and arbitrary. In reality, it can be justified based
on various arguments. Here, for simplicity, we address this
topic in the context of transparent and homogenous links. We

also assumeβ3=0. The results can be extended to the more
general cases.

We start out by remarking that the phased-array factorχ of
Eq. (8) can also be written in finite sum form as:

χ (f1, f2, f) = Ns+

+2
Ns−1∑

n=1
(Ns − n) ∙ cos

(
4nπ2β2Ls (f1 − f) (f2 − f)

)

(12)
When this alternative expression is inserted into the GNRF of
Eq. (2), the latter can formally be split into two contributions:

GNLI (f) = Ginc
NLI

(f) + Gcc
NLI

(f) (13)

whereGinc
NLI

is the IGNRF Eq. (11). This clearly shows that
the IGN-model is based on retaining only the first contribution
in Eq. (13). This approximation makes sense only if the
second contribution, that we callcoherence correction, can
be considered small. Its expression is:

Gcc
NLI

(f) = 32
27γ2L2

eff

Ns−1∑

n=1
(Ns − n)∙

∞∫

−∞

∞∫

−∞
GWDM(f1)GWDM(f2)GWDM(f1 + f2 − f)∙

ρ (f1, f2, f) ∙ cos
(
n ∙ 4π2β2Ls(f1 − f)(f2 − f)

)
df2 df1

(14)
The conjecture thatGcc

NLI
may be small vs.Ginc

NLI
can be

justified based on the fact that the integrand function within
Gcc

NLI
has thesame, always-positive factorsas Ginc

NLI
, but in

Gcc
NLI

they are multiplied times an oscillating cosine factor
that tends to cancel out their contributions. This qualitative
argument is compelling but of course validation is needed.

An effective way to confirm this conjecture, and hence
the validity of the IGN model, is to directly compare the
overall IGN and GN-model predictions in terms of NLI noise
accumulation vs. number of spans, as follows. The IGN and
GN models can be formally re-written as:

Ginc
NLI

(f) = G1 span
NLI

(f) ∙ Ns (15)

GNLI (f) = G1 span
NLI

(f) ∙ N1+ε
s (16)

whereG1 span
NLI

is the NLI produced in a single span:

G1 span
NLI

(f) = 16
27γ2L2

eff

∞∫

−∞

∞∫

−∞
GWDM(f1)GWDM(f2)

GWDM(f1 + f2 − f) ρ (f1, f2, f) df1df2

(17)
Eq. (16), or closely related formulas, have been suggested

based on theoretical arguments in several papers, among which
[43], [45], [36], [65]. Here, we introduce it without making any
approximation with respect to the GNRF Eq. (2), by formally
defining ε as:

ε = loge

(

1 +
Gcc

NLI
(f)

Ginc
NLI

(f)

)

∙
1

loge(Ns)
(18)

In general,ε is a function off and of all system param-
eters. Remarkably, however, the indication from the above-
mentioned theoretical papers, the direct numerical evaluation
of Eq. (18), as well as recent experimental results [62], [63]
[64], [52], [77], indicate thatε is essentially a constant vs.Ns,
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Fig. 2. NLI accumulation exponentε, vs. number of channelsNch. System
data: 32 GBaud, 50 GHz channel spacing, raised cosine spectra with roll-off
0.2, span length 100 km. Red solid line: PSCF; green dashed line: SMF; blue
dash-dotted line: NZDSF.

in typical links. In particular, it is a positive constant, much
smaller than one. For fully-populated (C-band) WDM systems,
the typical values ofε are between 0.03 and 0.08, depending
on system parameters [36]. These small values ofε indicate
that the difference between the IGN-model of Eq. (15), which
predicts purely linear NLI accumulation vs.Ns, and the GN-
model of Eq. (16), which predicts slightly super-linear NLI
accumulation vs.Ns, is quite small.

A detailed study ([36], Sect. IX) has shown thatε depends
on the total number of channels in the WDM comb. In Fig. 2,
the values ofε vs. Nch are shown, for a typical system
with 32 GBaud channels and 50 GHz spacing, raised cosine
spectra with roll-off 0.2, operated over typical SMF, PSCF and
NZDSF (with similar parameters to those of Table I). The plot
shows thatε gets smaller as the number of channels increases
and peaks for single-channel. The physical interpretation of
this trend is that theε of NLI due to SCI is rather large,
whereas theε of NLI due to XCI and MCI is virtually zero.
For single channel, only SCI is present and henceε is large.
As the number of channels goes up, the fraction of the overall
NLI due to MCI and especially XCI prevails, bringing the
overall NLI ε towards zero.

In essence, the IGN-model can be expected to practically
coincide with the GN-model for systems with a large number
of channels, that make use of a substantial part of the C-band.
In these scenarios, the IGN-model becomes very attractive
because its simpler analytical form makes it much easier to
handle and exploit than the GN-model. Caution must instead
be used for few-channel systems. For single-channel systems,
the IGN model may be rather inaccurate and should not
be used. In Sect. V, the predictions of the IGN-model will
be carefully compared vs. the GN-model and vs. simulation
results, over a wide range of system set-ups.

IV. SYSTEM PERFORMANCE ESTIMATION

So far, we have shown that the GN-model allows to estimate
the PSD of NLI at the Rx. Here we address the topic of how

to use this information to assess system performance.
Customarily, the performance of optical coherent systemsin

linearity is estimated by means of the optical signal-to-noise-
ratio (OSNR), defined as:

OSNR =
Pch

PASE
(19)

wherePch is the average power per channel andPASE is the
power of ASE noise which falls within a conventional optical
noise bandwidthBN . To find the BER, the OSNR is inserted
into a suitable formula, which depends on the transmission
format, the symbol rateRs and on the chosen value forBN .
For instance, for PM-QPSK, the BER formula is:

BERPM−QPSK =
1
2
erfc

(√
BN

2Rs
OSNR

)

(20)

Similar formulas for the other main QAM formats can be
found in [34], App. A.

Note that Eq. (20), as well as textbook formulas addressing
other formats, assume that the Rx operates by filtering the
incoming signal through abasebandtransfer functionHRx (f)
that ismatchedto the transmitted signalbasebandpulse. They
also assume that inter-symbol interference (ISI) be absent.
Otherwise, they are no longer valid, in the sense that there
is a penalty with respect to what they predict.

In modern coherent systems, the DSP adaptive equalizer
tends to makeHRx (f) converge to a matched shape, so that
this condition is typically well satisfied. In this paper, we
assume matchedHRx (f) and no ISI.

We then remark that ifBN is set equal toRs, all OSNR vs.
BER laws, such as Eq. (20), become invariant vs. the symbol
rate. In this paper we always assumeBN=Rs. In order to avoid
ambiguity, instead of OSNR, we use the acronym ‘SNR’ to
indicate:

SNR =
Pch

PASE|BN =RS

(21)

As a further justification for this definition of signal-to-
noise ratio, and for dropping the reference to ‘optical’ in
the acronym, we point out that the above SNR, under the
mentioned assumptions of a matchedHRx (f) and no ISI,
also corresponds exactly to the signal-to-noise ratio that can
be directly measured on the Rx electrical signal constellation,
at the input of the decision stage. In addition, such SNR
also coincides with the communications theory widely used
parameter ‘energy-per-symbol vs. noise spectral density’ [55],
[56], that is:

SNR = Es/N0

So far, we have addressed performance in linearity. As dis-
cussed in Sect. II-A, NLI noise is assumed to be approximately
Gaussian and additive, similar to ASE. Moreover, ASE and
NLI are assumed to be uncorrelated. Then, it can be argued
that their powers can simply be added at the denominator of
the SNR, giving rise to a non-linearity-inclusive SNR:

SNRNL =
Pch

PASE + PNLI
(22)

wherePNLI is a suitably-calculated power of NLI noise.
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While the PSD of ASE noiseGASE(f) is certainly flat, or
‘locally white’, over the bandwidth of a single channel, this is
not the case, in general, for the PSD of NLI. Therefore, while
the correct formula forPASE in Eq. (22) is simply:

PASE = GASE(fch) ∙ Rs (23)

wherefch represents the center frequency of the channel under
test, the correct formula forPNLI is:

PNLI =
Rs

BH

∫ ∞

−∞
GNLI(f + fch) |HRx (f)|2df (24)

whereBH is:

BH =
∫ ∞

−∞
|HRx (f)|2df (25)

For further details, see [34], Sect. II.A.
The need to use Eqs. (24)-(25) to findPNLI makes BER

estimation rather complex. Ideally, it requires the detailed
knowledge of both|HRx (f)|2 and of GNLI(f). If, as an
approximation, it could be assumed thatGNLI(f) was locally
white across the bandwidth spanned byHRx (f), then PNLI

could be found, similar to ASE noise, simply as:

PNLI = GNLI(fch) ∙ Rs (26)

This would require estimatingGNLI(f) at only one frequency
and it would allow to completely disregardHRx (f). We call
this the ‘locally-white noise’ (LWN) approximation.

The possible inaccuracy caused by the LWN approximation
will be investigated in Sect. IV-B. Before that, in the next sec-
tion, we discuss the impact on system performance assessment
of any generic inaccuracy incurred in the estimation ofPNLI.

A. Impact of inaccuracy inPNLI estimation

In practical cases, the estimation ofPNLI can be affected
by various errors, either for fundamental reasons (inaccuracy
of the GN-model itself) or because approximations are made
to ease its computation. These errors influence the non-linear
SNR and ultimately affect system performance assessment. It
is therefore important to investigate how sensitive the main
system performance indicators are to such errors.

As a case-study example, we concentrate on the deter-
mination of an important system parameter: the optimum
per-channel launch power, that is, the value ofPch which
maximizesSNRNL. We assume equally-spaced channels, all
with same format, symbol rate and launch power. In this case
the dependence ofPNLI on Pch is as follows:

PNLI = η P 3
ch (27)

whereη is independent ofPch. This is easily seen by observing
that the only launch-power dependent quantity in the GNRF
is the transmitted signal spectrumGWDM(f), which can be
re-written as:

GWDM(f) = gWDM(f) ∙ Pch

where gWDM(f) is assumed to be normalized so that it
is independent ofPch. By substituting GWDM(f) with
[gWDM(f) ∙ Pch] into the GNRF, a factorP 3

ch is brought into

evidence, whereas the rest of the equation yields the power-
independent coefficientη. As a result, we can write:

SNRNL =
Pch

PASE + η ∙ P 3
ch

(28)

Elementary calculus then shows that the optimum launch
power is:

P opt
ch = 3

√
PASE

2η
(29)

We now assume that we do not knowη exactly. Rather, we use
an approximationηapp which bears an error. Characterizing
such error as:

ΔηdB = 10 log10(ηapp/η)

and similarly expressing the resulting error onΔP opt
ch as:

ΔP opt
ch,dB = 10 log10(P

opt
ch (ηapp)/P opt

ch (η))

then from Eq. (29) we easily find:

ΔP opt
ch,dB = −

1
3
ΔηdB (30)

This result is important because it shows that the impact
of possible inaccuracy in the estimation of NLI is quite
substantially ‘dampened’: a 1 dB error inη results in only
1/3 dB error onP opt

ch . A similar behavior is found for the
maximum system reach (MSR). Defining the error over the
maximum reachable number of spansNmax

s as:

ΔNmax
s,dB = 10 log10(N

max
s (ηapp)/Nmax

s (η)) (31)

then it turns out:

ΔNmax
s,dB ≈ −

1
3
ΔηdB (32)

Another important system parameter that has a similarly
dampened dependence on NLI estimation errors is the maxi-
mum achievable OSNR at a constant number of spans:

ΔOSNRmax
dB ≈ −

1
3
ΔηdB (33)

See Sect. VII, and [36] Sect. XII for more details.
As a consequence, from a practical engineering viewpoint,

there is substantial tolerance in the amount of NLI estimation
error which can typically be accepted. This margin of tolerable
error is quite beneficial as it permits to safely use various
approximations which are very effective in slashing the GNRF
computational complexity. One of them is indeed the LWN
approximation introduced in Sect. IV, which is discussed
below.

B. NLI spectra and the LWN approximation

In this section we show some examples of actual NLI
spectra and then analyze in detail the LWN approximation.

We first focus on a WDM system consisting of 11 channels
operating at 32 GBaud. Their power spectrum is assumed
raised-cosine with roll-of equal to 0.3 . The frequency spacing
is 50 GHz. Spans are identical and span loss is exactly
compensated for by an EDFA following each span. The other
relevant system data are:Ns=20, Ls=100 km, SMF fiber
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with α=0.2 dB/km, β2=20.7 ps2/km, equivalent toD=16.5
ps/(nm∙km), andγ=1.3 1/(W∙km).

In Fig. 3, top, we plot the transmitted signal spectrum
GWDM(f) and the resulting NLI PSDGNLI(f). A prominent
feature of the plot is that NLI appears to be present where
the signal is present. Outside of the channel spectra,GNLI(f)
drops off quite rapidly. Expectedly, NLI peaks at the center of
the center channel, which is also the most impacted channel
of all. A zoomed-in version of the same plot, picturing just
the center channel, is reported in Fig. 3, bottom. It shows that
GNLI(f) follows closely the shape of the signal spectrum,
albeit with a somewhat enhanced roll-off. Clearly,GNLI(f) is
not flat, although it is not too far from flat over the bandwidth
of the channel.

Over the center channel,GNLI(f) tends to become increas-
ingly flat when channel spacing is reduced. In the limiting
case of Nyquist-WDM, it flattens out completely. In Fig. 4,
GNLI(f) is shown for the case of an ideal Nyquist-WDM
system, consisting of 17 channels operating at 32 GBaud,
each with perfectly rectangular spectrum, with spacing equal
to the symbol rate. As a result, the transmitted signal spectrum
GWDM(f) appears as a single wide rectangle. All other data
are identical to the previously analyzed system. The figure
shows that the PSD of NLI is indeed flat over the center
channel, which is again the most impacted.

The resulting spectral shape of NLI in the two cases above
suggests that the LWN approximation would generate no
appreciable error in the estimation ofPNLI for the center
channel in the case of Nyquist-WDM, whereas some error
would be incurred in the 50 GHz spaced system.

In the following we show the results of a study of such
error, over a wide range of channel count and channel spacing.
The system parameters were: 32 GBaud, raised-cosine PSD,
roll-off 0.02, SMF fiber, identical spans withNs=25, Ls=85
km, span loss exactly compensated for by EDFAs. The Rx
equalizer is assumed to implement a transfer function matched
to the signal and, as a result,|HRx(f)|2 has the same shape
as the signal average PSD. ThePNLI estimation error on the
center channel of the comb, due to the LWN approximation,
was characterized as:

ΔPNLI,dB = 10 log10

(
P

LWN

NLI /PNLI

)
(34)

wherePNLI is calculated as Eq. (24) andP
LWN

NLI is calculated as
Eq. (26). The results are shown in Fig. 5 vs. channel spacing
Δfch and for a number of channelsNch ranging between
1 and 25. The figure shows that the absolute maximum
value ofΔPNLI,dB is found, expectedly, for a single channel,
and amounts to about 0.53 dB. At 5 channels, it does not
exceed 0.4 dB even for 50 GHz spacing. For 25 channels it
drops below 0.35 dB forΔfch=50 GHz and below 0.25 dB
Δfch <38 GHz. Note that these errors are allbiased positive,
that isPNLI is slightly overestimated.

In conclusion, in practical WDM systems the LWN approx-
imation causes small errors inPNLI estimation, whose impact
on the main system performance indicators is almost negligible
due to the attenuation effect highlighted in Sect. IV-A. In any
case, they lead to conservative predictions, i.e., to a slight
performanceunderestimation.
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Fig. 3. Top plot: green solid line: PSD of the transmitted signalGWDM (f),
equivalent to 11 channels at 32 GBaud; blue solid line: PSD of NLI noise
GNLI (f) after 20 spans of 100 km of SMF. Bottom plot, same as top, zoomed
in on the center channel. Signal and NLI spectra arbitrarily re-scaled in each
plot for ease of comparison.
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Fig. 4. Green solid line: PSD of the transmitted signalGWDM (f), equivalent
to 17 Nyquist-WDM channels at 32 GBaud. Blue solid line: PSD of NLI noise
GNLI (f) after 20 spans of 100 km of SMF. Spectra arbitrarily re-scaled for
ease of comparison.
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Fig. 5. Plot of the NLI estimation errorΔPNLI in dB, on the center channel
of a WDM comb, due to the LWN approximation, vs. channel spacingΔfch,
for a number of channelsNch ranging from 1 to 25, after 25 spans of SMF.

V. GN AND IGN MODEL VALIDATION

The validation of the GN or IGN-model requires
benchmark-grade reliable results to compare it with. These
benchmarks can be built based on either simulations or ex-
periments. Although, ultimately, it is adherence to physical
reality what really matters, experiment-based validations are
somewhat problematic. They are typically limited in scope,
because it is hard to carry them out over a large number of
system configurations. In addition, measurement uncertainties
may be significant. Nonetheless, a few GN-model validation
experiments have been attempted, yielding good agreement be-
tween predictions and results [58]-[59]. They will be discussed
in Sect. VII. In addition, experiments not explicitly designed
for GN-model validation appear to agree well with GN-model
predictions [76], [77], too.

In this section, however, we choose to concentrate on vali-
dation based on a simulative approach, to be able to address a
wide range of system configurations. Such an approach can be
considered reliable, provided that two key conditions are met.
First, the NLSE/ME integration procedure must be trusted and
verified: we relied on an extensively tested split-step algorithm
with controlled accuracy parameters. Secondly, simulated sig-
nal transmission must occur with sufficient statistical diversity
so that Monte-Carlo averaging can produce reliable results. To
this end, we used all independent PRBSs on all channels. We
also imposed adequate PRBS length and overall simulation
length.

This section is divided into two parts: in the first part we
compare the GN and IGN-model predictions of maximum
system reach (MSR) with simulations carried out over a very
broad range of system configurations. This effort provides a
first overall assessment of the model performance.

In the second part, we investigate in depth some of the
accuracy issues that emerge from the first part. We specifically
address the GN and IGN model assumptions introduced in
Sect. II-A, trying to assess to what extent each one of them is
verified and which one of them may cause the errors observed

Fiber α [dB/km] D [ps/nm/km] γ [1/W/km]
PSCF 0.17 20.1 0.8
SMF 0.2 16.7 1.3

NZDSF 0.22 3.8 1.5

TABLE I
PARAMETERS OF THE THREE FIBER TYPES USED INSECTION V-A.

in the first part of the section.

A. Broad-range simulative validation

As test-setups we concentrated on systems based on PM-
QPSK, PM-16QAM and PM-64QAM. At the Tx, digital pre-
filtering was applied to obtain pulses with a square-root-
raised-cosine spectrum, with roll-off equal to 0.05 . Then,
four ideal DACs generated the electrical signals driving two
nested Mach-Zehnder modulators, operated in their linear
trans-characteristic range. The symbol rate (Rs) was set to
the typical industry standard value of 32 GBaud. The channel
spacingΔfch spanned the following values: 33.6, 35, 40,
45, 50 GHz. The lowest value, corresponding to 1.05∙Rs is
the minimum spacing still ensuring no inter-channel linear
crosstalk, given the chosen roll-off. The number of transmitted
WDM channels was set to 15. Data were generated using
multiple independent PRBS’s of length (216−1), four for each
PM-QPSK channel, eight for each PM-16QAM channel and
twelve for each PM-64QAM channel. PRBSs were different
from channel to channel. The simulation length was217

symbols. These lengths were tested as to their ability to ensure
sufficient Monte-Carlo diversity.

Three fiber types were employed, whose parameters are
reported in Table I. They are typical of SMFs, large-effective-
area PSCFs and NZDSFs. Overall, they cover a broad variety
of dispersions, attenuations and non-linearity coefficients. The
UT test links were homogenous and transparent, with lumped
EDFA amplification. The EDFA noise figure was 5 dB.

Channel selection was performed at the Rx by properly
tuning the local oscillator. After balanced photo-detection,
an electrical anti-alias filter of Bessel type (5 poles) with
bandwidth Rs/2 was inserted. Its output was sampled at
2 samples per symbol. Then, electronic CD compensation
was performed, followed by polarization de-multiplexing and
equalization, by means of an adaptive 2x2 equalizer, driven
by a decision-directed least-mean-square algorithm. Carrier
and phase recovery were not needed since the Tx and local-
oscillator lasers of the center channel were assumed ideal (no
phase noise). All other channels were transmitted with 5 MHz
linewidth, to obtain some phase scrambling in the comb.

This validation effort focused on comparing the maximum
system reach (MSR) found through simulations with the model
prediction. By ‘MSR’ we mean the following. We define the
system reach (SR) as the maximum number of spans that can
be achieved while BER is below a set target, given a certain
launch power. The MSR is the highest value of SR vs. launch
power, i.e., it is the SR which is obtained using theoptimum
launch power.

We assumed the systems to operate with a FEC whose BER
threshold is equal to10−2. For the sake of realism, however,
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we did not aim at the FEC BER threshold. Instead, we aimed
at a target BER which corresponds to the FEC threshold de-
rated by 2 dB of SNR, considered as a realistic system margin.
The resulting target BERs were: PM-QPSK, 1.70∙10−3; PM-
16QAM, 2.04∙10−3; PM-64QAM, 2.82∙10−3. These BERs are
different because of the different slope of the BER-vs.-SNR
curves of each format. In order to aim at a reasonable number
of spans with all formats and fibers, i.e., neither too large
nor too small, the span length was set to a different value,
depending on format: 120, 85 and 50 km, for PM-QPSK, PM-
16QAM and PM-64QAM, respectively.

A parallel set of simulations was also performed with
identical set-ups, except the transmitted signals were guaran-
teed to adhere to the signal-Gaussianity assumption through
the application of very substantial pre-dispersion (PD) before
launch into the fiber (100,000 ps/nm).

As previously mentioned, the simulations were based on
the split-step algorithm, which is known to produce various
artifacts, among which spurious FWM. We applied a logarith-
mic step law [60], to mitigate it. To constrain the minimum
step size, we imposed both a spurious FWM suppression
of 50 dB [60] and a maximum non-linear phase shift, due
to the total WDM instantaneous power integrated over a
5 ps time-window, not exceeding 0.1 radians. We chose these
numbers by verifying that further tightening of these accuracy
constraints would not change the simulation results.

The plots of the MSR for each set-up are shown in Fig. 6,
where markers are simulation results (circles for non-PD
signals and squares for PD signals) and solid lines are obtained
through numerical integration of either the GNRF Eq. (2) or
the IGNRF Eq. (11). The overall set of necessary simulations
took about 1 year of CPU time. The numerical integration of
the GNRF and IGNRF, performed using interpreted Matlab
code, took about 10 hours, overall.

The prominent feature of the plots is that the PD simulations
are very close to the GN-model predictions, within 0.25 dB
error for all formats, fibers and spacings, a value comparable
with the residual uncertainty of the simulations. These results
suggest that the accuracy of the GN-model is excellent, when
the signal-Gaussianity assumption is well verified. This in
turn strongly suggests that also the perturbation and AGN
assumptions, mentioned in Sect. II-A, must be verified to
a sufficient extent, at least at the optimum launch power
corresponding to the MSR.

When PD is removed and the systems undergo what we
call the ‘initial dispersion transient’ (IDT), during which
approximate signal Gaussianity is only gradually approached,
then a greater amount of error is found between the GN-model
and simulations. Still, the error never exceeds 0.8 dB on the
MSR across all system configurations. In addition, the GN-
model appears to have the interesting feature of being always
conservativefor non-PD signals, that is it predicts a slightly
lower MSR than the simulations show.

It is also interesting to remark that for non-PD signals
the IGN-model appears to systematically yield substantially
more accurate predictions than the GN-model, in agreement
with what had been found in a prior validation effort [34].
This result is somewhat puzzling, because the IGN-model is

a more approximate model than the GN-model. So, at least in
principle, one could expect a somewhat greater error from the
IGN than from the GN-model.

The specific features of the GN and IGN-model errors that
emerge from Fig. 6 are investigated in detail in the next
section. Already at this stage, however, it can be argued that
both the GN and IGN-model appear to effectively capture the
general features of the system impact of non-linear propaga-
tion, across a very wide range of systems and set-ups, within
rather small error brackets.

B. The perturbative and AGN assumptions

If the perturbative or the AGN assumptions failed, substan-
tial error would show up in the comparison of the GN-model
with PD-signal simulations, where the signal-Gaussianity as-
sumption is certainly very well verified. Instead, the results
of the previous section show excellent agreement in this case.
This suggests that major inaccuracy of either the perturbative
or the AGN assumptions should be ruled out.

As a further specific test of the AGN assumption, in the
shown system simulations we both measured BER through
Monte-Carlo direct error count and we also calculated it by
means of the canonical BER formulas, using as SNR the one
directly measured over the signal constellation, averaged over
all signal points. If the statistical features of NLI departed
substantially from AGN, then the analytical formulas, which
are derived based on the AGN assumption, would produce
BER results different from the Monte-Carlo ones. Instead,
the agreement between the two BER values was always very
good. This shows that,at least from the viewpoint of practical
system performance evaluation,the AGN assumption can be
considered effective. This conclusion matches the one reached
in prior simulative and experimental papers which specifically
investigated this issue [34], [61]-[63].

C. The signal-Gaussianity assumption and the IDT

The fact that the GN-model shows almost no error with PD
signals, whereas some error is present with non-PD signals,
strongly suggests that it is the signal-Gaussianity assumption
that at least partiallyfails in the latter case and needs to be
carefully investigated.

To carry out a specific study2 dealing with the of the
signal-Gaussianity assumption, we concentrated on the direct
evaluation of NLI, rather than on the estimation of system-
related performance parameters. The reason is that the latter
typically ‘masks’ or ‘dampens’ the errors on NLI estimation,
as discussed in Sect. IV-A. The same simulated test formats
and set-ups described in the previous section were used, with
a few minor differences. The Tx spectrum roll-off was set to
0.02 and only one spacing was used:Δfch=33.6 GHz, that is
1.05∙Rs. The PRBS length was boosted to (218 − 1) and the

2The following study on NLI generation and accumulation was prelimi-
narily reported on at ECOC 2013 as [66]. At the same conference, another
paper was presented on similar topics [67]. These two papers have later been
followed by [50]-[51], where the errors due to the GN-model assumptions are
also dealt with. As stated in a previous footnote, these developments are too
recent to be discussed in this paper.
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Fig. 6. Plot of maximum system reach (MSR) in number of spansNmax
s

for the test set-ups, vs. channel spacingΔfch. Top: PM-QPSK; middle: PM-
16QAM; bottom PM-64QAM. Span lengths: 120, 85 and 50 km, respectively.
Red items: NZDSF. Blue items: SMF. Green items: PSCF. Solid lines: GN-
model predictions. Dashed lines: IGN-model predictions. Circles: simulations
with pre-dispersion. Squares: simulations without pre-dispersion.

total simulation lengths was increased also to 218 symbols.
The number of simulated channels was 9. Here too, both
conventional and PD signals (200,000 ps/nm pre-dispersion)
were launched. The span length was set to 100 km for all set-
ups. Regarding the split-step parameters, the spurious FWM
suppression was set to 50 dB and the maximum non-linear
phase shift was tightened to 0.025 radians.

ASE noise was turned off so that the Rx signal disturbance
was due only to NLI. The estimation of the NLI variance was
performed on the center channel, as follows. The Rx electrical
noise variance of each signal point of the constellation was
evaluated on both quadratures and polarizations. The results
were averaged to obtain a single variance valueσ2

tot. The same
simulation was then repeated with fiber non-linearity turned
off, all other parameters identical, producing an estimate of
possible residual disturbance in linearityσ2

lin. Then, the NLI
variance was calculated as:

σ2
NLI = σ2

tot − σ2
lin (35)

Note that, ideally,σ2
lin=0, since both NLI and ASE were

turned off. However, we found thatσ2
lin was never exactly

zero, possibly reflecting some minor inter-symbol interference,
so that subtractingσ2

lin was necessary for accurateσ2
NLI

estimation. The quantityPNLI can then be found fromσ2
NLI

because they are related through a constant:

PNLI =
Rs

BH
σ2

NLI

whereBH is given by Eq. (25). For each system set-up,PNLI

was measured after each span, from 1 to 50 spans.
As pointed out in Sect. IV-A, NLI is such thatPNLI ∝ P 3

ch,
wherePch is the launch power per channel. Hence, we focused
on the quantityη = PNLI/P 3

ch , because it is theoretically
independent ofPch. All simulations were performed with a
relatively low value ofPch of -6 dBm to ease the burden of
the integration algorithm and suppress any possible error due
to the perturbation assumption.

In Fig. 7-(top), η is plotted vs. the number of spansNs

for PM-QPSK over SMF. The dashed line represents the
calculated result based on the GN-model, the dashed-dotted
line based on the IGN-model. The solid lines areη from
simulations, without PD (red curve) and with PD (blue curve).
The PD simulative results are in excellent agreement with the
GN-model. In contrast, the non-PD simulations show about
6 dB less NLI noise produced over the first span than either the
PD simulation or the GN-model predict. The difference then
decreases steadily. A similar picture emerges when considering
PM-16QAM, Fig. 7-(center), although discrepancies are less
pronounced. The first-span gap is 3.5 dB rather than 6 and, in
general, the non-PD and PD simulations run closer. Again, the
PD results are in very good agreement with the GN-model.

In Fig. 7-(bottom) we show the result for PM-QPSK over
NZDSF. Despite the lower fiber CD, which certainly slows
down the IDT, the results are not substantially different from
PM-QPSK over SMF. The gap after 1 span is smaller (4 dB
vs. 6 dB). On the other hand, convergence of non-PD to PD
is somewhat slower.
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Fig. 7. Normalized NLI noise varianceη vs. the number of spansNspan,
over the center channel of 9 WDM channels, with 100 km span length. Solid
lines: simulations, red without pre-dispersion, blue with pre-dispersion (PD).
Dashed lines: GN-model. Dash-dotted lines: IGN-model.

The NLI results of Fig. 7 shed light on the MSR results
of Fig. 6. The very good adherence of the GN-model to the
PD-signal behavior is confirmed at the fundamental level of
η. As for non-PD signals, the error seen in Fig. 6 is clearly
due to the GN-model overestimating NLI generation especially
in the first spans, when the signal statistical distribution is
farther from Gaussian. Overestimating NLI leads to always
underestimating the MSR, which is what is consistently seen
in Fig. 6. In other words, the GN-model confirms its being
always conservative.

Although the error between the GN-model prediction and
the simulatedη of conventional signals is substantial, espe-
cially in the first spans, its actual impact on system perfor-
mance prediction is limited, as shown in Fig. 6, due to the cir-
cumstances highlighted in Sect. IV-A. In fact, considering for
instance PM-QPSK over SMF at 33.6 GHz spacing in Fig. 6,
the error on the MSR, defined asΔNmax

s,dB in Eq. (31), is only
0.3 dB. The corresponding error onη from Fig. 7 is about 1
dB, which confirms the ‘dampening’ by approximately a factor
1/3 in dB, as pointed out in Sect. IV-A. This strong attenuation
of the impact of NLI estimation errors when assessing system
performance indicators will be further discussed in Sect. VII.

D. Interpreting the results

A tentative interpretation of the smaller NLI generation by
conventional signals than by PD signals, seen in Fig. 7, can
be based on the conjecture that the amount of NLI produced
somehow depends on the extent of the signal instantaneous
power variations. This hypothesis is supported by some of
the results shown for instance in [44]. Indeed, conventional
signals have smaller power variations in the first spans than
the Gaussian-distributed PD signals. Therefore, the above con-
jecture would predict that conventional signals should produce
less NLI in the first spans than the PD ones, as in fact happens.

Then, as the IDT progresses, and the conventional signals
distribution tend to gradually become closer to Gaussian, the
amount of NLI generated by conventional and PD signals
would tend to converge. As a result, the non-PDη curve would
tend towards the PD curve, and to what is predicted by the
GN-model. Such general behavior is in fact found in Fig. 7.

This tentative interpretation is qualitatively supported by
the evolution of a parameter that quantifies the single-channel
instantaneous power variations. It is:

Θ(z) = 2

〈
P 2

ch(t) − P̄ 2
ch

〉

P̄ 2
ch

wherePch(t) is the instantaneous power of the channel,P̄ch is
its average power and the symbol< ∙ > means time-average.
If the signal has no power variations, thenΘ=0. If instead the
signal field components are Gaussian-distributed, thenΘ=1.

In Fig. 8, Θ is plotted vs. the propagation distancez, for a
single PM-QPSK channel with raised-cosine PSD and roll-off
0.02, over SMF, in linearity. The solid line is from simulation.
It agrees well with the analytical formula (dashed line), valid
for small roll-off:

Θ(z) = 1 − 2 [1 − Θ(0)]
cos (μz) + (μz) ∙ sinint (μz) − 1

μ2z2

(36)
where ‘sinint’ is the sine-integral function andμ = 4πβ2R

2
s.

The figure shows thatΘ starts at the low levelΘ(0)=0.308.
This initial value depends both on format and roll-off. Then
it gradually goes up, with a trend towards saturating at 1, as
expected.

This trend appears to qualitatively agree with what is seen
in Fig. 7. However, the underlying phenomenon is certainly
more complex than described by justΘ(z). Nonetheless, this
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Fig. 8. Plot of the power-variation parameterΘ(z) for a PM-QPSK channel
with raised-cosine spectrum, roll-off 0.05, over SMF, in linearity. Solid red
line: simulation. Black dashed line: Eq. (36). A value of 1 corresponds to a
signal with Gaussian distribution.

approach could be a starting point for trying to obtain a low-
complexity (perhaps approximate) GN-model correction that
could account for the IDT.

E. IGN-model errors

The IGN-model is identical to the GN-model, except for one
additional approximation, i.e., that NLI accumulation occurs
incoherently. Therefore, the IGN-model is more ‘approximate’
than the GN-model, so that one would expect it to be less
accurate. Surprisingly, from both Fig. 6 and Fig. 7 it appears
that the IGN model is typicallycloserto the simulation results
of non-PD signals than the GN-model. In fact, its predictions
are quite precise.

Interestingly, the greater accuracy of the IGN-model appears
not to be due to a more faithful modeling of signal propagation
at a fundamental level, but to the following circumstance.
The signal-Gaussianity assumption leads to overestimating
NLI, while the incoherent accumulation approximation leads
to underestimating it. Therefore, these two approximations,
which are both present in the IGN-model, tend to cancel each
other’s error out. Paradoxically, the GN-model, which uses
only the first of the two, does not benefit from this cancellation.

Accidental as it may be, the accuracy of the IGN-model
is a useful result, since the IGN-model appears to be quite
adequate for studying a wide range of practical scenarios, as
shown for instance by Fig. 6, while it is much easier to handle
than the GN-model, both analytically and numerically.

VI. A NALYTICAL CLOSED-FORM RESULTS

In general, the GNRF cannot be solved analytically. How-
ever, useful closed-form approximate solutions can be derived,
which can be of help in carrying out preliminary perfor-
mance assessments, or be the basis for real-time, physical-
layer awareness computation for flexible wavelength-routed
networks. In this section we collect a selection of these results.
For each one of them we point out the assumptions made to
derive them and the range of validity of the results. Derivations
will not be reported here. Unless otherwise specified, they can
be found in [36].

To make the analytical derivations possible, all of the
following formulas disregard the dispersion derivativeβ3. On
the other hand, the impact ofβ3 is typically negligible [38].
It may start to be felt forβ2 < 2 depending on system
parameters. However, for very lowβ2, the issue of the IDT
becomes important as well (see Sect. V-C). For either reason,
the following formulas should not be used for very low values
of dispersion.

Apart from the above remark, when ‘accuracy’ or ‘errors’
are mentioned in this section, they are referred to how well
the closed-form formulas approximate the GNRF. They are
not referred to how well the model in general approximates
simulations or real systems, a topic that was dealt with in
Sect. V. We also remind the reader that the errors incurred
by the formulas in estimating NLI is substantially ‘attenuated’
when system performance indicators are computed, as pointed
out in Sect. IV-A.

Some of these closed-form formulas will be exploited in
Sect. VII to obtain simple system ‘design rules’.

A. Ideal Nyquist-WDM over a single span

By ‘ideal Nyquist-WDM’ we mean a system whereby each
channel has a perfectly rectangular spectrum of width equal
to Rs and the channel spacing also coincides withRs.

Over a single span, assuming transparency, with lumped
amplification at the end, an approximate solution to the GNRF,
at the frequencyf=0 conventionally corresponding to the
center of the overall Nyquist-WDM comb, is:

G1 span
NLI

(0) ≈
8
27

γ2G3
WDM

L2
eff

asinh
(

π2

2 |β2|Leff,aB
2
WDM

)

π|β2|Leff,a
(37)

where ‘asinh’ is the hyperbolic arcsin function,Leff,a=1/2α
is the asymptotic effective length andGWDM is the value of
the (flat) PSD of the signal. Note thatasinh (x) ≈ loge(2x)
whenx>3.5, with a relative error of less than 1%. Formulas
similar to Eq. (37) can be found in some of the papers dealing
with perturbative models discussed in Sect. II-B, such as [28],
[29], [31], [33], [41] and others.

To derive Eq. (37) the following approximation is necessary
within the integrand of the GNRF:

| 1 − e−2αLsej4π2β2Lsf1f2 |2≈ 1 (38)

wheref1 and f2 are the integration variables. This approxi-
mation causes negligible loss of accuracy if the span loss is
greater than about 10 dB. If so, Eq. (37) is very accurate, with
a maximum error of about 0.35 dB occurring atx ≈ 1, where
x is the overall argument of the asinh function. Note that for
an SMF-based system withLs=100 km,x = 1 corresponds
to a very small valueBWDM=20 GHz. Whenx>10 the error
is below 0.1 dB and asymptotically tends to 0.

Recently, variations to this formula were proposed in order
to reduce the error occurring at lowx values, based on
analytical arguments [57]. Heuristically, one way to bring its
maximum error below 0.1 dB forall values ofx is to replace
π2/2 in the asinh argument with the constant 4.6 . This way,
accuracy is gained at lowx, while the error grows somewhat
for high values ofx, but always stays below 0.1 dB.
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B. Non-Nyquist-WDM over a single span

We assume that the span is transparent, with lumped am-
plification at the end, and that all channels are identical. We
defineBch as the -3dB bandwidth of each channel andΔf as
the channel spacing. Then, the NLI PSD at the center of the
center channel is approximately:

G1 span
NLI

(0) ≈
γ2G3

WDM
L2

eff( 2
3 )

3

π|β2|Leff,a
∙ {

(Nch−1)/2∑

k=−(Nch−1)/2, k 6=0

[
asinh

(
π2|β2|Leff,aBch [kΔf + Bch/2]

)
−

asinh
(
π2|β2|Leff,aBch [kΔf − Bch/2]

)]
+

asinh
(

1
2π2|β2|Leff,aB2

ch

)}

(39)
As for Eq. (37), this formula too relies on the approximation

shown in Eq. (38), which starts causing non-negligible error
if span loss<10 dB. The derivation also assumes that the
channel spectra are rectangular, so some error is incurred if
channels depart significantly from that shape. Assuming large-
enough span loss and rectangular spectra, Eq. (39) stays below
0.5 dB of error across all practical parameter values, for any
number of channels. If, in addition,Rs (which coincides with
Bch for rectangular spectra) is larger than 25 GBaud, the error
is even lower, less than 0.3 dB. Going from rectangular spectra
to raised-cosine with roll-off 0.3 causes an error increase of
up to 0.3 dB, depending on system parameters.

The interesting feature of all the above errors is that they are
biased: i.e. they occur in the range 0 to the amount indicated
above. As a result, Eq. (39) always overestimates the NLI
PSD, i.e., it is conservative.

Eq. (39) can be greatly simplified ifBch >25 GHz. In
that case, through further approximations [36], the following
compact formula can be obtained:

GNLI(0) ≈ 8
27

γ2G3
WDM

L2
eff

π|β2|Leff,a
asinh

(
π2

2 |β2|Leff,aB
2
chN

2
Bch
Δf

ch

)

(40)
Eq. (40) incurs only about 0.1 dB extra error vs. Eq. (39),
provided thatBch >25 GHz.

In summary, Eqs. (39)-(40) constitute effective tools to as-
sess the non-linearity performance of typical practical modern
WDM systems, leading to sufficiently accurate estimates of
system performance parameters.

C. Multiple spans

In the case of a homogeneous and transparent link, one can
choose to use the IGN-model and then, according to Eq. (15):

Ginc
NLI

(0) = G1 span
NLI

(0) ∙ Ns

where Ginc
NLI

(0) can be calculated using either Eq. (37) or
Eqs. (39)-(40).

Otherwise, one can chose the GN-model of Eq. (16):

Ginc
NLI

(0) = G1 span
NLI

(0) ∙ N1+ε
s

and in this case the parameterε is needed, for which the
following approximate closed-form formula is available for

the ideal Nyquist-WDM case:

ε ≈
3
10

∙ loge

(

1 +
6
Ls

Leff,a

asinh
(

π2

2 |β2|Leff,aB2
WDM

)

)

(41)

This formula is quite accurate, within a few percent relative
error, provided that the argument of the asinh is greater than 10
and that span loss is greater than 10 dB. For the non-Nyquist
case, a coarser approximate formula can be written:

ε ≈
3
10

∙ loge





1 +

6
Ls

Leff,a

asinh

(
π2

2 |β2|Leff,aB2
ch[N2

ch]
Bch
Δf

)







This formula turns out to typically underestimateε by 5% to
20%. Its accuracy is therefore limited, but the main parameter
dependencies appear to be correctly captured by it. Note that
it should not be used outside of the parameter range of validity
of Eq. (40), indicated in Sect. VI-B.

D. The IGN-model-based ‘whole-system-solver’ formula

The homogenous and transparent link assumption made in
the previous section is rather unrealistic for typical terrestrial
links, where spans can be all different and whose loss may not
be exactly compensated for. In addition, channels may have
different launch powers, symbol rates and uneven spacing,
such as shown in Fig. 9. Moreover, in practical analysis/design
problems, it is typically necessary to assess the performance
of all channels of the comb, not just the center one.

It is possible to derive a closed-form ‘whole-system-solver’
formula, which can accommodate all the above diversity and
features, provided that the IGN-model incoherent accumula-
tion approximation of Eq. (9) is accepted. The formula also
makes other simplifying assumptions, such as that channels
have approximately rectangular PSD.

The final formula is written as follows:

GNLI(fch,i) = 16
27

Ns∑

ns=1
γ2

ns
L2

eff,ns
∙

ns−1∏

k=1

Γ3
ke−6αkLs,k ∙

Ns∏

k=ns

Γke−2αkLs,k ∙

Nch∑

n=1
Gch,nGch,nGch,i ∙ (2 − δn,i) ∙ ψn,i,ns

(42)

where: GNLI(fch,i) is the NLI PSD at the center frequency
fch,i of the i-th channel of the comb;Gch,i is the PSD
of the transmitted signal at the center frequency of thei-th
channel;δn,i is Kronecker’s delta, i.e., it is one ifn=i and
zero otherwise; finally,ψ is:

ψn,i,ns
≈

asinh(π2[2αns ]−1|β2,ns |[fch,n−fch,i+Bch,n/2]Bch,i)
4π(2αns )−1|β2,ns |

−

−
asinh(π2[2αns ]−1|β2,ns |[fch,n−fch,i−Bch,n/2]Bch,i)

4π(2αns )−1|β2,ns |
, n 6= i

(43)

ψi,i,ns ≈
asinh

(
π2

2 |β2,ns | [2αns ]
−1

B2
ch,i

)

2π |β2,ns | [2αns ]
−1 , n = i (44)

whereBch,i is the -3dB bandwidth of thei-th channel.
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Fig. 9. Example of a possible WDM comb with unequal channel bandwidth,
unequal channel flat-top PSD and uneven spacing.

Despite the many approximations, this formula still provides
reasonably reliable results, typically to within 1.5 dB accuracy
vs. the GNRF, provided that channel spectra are at least
approximately flat-top, such as raised-cosine. Even though a
1.5 dB error is per se a rather large number, its impact on, for
instance, the system maximum reach would only be 0.5 dB
(see Sect. IV-A), so that as a preliminary coarse estimation
tool, Eqs. (42)-(44) may be quite effective.

E. Nyquist-WDM with distributed amplification

No analytical closed-form formulas are currently available
solving the GNRF or IGNRF in the presence of distributed
Raman amplification. Partial results providing the FWM effi-
ciencyρ with Raman can be found in [35], [36].

When the signal is ideal Nyquist-WDM and amplification is
ideally distributed, that isg(z) = α, then the following rather
accurate formula can be obtained:

GNLI (0) ≈
16
27

γ2G3
WDM

Ltot

asinh
(

1
3π2|β2|LtotB

2
WDM

)

π|β2|
(45)

An even more accurate formula is shown in [36], App. I,
which, however, contains a special function. Eq. (45) is found
by replacing such special function with a suitable approxima-
tion.

Note that in this case the concept of ‘span’ loses meaning:
the fiber is homogeneous and transparent from the beginning
to the end of the link. Therefore, this formula directly provides
the NLI PSD due to the entire link, of lengthLtot, according
to the GN-model (coherent NLI accumulation). Eq. (45) is
accurate to within 0.1 dB if the argument of the asinh is>25.
For a 1,000 km link over SMF, this condition is already met
if BWDM >20 GHz.

Although physically unrealistic, the case of ideal distributed
amplification represents the theoretically best-performing am-
plification scheme and therefore provides a sort of upper-
bound to the potential performance of all possible distributed
amplification solutions. Eq. (45) will be used in Sect. VIII to
derive non-linear link throughput estimates.

VII. D ESIGN RULES FORREACH MAXIMIZATION IN

UNCOMPENSATEDLINKS

In this section we address the problem of finding simple
closed-form formulas that provide effective ‘design rules’ for
UT systems. In particular, we are interested in pointing out
the variational dependence of the MSR vs. the main system
parameters. In other words, we want to find simple expressions

showing how much MSR is lost or gained vs. any change in
the main system parameters.

We concentrate on transparent and homogenous links, with
lumped (EDFA) amplification and all identical equispaced
channels. We look at the performance of the center channel
of the comb, which was shown in Sect. IV-B to be the most
impacted by NLI. We adopt the LWN assumption, so thatPNLI

in the SNRNL can be calculated, using Eq. (26), as:

PNLI = GNLI ∙ Rs (46)

where GNLI indicatesGNLI(f) evaluated at the center fre-
quency of the center channel. We then assume incoherent
accumulation (the IGN-model) so that we have:

GNLI = G1 span
NLI ∙ Ns (47)

Combining Eqs. (46) and (47) we can write:

PNLI = P 1 span
NLI ∙ Ns (48)

having defined:

P 1 span
NLI = G1 span

NLI ∙ Rs (49)

As a resultSNRNL can be written as:

SNRNL =
Pch

(P 1 span
ASE + P 1 span

NLI )Ns

(50)

whereP 1 span
ASE

is the ASE noise due to a single amplifier, which
we approximate as:

P 1 span
ASE

= hν F (Λ − 1)Rs ≈ hν F ΛRs (51)

where the quantityΛ is the optical amplifier gain. We then
define:

η1 span = P 1 span
NLI

/P 3
ch

(52)

It can easily be shown, based on the GN/IGN-model, that
η1 span is independent of ofPch, through the same reasoning
used to prove the same property for the parameterη in
Sect. IV-A. We can then write:

SNRNL =
Pch

(P 1 span
ASE + η1 span ∙ P 3

ch)Ns

(53)

where the overall dependence onPch has been made explicit.
We are interested in the system reach. Therefore we bring

out Ns and we impose thatSNRNL be equal to the chosen
system target valueSNRT. The resulting reach is:

Ns =
Pch

(P 1 span
ASE

+ η1 span ∙ P 3
ch) ∙ SNRT

(54)

With simple calculus, the optimum launch powerP opt
ch , i.e.,

the one maximizingNs, is found to be:

P opt
ch = 3

√
P 1 span

ASE
/(2 η1 span) (55)

Substituting this value of launch power back into Eq. (54), the
MSR is finally found:

Nmax
s =

1
3SNRT

3

√
4

(P 1 span
ASE

)2 ∙ η1 span
(56)
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The NLI parameterη1 span = G1 span
NLI ∙ (Rs/P 3

ch
) can be calcu-

lated using the GNRF. However, in order to obtain closed-form
formulas, we use the GNRF approximation Eq. (40), with the
substitutionsBch ≈ Rs andGWDM ≈ Pch/Rs:

η1 span ≈ 8
27

γ2L2
eff

π|β2|R2
sLeff,a

asinh

(
π2

2 |β2|Leff,aR
2
sN

2 Rs
Δfch

ch

)

(57)
Eqs. (51), (56)-(57), already provide a closed-form equation

set to estimate the MSR. However, individual parameter de-
pendencies are still rather involved. Further manipulations are
needed to bring out such dependencies.

One hurdle towards this goal is the presence of the asinh
function in Eq. (57). On the other hand,asinh (x)≈ loge(2x)
so it could be claimed that the variations of the asinh factor
vs. its argument are typically very weak. Using this and
other arguments, we finally obtain a drastic approximation to
Eq. (57), which reads:

η1 span ≈ C Rs

Δfch

αdBγ2L2
eff

|D|R2
s

(58)

whereC is a constant. Some of the parameters were replaced
by those typically used in the industry. Specifically,αdB, fiber
power loss in [dB/km], andD, fiber dispersion in [ps/(nm
km)], replacedα andβ2, respectively.

The validation of this expression is dealt with in the next
section. For now, we assume that it is accurate enough for our
purposes.

Placing Eq. (58) into Eqs. (55)-(56), it is then possible
to derive simple variational laws forNmax

s and P opt
ch,dB as a

function of the main system parameters. Using convenient dB
units, they are:

ΔP opt
ch,dB = 10 log10

(
P opt

ch

P opt
ch,ref

)

=

1
3 (ΔαdB + δAs,dB) + 1

3 (ΔDdB − 2ΔγdB)+

+ 1
3δFdB + 1

3 (ΔKs,dB + 3ΔRs,dB)

(59)

ΔNmax
s,dB = 10 log10

(
Nmax

s

Nmax
s,ref

)
=

1
3 (ΔαdB − 2δAs,dB) + 1

3 (ΔDdB − 2ΔγdB)+

− 1
3 (3δSNRT,dB + 2δFdB) + 1

3ΔKs,dB

(60)

where the parameter variations with respect to a reference
scenario (subscript ‘ref’) are:

• ΔαdB = 10 ∙ log10

(
αdB

αdB,ref

)
;

• δAs,dB = As,dB − As,dB,ref ;

• ΔDdB = 10 ∙ log10

(
D

Dref

)
;

• ΔγdB = 10 ∙ log10

(
γ

γref

)
;

• δSNRT,dB = SNRT,dB − SNRT,dB,ref ;
• δFdB = FdB − FdB,ref ;

• ΔRs,dB = 10 ∙ log10

(
Rs

Rs,ref

)
;

• ΔKs,dB = 10 ∙ log10

(
Ks

Ks,ref

)
.

We used two new parameters, namely:Ks = Δfch/Rs and
As. The former is the channel spacing relative to the symbol
rate. The latter accounts for total span loss, due to both fiber
and other components. Note that the each amplifier in the link,

SYSTEM Rs [GBaud] FIBER MSR
Ks=Δfch/Rs Nmax

s

reference
Rs= 32

simulation
Ks=1.05

SMF 15
200G PM-16QAM

exper. Eq. (60)
[58] Rs= 30 NZDSF 8 7

100G PM-QPSK Ks=1.1 SMF 20 20
PSCF 32 31

exper. Eq. (60)
NZDSF 12 11

[59] Rs= 15.625 SMF 38 39
100G PM-16QAM Ks= 1.024 PSCF80 44 45

PSCF110 58 57
PSCF130 62 63
PSCF150 70 70

TABLE II
COMPARISON BETWEENMAXIMUM SYSTEM REACH FROM EXPERIMENTS

AND AS PREDICTED BY EQ. (60)

due to the transparency assumption, exactly delivers a gain
such thatΛ = As.

Note also that the value of the constantC in Eq. (58)
appears nowhere in either Eqs. (59) or (60). This is because,
when variations are addressed, it cancels out. This is a very
favorable aspect, as it means that the variational dependencies
established by Eqs. (59) and (60) are in fact formallyinde-
pendentof the starting reference system scenario.

From Eqs. (59) and (60), the following two general proper-
ties can then be derived:

• P opt
ch does not depend onSNRT: this means that the op-

timum launch power is independent of either modulation
format, FEC gain, or even transponder penalties;

• the MSR is independent of the symbol rate, given the tar-
get performanceSNRT and the relative channel spacing
Ks.

Eqs. (59)-(60) provide a dB-by-dB dependence ofP opt
ch and

MSR on all the listed parameters. It is interesting to see, for
instance, that a 3-dB increase in amplifier noise figure causes
a 1 dB increase inP opt

ch , while at the same time the MSR goes
down by 2 dB. The role of dispersion, not quite recognized
until recently, is also clearly visible, in the sense that a larger
D improves the MSR, albeit with a 1/3 attenuation factor,
dB-over-dB.

A. Comparison with experiments

A possible method for the validation of Eqs. (59) and (60),
and indirectly of Eq. (58), consists in establishing a reference
system scenario and then apply changes to it. If the effects of
the changes are correctly predicted, then this indicates that the
variational laws are reliable.

We chose to do this by first establishing a reference scenario
through simulations. Then we computed the variations to
match the system parameters of the experiments [58]-[59].
We then predicted MSRs by adding the MSR of the reference
scenario to the MSR variation given by Eq. (60). Finally, we
compared the predicted MSR with those actually found in the
experiments.
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The reference scenario was as follows: UT, 9 channels,
200G PM-16QAM transmission,Rs,ref = 32 GBaud,
Ks,ref= 1.05, SMF with Lspan,ref= 80 km,
αdB,ref= 0.22 dB/km,As,dB,ref = 17.6 dB,Dref = 16.7 ps/(nm
km), γref= 1.3 1/W/km, FdB,ref = 5 dB. The target BER
was 10−3 corresponding toSNRT,dB,ref= 16.85 dB. The
simulation resulted inNmax

s,ref= 15.
Then, we estimated the maximum reach of each experiment

as:

Nmax
s = Nmax

s,ref ∙ 10
ΔNmax

s,dB

10 (61)

whereΔNmax
s,dB was calculated using Eq. (60).

The first considered experiment [58] was a 10-channel
NyWDM 100G PM-QPSK setup (Rs= 30 GBaud,Ks= 1.1)
comparing max reach of 3 fibers at BER= 10−3

(SNRT,dB = 12.7 dB). The second one [59] was a 22-channel
NyWDM 100G PM-16QAM setup (Rs = 15.625 GBaud,
Ks = 1.024) that investigated the max reach over 7 different
fiber types at BER= 10−2 (SNRT,dB = 17.3 dB). Regarding
the second experiment, we did not consider the results of
propagation over DCF used as transmission fiber, as this
scenario is clearly outside of the scope of practical systems.
For the other six fibers, besides the parameters listed in [59],
we included the following measured insertion extra losses:
2 dB (NZDSF), 0 dB (SSMF), 0.3 dB (PSCF80), 0.4 dB
(PSCF110), 0.6 dB (PSCF130 and PSCF150) which were not
explicitly reported in [59].

As it can be observed in Tab. II, the prediction accuracy
with respect to the experimental results is always within 1
span. It confirms the reliability of the proposed formulas,
even when applied to different modulation formats and rates,
for a wide range of fiber types. Certainly, more validation is
necessary, but these preliminary results indicate that, despite
the drastic approximations used, the found ‘design rules’ do
provide useful coarse variational information.

VIII. A SSESSINGOPTICAL SYSTEM THROUGHPUT USING

THE GN-MODEL

An important research topic in the field of optical commu-
nications is that of the determination of the ‘capacity’ of the
optical channel. A problem that is immediately encountered
when dealing with this topic is one of definitions and assump-
tions3. Rather than discussing here the complex aspects of how
to suitably define capacity for the optical channel and how to
properly estimate it, we refer the reader to [69] (esp. Sect.
III and XII), where these aspects were quite extensively dealt
with.

Our goal here is however different from capacity estimation,
although related to it. Rather than estimating capacity, which
is the ‘ultimate’ throughput which can be achieved under
certain optimal conditions [69], we are interested in theactual
throughput of current optical systems, under practical and
realistic conditions.

3Depending on them, rather different capacity results can be arrived at. For
instance, in [69] capacity curves always present a well-defined maximum vs.
launch power, whereas in [70] it is argued that capacity may be non-decreasing
vs. increasing launch power.

As a result, differently from [69], we will refrain from
assuming that the system makes use of NLI compensation
by means of single-channel backward-propagation (BP), a
technique which, though certainly effective, is still regarded
as beyond the computational power of current DSPs. Only in
one case we will assume single-channel NLI compensation
(namely, for a Gaussian constellation at the Nyquist limit) to
show that our results match those of [69].

In all other cases, we investigate practical Tx formats
without BP and show some realistic OCT results and trade-offs
which are directly relevant to modern high-capacity long-haul
systems.

Most important, our throughput estimates will be based on
the use the GN-model to assess the impact of NLI. Besides
showing specific results, we are outlining a procedure for
obtaining throughput results, that the readers can easily adapt
to their systems of interest.

A. Approach

As pointed out in [69], alower-boundto the capacity of
an optical channel can be obtained by estimating the mutual
information I(X,Y ) between the Tx-side input alphabetX
and the Rx-side output alphabetY , assuming amemoryless
model for the channel. The reasons and proof why this is a
lower bound can be found in [69], Sect. III-F.

All the results shown in [69] were based on a memoryless
model for the channel. To make them reasonably accurate, in
[69] single-channel backward propagation (BP) was applied to
the channel under test. This roughly amounts to eliminating
the channel memory due to linear effects and to single-channel
NLI. However, all of the disturbance due to XCI and MCI
retains its memory, making the results of [69] ‘lower bound
estimates of the actual capacity’, as explicitly stated in Sect.
III-F there.

On the other hand, the same results, while being capacity
lower-bounds, provide theactual throughput of a channel
which operates according to the stated assumption. In other
words, they provide the actual optical channel throughput
(OCT) of systems using single-channel BP.

If instead of BP, only linear-effect compensation is assumed
for the channel under test, then the memoryless estimate of
I(X,Y ) provides again a lower bound to the channel capacity,
according to the proof shown in Sect. III-F of [69]. This bound
is of course looser than the one found assuming single-channel
BP. However, it provides theactual throughput of a channel
which operates according to just linear effect compensation.

This latter circumstance is important because it shows
that a study directed towards assessing the actual OCT of
linear-compensation-only systems can in fact be based on a
memoryless estimate ofI(X,Y ). This is indeed the actual goal
of this section. The fact that such estimate also constitutes a
(loose) lower bound to capacity is, in the context of this study,
incidental, and not the essential goal.

In the following, we will make the LWN approximation
for NLI. As discussed in Sect. IV-B, this approximation does
cause some error, although its impact on the center channel
of a comb is negligible if full spectral loading (C band) is
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assumed together with tight channel spacing. We will also
assume that all channels have the same NLI as the center
channel. This is well verified over about half of the comb,
whereas the outer edge channels in the WDM comb experience
somewhat less NLI (see Sect. IV-B). In principle, it would be
possible to address this aspect too by, for instance, finding the
optimum non-uniform per-channel launch power in the comb.
However, we decided to neglect this aspect, while pointing out
that this leads to slightly under-estimating OCT.

The combination of the memoryless and LWN assumptions
make the channel that we consider coincide with the well-
known memoryless AWGN channel. To find its throughput we
can then use the analytical AWGN capacity formulas, written
as a function of a suitable SNR. In our case such SNR is
related toSNRNL of Eq. (22) and we will use the GN-model
results to estimate it. In particular, the values ofPNLI can
be obtained either using analytical formulas, when available,
or by numerically integrating the general expression ofGNLI,
reported in Eq. (1).

In a few special cases, the resulting OCT has a closed-
form expression. One example is shown in Sect. VIII-B, for
an optical channel with continuous input and output alphabets
and ideal distributed amplification. Note that we address this
highly idealized case only to perform a direct comparison with
the corresponding results found in [69] and thus validate the
overall approach.

Sect. VIII-C reports on the results of the OCT evaluation in
a more realistic case of a discrete-input channel using standard
PM constellations (ranging from PM-QPSK to PM-64QAM),
in different system scenarios employing either EDFA or hybrid
Raman/EDFA amplification.

B. Continuous-input, continuous-output optical channels with
ideal distributed amplification

Keeping in mind the assumptions of Sect. VIII-A, resort-
ing to Shannon’s formula [68] for the unconstrained addi-
tive white-Gaussian-noise (AWGN) channel capacityC =
log2(1 + SNR) [bit/s/Hz], it is possible to derive a similar
formula for the single-polarization (SP) and the polarization-
multiplexed (PM) memoryless channel OCT:

OCT = p
Rs

Δfch
log2

(

1 +
2
p
SNRNL

)

[bit/symbol] (62)

where p=1 for a single-polarization signal andp=2 for a
polarization-multiplexed signal. This formula assumes that the
input constellation has an ideal Gaussian distribution.

In the case of distributed amplification (DA), the ASE noise
power (sum over both polarizations) can be expressed as:

PASE,DA = 4αLtothνKT Rs (63)

whereh is Planck’s constant,ν is the center frequency of the
WDM comb andKT ≥ 1 is a constant which is approximately
equal to 1.13 for realistic Raman amplification [69].

Assuming to work at the Nyquist limit, i.e. the channels of
the WDM comb have a rectangular spectrum, with bandwidth
and frequency spacing equal to the symbol rate, using Eq. (37)
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Fig. 10. Optical channel throughput (OCT) versus signal-to-noise ratio due
to ASE only, for 500 km (red), 1000 km (blue), 2000 km (green), 4000 km
(purple), and 8000 (cyan). The black dashed line is the AWGN Shannon limit.
(a) Without NL compensation. (b) With single-channel NL compensation.

PNLI can be written analytically as:

PNLI ≈ Kpγ
2LtotP

3
ch

asinh
(

1
3π2 |β2|LtotB

2
WDM

)

π |β2|R3
s

Rs (64)

whereKp = 2 for single polarization andKp = 16/27 for
polarization multiplexing.

It is thus possible to write the OCT of optical WDM systems
working at the Nyquist limit and using ideal distributed
amplification in a closed-form, as shown in Eq.(65).

As an example, in Fig. 10(a), we use Eq. (65) to plot
the OCT vs. the SNR due to ASE noise only (SNRASE =
Pch/PASE) in a single-polarization optical link with ideal dis-
tributed amplification, for different link lengths. The number
of WDM channels is equal to 5, with symbol rateRs =
100 GBaud, and the fiber is standard single-mode (SMF) with
same parameters as in [69]:γ = 1.27 1/W/km, α = 0.22
dB/km, β2 = −21.7 ps2/km. The reason for choosing these
specific system parameters is that they are the ones used in
[69] (see Sect. XII, Tables I-III) and we would like to compare
our results with those found there. For the same reason, the
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OCTDA = p
Rs

Δfch
log2





1 +

2
p

Pch(

4αLtothνKT + Kpγ2LtotP 3
ch

asinh( 1
3 π2|β2|LtotB2

WDM)
π|β2|R3

s

)

Rs





 (65)

distributed amplification noise parameterKT is set here to 1,
rather than 1.13.

Fig. 10(a) appears to be similar to Fig. 35 in [69]. Our
values are slightly less than those in [69], due to the fact that
[69] used (single-channel) BP non-linear compensation (NLC)
in the receiver simulation.

In order to make our results fully comparable to those in
[69], we analytically took single-channel NLC into account by
evaluating the amount of NLI generated by the single-channel
alone (PNLI,1ch = PNLI|Nch=1), and subtracting that value
from PNLI:

PNLI,res = PNLI − PNLI,1ch (66)

wherePNLI,res is the residual value of NLI which impacts the
system after NLC. Further details on NLC can be found in
Sect. IX.

The obtained results are reported in Fig. 10(b), which shows
a good agreement with Fig. 35 in [69]. The slightly better
performance observed in Fig. 10(b) is likely due to the fact that
our analysis assumes an ideal Gaussian constellation, while
the simulations in [69] were performed using the ring con-
stellation approximation. The good correspondence between
our analytical calculations and the simulative results of [69]
indicates that our GN-model based approach returns rather
reliable OCT results.

C. Discrete-input, continuous-output optical channels

The derivation of the OCT formula in Sect. VIII-B is based
on the hypothesis of an ideal continuous input alphabet with
Gaussian distribution. However, real systems are based on
the use of a discrete input alphabet, usually composed of
multi-level QAM constellations. In this section, we will assess
the OCT of a polarization-multiplexed uncompensated optical
system with coherent detection, using PM-QAM modulation
formats with cardinality equal to 4, 8, 16, 32 and 64. We
assume a continuous-output alphabet, which corresponds to
using soft-decision forward-error correction (FEC) schemes.
The DSP is assumed to compensate for linear effects only.

In order to obtain throughput estimates we can then adapt
to our case the standard formulas of capacity over AWGN
[56], [68]. Assuming that all symbols have the same a priori
probability, the OCT can be evaluated as:

OCT = 2
Rs

Δf

1
M

∑

a∈X

∫
pY |X (y|a) log2

pY |X (y|a)

pY (y)
(67)

where M is the number of constellation points,X =
{x1, . . . , xM} is the set of possible transmitted symbols,
y = yr + j yi is the soft value at the output of the channel,
pY |X (y|a) is the probability density function of the random
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Fig. 11. Optical channel throughput (OCT) versus transmitted power per
channel Pch (called PTxin figure) over 20 spans of SMF (Ls=85 km),
assuming different modulation formats and DSP compensation of linear effects
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variable y, pY (y), conditioned to the transmission of the
symbola = ar + j ai.

Assuming transmission over a memoryless AWGN channel
and using standard probability theory results [56], it is possible
to evaluate analytically all probabilities in Eq. (67) in terms
of SNR at the receiver:

pY |X (y|a) = 1
πσ2

N

exp{− (yr−ar)2+(yi−ai)
2

σ2
N

}

pY (y) = 1
M

∑
a pY |X (y|a)

(68)

whereσ2
N is the noise variance at the Rx decision stage, which

is inversely proportional to the SNR value:

SNR =
Ps

σ2
N

(69)

with Ps average power per symbol of the Rx constellation.
Equivalently, the OCT can also be evaluated as:

OCT = 2
Rs

Δf

(
H(Y ) − ln

(
πeσ2

N

))
(70)

with:

H(Y ) = −
∫

pY (y) log2 (pY (y)) (71)

As an example, in Fig. 11 the values of OCT obtained for
PM-QPSK, PM-8QAM, PM-16QAM, PM-32QAM and PM-
64QAM with soft decision and EDFA amplification are shown
over 20 spans of SMF fiber (Lspan=85 km). We assumed
C-band transmission (BWDM=5 THz) at the Nyquist limit.
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TABLE III
RAW (PRE-FEC) BERVALUES CORRESPONDING TO THE MAXIMUM

OPTICAL CHANNEL THROUGHPUT POINTS SHOWN AS DIAMOND MARKERS

IN FIG. 11

PM-QPSK 6.6 ∙ 10−8

PM-8QAM 3.7 ∙ 10−4

PM-16QAM 6.9 ∙ 10−3

PM-32QAM 3.2 ∙ 10−2

PM-64QAM 7.3 ∙ 10−2

Note that at the Nyquist limit OCT coincides with the system
‘spectral efficiency’ (SE), in bit/(s∙Hz). This circumstance was
also pointed out in [69], where Nyquist-limit plots were quoted
as ‘spectral efficiency’ ([69], Figs. 32-38).

The plateau of 4 bit/symbol and 6 bit/symbol reached by
PM-QPSK and PM-8QAM, respectively, means that, at this
link length, the OCT is limited by the cardinality of the
constellation rather than by signal degradation. This means
that the “asymptotic effect”, caused by the finite number of
constellation symbols, occurs largely before the limitation
due to non linear effects. PM-16QAM almost reaches its
8 bit/symbol theoretical maximum, while both PM-32QAM
and PM-64QAM are significantly limited and fall well short of
their ideal 10 and 12 bit/s/Hz. The PM-Gaussian constellation
is theoretically optimum and therefore it outperforms all other
formats. For all formats, the optimum launch power per
channel, i.e. the value ofPch maximizing the OCT, is equal
to -2.65 dBm.

Note that the OCT maximum is reached at very different
BER values among formats. It is in fact their high pre-
FEC BER values that make PM-32/64QAM OCT substantially
lower than ideal. The values of pre-FEC BER corresponding
to the maximum OCT points (diamond markers in Fig. 11) are
shown in Table III. Note also that the ratio between the lost
OCT and the maximum OCT of a certain format corresponds
to the minimum required ideal FEC overhead necessary to
obtain an arbitrarily low BER [56]. Practical FECs of course
need higher overheads, although state-of-the-art FECs come
rather close to the minimum required overhead: for state-of-
the-art soft FEC codes the estimated coding gain penalty vs.
the ideal maximum gain is around 1.5 dB.

D. OCT vs. distance analysis

Thanks to the OCT formulas derived with the GN-model,
we can analyze the relationship between OCT and total
link length for realistic formats and in arbitrary transmission
scenarios. In this section, we exemplify this possibility by
analyzing PM-QAM formats in three different link scenarios:

• Link 1 : Terrestrial link over SMF with EDFA-only
amplification (F=5 dB) and 85-km span length;

• Link 2 : Terrestrial link over SMF with hybrid
EDFA/Raman amplification (equivalentF=0 dB) and
120-km span length;

• Link 3 : Submarine link over PSCF with EDFA-only
amplification (F=5 dB) and 50-km span length.

The parameters of the fibers are shown in Table I. The WDM
signal is assumed to occupy the entire C-band (BWDM=5 THz)

at the Nyquist limit (i.e. withΔfch = Rs). In order to
analyze a realistic scenario, we assumed to operate with a
conservative 3-dB margin with respect to the ideal BER-vs.-
SNR performance and with a realistic soft FEC 1.5-dB penalty
with respect to ideal soft-FEC performance.

The dependence of the OCT on total link length is plotted
in Fig. 12 for PM-QAM modulation formats with cardinality
ranging from 4 to 64. The curves obtained with an ideal
Gaussian constellation are also shown. The results of Figs. 12
clearly highlight the trade-off between distance and OCT, in
relation to the different modulation formats: increasing the
cardinality of the constellation, a higher OCT can be achieved,
but typically over a shorter transmission distance and/or at
a higher required FEC overhead. Note that the performance
achievable over Link 1 and Link 2 is very similar, due to the
fact that the noise figure reduction due to Raman amplification
(from 5 to 0 dB) almost completely compensates the higher
loss due to longer span length (' 6 dB).

State-of-the-art soft FEC with 20% overhead can now
operate at pre-FEC BER of 2.7∙10−2 [71]: so, for all mod-
ulation formats, the points corresponding to BER=2.7∙10−2

are marked in the figures. The section of the OCT lines to the
left of the dots is therefore the ‘practicable’ section, whereas
moving to the right will be possible only if better FECs
become available.

Considering the currently possible systems, in a terrestrial
link with EDFA only amplification (Link 1), PM-QPSK is the
best choice for ultra-long-haul transmissions beyond 5,000 km,
while PM-8QAM can be used to achieve an OCT around
5-5.5 bit/symbol (or SE in bit/(s∙Hz)) in 3,000 km links.
PM-16QAM allows to reach 2,000 km with an OCT' 6.5
bit/symbol. The reach of higher-order modulation formats,
like PM-32QAM pr PM-64-QAM, is very limited in this
kind of systems, but can be significantly increased by using
new generation fibers and shorter span length, like in the
analyzed submarine-like system (Link 3), where they reach
2,400 km and 1,800 km, respectively. The plot also shows that
PM-16QAM could reach ultra-long-haul distances (beyond
6,000 km with 20% hard-FEC overhead) over submarine-
like links. Note that this reach can be further increased by
using better-performing fibers, higher-performance FEC and
NL compensation techniques at the Rx, as done in [76], where
10,000 km could be achieved at a SE of 6 bit/(s∙Hz).

IX. COMBATING NON-LINEARITY

In this section we present another significant example of the
application of the GN-model, in which the GN-model provides
clear answers, with high potential impact.

In coherent systems, linear transmission impairments can
be almost totally compensated for using DSP, with reasonable
computational complexity [72]. Recently, substantial efforts
have been aimed at investigating the possibility of using
DSP to mitigate non-linear effects too. Several non-linear
compensation (NLC) algorithms have been proposed, among
which: digital back-propagation (DBP) [73]-[75], Volterra
series techniques [78] and MLSE-based techniques [79].

All of these algorithms appear to have one major fundamen-
tal limitation. They can only mitigate the NLI that is strictly
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Fig. 12. Optical channel throughput (OCT) versus total link length in
three different transmission scenarios described in the text.BWDM=5 THz,
Δfch = Rs. Assumptions: 3-dB SNR penalty from quantum limit and 1.5-dB
penalty of soft FEC with respect to infinite-length codes ideal performance.
Dots correspond to a pre-FEC BER=2.7 ∙ 10−2.

Fig. 13. WDM comb:BWDM = Nch ∙Δfch is the total occupied bandwidth,
while BNLC is the bandwidth over which non-linear compensation is applied.

generated within the spectral window that the algorithm has
access to. Specifically, if the algorithm operates within the
DSP of a single Rx, whose bandwidth encompasses a single
channel, then only the NLI produced by the channel onto itself
(namely, SCI) can be mitigated. No effect can be expected on
XCI and MCI, that is on NLI produced cooperatively with the
other WDM channels. This circumstance was experimentally
recognized early on [74] and has been confirmed by later
investigation.

Ideally, this problem can be dealt with by providing the
DSP with more spectral visibility, or ‘optical compensation
bandwidth’BNLC. This can be done by either increasing the
bandwidth of each single Rx or by exchanging the soft samples
of the received signal among some or all the WDM Rx’s. Un-
fortunately, non-linearity mitigation techniques are extremely
computationally intensive, already at the single-channel level.
Extending the bandwidth they operate on, strongly exacerbates
this problem. So, a careful cost/benefit assessment is needed.
Such cost/benefit analysis can be carried out using the GN-
model, as is shown in the following.

A. Limits of DSP Non-Linearity Compensation

We assume that the NLC algorithm has the knowledge of
the signal over an optical compensation bandwidthBNLC (see
Fig. 13). In order to derive anupper boundto the possible
performance gain, we make the ideal assumption that the NLC
algorithm is able tocompletelycancel out the NLI generated
by all WDM signal components inside the bandwidthBNLC.

We investigated a set of systems with the following param-
eters:

• transparent and homogenous link with identical equi-
spaced channels

• symbol rateRs: 32 GBaud
• frequency spacingΔfch: 32, 40 and 50 GHz
• large effective area PSCF (see Table I) withLs= 85 km.
Note that the transmission format is not indicated because

results are independent of it. Transmission spectra are assumed
to be perfectly rectangular. In any case, the roll-off parameter
has very little impact on the results. We assume that the total
bandwidthBWDM occupied by the WDM comb is the whole
C-band (5 THz) and that theBNLC ranges from a minimum
value equal toRs (corresponding to a single-channel) to a
maximum ofBWDM.

We analytically took NLC into account by evaluating the
amount of NLI generated within the compensation bandwidth



121

BNLC, that we callPNLI,BNLC , and then subtracting that value
from the totalPNLI. The residual value of NLI impacting the
system is then:

PNLI,res = PNLI − PNLI,BNLC (72)

All calculations were performed assuming coherent NLI ac-
cumulation, i.e., using the GNRF of Eq. (2).

The results on the effectiveness of NLC are shown in Fig. 14
in terms ofΔPNLI,dB, defined as the ratio in dB between the
total NLI generated during propagation and the residual NLI
after compensation:

ΔPNLI,dB = 10 log10

(
PNLI

PNLI,res

)

(73)

This ratio is power-independent and therefore the launch
power is not a relevant system parameter in the calculations.
PNLI,dB can be considered as the ‘NLC gain’, in dB, that can
be obtained, for each given value ofBNLC.

Fig. 14 shows that the NLC gain increases with the number
of spans: as an example, single-channel NLC at 32-GHz
channel spacing achieves 0.8 dB NLC gain after a single
span but 2.2 dB after 40 spans. This is due to the greater
coherency in the accumulation of SCI than XCI or MCI.
Further increasing the number of spans (not shown) does not
however result in anymore significant increase in NLC gain.

For low values ofBNLC, the NLC gain is higher when
the channel spacing is larger, since the relative strength of
SCI increases as the spacing goes up. However, whenBNLC

increases, the NLC gain tends to become the same at all
considered values ofΔfch. Finally, whenBNLC = BWDM,
full ‘visibility’ of the optical spectrum is achieved by the NLC
algorithm and, ideally, all nonlinearity is compensated for. As
a result, the NLC gain ideally goes to infinity.

Not shown for brevity, we redid the analytical evaluation of
NLC gain for the same system, with the same span length, but
over SMF and NZDSF. The results are qualitatively similar to
those for the PSCF. Quantitatively, they are somewhat worse,
because an even higherBNLC is needed to obtain the same
NLC gain. The reason is that NLC gain decreases slightly
as either dispersion decreases or loss increases, which makes
SMF and NZDSF less favorable fibers for NLC than PSCF.

B. Maximum reach gain due to NLC

The NLC gain of Fig. 14 does not directly translate into an
MSR gain. Similarly to what was shown in Sect. IV-A, it can
be predicted that:

ΔNmax
s,dB ≈

1
3
ΔPNLI,dB (74)

whereΔNmax
s,dB is the ratio, in dB, of the MSR with and without

NLC. According to Eq. (74), a 3-dB compensation of NLI
would only translate into about a 1-dB gain in MSR (26%).

Since this is a key aspect, we decided to analyze the MSR
without resorting to approximate formulas such as Eq. (74).
We performed a full system MSR evaluation, assuming PM-
16QAM, PSCF withLs=85 km,Δfch=32, 40, 50 GHz, target
BER=2 ∙ 10−3, BWDM= 5 THz, EDFA noise figure 5 dB. The

Fig. 14. Relative reduction of NLI, defined asΔPNLI,dB in Eq. (73), as a
function of the non-linear optical compensation bandwidthBNLC.

detailed MSR gain results are shown in Fig. 15, in terms of
ΔNmax

s,dB.
Overall, Fig. 15, appears to confirm the approximate pre-

diction of Eq. (74). From a practical viewpoint, the obtained
results indicate that achieving substantial performance gains
is dauntingly difficult. Even assuming a Rx with a very
large electrical bandwidth of 100 GHz, corresponding to
BNLC=200 GHz, the amount of MSR gain achievable in the
analyzed scenarios reaches only 1.1 to 1.3 dB, depending on
channel spacing. Conversely, if we set as goal that of achieving
a doubling of the MSR (3 dB), then Fig. 15 shows that a
minimum of 2 THz of optical compensation bandwidth should
be taken into account by the NLC algorithm in order to obtain
such gain. This would require combining the soft samples
from multiple Rx’s but, even so, DSP complexity and power
consumption would currently prove absolutely prohibitive.

To validate these analytical predictions, we ran a computer
simulation of a specific scenario. We chose the case that, at
the present state of technology, appears as the most realisti-
cally implementable. Specifically, we assumed single-Rx NLC,
with BNLC coinciding with a single-channel bandwidth. We
simulated PM-16QAM with raised-cosine spectrum and roll-
off 0.05. The channel spacing wasΔfch=33.6 GHz. The Rx
had an electrical matched filter prior to A/D conversion, to
ensure that the value ofBNLC was exactly 32 GHz. DBP
was applied, with 10 steps per span. In Fig. Fig. 16 we plot
ΔNmax

s,dB, vs. the number of channels in the system. The solid
curve is analytical, whereas markers are simulations.

Theory and simulations agree very well, confirming the reli-
ability of the GN-model in dealing with the NLC problem. On
the specific topic of NLC performance, the model predictions,
as well as the simulation results, are quite unfavorable, in the
sense that gains are modest vs. the required optical bandwidth
and resulting overall complexity. The GN-model provides a
clear indication of why this is the case.

The outcome of our analytical investigation is in good
general agreement with the simulative and experimental results
reported in [73]-[77]. Note that actual implementations with
limited complexity, like DBP with reduced number of steps
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Fig. 15. Increase in maximum system reach (MSR)ΔNmax
s,dB, due to NLC,

as a function of the NLC bandwidthBNLC.

Fig. 16. Increase in maximum system reach (MSR) due to NLC, as a function
of the number of channelsNch in the system. The optical visibility band
BNLC coincides with a single channel. Solid curve: GN-model predictions.
Markers: simulations results obtained using the DBP algorithm at 10 steps
per span.

per span, in general show a reduced effectiveness, thus the
results shown here have to be considered as anupper bound
to the effectiveness of NLC. Moreover, our analysis neglected
the effects of polarization-mode dispersion (PMD), which is
not avoidable in practical fiber transmission and is known
to reduce the effectiveness of non-linearity compensation
algorithms [80], [81].

X. THE LOGON STRATEGY FOR FLEXIBLE NETWORKS

Although the GN-model is a strictly physical-layer oriented
model, the implications of its availability may reach beyond
the physical layer itself. In this section, we present an example
of its potential impact on the overall network control and
management.

In next-generation ‘flexible’ optical networks (NGFNs),
based on coherent system, individual inter-node links will be
populated with a variable number of channels with variable
characteristics, such as format, symbol rate and perhaps chan-

nel spacing. In addition, routing of lightpaths will be optical
and fast reconfigurability of such routing will be a must.

As a result, the problem of fast physical-layer reconfig-
uration and optimization becomes critical. For instance, the
launch power per channelPch into each span should ideally
be re-optimized according to the changing WDM comb char-
acteristics. This function is typically attributed to a ‘physical-
layer-aware’ Control Plane (CP) which, based on the future
state of the overall network after a reconfiguration, should
automatically optimize all values ofPch. In fact, the CP
should perform various other challenging tasks: it should
assess the performance of each lightpath after any network
reconfiguration, to find out whether sufficient signal integrity
has been preserved. If not, the CP should carry out re-routing
and possibly break up one or more lightpaths into multiple
segments with regenerators in between.

In general, this would require the CP to have updated
information on the entirety of the network, and take such
information into account to perform global optimization. Inter-
actions with higher layers may be necessary, to allocate traffic
differently. Given the complexity of the CP assignments, and
their criticality, it is clear that effective CP design is a key issue
in NGFNs, and one on whose accomplishment the overall net-
work performance hinges. Specifically, it is important to find
ways to drastically reduce the complexity and computational
effort of the CP, while preserving its effectiveness.

In this section we show that physical layer optimization
and lightpath integrity assessment could be carried out in a
simplified but still close-to-optimal way, with relatively small
computational effort, thanks to GN-model derived results. We
start out by discussing these issues for a single point-to-point
link and then extend the found results to an overall network.
We show that a Local Optimization strategy can lead close
to a Global Optimum (LOGO strategy). We then introduce
a simplified strategy that we call LOGON (where N stands
for ‘Nyquist’), which is asymptotically optimum for high
network spectral loads, with substantial potential for greatly
simplifying and reducing the burden a CP must deal with.
This section draws substantially from [82]. An experimental
implementation of the concept was recently presented in [83].

A. The link optimization strategy

We assume incoherent NLI accumulation, that is, the IGN
model. In a generic network, spans can be all different, so the
link may not be homogenous. Also, in general, span loss may
not be exactly in balance with span gain. As a result, the NLI
PSD that we find at the Rx can be written as:

GNLI,Rx =
Nspan∑

n=1

GNLI,n Γn

Nspan∏

k=n+1

AkΓk (75)

whereAn is a number smaller than 1 accounting for the effect
of loss in then-th span,Γn is the (linear) gain of the EDFA
following the n-th span andGNLI,n is the PSD of the NLI
produced in the n-th span,measured at the input of the n-th
EDFA,as shown in Fig. 17. Note the change of notation and
meaning with respect to Eq. (9), whereGn

NLI was also the NLI
PSD generated in then-th span butmeasured at the input of
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the Rxat the end of the link. Note also that the first EDFA
is the one that follows the first span of fiber. In Eq. (75) the
lower limit of the indexk in the product symbolΠ overruns
the upper limit whenn = Ns. This causes no problem if, as
customary, the product symbolΠ evaluates to 1 (and not to
0) when this happens.

ASE noise too is additive and hence it accumulates similarly
to Eq. (75). As a result, the SNR at the Rx of anyone of the
WDM channels in the link can be written as:

SNRNL,Rx =
Pch,Rx

Rs

Ns∑

n=1

[

(GASE,n + GNLI,n Γn)
Ns∏

k=n+1

AkΓk

]

(76)
wherePch,Rx is the power of the channel under test (CUT)
after the last EDFA (at the Rx input) andRs is the symbol
rate of that channel.

For convenience in performing the following steps, we
concentrate on the quantitySNR−1

NL,Rx. We also remark that
Pch,Rx can be rewritten as follows, wherem can be any value
in 1 . . . Ns:

Pch,Rx = Pch,m

∏Ns

k=m
AkΓk (77)

wherePch,m is the CUT power launched into them-th span
(see Fig. 17), beingPch,1 the CUT power launched into the
first span by the Tx. Exploiting Eq. (77) to expressPch,Rx in
Eq. (76), we can then write:

SNR−1
NL,Rx =

Rs

Ns∑

n=1

[

(GASE,n + GNLI,n Γn)
Ns∏

k=n+1

AkΓk

]

Pch,m AmΓm

Ns∏

k=m+1

AkΓk

(78)
Since the indexm at the denominator is arbitrary, we can
choose it to be equal ton and pull the denominator into the
summation with the numerator:

SNR−1
NL,Rx =

Ns∑

n=1

Rs (GASE,n + GNLI,n Γn)
Ns∏

k=n+1

AkΓk

Pch,n AnΓn

Ns∏

k=n+1

AkΓk

(79)
It can now be recognized that the products at the numerator
and denominator cancel out. We also make the approximation:
GASE,n ≈ hνFnΓn, whereFn is the noise figure of then-th
EDFA, so that finally:

SNR−1
NL,Rx =

Ns∑

n=1

Rs (hνFn + GNLI,n )
Pch,n An

=
Ns∑

n=1

1
snrNL,n

(80)
where the quantity:

snrNL,n =
Pch,n An

Rs (hνFn + GNLI,n )
(81)

is the SNR of the CUT at the output of the n-th EDFA, due
to NLI produced exclusively in then-th span and to the ASE
noise of then-th EDFA alone.

Fig. 17. Assumed span layout with the span-relevant quantities (see text).

Eq. (80) shows that the SNR at the Rx could be maximized
by maximizing each one of the span SNRs individually.
This optimization would greatly eased if thesnrNL,n were
independent of one another. This is indeed the case, provided
that we can assume that the WDM channel launch powers can
be adjusted independently at each span. If so, we can arrange
such powers so that eachsnrNL,n is maximized. This is an
important result, because it shows that local span optimization
ensures global link SNR optimization, i.e., a LOGO strategy
(local optimization - global optimization) can be used to
perform whole link optimization.

Performing LOGO may however be somewhat problematic,
because the specific dependence ofGNLI,n on the individual
channel powers is, in general, rather complex. In the following
we look for a simplified strategy which is based on pursuing
snrNL,n maximization under the assumption of full link spec-
tral loading.

B. The LOGON strategy

We start out by considering the idealized case of full spectral
loading. In NGFNs, full spectral loading is realized when the
full available optical bandBWDM (typically the C-band or
C+L) is utilized at maximum spectral efficiency. To model this
situation, we assume that channel spectra are rectangular with
bandwidth equal to the symbol rateRs, and that frequency
spacing is such that channel spectra touch but do not overlap,
i.e., we assume the Nyquist limit. Channels may however still
have different symbol rates or modulation formats.

In this special case, the GN-model predicts thatsnrNL,n

is optimized by launching a uniform signal PSD across the
whole WDM comb. Such comb then spectrally appears as one
seamless rectangle of overall bandwidthBWDM and uniform
PSD GWDM,n. The snrNL,n for one specific WDM channel
of symbol rateRs, and the uniform optimumGWDM,n which
maximizes it, are:

snrmax
NL,n

=
Gopt

WDM,n An

hνFn + μNLI,n

(
Gopt

WDM,n

)3 (82)

Gopt
WDM,n = 3

√
hνFn

2μNLI,n
(83)

whereμNLI, using the approximate Eq. (37), is written as:

μNLI,n =
8
27

Anγ2
nL2

eff,n

π |β2,n|Leff,a,n
asinh

(
π2

2
|β2,n|Leff,a,nB2

WDM

)

(84)
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The subscriptn for all the physical parameters indicates that
they are referred to then-th span.

Eqs. (82)-(84), together with Eq. (80) essentially solve the
problem of both optimizing the link and predicting its optimum
performance, in closed form. They also show, once again, that
such optimization can be done locally at each span. However,
as pointed out, they apply to the case of full spectral loading.
In general, the links of an optically-routed NGFN could be not
fully loaded, or even lightly loaded, and a much more complex
optimization would be needed.

A possible simplifying strategy, then, consists in using the
above equations to perform link optimization in the network,
irrespective of whether the links are actually fully loaded. We
call such strategy LOGON, as it exploits LOGO under the
assumption of Nyquist-limited full spectral loading.

Implementing LOGON requires ensuring that the launch
power PSD at each spanGopt

WDM,n be that of Eq. (83). Note
that under LOGON such value is completely static, because
it is determined by fiber and EDFA built-in parameters while
it is independent of the actual link spectral load. Enforcing
Gopt

WDM,n could ideally be done by dedicated local hardware,
without any CP intervention. The CP should in fact assume
that Eq. (83) is indeed enforced and should carry out signal
degradation estimation simply by using the rightmost side of
Eq. (80). EachsnrNL,n in Eq. (80) is provided by Eq. (82)
and such values are completely static and they are format,
symbol rate and link spectral-load independent. They could be
pre-computed and stored in memory assnrNL,n . To compute
the SNR−1

NL,Rx of any ‘lightpath’, possibly traveling through
several nodes across the network, the CP would simply add
up the snrNL,n

of all the spans traversed from Tx to Rx, an
essentially instantaneous operation. The resultingSNRNL,Rx

could then be compared to the minimum required by the used
transponder hardware to obtain spec-compliant channel BER.
In this LOGON scenario, the CP becomes a thin and agile
layer, whose main task is optimal routing under the constraint
of large-enoughSNRNL,Rx.

We point out that a substantial advantage of the LOGON
strategy is that the insertion of one or more channels in an
already partially populated link cannot cause any disruption
nor can it require any re-routing of the channels already
present in the link. This is because the NLI generated by
the insertion of new channels is already factored in, to its
worst (full-load) case, in theSNRNL,Rx estimated for the
already present channels. Their actual performance will of
course degrade, but will be better or at worst equal to the
SNRNL,Rx that the CP has already considered.

This strength of LOGON is also its main weakness: by
always assuming full spectral loading, when a lightpath travels
across a sparsely populated network, its potential performance
is substantially underestimated, possibly causing the CP to
enact regeneration when it is not necessary. To assess such
possible loss of performance, we examined five cases of link
spectral under-filling, and computed how much performance
underestimation was incurred, in terms of reach. In all cases,
we assumed 100 km spans of typical SMF (see Table I) with
EDFA noise figure 6 dB. Channels spectra were assumed
rectangular with width equal to 32 GHz. In case I, a single

channel travels across a link that is completely unpopulated in
all spans. Cases II and III consist of three and five adjacent
channels, spectrally touching but not overlapping, and no other
channels. Cases IV and V are links that are 33% and 50%
populated in a uniform way across the whole C-band (assumed
to be 5 THz), that is the channels are regularly separated by
64 or 32 GHz of empty spectrum, respectively. The results are
shown in Table IV.

Apart from the extreme and rather unrealistic cases I and IV,
performance underestimation is on the order of 20%. Ideally, if
the CP monitored and adjusted each individual channel launch
power in each span, this 20% of lost performance could be
recovered. However, we point out that optimizing channels
for ‘limit performance’ makes all the network routing quite
fragile and load-dependent. A channel that reaches a certain
transmission distance because the spans it goes through are
scarcely populated, might no longer reach it when even just
a single new channel is routed into just a single one of those
spans. In ‘limit performance’ scenario, when lighting up a
new channel, the CP would have to real-time re-calculate
the performance of many already lit channels and take re-
routing actions if any of them could no longer operate (the
so called ‘crank-back’ procedure). This would in fact be a
frequent occurrence if extreme optimization is performed in
a highly loaded network. A single re-routing might in fact
cause substantial disruption and generate the necessity of many
further re-routings. The CP should operate globally even for
local changes, the exact opposite of the LOGON strategy, with
much higher resulting complexity.

The LOGON strategy has been recently used in an experi-
mental testbed with good results in terms of predictivity and
overall network optimization [83].

We point out that both LOGO and LOGON completely
rely on results obtained in the GN-model context. They are
clear examples of the practical impact that the availability
of a simple but sufficiently accurate non-linearity model like
the GN/IGN-model may have, all the way up to the network
control level.

XI. COMMENTS AND CONCLUSIONS

In this paper we have pulled together the recent results
regarding the GN-model definition, understanding and appli-
cations.

We showed that the GN-model is both the result of a
collection of prior findings and of the re-consideration and
extension of such findings.

We also focused on the key aspect of its validation. A
detailed investigation of GN-model errors and limitations was
proposed and extensively discussed. Overall, the GN-model
accuracy for UT systems appears to be rather satisfactory and
typically adequate for dealing with many practical scenarios

The main source of error is the signal-Gaussianity approxi-
mation, used in the GN-model derivation, which is inaccurate
especially in the initial part of a UT link. Research is ongoing
on trying to find corrections that may account for the resulting
discrepancies without requiring excessive added model com-
plexity.
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System Scenarios Spectrum Filling Empty Inter-Channel Band MSR Prediction Error (in dB) MSR Prediction Error (%)
I single-channel n/a -1.75 -33%
II 3 adjacent channels 0 -1.12 -23%
III 5 adjacent channels 0 -0.92 -19%
IV 33% 64 GHz -1.4 -27%
V 55% 32 GHz -1 -20%

TABLE IV
MAXIMUM SYSTEM REACH PREDICTION ERRORUSING LOGON

We collected and commented some of the GN-model closed-
form approximate solutions, indicating their range of validity
and limitations.

We finally devoted a quite substantial part of the paper
to the description of several applications of the GN-model,
all of which heavily exploit its closed-form approximate
solutions. Specifically, we looked at link throughput analysis
and optimization, at deriving approximate ‘design rules’ which
provide a simple variational dependence of performance on
system parameters, at finding the potential and limitations
of non-linearity DSP-supported mitigation and, finally, at the
use of the GN-model to derive an overall optimization and
control strategy for new-generation optically-routed network.
The breadth of these applications clearly demonstrates the
extent of the impact of the availability of an effective model
of non-linear propagation.

Research on modeling is ongoing and new models are
constantly being proposed. Variations and improvements to the
GN-model itself are also being proposed. In this context, we
argue that the current GN-model offers a favorable accuracy
vs. relative simplicity trade-off.

As a general remark, we observe that, already at their
present stage, the results of the recent modeling efforts have
quite radically changed the general understanding of the be-
havior of UT optical systems, as well as the way their analysis
and design are approached.
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APPENDIX A
LIST OF ACRONYMS

AGN additive Gaussian noise
AWGN additive white Gaussian noise
ASE amplified spontaneous-emission noise
BER bit error-rate
BP backward propagation
CP network control-plane
CD chromatic dispersion
DAC digital to analog converter
DBP digital back (or backward) propagation
DM dispersion-managed
DSP digital signal processing
EDFA erbium-doped fiber amplifier

FEC forward error-correcting code
FWM four-wave mixing
GN-model Gaussian-noise model
GNRF GN-model reference formula
IDT initial decoherence transient
IGN-model incoherent Gaussian-noise model
IGNRF GN-model reference formula
LOGO local-optimization, global optimization
LOGON LOGO with Nyquist-WDM
LWN locally-white noise
ME Manakov equation
MCI multi-channel interference
MSR maximum system reach
NGFN new-generation flexible (optical) network
NLC non-linearity compensation
NLI non-linear interference
NLSE non-linear Schroedinger equation
NZDSF non-zero dispersion-shifted fiber
OCT optical channel throughput
OFDM orthogonal frequency-division multiplexing
OSNR optical signal-to-noise ratio
PM polarization-multiplexed
PSCF pure-silica-core fiber
PSD power spectral density
QAM quadrature amplitude modulation
QPSK quadrature phase-shift keying
Rx receiver
SCI self-channel interference
SE spectral efficiency
SMF standard single-mode fiber
SNR signal-to-noise ratio
SPM self phase modulation
SpS spectral slicing
SR system reach
TD time-domain
Tx transmitter
UT uncompensated transmission
VS Volterra series
WDM wavelength-division multiplexing
XCI cross-channel interference
XPM cross phase modulation
XPolM cross polarization modulation
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