
Politecnico di Torino

Porto Institutional Repository

[Article] Tunnel junction of helical edge states: Determining and controlling
spin-preserving and spin-flipping processes through transconductance

Original Citation:
Pietro Sternativo; Fabrizio Dolcini (2014). Tunnel junction of helical edge states: Determining and
controlling spin-preserving and spin-flipping processes through transconductance. In: PHYSICAL
REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS, vol. 89 n. 3, 035415-1-035415-
14. - ISSN 1098-0121

Availability:
This version is available at : http://porto.polito.it/2531113/ since: February 2014

Publisher:
American Physical Society (APS)

Published version:
DOI:10.1103/PhysRevB.89.035415

Terms of use:
This article is made available under terms and conditions applicable to Open Access Policy Article
("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions.
html

Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library
and the IT-Services. The aim is to enable open access to all the world. Please share with us how
this access benefits you. Your story matters.

(Article begins on next page)

http://porto.polito.it/view/publication/PHYSICAL_REVIEW=2E_B,_CONDENSED_MATTER_AND_MATERIALS_PHYSICS.html
http://porto.polito.it/view/publication/PHYSICAL_REVIEW=2E_B,_CONDENSED_MATTER_AND_MATERIALS_PHYSICS.html
http://porto.polito.it/2531113/
http://dx.doi.org.ezproxy.biblio.polito.it/10.1103/PhysRevB.89.035415
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/terms_and_conditions.html
http://porto.polito.it/cgi/set_lang?lang=en&referrer=http://porto.polito.it/cgi/share?eprint=2531113


PHYSICAL REVIEW B 89, 035415 (2014)

Tunnel junction of helical edge states: Determining and controlling spin-preserving and
spin-flipping processes through transconductance

Pietro Sternativo1 and Fabrizio Dolcini1,2,*

1Dipartimento di Scienza Applicata e Tecnologia del Politecnico di Torino, I-10129 Torino, Italy
2CNR-SPIN, Monte S. Angelo, via Cinthia, I-80126 Napoli, Italy

(Received 9 August 2013; revised manuscript received 29 November 2013; published 14 January 2014)

When a constriction is realized in a 2D quantum spin Hall system, electron tunneling between helical edge
states occurs via two types of channels allowed by time-reversal symmetry, namely spin-preserving (p) and
spin-flipping (f) tunneling processes. Determining and controlling the effects of these two channels is crucial
to the application of helical edge states in spintronics. We show that, despite that the Hamiltonian terms
describing these two processes do not commute, the scattering matrix entries of the related 4-terminal setup
always factorize into products of p-term and f-term contributions. Such factorization provides an operative way
to determine the transmission coefficients Tp and Tf related to each of the two processes, via transconductance
measurements. Furthermore, these transmission coefficients are also found to be controlled independently by a
suitable combination of two gate voltages applied across the junction. This result holds for an arbitrary profile
of the tunneling amplitudes, including disorder in the tunnel region, enabling us to discuss the effect of the finite
length of the tunnel junction, and the space modulation of both magnitude and phase of the tunneling amplitudes.

DOI: 10.1103/PhysRevB.89.035415 PACS number(s): 73.23.−b, 72.10.−d, 73.43.Jn

I. INTRODUCTION

The discovery of topological materials [1–5] has unveiled
the existence of helical edge states, i.e., linearly dispersed
gapless one-dimensional modes flowing at the boundaries
of the insulating bulk of a two-dimensional quantum spin
Hall effect system [1–3,6,7]. Helical states are characterized
by a locking of the electron group velocity to the spin
orientation, so that the two counterpropagating modes flowing
at a given edge exhibit opposite spin orientation. The most
straightforward way to reveal the peculiar features of helical
edge states is through their transport properties, in particular
when the helical states of opposite edges are coupled in a
tunnel junction, realized, e.g., by etching a constriction in
HgTe/CdTe [2,3] or in InAs/GaSb [7] quantum wells. In
such situation, time-reversal symmetry implies that two types
of tunnel couplings between helical edge states exist [6,8].
The first type (p) preserves the electron spin and changes the
group velocity, similarly to a backscattering term also present
in conventional quantum wires. The second type (f) instead
induces spin flipping by preserving the group velocity. One
may expect that the coupling constant of the spin-flipping
processes is smaller than that of the spin-preserving ones.
However, no operative way has been conceived so far to
quantitatively extract these coupling constants. In fact, the
possibility of exploiting both processes is crucial for the
intriguing perspective of utilizing topological edge states in
spintronics [9–12], where the spin degree of freedom is used
to encode information. Indeed in a spintronics nanodevice
currents should be switched on-demand from one terminal
to another, in a controlled way, with either preservation or
flipping of the spin, depending on the specific operation to be
performed.

Determining and controlling the transmission coefficients
related to these two tunneling channels appears to be a
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challenging task, for various reasons. In the first instance
the Hamiltonian terms describing the two processes do not
commute, making the analysis of their interplay a priori
nontrivial. Second, due to etching and to indirect coupling
via the bulk states, a tunnel junction is a typically irregular
and disordered region, implying that the tunneling amplitude
of each of the two channels cannot be described by one
single parameter but rather by a space-dependent profile.
Furthermore, in a tunnel junction realized in a quantum well
of materials such as HgTe/CdTe, where the strong spin-orbit
interaction correlates momentum and spin [2,13], the breaking
of the longitudinal transversal invariance originating from the
finite length of the tunnel region affects spin preservation,
thereby possibly modifying the relative weight of f-processes
with respect to p-processes.

Most of the theoretical approaches to this problem have
treated the tunnel junction as a pointlike constriction, using
a δ-tunneling (DT) model, and have focused on the effect
of electron-electron interaction on conductance [8,14–18]
and noise [19], and on interference phenomena between two
quantum point contacts [20–25]. However, while there is no
clear experimental evidence that electron-electron interaction
plays a significant role in helical edge state transport, it is
worth noticing that the DT model, per se, completely neglects
the internal structure of the junction, which may contain
important physical insights in realistic implementations. Some
recent works, for instance, have pointed out that the finite
length of the junction plays an important role when the related
Thouless energy becomes comparable to the applied voltages
[9,15,17,23]. These studies were limited to specific profiles for
the tunneling amplitudes and/or to the case of spin-preserving
tunneling, though.

For these reasons, the question of how to operatively
determine and control the spin-preserving and spin-flipping
effects in a realistic tunnel junction in the presence of a
disordered profile is still open. In this paper we address
this problem. Focusing on the regime where electron-electron
interaction is negligible, we consider a 4-terminal setup,
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FIG. 1. (Color online) A tunnel junction coupling the helical
edge states can be realized by etching a constriction in a four-terminal
quantum spin Hall effect setup. Two side gates enable one to tune the
potential along the junction. Two types of time-reversal symmetric
tunnel processes occur at the junction, namely spin-preserving
and spin-flipping processes. Determining and controlling these two
processes is crucial for exploiting helical edge states in spintronics
devices.

schematically depicted in Fig. 1, where helical edge states
are coupled in a tunnel region characterized by a finite length
and by an arbitrary profile for the tunneling amplitude of
both p- and f-tunneling processes. We show that, despite that
the Hamiltonian terms describing the two types of tunneling
processes do not commute, the scattering matrix entries of the
4-terminal setup always factorize into two terms that depend
on spin-preserving terms only and on spin-flipping terms only.
This factorization provides an operative way to determine the
magnitude of the transmission coefficients related to each of
these terms, via transport measurements. In particular, the
spin-flipping terms, although possibly quantitatively smaller
in magnitude than the spin-preserving terms, induce quali-
tatively different features in the conductance matrix, which
cannot be ascribed to p-processes. Furthermore we predict
that by suitably operating with side gates, one can control
independently the two transmission coefficients related to
spin-preserving and spin-flipping tunneling. Importantly, the
factorization property holds for an arbitrary profile of the
tunneling amplitudes, possibly including disorder and local
fluctuations effects. In particular, it also holds in the limit of
short constriction. By comparing our results with the widely
used DT model, we shall show that such factorization property,
which is seemingly absent in the DT model, is simply hidden in
a misleading parametrization of the coupling constants of that
model.

The paper is organized as follows: In Sec. II, after presenting
the model for the tunnel junction, we prove the factorization
property of the scattering matrix for an arbitrary profile for the
junction parameters. In Sec. III we discuss how such property
impacts the multiterminal conductance, and show how the
transmission coefficients related to the two types of tunneling
can be operatively determined and controlled by gate voltages.
In Sec. IV we present some explicit results for specific profiles
of the junction tunneling amplitude, which enable us to discuss
the role of p- and f-tunneling, the effects of the finite length
of the tunnel junction, and the variation of the magnitude
and the phase of the tunneling amplitude profile. We also
explain why the DT model hides the factorization property.
Finally, in Sec. V we discuss our results and draw some
conclusions.

II. MODEL

We consider a 4-terminal setup of helical edge states, as
sketched in Fig. 1. Along the top edge of the quantum well right
movers are characterized by spin ↑ and left movers by spin ↓,
whereas along the bottom edge the opposite spin orientations
occur. A constriction is assumed to be realized in the quantum
well, allowing electron tunneling between the four edge states
over a region extending along the longitudinal direction x.
Furthermore, we consider two gate electrodes, applied at the
sides of the constriction, enabling us to shift the chemical
potential of the edge states.

We describe the electron edge states through four electron
field operators �R↑(x),�L↑(x),�R↓(x),�L↓(x), with α =
R/L = ± denoting the chirality for right movers and left
movers, respectively, and σ = ↑,↓ the spin component. We
then model the setup by the following low-energy Hamilto-
nian:

Ĥ = Ĥ0 + Ĥg,T + Ĥg,B + Ĥp
tun + Ĥf

tun , (1)

where

Ĥ0 = −i�vF

∑
α=R/L=±

α
∑

σ=↑,↓

∫
dx : �†

ασ (x) ∂x�ασ (x) : (2)

describes the linear bands of the helical edge states [1,2]
(: : denotes normal ordering), and

Ĥg,T =
∫

dx eVg,T (x)[ρ̂R↑(x) + ρ̂L↓(x)], (3)

Ĥg,B =
∫

dx eVg,B (x)[ρ̂R↓(x) + ρ̂L↑(x)] (4)

account for the the electric potentials applied by the side gates
across the constriction. Here

ρ̂ασ (x) = : �†
ασ (x)�ασ (x) : (5)

is the electron chiral density. Finally, the last two terms in
Eq. (1),

Ĥp
tun =

∑
σ=↑,↓

∫
dx(�p(x) �

†
Lσ (x) �Rσ (x) + H.c.), (6)

Ĥf
tun =

∑
α=R/L=±

α

∫
dx (�f (x) �

†
α↓(x) �α↑(x) + H.c.), (7)

describe the two types of interedge tunnel coupling allowed
by time-reversal symmetry at the constriction, namely the
spin-preserving and the spin-flipping tunneling, respectively
[6,8,9,15,20,21,23,26].

The tunneling amplitudes �p(x) ,�f (x) and the side gate
potentials Vg,T (x),Vg,B (x) characterizing the constriction re-
gion are allowed to vary along the longitudinal direction x.
Their profiles can be arbitrary, with the only constraint that—
sufficiently far away from the central region—they all vanish
and the helical states are described by the linear dispersion
band term (2) only. We can thus assume, without loss of
generality, that there exist two coordinates x1 and x2 defining
the extremal longitudinal boundaries of the constriction, such
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FIG. 2. (Color online) The operative way to extract the trans-
mission coefficients Tp and Tf related to spin-preserving and spin-
flipping tunneling, respectively. When a voltage bias V2 is applied to
terminal 2, the currents flowing in the other three terminals directly
depend on Tp and Tf in a factorized form, so that Tp and Tf can be
determined via Eqs. (46) and (47). Furthermore, Tp is controlled by
the charge gate Vgc = (Vg,T + Vg,B )/2, whereas Tf is controlled by
the spin gate Vgs = (Vg,T − Vg,B )/2.

that

�p(x),�f (x),Vg,T (x) ,Vg,B (x) = 0 for

{
x � x1,

x � x2,
(8)

with L = x2 − x1 denoting the tunnel junction length. The
tunnel junction x1 � x � x2 can thus be regarded as the
scattering region in the 4-terminal setup in Fig. 1, where
the distributions of the incoming electrons are controlled
by the chemical potentials μi (i = 1, . . . 4), and by the
temperature kBT of the four reservoirs (see also Fig. 2).

It is worth emphasizing that the two types of tunneling
terms (6) and (7) acting in the constriction do not commute,

[
Ĥp

tun , Ĥf
tun

] = 2
∫

dx[�p(x)�f (x)�†
L↓(x)�R↑(x) +

+�p(x)�∗
f (x)�†

L↑(x)�R↓(x) − H.c.] �= 0.

(9)

In view of Eq. (9), the terms Ĥp
tun and Ĥf

tun are expected
to interplay in transport measurements, so that singling out
the effect of each of the two tunnel couplings looks quite
difficult. This expectation seems to be confirmed by transport
predictions based on the DT model, which treats the tunnel
junction as a pointlike tunneling region [8,14–25]. Indeed by
adopting such model the transmission coefficients are found to
depend on both tunneling amplitudes in a nonfactorized way
[20,21].

We shall show that such seemingly complicated dependence
is an artifact of the DT model. Indeed we prove that despite the
noncommutativity Ĥp

tun and Ĥf
tun, each entry of the scattering

matrix of the setup can be factorized, one related the spin-
preserving and the other one to the spin-flipping tunneling. A
comparison of our results with the ones of the DT model will
be explicitly made in Sec. IV E.

A. Factorization of the scattering matrix entries

In order to prove the factorization of the scattering matrix
entries, we first introduce a four-component electron field

operator �(x) = (�R↑(x),�L↑(x),�R↓(x),�L↓(x))T , as well
as Pauli matrices σ = (σx,σy,σz) acting on the spin space
(σ = ↑,↓) and Pauli matrices τ = (τx,τy,τz) acting on the
chirality space (α = R,L). Furthermore we define charge and
spin gate voltages as sum and difference of the side gate
voltages appearing in Eqs. (3) and (4):

Vg c/s(x) = [Vg,T (x) ± Vg,B (x)] /2. (10)

The Hamiltonian (1) is then compactly written as

Ĥ =
∫

dx�†(x)
[
H0(x) + Hgc(x) + Hgs(x)

+H
p
tun(x) + H

f
tun(x)

]
� (x), (11)

where the 4 × 4 matrices in Eq. (11) read

H0(x) = −i�vF (σ0 ⊗ τz) ∂x, (12)

Hgc(x) = eVgc(x) (σ0 ⊗ τ0) , (13)

Hgs(x) = eVgs(x) (σz ⊗ τz) , (14)

H
p
tun(x) = |�p(x)|σ0 ⊗ [τx cos φp(x) + τy sin φp(x)], (15)

H
f
tun(x) = |�f (x)|[σx cos φf (x) + σy sin φf (x)] ⊗ τz, (16)

with σ0 and τ0 denoting the 2 × 2 identity matrices in spin and
chirality space, respectively.

The equation of motion i� ∂t�(x,t) = [�(x,t) ,Ĥ] ob-
tained from the Hamiltonian (11) implies for the stationary
solutions �(x,t) = e−iEt/��E(x) that

i(σ0 ⊗ τ0)
∂

∂x
�E(x)

= {[σ · bf (x)] ⊗ τ0 + σ0 ⊗ [τ · bp,E(x)]}�E(x), (17)

where

bf (x) = (Re�f (x),Im�f (x),eVgs(x))/�vF (18)

is a (real) vector field that depends on the spin-flipping
tunneling amplitude �f and the spin gate voltage Vgs , whereas

bp,E(x) = (−i Im�p(x) , i Re�p(x) , eVgc(x) − E)/�vF

(19)

is a (complex) vector field that depends on the spin-preserving
tunneling amplitude �p, the charge gate Vgc, and the energy
E, defined with respect to the Dirac point level. Notice that
Eq. (17) is formally equivalent to the “evolution” equation of
a particle endowed with a twofold spin degree of freedom,
exposed to two “time-dependent” magnetic fields bf and
bp,E . The role of time is played by space x, and the two
magnetic fields originate from spin-preserving and spin-
flipping tunneling. Outside the central scattering region, where
Eq. (8) holds, the dynamics is governed by the term (12) only,
and the field operator �E solving Eq. (17) acquires the simple
asymptotic form

�E(x � x1) = (σ0 ⊗ eiτzkEx)(aR↑,bL↑,aR↓,bL↓)T (20)

and

�E(x � x2) = (σ0 ⊗ eiτzkEx)(bR↑,aL↑,bR↓,aL↓)T , (21)

where aασ and bασ denote operators for incoming and outgoing
states, respectively, and kE = E/�vF . The transfer matrix M,
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connecting operators on the right of the central scattering
region to the ones on the left,⎛

⎜⎜⎜⎝
bR↑
aL↑
bR↓
aL↓

⎞
⎟⎟⎟⎠ = M

⎛
⎜⎜⎜⎝

aR↑
bL↑
aR↓
bL↓

⎞
⎟⎟⎟⎠ , (22)

can therefore be evaluated through the relation

�E(x2) = (σ0 ⊗ eiτzkEx2 ) M (σ0 ⊗ e−iτzkEx1 ) �E(x1). (23)

In order to determine the solution of the stationary Eq. (17),
we introduce the following space “evolution” operators

Uf (x; 0) = T e−i
∫ x

0 dx ′σ ·bf (x ′), (24)

Up,E(x; 0) = T e−i
∫ x

0 dx ′τ ·bp,E (x ′) (25)

that appear as two continuous sets of rotations, around the
local “magnetic” field bf (spin space) and “pseudomagnetic”
field bp,E (chirality space) determined by the tunnel junction
parameter profiles [see Eqs. (18) and (19), respectively]. Here
T denotes the “time” (actually space) ordering operator, and
the “evolution” is with respect to the space origin x = 0. Then
Eqs. (24) and (25) lead to

i ∂xUf (x; 0) = [σ · bf (x)] Uf (x; 0), (26)

i ∂xUp,E(x; 0) = [τ · bp,E(x)] Up,E(x; 0). (27)

Using Eqs. (26) and (27), the solution of Eq. (17) is
straightforwardly verified to be

�E(x) = [Uf (x; 0) ⊗ Up,E(x; 0)] �(0), (28)

where �(0) is a four-component field operator at the space
origin. The solution (28) then implies that

�E(x2) = [Uf (x2; x1) ⊗ Up,E(x2; x1)]�E(x1). (29)

Comparing Eqs. (23) and (29) one obtains

M = mf ⊗ mp, (30)

where

mf
.= T e

−i
∫ x2
x1

dx ′σ ·bf (x ′)
, (31)

mp
.= e−iτzkEx2 (T e

−i
∫ x2
x1

dx ′τ ·bp,E (x ′))e+iτzkEx1 . (32)

We notice that, because bf (x) ∈ R, Eq. (31) implies that
mf ∈ SU(2). In contrast, because bp,E(x) ∈ C, mp /∈ SU(2).
However, det mp = +1, since τ · bp,E is traceless. Equa-
tion (30) shows that the transfer matrix is the tensor product of
a 2 × 2 matrix mf acting on spin space by a 2 × 2 matrix mp

acting on chirality space. This property reflects on the structure
of the scattering matrix S, which expresses outgoing operators
in terms of incoming operators [27],⎛

⎜⎜⎜⎝
bL↑
bL↓
bR↑
bR↓

⎞
⎟⎟⎟⎠ = S

⎛
⎜⎜⎜⎝

aR↓
aR↑
aL↓
aL↑

⎞
⎟⎟⎟⎠ , (33)

and which can straightforwardly be obtained from the rela-
tions (22). Exploiting Eq. (30) and the properties det mp =
det mf = +1, one obtains

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 rp tp r∗
f tp t∗f

rp 0 tp tf −tp rf

−tp r∗
f tp tf 0 r ′

p

tp t∗f tp rf r ′
p 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

In Eq. (34) the quantities

tp = 1

(mp)22
,

(35)

rp = − (mp)21

(mp)22
= − (mp)∗12

(mp)22
,

and r ′
p = −r∗

p tp/t∗p are determined by mp. They depend on
the spin-preserving tunneling amplitude �p and on the charge
gate voltage Vgc only, besides the energy E [see Eqs. (32) and
(19)]. In contrast, in Eq. (34) the quantities

tf = (mf )11 = (mf )∗22 ,
(36)

rf = (mf )21 = −(mf )∗12

are determined by mf , and depend on the spin-flipping
tunneling amplitude �f and on the spin gate voltage Vgs only
[see Eqs. (31) and (18)].

Equation (34) shows that, in a tunnel junction of helical
edge states, the entries of the scattering matrix always factorize
into products of two reflection and/or transmission amplitudes,
one related to p-tunneling processes and the other one to
f-tunneling processes. Such result holds for an arbitrary
profile of the tunneling amplitudes �p(x) and �f (x) of spin-
preserving and spin-flipping properties. Furthermore, Vgc(x)
and Vgs(x) can be arbitrary too.

In next section we shall discuss how this factorization prop-
erty enables one to operatively determine, through transport
properties, the transmission coefficients

Tp = |tp|2 = 1

|(mp)22|2 , (37)

Tf = |tf |2 = |(mf )22|2 (38)

related to spin-preserving and spin-flipping tunneling, respec-
tively.

The scattering matrix approach utilized here is nonpertur-
bative, and it naturally accounts for the tunneling amplitudes
�ν(x) (ν = p,f ) to all perturbative orders. However, it is
maybe worth clarifying the origin of the factorization in terms
of perturbative arguments as well. Neglecting for simplicity
the charge and spin gates, one would derive the scattering
amplitude of each multiterminal transport process by linear
combinations of average values of ρ̂ασ , performed over the
time Keldysh contour K [28],

〈ρ̂ασ 〉 = 〈
ρ̂ασ e− i

�

∫
K

dt�
†
i (Hp

tun+H
f
tun)ij �j

〉
0, (39)

where ρ̂ασ is the electron chiral density (5), �i is the ith
component of the four-component electron field �(x) defined
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at the beginning of Sec. II A, H
p
tun, H

f
tun are the 4 × 4 matrices

(15) and (16), and 〈· · · 〉0 denotes the Keldysh average over H0

[see Eq. (12)]. For simplicity of notation we have omitted space
integration and space-time arguments, and we have assumed
implicit summation over repeated indices. We now notice from
Eqs. (15) and (16) that the lack of commutation between p-
and f-processes, [

H
p
tun ,H

f
tun

] �= 0, (40)

is due to the appearance of the τz matrix in Eq. (16), which
is necessary to ensure time-reversal symmetry of Hf

tun though.
Expanding perturbatively the right-hand side of Eq. (39) in
powers of the tunneling amplitudes �p and �f , a given
perturbative order is characterized by a power Np for H

p
tun and

by a power Nf for H
f
tun. Because H

p
tun involves the same spin

and opposite chirality, while H
f
tun involves the same chirality

and opposite spin, one can realize that the only nonvanishing
contributions to 〈ρ̂ασ 〉 occur when the integers Np and Nf are
both even (Np = 2np and Nf = 2nf ). Importantly, despite
Eq. (40), one has

[(
H

p
tun

)2np
,
(
H

f
tun

)2nf
] = 0. (41)

Effectively, order by order, each nonvanishing contribution to
〈ρ̂ασ 〉 obtained from H

p
tun and H

f
tun is equal (up to a sign that

counts the number of exchanges between H
p
tun and H

f
tun) to

the contribution one would obtain by replacing τz → τ0 in
Eq. (16), i.e., by replacing H

f
tun with a matrix that commutes

with H
p
tun. One thus obtains factorized expressions for the

nonvanishing scattering matrix entries.
We conclude this section by noticing that the scattering

matrix (34) is not symmetric, despite that the Hamiltonian of
the system is time-reversal invariant. The customary expres-
sion of Onsager relations [29] characterizing the scattering
matrix entries, Sij (B) = Sji(−B) with B denoting the external
magnetic field, would imply that S is symmetric in the absence
of a magnetic field. This is indeed the case for systems
where spin is a good quantum number, which thus appears
as a mere degeneracy variable. However, the spin-flipping
process can occur even without breaking of time-reversal
symmetry, as is the case for f-processes for helical edge states
in a tunnel junction. In this case, time-reversal transformation
involves a iσy matrix acting on the spin sector, i.e., a sign
change whenever spin-↓ is flipped to a spin-↑. In this case
Onsager relations acquire different expressions. In particular,
any entry of the scattering matrix that describes a process
involving an odd number of spin flips naturally carries an
additional minus sign. This is the reason for the appearance
of both symmetric and antisymmetric terms in the scattering
matrix (34).

III. EFFECTS OF THE FACTORIZATION ON
TRANSCONDUCTANCE

We shall now present the results about transport through the
setup, which are a direct consequence of the factorization (34)
of the scattering matrix entries. The current operators related
to the four terminals (denoted by i = 1 . . . 4 as in Fig. 1) are

defined as

Î (1)
c (x,t) = evF [ρ̂R↓(x,t) − ρ̂L↑(x,t)],

Î (2)
c (x,t) = evF [ρ̂R↑(x,t) − ρ̂L↓(x,t)],

(42)
Î (3)
c (x,t) = evF [ρ̂L↓(x,t) − ρ̂R↑(x,t)],

Î (4)
c (x,t) = evF [ρ̂L↑(x,t) − ρ̂R↓(x,t)],

and can then be evaluated by substituting the solution (28) for
a given tunnel junction into Eqs. (5) and (42), and integrating
over energy E. Notice that, in defining the currents in Eq. (42),
we have chosen the customary convention of multiterminal
setups that the current in a terminal is considered to be positive
when it is incoming from that terminal to the scattering region
[27]. We recall that in multiterminal transport the average
currents in the steady state are given by

I (i) .= 〈Î (i)(x,t)〉 = 1

e

∑
j

∫ +∞

−∞
dE Gij fj , (43)

where fi = fi(E) = {1 + exp[(E − μi)/kBT ]}−1 denotes the
Fermi function of the ith reservoir, characterized by a
temperature kBT and a chemical potential μi , measured with
respect to the equilibrium level EF . In Eq. (43), Gij denotes
the entry of the conductance matrix G, and describes the
current flowing through terminal i as a consequence of a unit
voltage bias applied to terminal j . The conductance matrix
entries can be expressed in terms of the scattering matrix as
Gij = (e2/h)(δij − |Sij |2). The factorized form (34) acquired
by the scattering matrix implies that the conductance matrix
G reads

G = e2

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 −Rp −TpRf −Tp Tf

−Rp 1 −TpTf −Tp Rf

−TpRf −TpTf 1 −Rp

−Tp Tf −Tp Rf −Rp 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (44)

At low temperatures the conductance matrix entry Gij can
be gained by measuring the current flowing in terminal i

in response to a voltage bias applied to only terminal j

(transconductance); i.e.,

Gij = ∂I (i)

∂Vj

∣∣∣∣
Vl �=j =0

. (45)

This provides and operative way to extract the transmission
coefficients Tp and Tf through Eq. (44). This is for instance
carried out by applying a voltage bias V2 to terminal 2, while
keeping all other chemical potentials to the equilibrium value,
as illustrated in Fig. 2. Then, the spin-preserving transmission
coefficient Tp is obtained as

Tp = 1 − h

e2
|G12| = 1 − h

e2

∣∣∣∣∂I (1)

∂V2

∣∣∣∣
∣∣∣∣
Vl �=2=0

, (46)

whereas and spin-flipping transmission coefficient Tf is

Tf = |G32|
e2

h
− |G12|

=
∣∣ ∂I (3)

∂V2

∣∣
e2

h
− ∣∣ ∂I (1)

∂V2

∣∣
∣∣∣∣∣∣
Vl �=2=0

. (47)
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Similar equivalent methods, based on biasing another terminal
and measuring currents in other appropriate terminals, can be
read off from the structure of the G matrix (44), and can be
used as cross checks for Tp and Tf . Importantly, because Tp

and Tf exhibit different dependencies

Tp = Tp(�p; EF − eVgc), (48)

Tf = Tf (�f ; eVgs), (49)

they are controlled independently by the charge gate volt-
age Vgc = (Vg,T + Vg,B )/2 and the spin gate voltage Vgs =
(Vg,T − Vg,B)/2, respectively.

We conclude this section with a remark concerning the
operative method described in Fig. 2. When a voltage bias
is applied to terminal 2, the helical nature of the edge states
implies that no current could be found in terminal 4 if only
spin-preserving tunneling occurred in the junction. Thus, the
very observation of a current in terminal 4 is a signature of
the presence of spin-flipping processes. However, because f-
processes interplay with p-processes too, the actual value of
such current depends also on the latter, in an a priori nontrivial
way. It is because of the factorization property proved here that
such current appears to be simply proportional to Tp(1 − Tf ),
thereby enabling one to extract the transmission coefficient Tf

through Eq. (47).

IV. EXPLICIT RESULTS FOR SPECIAL CASES

The factorization property (34) holds for an arbitrary profile
of the tunnel junction parameters. Studying the behavior of
Tp and Tf with varying in all possible ways the profiles
�p(x),�f (x) of the tunneling amplitudes and of the potentials
Vgc(x),Vgs(x) deserves a detailed analysis that goes beyond
the purpose of the present paper. Nevertheless, in order to
show the potential of the result found above, in this section
we explicitly discuss some effects arising from the internal
structure of a tunnel junction. We shall start in Sec. IV A
by considering the case where the parameters �p(x), �f (x),
Vgc(x), and Vgs(x) have a constant profile along the length
L of the junction. Such seemingly simplified model of the
tunnel junction provides in fact quite useful physical insights.
In the first instance it clarifies the different role of the p- and

f-tunneling processes, and thereby the physical origin of the
general property that Tp depends on the energy E and can be
tuned by Vgc, whereas Tf is independent of the energy and can
be tuned by Vgs . Second, this case allows us to account for the
effects of the finite length L of the junction on both Tp and Tf ,
which cannot be described by the conventional DT model of
the tunnel region.

Then, in Sec. IV B we show how the constant-profile
case can be exploited to construct a realistic model of an
actual tunnel junction with arbitrarily varying parameters.
In Sec. IV C we analyze the effect of a smooth variation
of the absolute value |�p(x)| and |�f (x)| of the tunneling
amplitudes, whereas in Sec. IV D we analyze the effect of
phase fluctuations φp(x) and φf (x). Finally, in Sec. IV E we
discuss the DT limit L → 0, and show why such a widely used
model subtly hides the factorization properties.

A. The case of a constant profile

Let us now consider constant profiles along the tunnel
junction

�ν(x) =
⎧⎨
⎩

�ν for x1 < x < x2,

ν = p,f,

0 otherwise,
(50)

and

Vgc(s)(x) =
{

Vgc(s) for x1 < x < x2,

0 otherwise.
(51)

Under the assumption (50) and (51), the mf matrix (31)
becomes

mf = T e
−i

∫ x2
x1

σ ·bf dx ′ = e−i (σ ·bf )L

= σ0 cos(k̃f L) − iσ · bf sin(k̃f L)/k̃f (52)

with

k̃f =
√

|�f |2 + (eVgs)2 /�vF , (53)

whereas the mp matrix (32) is given by

mp = e−iτzkEx2
(
T e

−i
∫ x2
x1

τ ·bp,E dx ′)
eiτzkEx1 = e−iτzkEx2e−i(τ ·bp,E ) LeiτzkEx1

=
{

e−iτzkEx2 (τ0 cos(k̃EL) − iτ · bp,Esin(k̃EL)/k̃E) · e+iτzkEx1 for |E − eVgc| > |�p|,
e−iτzkEx2 (τ0 cosh(q̃EL) − iτ · bp,Esinh(q̃EL)/q̃E) · e+iτzkEx1 for |E − eVgc| < |�p|,

(54)

where we have denoted

k̃E =
√

(E − eVgc)2 − |�p|2
�vF

for |E − eVgc| > |�p|, q̃E =
√|�p|2 − (E − eVgc)2

�vF

for |E − eVgc| < |�p|. (55)

The transmission coefficient related to spin-preserving tunneling is obtained from the mp matrix (54) through Eq. (37), and reads

Tp(E) =

⎧⎪⎨
⎪⎩

(
1 + |�p |2

(�vF k̃E )2 sin2 (k̃E L)
)−1

if |E − eVgc| > |�p|,(
1 + |�p |2

(�vF q̃E )2 sinh2 (q̃E L)
)−1

if |E − eVgc| < |�p|,
(56)
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(a)

(b) 2 |Γf |2 + (eVgs)2/ vF

(c) 2 |Γf |2 + (eVgs)2/ vF

x1 x2

Γν(x) ν = p, f

2|Γp|

2|Γp|
eVgc

eVgcE = 0

E = 0

E = 0

FIG. 3. (Color online) Effects of the spin-preserving and spin-
flipping tunneling processes on the electronic spectrum of the edge
states in the tunnel junction with profile (50) and (51). (a) The spin-
preserving tunneling �p tends to induce a gap in the spectrum (which
in fact amounts to a reduction of the transmission, due to the finite
length of the junction), whereas the charge bias Vgc shifts vertically
the spectrum with respect to the Fermi level. (b) The spin-flipping
tunneling �f lifts the degeneracy of spin-↑ and spin-↓ edge modes,
inducing a mixing of the eigenstate spin components in the tunnel
junction as well as a mutual horizontal shift in the momenta. The
spin gate Vgs renormalizes such shift. (c) The effect of both tunneling
terms.

whereas the transmission coefficient related to spin-flipping
tunneling is easily obtained from the mf matrix (52) through
Eq. (38), and reads

Tf = 1 − |�f |2
(�vF k̃f )2

sin2[k̃f L]. (57)

Equations (56) and (57) directly involve �p, Vgc and �f , Vgs

respectively, and allow one to identify the physical effect of
these terms.

We start by analyzing the role of the spin-preserving
tunneling. These processes would tend—per se—to create a
gap in the electronic spectrum [see Fig. 3(a)] [9]. In fact, an
actual gap would be present only for an infinitely long tunnel
junction (L → ∞), whereas in a realistic tunnel junction
with a finite length L two energy regimes can be identified.
For |E − eVg,c| < |�p| the electronic states in the tunnel
junction region consist of evanescent waves in the longitudinal
direction x, which decay as ∼ exp[−q̃E |x|], where q̃E is
given in Eq. (55). In contrast, for |E − eVg,c| > |�p| one has
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0.4

0.6

0.8

1.0

T p

(E
F
 - eV
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) / |

p
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L|
p

| / v
F
=0.5

L|
p

| / v
F
=1

L|
p

| / v
F
=3

(a)

-6 -4 -2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0
(b)

eV
gs

/ |
f
|

T f

L| f | / vF=0.5
L|

f
| / v

F
=π/2

L| f | / vF=5

FIG. 4. (Color online) The case of a tunnel junction with a
constant profile of the tunneling amplitude (50). (a) The transmission
coefficient Tp due to spin-preserving tunneling (evaluated at the
equilibrium Fermi level EF ) is plotted as a function of EF − eVgc

(with Vgc denoting the charge gate voltage applied in the tunnel
region), for different values of the length of the junction. In the
energy range |EF − eVgc| < |�p|, Tp exhibits a minimum, which
gradually becomes a “gap” with increasing length of the junction
[see also Fig. 2(a)], whereas in the energy range |EF − eVgc| > |�p|
one can observe oscillations due to the interference of electronic
waves backward scattered at the ends of the tunnel junction. The
amplitude and frequency of the oscillations depend on the spin-
preserving strength of the tunnel junction ap = |�p|L/�vF : the
oscillations increase in depth and frequency with increasing ap .
(b) The transmission coefficient Tf due to spin-flipping tunneling
is plotted as a function of the spin gate voltage Vgs for various values
of the length of the junction. In this case no “gapped” energy range
is observed [see also Fig. 2(b)]. The oscillations are due to forward
scattering interference and increase in amplitude and frequency with
increasing af = |�f |L/�vF .

propagating waves, where the dispersion relation characterized
by k̃E [see Eq. (55)] is not linear though, due to the interedge
coupling. This explains why Tp depends on the energy E.
Notice that the charge gate voltage Vgc produces a vertical
shift of the dispersion relation by changing the position of
the Fermi level with respect to the Dirac point, so that Tp

is controlled by Vgc. These effects determine the behavior of
Tp, which is plotted in Fig. 4(a) at the equilibrium Fermi
energy E = EF as a function of EF − eVgc, for different
values of the tunnel junction length L. The minimum of the
transmission coefficient at the Dirac point EF = eVgc corre-
sponds to the highest value q̃EF

L = |�p|L/�vF the evanescent
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wave decay rate along the whole junction takes. While for
short junction |�p|L/�vF < 1 the value of the minimum
is finite, by increasing the length L of the junction and/or
the tunnel coupling �p, one observes a strong suppression
of the Tp minimum, which becomes a minigap as soon as
|�p|L/�vF > 1.

In contrast, the spin-flipping tunneling �f lifts the degen-
eracy of spin-↑ and spin-↓ energy bands, by introducing an
equal and opposite horizontal shift by ±k̃f in the momenta of
the dispersion relation, where k̃f is given by Eq. (53). Such
shift is independent of the energy E of the incoming electron
[see Fig. 3(b)], which explains why Tf is energy independent.
Nevertheless, k̃f depends on Vgs , so that Tf can be controlled
by the spin gate. Importantly, although |�f | and Vgs have
the same effect on the dispersion relation, they have a quite
different effect on the eigenstates. Indeed, while Vgs lifts the
degeneracy by preserving the eigenstates, the coupling �f

mixes spin-↑ and spin-↓ states, and in the tunnel junction the
eigenstates are not characterized by a unique spin orientation.
Due to the factorization property these features hold also when
both spin-preserving and spin-flipping tunneling are present
[see Fig. 3(c)]. In Fig. 4(b), the spin-flipping transmission
coefficient Tf [see Eq. (57)] is plotted as a function of the spin
gate voltage Vgs , for different values of the junction length.

We notice that both Tp and Tf exhibit oscillations, which
are both a signature of electron quantum interference, although
the origin is different. The oscillations of Tp [see Figs. 4(a)
and 5(a)] originate from the spin-preserving tunneling that
changes the group velocity. It is therefore an interference
induced by backward scattering at the two ends of the tunnel
junctions, where the phase difference of the interfering waves
is controlled by the charge gate voltage Vgc. The amplitude and
frequency of these oscillations depend on the spin-preserving
“strength” of the tunnel junction, i.e., on the dimensionless
junction parameter ap = |�p|L/�vF , combining length L

and tunneling amplitude |�p|. Indeed the minima occur at
energies |EF − eVgc| � |�p|√1 + (m + 1/2)2 (π/ap)2, and
their related values are approximately [1 + (ap/π )2/(m +
1/2)2]−1, with m ∈ Z. This is in agreement with the results
of Ref. [23], where only spin-preserving tunneling inside the
tunnel junction was considered. In practice, the oscillations
increase in depth and frequency with increasing strength ap.
This implies that while in the regime |EF − eVg,c| < |�p|
the transmission coefficient Tp decreases as a function of the
tunnel junction strength ap, in the regime |EF − eVg,c| > |�p|
it oscillates with L, as shown in Fig. 5(a), where Tp at EF = 0
is plotted as a function of ap. The two different dependencies
can be accessed by tuning the charge gate voltage Vgc.

In contrast, the oscillations of Tf [see Figs. 4(b) and 5(b)]
originate from f-tunneling processes, which couple electronic
waves with the same chirality. To illustrate this effect, let
us imagine that a right-moving electron wave with spin-↑ is
injected from terminal 2. Due to f-tunneling process, at the left
end of the tunnel junction the electronic wave is split into two
components, both propagating rightwards but with opposite
spin orientation. At the right end of the junction another
spin-flipping tunneling process may flip the spin-↓ component
back to spin-↑, inducing interference with the transmitted
wave. It is therefore a forward-scattering interference, where

0 2 4 6 8 10
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0.8
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(b)
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 / |

p
| =3

L|
p
|/ v
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0.0
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0.6

0.8

1.0

T f

eV
gs

/|
f
|=0

eV
gs

/|
f
|=1

L|
f
 |/ v

F

FIG. 5. (Color online) The behavior of the transmission coeffi-
cients Tp and Tf as a function of the length L of the tunnel junction
is typically nonmonotonic. (a) The spin-preserving transmission
coefficient Tp (evaluated at the energy EF = 0) is plotted as a function
of L|�p|/�vF , for various charge gate voltages. While for |eVg,c| >

|�p| it oscillates with L, in the regime |eVg,c| < |�p| it exponentially
decreases. (b) Tf is plotted as a function of the length of the junction
for various voltages Vgs . The behavior is always oscillatory. For
particular values of the junction length L|�f |/�vF = (m + 1/2)π
(at eVgs = 0) the coefficient Tf vanishes, leading to a complete spin
flip.

the phase difference k̃f L accumulated along the junction is
determined by the spin-gate Vgs . The amplitude and frequency
of these oscillations depend on the spin-flipping “strength” of
the tunnel junction, i.e., on the dimensionless parameter af =
|�f |L/�vF . Indeed the minima occur at spin gate voltage val-

ues eVgs � |�f |
√

π2(m + 1/2)2/a2
f − 1, and approximately

take values 1 − (af /π )2/(m + 1/2)2, with m ∈ Z. In turn, this
interference effect also implies a nonmonotonic dependence
of Tf on the length of the junction, as shown in Fig. 5(b). With
varying the value of Vgs , one can thus control the percentage
of the transmitted current that flows to terminal 4 with spin-↓
with respect to the current flowing to terminal 3 with a spin-↑.
Notice that for particular values af = (m + 1/2)π of the
tunnel junction spin-flipping “strength” and for eVgs = 0, the
transmission Tf can even vanish, leading to a complete spin
flip. This proves that spin-flipping tunneling processes have a
dramatic impact on transport, where the helical nature of the
edge states can be exploited to realize tunable spin polarizers
for spintronics applications.
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L

ν = p, fΓν(x)

x2
x1

FIG. 6. Sketch of the tunneling amplitude profile �ν(x) in the
tunnel junction region x1 � x � x2 (ν = p for spin-preserving
and ν = f for spin-flipping tunneling processes, respectively). An
arbitrary profile can be approximated with a staircase profile, and the
transfer matrix is easily obtained as a product of the constant profile
transfer matrices [see Eq. (58)].

In Sec. IV C we shall discuss how the oscillations of Tp

and Tf change when the sharp transition from vanishing
tunneling amplitudes �p and �f outside the junction to a
constant tunneling amplitude inside the junction [see Eq. (50)]
is replaced by a smoother profile.

B. Generalization to an arbitrary profile

For an arbitrary profile of tunneling couplings �p(x) and
�f (x) (see thick line in Fig. 6), the factorization property (30)
of the transfer matrix implies that one can compute mp and mf

separately, and that the transmission coefficients Tp and Tf are
then evaluated through Eqs. (37) and (38). In order to compute
mp and mf , we notice that the profile can be approximated
with the desired accuracy by an N -step staircase profile (thin
line of Fig. 6). Then, exploiting a general property of transfer
matrices [30], mp is straightforwardly obtained as the product
of the m(n)

p matrices related to each individual nth stair step,
characterized by a locally constant profile (here n = 1, . . . N ,
from right to left). Similarly for mf , obtaining

mν =
N∏

n=1

m(n)
ν , ν = p,f. (58)

One can thus use the case of a constant profile investigated in
Sec. IV A as a building block to model a tunnel junction with
arbitrary profiles for �p(x), �f (x), Vgc(x), and Vgs(x). In the
following sections we apply this general method to investigate
the effects of smoothing length and phase fluctuations in the
tunneling amplitudes �ν(x). For simplicity we shall restrict the
gate profiles Vgc(x) and Vgs(x) to a constant gate profile (51).

C. Effects of a finite smoothing length

We investigate here the case where the tunneling amplitudes
�ν(x) (ν = p,f ) change from a vanishing value (outside the
tunnel junction) to a “bulk” value �0

ν over a finite smoothing
length λ, as shown in the profile depicted in Fig. 7(a). For
simplicity, we shall consider the variation of the absolute value
|�ν(x)|, and assume that the phase φν(x) remains constant.
For a given value of the smoothing length λ, the actual profile
is approximated by a staircase profile with Nλ steps in the
smoothing region λ, as described in Sec. IV B. The value of Nλ

is increased until convergence in the transmission coefficients

L

λ λ

ν = p, f(a)

x1 x2

|Γν(x)|
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ν |
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FIG. 7. (Color online) (a) Sketch of a tunnel amplitude profile
�ν(x), where the transition from a vanishing tunneling coupling to
a bulk value �0

ν occurs over a smoothing length scale λ (here ν =
p,f for spin-preserving and spin-flipping processes, respectively),
where L is the total length of the junction. (b) The effect of a
smoothing length λ on the spin-preserving transmission coefficient:
Tp (evaluated at the equilibrium Fermi level EF ) is plotted as a
function of EF − eVgc, for different values of the ratio λ/L, for
the case L|�0

p|/�vF = 5. While the minigap region is essentially
unaffected by λ, the amplitude and frequency of the oscillations are
reduced as λ/L increases. They are still visible as long as one can
define a longitudinal “bulk” of the tunnel junction with a constant
value �0, i.e., for λ/L < 0.25. (c) The effect of a smoothing length
λ on the spin-flipping transmission coefficient: Tf is plotted as a
function of eVg,s , for the case L|�0

f |/�vF = 5. With increasing λ, the
minimum at Vgs = 0 exhibits a nonmonotonic behavior, decreasing
for λ/L = 0.1, and then increasing and even turning into a local
maximum for λ/L = 0.3. Similarly to the oscillations of Tp , also for
Tf the amplitude of the oscillations is suppressed when the tunnel
junction profile becomes very smooth.

is reached. In practice, it turns out that a number Nλ ∼ 20λ/L

of steps is sufficient to reach a convergence in the results, so
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that, e.g., for λ/L = 0.2 the correct result is obtained by using
only Nλ = 4. This proves that the method can be implemented
with ordinary numerical routines in a treatable and fast way,
thereby proving its usefulness and flexibility in handling an
arbitrary tunnel junction.

The results are plotted in Fig. 7. In particular, in Fig. 7(b)
the spin-preserving transmission coefficient Tp (evaluated at
the equilibrium Fermi energy EF ) is plotted as a function
of EF − eVgc, for different values of the smoothing length
λ, with λ = 0 corresponding to the case of the constant
profile discussed in Sec. IV A. With increasing λ, the
suppression of the transmission coefficient in the “subgap”
region |EF − eVgc| < |�0

p| remains unaffected, whereas the
visibility of the oscillations appearing in the “supragap” regime
|EF − eVgc| > |�0

p| tends to be suppressed. The spin-flipping
transmission coefficient Tf , plotted in Fig. 7(c), exhibits a
nonmonotonic behavior of the Vgs = 0 minimum by increasing
λ: with respect to the case of constant profile (thin solid black
line) it decreases for λ/L = 0.1, whereas it increases and even
turns into a local maximum for λ/L = 0.3. Similarly to the
oscillations of Tp, also for Tf the amplitude of the oscillations
is suppressed when the tunnel junction profile becomes very
smooth (λ ∼ L/2), like in a quantum point contact [31]. This
is due to an effective averaging over various lengths of the
backscattering processes causing the interference behavior.
In contrast, the oscillations are fairly visible as long as a
“bulk” of the junction can be identified (i.e., for λ < 0.25). By
combining etching and lithographic techniques this can easily
be realized in QSHE systems based on HgTe/CdTe quantum
wells [32]. In this case, because |�ν(x)| depends exponentially
on the transversal width of the tunnel junction [33], it is
reasonable that |�ν(x)| � constant inside the junction, and
rapidly vanishing |�ν(x)| at the ends of the tunnel region.

D. Effect of phase fluctuations

The tunneling amplitude is in general a complex function
�ν(x) = |�ν(x)| exp[iφν(x)], characterized by an absolute
value and a phase. While the effect of variation of the absolute
value |�ν(x)| has been considered in Secs. IV A and IV C,
here we would like to focus on the role of the phase profile
φν(x). To begin with, we observe that for the case of a constant
profile �ν(x) ≡ �ν exp[iφν] [see Eq. (50)] the specific value
of the phase φν is irrelevant, and only the absolute value |�ν |
matters in determining Tp and Tf [see Eqs. (56) and (57)].
While the assumption |�(x)| � constant seems to be fairly
reasonable in the central tunnel region, the situation may be
different for the phase φν(x). One can expect that, especially
in the presence of disorder, local potential fluctuations at each
side of the tunnel junction may lead to random changes in
the local Fermi wave vector kF , affecting the electron phase
∼ exp(ikF x). At a given longitudinal position x, the transversal
overlap integral determining the tunneling amplitude �ν(x)
may thus acquire phase fluctuations. To discuss these effects
we shall consider a profile where the absolute value |�ν(x)|
remains constant, and the phase φν(x) fluctuates along the
junction over a typical length scale λφν

, as shown in Fig. 8(a).
The effect on the transmission coefficients Tp and Tf are shown
in panels (b) and (c). In particular, in panel (b) Tp is plotted as a
function of EF − eVgc. As compared to the case of a constant
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FIG. 8. (Color online) (a) The phase φν of the tunneling am-
plitude �ν(x) = |�ν(x)| exp[iφν(x)] is assumed to fluctuate inside
the junction over a typical length scale λφν

, whereas the absolute
value |�ν(x)| is assumed to be constant (ν = p for spin-preserving
and ν = f for spin-flipping tunneling). (b) The spin-preserving
transmission coefficient Tp (evaluated at the equilibrium Fermi energy
EF ) as a function of EF − eVgc, for the case L|�p|/�vF = 5. With
respect to the case of constant φp (black thin line), the fluctuations
of φp induce resonance maxima which appear inside the the “gap”
region |EF − eVgc| < |�p|, which in turn also broadens, whereas
the oscillations in the “supragap” region |EF − eVgc| > |�p| are
enhanced (blue thick line). The curve becomes also asymmetric with
respect to EF − eVgc. (c) The spin-flipping transmission coefficient
Tf is plotted as a function of eVg,c, for the case L|�f |/�vF = 1.5:
the fluctuations of the phase φf modify the oscillatory pattern with
respect to the case of constant φf (black thin line), by increasing the
amplitude and making the plot asymmetric with respect to Vgs = 0
(blue thick line).

phase φν (black thin line), the curve determined by phase
fluctuations (blue thick line) exhibits various features: (i) the
appearance of some resonance maxima inside the “gapped”
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region |EF − eVgc| < |�p|, whose location depends on λφν

and on the typical deviation �φp of the fluctuations around the
average phase 〈φν〉; (ii) the broadening of the “subgap” region
|EF − eVgc| < |�p|; (iii) an enhancement of the amplitude of
the oscillations in the “supragap” region |EF − eVgc| > |�p|;
(iv) the symmetry of Tp with respect to EF − eVgc is lost. The
last two effects are particularly striking in the behavior of Tf

[see panel (c)], where the amplitude of the oscillatory pattern
is increased and Tf is asymmetric in the spin gate bias Vgs .

E. The δ-tunneling (DT) limit

We now want to compare the case of finite length tunnel
junction with the widely used [8,14–25] δ-tunneling model
of a pointlike constriction. Such model amounts to adopting
sharply peaked profiles for �p(x) and �f (x) in Eqs. (6) and
(7); i.e.,

�ν(x) = 2�vF γ DT
ν δ(x), ν = p,f, (59)

where γ DT
p/f denote dimensionless δ-tunneling amplitude pa-

rameters. Solving the field equation of motion (17) for the
δ-profile (59), one can determine the conductance matrix
GDT describing the transmission coefficients between the four
terminals, obtaining [20]

GDT
12 = GDT

34 = −e2

h

4
∣∣γ DT

p

∣∣2

(
1 + ∣∣γ DT

p

∣∣2 + ∣∣γ DT
f

∣∣2)2 ,

GDT
31 = GDT

42 = −e2

h

4
∣∣γ DT

f

∣∣2

(
1 + ∣∣γ DT

p

∣∣2 + ∣∣γ DT
f

∣∣2)2 , (60)

GDT
41 = GDT

32 = −e2

h

(
1 − ∣∣γ DT

p

∣∣2 − ∣∣γ DT
f

∣∣2)2

(
1 + ∣∣γ DT

p

∣∣2 + ∣∣γ DT
f

∣∣2)2 .

Importantly, the coefficients (60) are not factorized into a
spin-preserving and a spin-flipping contribution. This lack of
factorization seems to contradict the result found above for
an arbitrary tunneling profile, since the DT model should be
recovered from the finite length junction as the limit of L → 0
of short length. To solve this seeming paradox one can proceed
as follows. Instead of adopting the mathematical pointlike
tunneling profile (59), one can follow a physically more correct
procedure starting from a model where the tunnel junction has
a finite length, and taking the limit of vanishing length. This
is for instance accomplished by assuming the constant profile
described in Sec. IV A, where �ν(x) = �ν θ (x − x1)θ (x2 − x),
with �ν = |�ν |eiφν . Taking the limit of short tunnel junction
L = x2 − x1 → 0 and |�ν | → ∞, with keeping the tunnel
junction strengths L|�ν |/�vF = constant, one can operatively
identify the expressions for the coefficients γ DT

p/f in terms of
L|�p|/�vF and L|�f |/�vF . A lengthy but straightforward
calculation leads to

γ DT
p = sinh

(L|�p |
�vF

)
eiφp

cosh
(L|�p |

�vF

) + cos
(L|�f |

�vF

) , (61)

γ DT
f = sin

(L|�f |
�vF

)
eiφf

cosh
(L|�p |

�vF

) + cos
(L|�f |

�vF

) . (62)

Equations (61) and (62) show that the bare tunneling ampli-
tudes γ DT

p/f used in the mathematical δ-like profile (59) actually
depend on both the physical spin-preserving and spin-flipping
tunneling amplitudes �p and �f of the more realistic (i.e.,
narrow but finite) constriction model.

Physically, this seemingly surprising result can be under-
stood as follows. Let us focus, for instance, on the spin-flipping
channel: A spin-flipping tunneling event can be either direct,
i.e., resulting from one single f-process, or indirect, i.e.,
“dressed” by additional tunneling events occurring along the
junction. In particular, also an even number of p-processes can
contribute to the spin-flipping tunneling, with a weight deter-
mined by the strength ap = |�p|L/�vF of the spin-preserving
tunnel coupling, which combines the local tunneling amplitude
|�p| and the length L of the junction. At first, one is
tempted to think that the DT limit, where the length L of the
tunnel junction vanishes, only involves direct tunneling events.
However, because |�p| → ∞ and |�p|L is kept constant,
dressing p-processes do matter if |�p|L/�vF ∼ 1, so that
the parameter γ DT

f appearing in Eq. (59) in fact describes
the overall result of both the direct f-tunneling and all the
dressing p-tunneling events. Similarly for the other channel.
At mathematical level, such effect originates from the fact
that, when the size of the tunneling region becomes small, the
wave function inside the constriction stretches and eventually
becomes discontinuous in the limit L → 0. The discontinuity
is given by the integral

∫
dx �(x) over the tunneling region

x1 < x < x2. Thus, although the space “evolution” for �(x)
is factorized into a product of p- and f-contributions [see
Eq. (28)], its integral is not,

∫
dx [Uf (x) ⊗ Up,E(x)] �=

[
∫

dxUf (x)] ⊗ [
∫

dx Up,E(x)], so that
∫

dx �(x) depends on
both �p and �f in a nontrivial way. This integral is precisely
what determines the parameters γ DT

p and γ DT
f of the DT

model (59). Such singular behavior of the Dirac equation
in the presence of a δ-like potential or tunneling profiles
has long been known [34], and similar technical subtleties
arise also in other physical situations, such as the transport of
chiral electrons in graphene through gapped regions [35] and
tunneling through Majorana states appearing at the edges of
superconductors [36].

Importantly, using Eqs. (61) and (62) to reexpress the
mathematical tunneling amplitude γ DT

p/f appearing in the DT
model in terms of the physical parameters L�p/�vF and
L�f /�vF , the conductance matrix entries (60) do acquire the
factorized form (44), with spin-preserving and spin-flipping
transmission coefficients

T DT
p = cosh−2(L|�p|/�vF ), (63)

T DT
f = cos2(L|�f |/�vF ), (64)

consistently with the limit L → 0 and |�p/f | → ∞ in
Eqs. (56) and (57). This proves that in the DT model the
factorization is only seemingly lacking, and is hidden in the
physically misleading parametrization in terms of γ DT

p/f .
This comparison allows one to identify the range of validity

of the DT model (59). The DT model is applicable when
(i) both the tunnel junction strength parameters are small (i.e.,
L|�ν |/�vF � 1, with ν = p,f ) and (ii) when one is probing
energy ranges smaller than |�ν |, i.e., when |EF − eVgc| �
|�p| and |Vgs | � |�f |. If the first condition is not fulfilled,
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then for each channel ν = p,f the related bare DT parameter
γ DT

ν should actually be “dressed” by contributions arising from
higher order processes of the other channel [see Eqs. (61)
and (62)]. If the second condition is not fulfilled, the DT
model cannot reproduce the features arising from the internal
structure of the tunnel junction, such as the oscillatory pattern
shown in Fig. 4.

Within the validity regime of the DT model, one can
directly determine the tunneling parameters |�p| and |�f | to
the measured transmission coefficients. Indeed by performing
transconductance measurements, one can extract [Eqs. (46)
and (47)]

T DT
p = 1 − h

e2

∣∣GDT
12

∣∣ , (65)

T DT
f =

∣∣GDT
32

∣∣
e2

h
− ∣∣GDT

12

∣∣ . (66)

Then, by using Eqs. (63) and (64), one obtains

|�p| = �vF

L
arctanh

(√
1 − T DT

p

)
, (67)

|�f | = �vF

L
arcsin

(√
1 − T DT

f

)
. (68)

V. DISCUSSION AND CONCLUSIONS

We have investigated a tunnel junction coupling the helical
states flowing at the two edges of a 2D quantum spin Hall
system (see Fig. 1), which can be realized by etching a
constriction in a HgTe/CdTe or InAs/GaSb quantum well.
In such situation, electron tunneling occurs through two types
of time-reversal symmetric channels, namely spin-preserving
(p) and spin-flipping (f) processes, making such system a
bench test for possible applications of helical edge states
in spintronics. Indeed, due to the helical nature of the edge
states, currents in the setup can in principle be switched
from a terminal to another with either preserving or flipping
the spin orientation. To this purpose, the crucial issue is to
determine and control the transmission coefficients related
to the two types of tunneling processes. This challenging
task involves various difficulties, arising from the fact that
the Hamiltonian terms describing these two processes do not
commute, and that a tunnel region has a finite length and a
typically irregular and disordered profile, so that the tunneling
amplitude of each of the two processes cannot be described
by one single parameter but rather by a space-dependent
profile.

We have demonstrated that there exists an operative way
to separately extract the transmission coefficients Tp and Tf ,
related to p- and f-processes, respectively. Indeed, despite the
noncommutativity of the two tunneling terms, the analysis of
the scattering matrix of the 4-terminal setup has revealed that
its entries are always factorized into two terms, one depending
on the p-processes only and another one depending on the
f-processes only. This factorization of the scattering matrix
entries directly leads to the factorization of the conductance
matrix entries Gij , which determine the current flowing in
terminal i when a voltage bias is applied to terminal j . It is thus

possible to extract, via transconductance measurements, the
transmission coefficients Tp and Tf related to these two pro-
cesses (see Fig. 2). Furthermore, by considering the presence
of two electric gates across the junction, characterized by gate
voltages Vg,T and Vg,B , we have shown that Tp is controlled
by the charge gate Vgc = (Vg,T + Vg,B)/2 only, whereas
Tf is controlled by the spin gate Vgs = (Vg,T − Vg,B)/2
only.

The factorization of the scattering matrix entries is seem-
ingly lacking in the customary DT model for tunnel junction,
and we have shown that it is in fact subtly hidden in a
misleading parametrization of the coupling constants of that
model. In fact, we have proved that the factorization property
holds for an arbitrary profile of the tunneling amplitudes
�ν(x) (ν = p,f ). This enables one to go beyond the DT
model, and to investigate also the effects arising from the
internal structure of the tunnel junction on the transmission
coefficients Tp and Tf . We have first considered the effects
of the finite length L of the tunnel junction. In particular we
have shown that L determines the existence of two energy
regimes on Tp. In the range |EF − eVgc| < |�p| the coefficient
Tp exhibits a minimum, which is considerably suppressed and
tends to acquire a gaplike feature when the length of the tunnel
junction is increased [see Fig. 4(a)], whereas in the range
|EF − eVgc| > |�p| the coefficient Tp exhibits an oscillatory
behavior, with a period related to the length of the junction
through the spin-preserving strength ap = L|�p|/�vF . The
effect of the finite length on the spin-flipping transmission
coefficient Tf is different. This is due to the fact that �f

breaks the spin degeneracy of the helical states, without
the tendency to create a gap. Thus, Tf exhibits a minimum
as a function of the spin-gate potential eVgs , which never
becomes a flat dip [see Fig. 4(b)]. Oscillatory behavior is
still present, similarly to the “supragap” region of Tp. The
coefficients Tp and Tf exhibit a nonmonotonic behavior
as a function of the length L of the tunnel junction (see
Fig. 5).

We have then investigated how the scenario changes when
the profile of the tunneling amplitudes varies from a vanishing
value outside the junction up to a constant value �0

ν inside
the junction over a smoothing length λ [see Fig. 7(a)]. As
far as Tp is concerned, the presence of the smoothing length
λ has a minor effect in the “subgap” region |E − eVgc| <

|�p|, whereas the amplitude of the oscillations occurring in the
“supragap” region tends to be suppressed as λ/L is increased
[see Fig. 7(b)]. In contrast, as far as Tf is concerned, the
minimum at Vgs = 0 exhibits a nonmonotonic behavior as a
function of λ and, for λ/L > 0.1, it turns into a maximum
[see Fig. 7(c)]. As a whole, the amplitude of the oscillations
is suppressed as λ/L increases. However, the oscillations are
still visible as long as a longitudinal “bulk” with a roughly
constant |�0

ν | can be identified, i.e., for λ/L < 0.25.
Then, we have investigated the role of fluctuations of

the phase φν of the tunneling amplitude [see Fig. 8(a)]
�ν(x) = |�ν(x)| exp[iφν(x)], arising from disorder in the
tunnel junction. We have seen that in the presence of random
fluctuations of the spin-preserving tunneling amplitude phase
φp, resonances appear in the “subgap” region |EF − eVgc| <

|�p| of Tp, whereas the amplitude of the oscillations in the
“supragap” region |EF − eVgc| > |�p| is also enhanced [see
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Fig. 8(b)]. Furthermore, Tp is no longer symmetric with respect
to EF − eVgc in the presence of such fluctuations. On the other
hand, the fluctuations of the phase φf of the spin-flipping
tunneling amplitude lead to an enhancement of the amplitude
and location of the oscillations of Tf as a function of the spin
gate voltage Vgs [see Fig. 8(c)].

Experimental conditions. Let us now briefly discuss the
experimental conditions to realize the setup. It is well known
that, similarly to graphene, the helical edge states of QSHE
cannot be confined simply by electrical gating, due to the linear
Dirac-like spectrum and the Klein tunneling. Tunnel junctions
in QSHE are thus typically realized by lateral etching of the
quantum well, and lithographic techniques can be exploited to
tailor arbitrary shapes. Once the etched constriction induces
electron tunneling, lateral gates can be used to control it,
as described above. For a typical tunnel region of a width
W ∼ 100 nm, one can estimate |�p| ∼ 1.3 meV and |�f | ∼
0.3 meV [9,23,33]. Notice that |�f | ∼ |�p|/4; i.e., |�f | is
smaller, but not negligible with respect to |�p|. These values,
together with the length L of the junction, determine the
variation range for the gate voltages Vgc and Vgs to vary
Tp and Tf by a significant amount (see, e.g., Fig. 4). For
a L ∼ 1 μm long junction, this range is a few meV. These
values are well below the bulk gap and are consistent with the
typical experimental conditions [2], so that Tp and Tf should
be tunable in these regimes and display the internal structure
of the junction.

Applications in spintronics. Our results suggest the pos-
sibility to exploit the setup in Fig. 1 as a building block
for spintronics nanodevices. The underlying idea is the
following: due to the factorization property shown here, for
any given device in Fig. 1 one can first determine Tp and Tf

through transconductance measurements as described above.
In particular, one can extract the dependence of Tp and Tf

on the related gate voltage Vgc and Vgs , respectively. Such
“spectrum” of Tp and Tf depends on the specific features of
the tunnel junction (and possibly on the presence of disorder)
and represents a sort of fingerprints of the tunnel junction.
Then, by tuning the values of Vgc and Vgs according to the
obtained fingerprints, one can operate electrically on Tp and
Tf , independently, thereby realizing a device where spin-
polarized currents can be steered and redistributed in the four
terminals.

Effects of electron-electron interaction. Although the anal-
ysis of the interacting case is beyond the purpose of the
present paper, we would like to briefly discuss this aspect,
addressing the main underlying issues. Theoretical predictions
show that, in the presence of electron-electron interaction, a
pair of helical edge states realize a helical Luttinger liquid
(LL) where, besides a repulsively interacting charge sector
characterized by a Luttinger parameter g < 1, the spin sector
is also interacting with an attractive strength 1/g [6,8,14–
16] (g = 1 corresponds to the noninteracting limit). This
unconventional Luttinger liquid is thus particularly interesting
and, despite that no clear experimental evidence of interaction
effects on helical edge states has been observed so far, the
search for conditions where these effects can be disguised is
a fascinating problem. When a tunnel junction is realized,
electron-electron interaction interplays with tunneling in a
nontrivial way, leading to qualitatively different features as

compared to the noninteracting case. In the limit of a short
junction, and for 1/2 < g < 1 (a range that includes the
experimentally plausible regime g � 1 of weak interaction)
the analysis based on the the DT model [8,14,16] shows that
p- and f-tunneling terms are both irrelevant operators, with the
same scaling dimension, due to the g ↔ 1/g relation between
charge and spin sector. Corrections to the ideal conductance
are thus due to the finite bias voltage and/or temperature,
and appear as a power law with a g-dependent exponent.
However, when the finite length L of the junction is taken into
account, the problem becomes intrinsically more complicated
for various reasons. In the first instance, besides tunneling
terms, also interedge forward interaction terms arise along
the junction region, similarly to a spinful LL, breaking the
g ↔ 1/g relation that holds away from the junction [15,37].
As a consequence, p- and f-tunneling terms acquire different
scaling dimensions and, even to lowest order in tunneling,
qualitative modifications in the bias voltage dependence of the
conductance are expected as compared to the interacting DT
model. In the case of stronger tunneling |�νL|/�vF ∼ 1, these
modifications may even be more significant because of the
“dressing” of each DT tunneling amplitude by higher order
contributions stemming from the other tunneling channel,
similarly to the noninteracting case Eq. (62). Furthermore,
interedge interaction also involves two types of 2-particle
backward scattering, which preserve and flip spin, respectively
[8,15,37]. Finally, while along a noninteracting edge Rashba
spin-orbit coupling cannot induce single-particle backscat-
tering, in the presence of electron-electron interaction such
coupling can lead to an effective 2-particle backscattering
along the edge [38,39]. In a tunnel junction, such intraedge
effect is expected to interplay with interedge tunneling and
interaction. The whole problem can thus be formulated in
terms of two coupled Luttinger liquids (for charge and spin
sectors) with inhomogeneous interaction parameters gc(x)
and gs(x), and with inhomogenous nonlinear coupling arising
from both tunneling and interaction terms, over the junction
length. This highly nontrivial problem does not have an
exact solution is general, and deserves a specific analysis.
On the basis of results obtained in some specific cases and on
formal similarities with inhomogeneous LLs in the presence
of impurities [17,40], we can formulate some expectations
for the case of weak tunneling |�νL|/�vF � 1. In this case
the conductances are modified with respect to the DT model
by a modulation factor f , which depends in a nonmonotonic
way on the the ratio eV/EL between the bias voltage V

and the energy scale EL ∝ vF /L associated with L. Also,
the period of the oscillations shown, e.g., in Fig. 4 should
be modified by an interaction-dependent factor. Whether
the factorization persists in the presence of interaction is a
challenging question.
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