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Dottorato di Ricerca in

Informatica

Ciclo XXVI

Settore Concorsuale di afferenza: 01/B1

Settore Scientifico disciplinare: INF/01

Operating System Contribution
to Composable Timing Behaviour

in High-Integrity Real-Time Systems

Presentata da: Andrea Baldovin

Coordinatore Dottorato Relatore
Prof. Maurizio Gabbrielli Prof. Tullio Vardanega

Esame finale anno 2014





A B S T R A C T

The development of High-Integrity Real-Time Systems has a high footprint in terms
of human, material and schedule costs. Factoring functional, reusable logic in the
application favors incremental development and contains costs. Yet, achieving incre-
mentality in the timing behavior is a much harder problem. Complex features at all
levels of the execution stack, aimed to boost average-case performance, exhibit timing
behavior highly dependent on execution history, which wrecks time composability
and incrementaility with it.

Our goal here is to restitute time composability to the execution stack, working
bottom up across it. We first characterize time composability without making assump-
tions on the system architecture or the software deployment to it. Later, we focus on
the role played by the real-time operating system in our pursuit. Initially we consider
single-core processors and, becoming less permissive on the admissible hardware
features, we devise solutions that restore a convincing degree of time composability.

To show what can be done for real, we developed TiCOS, an ARINC-compliant
kernel, and re-designed ORK+, a kernel for Ada Ravenscar runtimes. In that work, we
added support for limited-preemption to ORK+, an absolute premiere in the landscape
of real-word kernels. Our implementation allows resource sharing to co-exist with
limited-preemptive scheduling, which extends state of the art.

We then turn our attention to multicore architectures, first considering partitioned
systems, for which we achieve results close to those obtained for single-core processors.
Subsequently, we shy away from the over-provision of those systems and consider
less restrictive uses of homogeneous multiprocessors, where the scheduling algorithm
is key to high schedulable utilization. To that end we single out RUN, a promising
baseline, and extend it to SPRINT, which supports sporadic task sets, hence matches
real-world industrial needs better.

To corroborate our results we present findings from real-world case studies from
avionic industry.
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1

I N T R O D U C T I O N

1.1 high-integrity real-time systems

In last few decades computing systems have dramatically changed our everyday lives:
their presence has become more and more pervasive in almost every human activity
and is now fundamental in a variety of complex products, from big airplanes and
satellites to tiny personal devices.

As a consequence of their intensive interaction with the real world those systems
are required to react to external stimuli within a certain amount of time: as such,
the correctness of the system behaviour depends not only on the logical results
of the computations, but also on the physical instant at which those results are
produced. Software systems can be classified in different ways according to the
perspective taken on them, as for example their application domain, the requirements
to achieve or the realized internal behaviour. In the case of real-time systems, a
major distinction is performed according to their timeliness needs: throughput-oriented
systems focus on executing parallel jobs with the goal of maximising the overall work
product, even at the price of sacrificing the performance of individual tasks. On the
other side of the spectrum instead safety-critical systems are required to guarantee
predictable runtime behaviour for all tasks, as their failure may potentially cause
severe consequences on either humans lives, the environment, or existing financial
assets. Example domains where safety-critical systems find their application include
the biomedical, the automotive, the avionics and the space industries: the strict real-
time nature of several software programs in those domains causes a growing demand
for guaranteed performance, which needs to be asserted early in the development
cycle, well before deployment. For this reason, safety-critical system usually incur hard
integrity requirements specified at design time and validated through an accurate and
rigorous certification process. Domain-specific qualification standards, as for example
the DO-178B [2] for the avionics, have been defined for this purpose, to regulate the
design, development and verification processes that must be adopted to deliver correct,
time-predictable, and dependable systems.
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The timing behaviour of high-integrity systems is assessed in industry by means of
schedulability analysis: provided that the temporal behaviour of individual tasks is
known, schedulability analysis is capable of deciding whether a system can meet its
timing constraints with the provisioned resources. The problem therefore becomes
being able to assess the timing behaviour of elementary tasks, which assembled
together determine the system behaviour end-to-end. To this end Worst-Case Execution
Time (WCET) analysis techniques have been devised to compute the time bounds
of individual pieces of software, either by direct measurements on the target system
or by simulating its execution on a faithful model, to be later passed as input to the
scheduling analysis. The ability of providing accurate execution time bounds is central
to determining the success or the failure of a system: on the one hand the calculated
WCET values must be safe to ensure correctness, on the other hand they must be as
tight as possible to avoid over provisioning and minimise factory costs. As the safety
requirements are hard to comply with, the only way HIRTS providers can compete is
by reducing the costly investments in the verification process, while still preserving
conformance with the safety standards.

For the above reasons industry takes a conservative approach to system development:
resting on simple hardware and software makes it more affordable to comply with
the obligations of a demanding certification process. However, even restricting to a
favourable setting is sometimes not enough, since the unpredictable behaviour arising
from the direct or indirect interactions among individual components may impair
timing analysis guarantees and eventually harm the safeness of the system itself. This
is why the verification of a high-integrity system is still an expensive task, as a good
deal of engineering effort is involved in the delivery of those systems.

Nonetheless, the increasing demand for new and more complex functionality, thus
for more computational power, has recently started to push the market towards the
opposite direction and calls well-established engineering practices into question to
explore more ambitious architectures and meet growing customer needs. That is
why even the most conservative industries have recently seen their interest growing
towards multicore systems and advanced HW/SW features in general. As an example
from the avionics, the size of software programs used in aircraft on-board processors
has increased almost exponentially in the past (see Figure 1, courtesy of Airbus [3]),
causing an equivalent increase in the demand for processing power. This trend is
predicted to continue in the future owing to the use of new, complex and hard real-
time functionalities for flight control, collision avoidance and auto-piloting. A similar
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Figure 1.: Code size evolution for safety-critical systems in Airbus aircrafts.

trend has been observed in other application domains like the automotive, where the
number of networked ECUs in a car has grown of 2-3 times in just a decade [4].

In a complex scenario like this, where contrasting needs shift critical decisions in
very different directions, a consolidated development methodology and a trustworthy
verification approach – rooted in solid timing analysis techniques – are of paramount
importance more than ever before.

1.1.1 Development Process

Incrementality is a distinctive and unifying trait of the industrial software development
process: because of the stringent requirements mentioned in the previous section,
HIRTS development draws high potential benefit from taking an incremental approach
to better master the complexity of delivering increasingly large and heterogeneous
systems. Besides additive design and development, an incremental approach also
enables step-by-step verification during system integration. This makes the production
process more effective, which is a mandatory prerequisite to increase productivity and
shorten time to market.

As a conceptual effort, the design process proceeds in two directions, top-down and
bottom-up. The former aims at defining the elementary parts of the system starting
from a set of high-level requirements: from this viewpoint it is convenient to take
a divide-et-impera approach to dominate the complexity of the system to be built,
following the principle of separation of concerns first advocated by Dijkstra in [5].
Decomposing a system design into smaller units to be individually developed and
analysed only makes sense if the overall software product lends itself to an easy
compositional aggregation. The principle of compositionality defined below takes a
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top-down perspective to ensure that the system as a whole can be fully characterised
as a function of its constituting components.

compositionality. Properties of any composite and of the system as a whole
should be derivable from properties of individual components [6][7].

The principle of compositionality is widely accepted as an industrial practice and is
supported by the methodological framework provided by Model Driven Engineering
(MDE) [8]: in order to address the complexity of system development, MDE proposes
to combine domain-specific modeling languages and transformation engines to define
different views on the system, whose abstraction level is progressively lowered until
sufficient detail is provided to enable actual implementation. In this process the
principle of separation of concerns helps attain separation between the functional and
non-functional parts of a system, thus permitting to reuse the former within different
designs independently of the specific implementations of the latter. The software
entities involved in this approach are components, containers and connectors [9][10]:
according to [11] components are the elementary units of composition of software,
which conform to a component model prescribing the properties they must satisfy and
the methods for composing them. Within components pure functional logic is encap-
sulated, making them suitable for reuse, whereas non-functional properties for each
component are wrapped into containers. A computational model and a programming
model are defined to match components and containers to a set of analysis techniques
and programming languages, respectively, to convey analysis and implementation
semantics. Finally connectors are dedicated to decoupling inter-component commu-
nication by mediating between containers. Containers and connectors have strong
dependencies on the execution platform and are therefore the only part to refactor when
the execution environment changes.

The viability of such a divide-and- conquer approach silently builds on the principle
of composability, which takes the bottom-up perspective on the system and guarantees
that incrementally aggregating components and their functionality is in fact possible:

composability. Properties defined for the elementary components of the system
must hold independently of the execution context and be preserved after composition
in the deployed system [6][7].
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The principle of composability is easily explained in the functional dimension.
For example, if the functional behaviour of a module ai has been proven correct in
isolation, then it is so even in case a becomes part of a system A that includes other
functions, say aj, ak , etc. For this reason, the system components can be considered in
relative isolation when assessing their functional correctness, as the latter is naturally
preserved across software increments. Similarly, in the timing dimension, it would be
desirable for a software module to exhibit the same timing behaviour independently of
the presence and operation of any other component (present or future) in the system.
Cost and time efficiency concerns require that components, which are developed and
verified in isolation, should exhibit the same exact behaviour regardless of how they
are eventually aggregated.

The benefit that can be drawn from compositionality and composability is twofold:
on the one hand functional and non-functional requirements that have been decom-
posed and assigned to elementary components in the design phase can be later
composed bottom-up to incrementally verify larger portions of the system. On the
other hand, whenever changes to already existing parts of a system are needed, the
misbehaving parts can be modified and verified again in isolation. Unfortunately,
industrial penetration of these principles still encounters some difficulties [7], mainly
due to the lack of composability in the time dimension, as we discuss in this thesis.

1.1.2 Timing Analysis

As temporal correctness is one fundamental goal of real-time systems, techniques
need to be developed to provide safe and affordable timing analysis of delivered
systems. More than meeting safety requirements, timing analysis is of paramount
interest to industry to the goal of correctly sizing system requirements, to avoid over
provisioning of computation resources and rationalise costs; obviously, this can be
achieved only if the costs of verification are kept low as well. In hard real-time systems
therefore composability is expected to go beyond the functional dimension, to enable
separate timing analysis on smaller, functionally cohesive building blocks that could
be tasks or groups thereof. Time composability should guarantee that the timing
behaviour of any such building blocks is not inordinately affected by the presence
and activity of any other task in that system. The commonly adopted method to
verify the timing behaviour of a system is schedulability analysis [12]: given the
active entities (tasks) defined in a system and some temporal constraints over them to
characterise their behaviour (such as their activation period, deadline and execution
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time), schedulability analysis checks whether such a defined system is feasible; if so,
the scheduler associated with the analysis is capable of calculating a valid schedule for
the systems, that is an assignment of computing resources to tasks over time, satisfying
the constraints imposed to the system.

The state-of-the-art approach to schedulability analysis is Response Time Analysis
(RTA) [13], which calculates worst-case response times for the individual tasks in
a system, that is the longest time it takes for a job of a particular task to complete
its execution since its release, accounting for worst-case interference from the other
tasks. Such a value clearly depends on the execution time of a task, i.e. the amount of
processor time a task requires to complete its jobs. Additionally, the analysis assumes
that disturbance can be safely bounded: for example in systems where preemption is
enabled and according to the scheduling policy in use, response times might extend
to account for blocking due to contention for shared resources. For this reason the
soundness itself of the analysis results critically depends on the actual degree of
time composability in the system. While some of the parameters required by RTA
are fixed and statically decided at design time, others are strictly dependent on the
dynamic behaviour of the system at run time and cannot be determined beforehand.
The most critical of them is the execution time of a task, which naturally depends
on a variety of factors and their interactions, which may be too expensive or even
impossible to determine before the system is running. Execution time can therefore
vary across different execution scenarios between a minimum and a maximum value,
which are called Best-Case Execution Time (BCET) and Worst-Case Execution Time
(WCET), respectively (see Figure 2). Timing analysis focuses on the latter, as HIRTS
must necessarily be sized on the worst-case scenario to contend with hard certification
arguments and provide the desired safety guarantees. Looking at Figure 2, it is clear
that the WCET of a task is a representative value which upper-bounds all actual
execution times of that task in every possible execution once the system is deployed.
This is a strong yet reasonable requirement, since WCET values should be calculated
once at validation time and then be always valid while the system is in the production
phase, in order for the timing analysis process to be affordable.

As already noticed, the upper bound represented by the WCET value should present
two important properties, safeness and tightness. Unfortunately, it has been observed
that the problem of determining the execution time of a unit of software is equivalent
to deciding its termination [14]; this daunting challenge suggests abandoning the hope
of determining exact execution times by analysis in reasonable time and complexity,
and has shifted attention to measurement-based and approximated methods.
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Figure 2.: Execution time distributions [1].

Current state-of-the-art timing analysis techniques can be broadly classified into
three strands: static timing analysis (STA), measurement based (MBTA) and hybrid
approaches (HyTA) using combinations of both[1]. More recently Probabilistic Timing
Analysis (PTA) techniques have been proposed to tackle the difficulties encountered
by traditional approaches [15][16].

static timing analysis . Static timing analysis techniques and tools (for exam-
ple [17]) do not execute the code directly, instead they rely on the construction of a
formal model of the system and a mathematical representation of the application:
such representation is processed with linear programming techniques to determine
an upper-bound on the WCET of that specific application on the model. Accordingly,
the analysis process is split into two phases, namely program analysis and microarchi-
tecture modeling [18]. The former is the problem of determining what sequence of
instructions will be executed in the worst-case scenario: in this step existing paths
and branches in the code are identified and additional information like bounds on
loop iterations and ranges on data variables is collected. Since the number of program
paths is typically exponential with the program size, it is important to remove the
largest possible number of infeasible paths from the solution search space; this can be
done through program path and data flow analysis, but human intervention is still
required as this process cannot be fully automated. However, analysis accuracy can be
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traded for simplicity in this phase by deciding at what level code should be evaluated:
considering the source code makes analysis easier but its results may be invalidated at
the machine level because of the compilation process standing in between.

The second challenge of a static analysis process is instead the problem of modeling
the target hardware system and computing the WCET of a given sequence of instruc-
tions executing on it; the model abstracts significant properties of the processor, the
memory hierarchy, the buses and the peripherals in use and must be conservative with
respect to the timing behaviour of the real hardware. Obviously, the more complex
such a hardware architecture is the more difficult will be modeling it safely: in fact
some of the hardware accelerator features introduced in latest years to speed up execu-
tion on the average case make the execution time of a single run highly unpredictable.
In those cases determining a safe and tight timing bound may be very difficult or
even highly impractical, since execution time becomes highly dependent on execution
history and on local hardware states. Finally, WCET bounds are computed starting
from blocks of smaller granularity and then combining results together according to
the structure of the program’s control flow graph produced in the first step. Unfortu-
nately, subtle phenomena like timing anomalies [19] may arise and risk to harm the
safeness of the analysis process: timing anomalies manifest when considerations made
to model the local worst-case do not apply to the global worst-case and therefore
introduce some underestimation in the analysis; such pathological cases originate from
the non-determinism introduced by dynamic hardware features, such as speculation
and out-of-order execution in pipelines. In fact, non-locality of instruction timing pre-
vents the analysis from knowing exact machine states and might break the approach
taken by static analysis to reconstruct global WCET bottom-up [20]. In this landscape,
one of the most challenging issues is understanding how to compose WCET bounds
calculated for smaller parts of a system into an end-to-end WCET estimate. To further
complicate analysis, systems where a real-time operating system (RTOS) layer is present
usually experience additional interference from the operating system itself: system
calls nested into an application’s control flow may take unpredictable time to execute
and pollute the machine state in a way that degrades timing performance and makes
it much more difficult to determine.

The strength of static WCET analysis methods is the safeness of the results they
produce, as overestimations are made in all required steps; at the same time this
often reveals as a drawback, since upper bounds computed by static analysis are
not tight enough to be used in real industrial applications as they push towards
exceedingly pessimistic system oversizing. Moreover, this type of analysis is usually
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too expensive to carry out owing to the need to acquire exhaustive knowledge of
all factors, both hardware and software, that determine the execution history of the
program under analysis. Some processor architectures may dramatically increase
this cost. Others, possibly subject to intellectual property restrictions or incomplete
documentation, may even make it altogether impossible. In such scenarios static
analysis is usually discouraged in industrial practice, at least for the qualification of
a system as a whole, rather confining its adoption to those specific sub-components
whose size and complexity is manageable to fit this purpose or alternatively resorting
to observations.

measurement-based timing analysis . Another approach to WCET analysis
is the measurement-based one: the simple idea behind it is to execute the code of
interest directly on the target hardware or a cycle-accurate simulator for a certain
number of times and possibly with different sets of inputs to measure real, end-
to-end execution times [21]. Such timing values are usually referred to as WCET
estimates rather than bounds, as it cannot be guaranteed that actual WCET is present
among them; this is again because of the same problems faced by the different
steps of the static analysis process. First, the observed execution times are subject
to data dependencies influencing the choice of paths taken in the control flow: for
this reason one can never know whether the worst-case path is included in the
observed measurements. Additionally, as WCET depends on the initial hardware
state, execution times also depend on the initial conditions of both hardware and
software which are difficult to define, control and reproduce with sufficient detail,
especially for complex hardware architectures. For this reason one common technique
in industry is to measure high watermarks and add an engineering margin to make
safety allowances for the unknown. However, the size of a suitable engineering
margin is extremely difficult – if at all possible – to determine, especially when
the system may exhibit discontinuous changes in timing due to pathological cache
access patterns or other unanticipated timing behaviour. There is finally a further
problem with measurements, which is related to the overhead introduced by the
method itself: if extra instrumentation code is introduced to collect timestamps or
cycle counters, produced results will be affected accordingly; fully transparent, non-
intrusive measurement mechanisms are possible only using external hardware, which
prevents the process from being fully automated.
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hybrid timing analysis. Hybrid timing analysis approaches [22] try to com-
bine the virtues from both static and measurement-based techniques; timing for
smaller program parts is obtained via measurements on real hardware, while com-
position of values to deduce the final WCET estimate is done statically. Determining
the appropriate granularity for the elementary program blocks to be measured is an
open problem, while to combine observed execution time profiles or even to predict
unobserved events it has been proposed to apply probability theory [23][15]. Hybrid
techniques avoid the need for constructing an expensive model of the hardware and
allow the user to achieve a higher confidence in a WCET than simply measuring it
end-to-end. However such techniques require a good method of measuring on-target
timing information and still rely on having an adequate level of testing. Hybrid
measurement-based approaches have been successfully implemented in academic
[24][25] and commercial tools [26] for WCET analysis.

probabilistic timing analysis . Probabilistic timing analysis (PTA) [27][28][29]
has recently emerged as an attractive alternative to traditional timing analysis tech-
niques. PTA considers timing bounds in the same manner as the embedded safety-
critical systems domain addresses system reliability, which is expressed as a compound
function of the probabilities of hardware failures and software faults. PTA extends this
probabilistic notion to timing correctness by seeking WCET bounds for arbitrarily low
probabilities of occurrence, so that even if violation events may in principle occur, they
would with a probability well below what is specified by a system safety requirements.
The EU FP7 PROARTIS project [30][16] we were involved in is a recent initiative in
this field aimed at defining a novel, probabilistic framework for timing analysis of
critical real-time embedded systems.

1.2 problem description

Ideally, by the adoption of a compositional approach to system design and develop-
ment, incrementality should naturally emerge as a consequence of the composable
behaviour of the elementary constituents (i.e., software modules) of a system. However,
in practice, real-time software development can only strive to adopt such discipline,
as the supporting methodology and technology are still immature. At the same time,
the analysis of the timing behaviour of real-time systems, whether local to application
procedures or global at system level, silently builds on the assumption that the timing
bounds computed from or fed to it add compositionally. This is not true in general as
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well and guaranteeing just timing compositionality on current hardware and software
architectures is difficult. Although timing analysis frameworks typically characterise
the timing behaviour of a system compositionally, a truly composable timing behaviour
is not generally provided at the lower levels of a system. In particular, two main factors
can be accounted for breaking the stability of execution times, which is a fundamental
enabler of time composability [6]:

• Sensitivity to the execution context: the machine state influences the execution time
of software running on top of it.

• Data-dependent decisions in the control flow: different input data activate different
control flow paths in a piece of software, which normally take different execution
times to complete.

Whereas the latter can be mitigated by appropriate design choices and coding styles
(which are discussed in Chapter 2), sensitivity to the execution context can only be
tackled by minimising the dependence of the timing behaviour from the execution
history. The timing behaviour of numerous hardware and software components
seen in isolation can be abstracted into simple deterministic worst-case models. This
quality is much desired by state-of-the-art static timing analysis techniques, which
can thus be applied with good cost-benefit ratio. The situation changes when those
individual components are assembled into larger units. As long as the number of
the involved components and of the interactions among them remain small, the
resulting system can be analysed by STA with decent (i.e. not overly pessimistic)
results. However, when the complexity increases, as it is likely the case for future
systems, modelling system behaviour as it results from the interaction of multiple
independent components becomes exceedingly costly and STA hits the wall [31][32].
In this case composability in the timing dimension is wrecked by history-sensitive
execution-time jitter as the execution history becomes a property of the whole system
and not that of a single component. Time composability may in fact be broken at
any place of interaction between execution components at any level of granularity in
the hardware-to-software axis of composition (Figure 3). The main obstacle to time
composability is that modern hardware architectures include a score of advanced
acceleration features (e.g., caches, complex pipelines, etc.) that bring an increase in
performance at the cost of a highly variable timing behaviour. Since those hardware
features typically exploit execution history to speed up average performance, the
execution time of a software module is likely to (highly) depend on the state retained
by history-dependent hardware, which in turn is affected by other modules [33],
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Figure 3.: Axis of composition in a reference layered architecture.

and also propagate up to the level of schedulability analysis via the occurrence of
preemption. Any loss of accuracy in, or plain lack of, knowledge on the state of
inner components with bearing on the timing behaviour of interest yields substantial
pessimism: this reduces the guaranteed performance of the system. Unless we want
to resort to a simplified (and less performing) hardware architecture, as proposed
in [34], industry is presented with a lose-lose choice: either increase the number
of hardware units to compensate for the lesser guaranteed performance per unit,
which breaks economy of scale, or endure the possibly prohibitive costs of seeking
the missing information needed to mitigate pessimism in computing bounds. In the
latter case timing interferences must be taken into account in more complex forms of
schedulability analysis: for example the interference of caches on task interleaving is
considered in [35], whereas [36] considers the problem in a multicore setting. Yet the
cumulative interference arising from all history-sensitive hardware cannot always be
efficiently accounted for by state-of-the-art timing analysis techniques, which incur
either steep pessimism or vast inaccuracy.

A less studied threat places along the software-to-software axis of composition,
between the real-time operating system (RTOS) and the application. In [37] the author
argues that, unless corrective measures are taken, the inter-dependence between the
RTOS and the application is so tight that their respective timing analysis cannot be
performed in reciprocal isolation. In other words, RTOS and application are not
time-composable in the general case. One may wonder about the effects of this argued
lack of time composability: after all we haven’t seen systems reportedly fail because
of that problem. In fact, the most direct consequence of applying timing analysis
to a non-time-composable system is that the results are simply incorrect and we
cannot easily tell whether they err toward excessive pessimism or on the opposite
side. One of the reasons why we don’t see serious time violations happen in non-time-
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composable systems is that industrial practice injects arbitrarily large slack quantities
in the system schedule to compensate for the possible occurrence of local overruns of
modest amplitude. While empirically successful, this industrial practice bases on two
fundamental unknowns (the ”right” amplitude of the slack and the ”largest” possible
amplitude of the prediction errors) and therefore has little to save itself when the
conditions change.

Tools have been developed both in industry and academia that leverage the analysis
methods mentioned in Section 1.1.2 [38]; however, they all face some usability problems
which prevent their actual use in real-world applications [39]. Measurement-based
methods suffer from the lack of observations due to insufficient code coverage and
unexercised paths, which could make analysis miss actual WCET. On the other hand,
static methods are concerned with the abstract representation of the target hardware
platforms, since improving model characterisation would lead to better results and
tighter bounds. Understanding the program structure is therefore a cross-cutting issue,
which has been attacked also with the help of dedicated programming languages and
compilers. Chapter 2 shows how past and current research tries to deal with such
issues.

1.3 objectives and contribution

HIRTS industry needs to take an incremental approach to software development
more than ever, in order to rationalise costs and shorten time to market. A number
of methodologies and frameworks currently exist to support the design and imple-
mentation of reusable and portable software systems: while many of them perfectly
support the delivery of functional requirements, little progress has been made to
address non-functional needs, like timeliness. Current component-based techniques
are therefore doomed to failure if better control of spatial and temporal composability
in-the-small are not provided. We were given the opportunity to study the issues
above in the context of the EU FP7 PROARTIS project [30][16]: this initiative aimed
at defining a novel, probabilistic framework for timing analysis of critical real-time
embedded systems. As an industrial trait, the main project focus was set on partitioned
applications, commonly encountered in avionics systems, and particularly on the IMA
architecture and its ARINC 653 [40] incarnation. These industrial standards encourage
the development of partitioned applications, where the concept of composability is
strictly related to the fundamental requirement of guaranteeing spatial and tempo-
ral segregation of applications sharing the same computational resources within a
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federated architecture. At the same time we kept an eye open on the space industry,
which shares similar safety-critical and timing verification concerns with the avionics
domain, though imposing different requirements.

Our research was focused on attaining time composability taking a bottom-up per-
spective on the system. As a preliminary study we identified those factors across
the system architecture limiting the achievement of time composability in real-world
systems: this was achieved by understanding the dependencies of execution time on
execution history that are introduced along the execution stack. The analysis was
carried out through the traditional structure of a layered architecture as shown in chap-
ter 2. Breaking down the execution platform into three classic layers – the hardware
layer, an operating system layer (kernel) in the middle, and, finally, a user application
layer running on top – makes it possible to address history independence and thus
timing composability as a bottom-up property that must be first accomplished by
the underlying hardware, then preserved across the OS primitives and services, and
finally exhibited by the user application. In order to give strong foundations to our ap-
proach we first drew some fundamental assumptions on the hardware platform to be
considered: we identified the obstacles to timing analysis as those features specifically
intended to speed up the average-case performance, but that present highly jittery
behaviour. To control those effects, the execution environment must be accurately
characterised from a hardware perspective, either by enforcing full determinism or
with the help of probabilistic techniques, as explained in Section 2.5.2.

The core of our work aims at these two goals:

1. Propose countermeasures to remove the sources of dependency which hinder
time composability and software analysability at the operating system level. We
argue that the OS is the best place to inject time composability in a system due
to its privileged position in between unpredictable hardware and opportunistic
application code. Investigation focused on those resources, algorithms and data
structures operating within the kernel which present variable service and access
times. In fact, jittery OS behaviour influences application timing as much as
hardware, even though this aspect is often neglected in literature: making OS
primitives composable in the time domain is therefore a strong prerequisite to
time analysability. To this end the execution of the OS should not degrade the
machine state in a way that could interfere with the application execution, and
fixed-latency kernel services should be implemented, whose invocation overhead
is known.
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2. Evaluate and implement solutions to counter the lack of time composability on
multicore architectures. Even though it is widely recognised that the architecture
of multicore processors is a completely different and more challenging setting
than the single core, it is a matter of fact that current trends push towards the
adoption of multicore architectures even in safety-critical systems. The very
universal principle of time composability must be therefore reconsidered to study
its achievement – if at all possible – in a variety of multiprocessor platforms.

Ideally, time-composable hardware and kernel layers should be able to remove all
history-dependent timing variability so that state-of-the-art timing analysis approaches
could be able to account for the residual variability at the application level. The latter
is therefore the only place at which (application-logic related) timing variability should
be allowed, and is therefore responsible for preserving system analysability and
predictability by proper design and implementation choices. Experimental evidence
in support of proposed solutions was provided by means of state-of-the-art timing
analysis techniques and tools: hybrid timing analysis was privileged because of its
wide adoption in the industry which makes it as a trustworthy approach to timing
analysis. Additional support in this sense was provided by the PTA methodologies
and tools developed in the PROARTIS project, which in turn make our investigation a
fundamental contribution in the process of defining the applicability and requirements
of the emerging probabilistic timing analysis frameworks.

1.3.1 Contributions

This thesis sets in the ongoing investigation on high-integrity real-time systems carried
on at the University of Padova; for this reason past and current work from our group
is referenced and discussed in this thesis. In this scope we attacked the problem of
providing time composability to the process of timing verification of HIRTS taking on
an industry-oriented perspective, thanks to our involvement in the PROARTIS project.
Assuming educated behaviour of the HW layer and exploiting existing research in
HW timing analysis, we focused on the OS layer and reasoned about its design with
the purpose of enabling time-composable system analyisis. Alternatively, where no
guarantee on the HW platform could be leveraged we investigated how the OS can
attenuate its disrupting behaviour.

Figure 4 shows the reciprocal interactions among the different actors which come
into play when reasoning about time composability from a system-level perspective:
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the layers of the system architecture we consider are arranged in diagonal, along the
dashed double-arrow from the upper-left to the lower-right corner. The OS is placed in
the centersince it is the key point of our discussion, together with the concept of time
composability which is also included in the picture. Straight arrows highlight how
decisions taken on one layer or concept influence other blocks. Solid arrows identify
the main conceptual loop around which the work of this thesis revolves: according
to the domain-specific application needs, which influence the decisions on the the
task model to be adopted, choices have to be taken in the OS layer to support those
requirements; these choices in turn impact the achievable degree of composability in
the system, which eventually reflects on the behaviour of the initial application. The
hardware layer, although strongly present in the problem because of its influence on
the software behaviour, is not directly addressed by our dissertation, and is therefore
brought into scene by an empty arrow. Figure 4 also helps spot where the main
contributions of our work place themselves, as suggested by the circled numbers
corresponding to the explanation below:

1. Definition of of time composability and its istantiation within the OS layer.

a) We give a new characterisation of time composability in terms of dis-
turbance and jitter, which is general enough to adapt to a broad variety

32



of existing real-time systems, with no assumption on the specific system
architecture or deployment.

b) Based on this definition we identify the main design choices harming
time composability, as reflected in common features of existing real-time
operating systems.

2. Study of time composability within an ARINC 653 task model.

a) We study the ARINC 653 software specification for space and time parti-
tioning in safety-critical real-time operating systems for the avionics: thanks
to the characterisation given at point 1 we show how to modify an existing
RTOS kernel designed without the principles of time composability in mind
to make it better suitable to the timing analysis verification process.

b) The results of the study are evaluated on a real-world sample avionics
application used as benchmark by the avionics industry.

3. Study of time composability within a sporadic task model.

a) We implement and evaluate a limited-preemptive scheduler [41][42] in a
Ravenscar Ada RTOS kernel; since the scheduling activities cause great
interference to executing user-space applications therefore impacting its
timing behaviour, we will show how this phenomenon can be mitigated to
favour timing analysis.

b) Additionally, we propose a way to deal with the problem of resource sharing
into the limited-preemptive scheduling framework, which has never been
considered before.

4. Study of time composability in multicore architectures.

a) Time composability is much more difficult to achieve on a multiprocessor
due to the run time interference naturally emerging from the parallel ex-
ecution of multiple control flows. We first study different computational
models and apply the composability principles in a partitioned scenario to
enable probabilistic timing analyisis in an industrial case study.

b) Then, assuming that the disrupting effects of hardware interference can
be mitigated probabilistically, we focus on multicore scheduling as the
most influencing problem affecting compositional timing analyisis. Current
schedulers take either a partitioned or a global approach to the problem:
the former statically determines an assignment of tasks to processor and,
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although performing quite well, cannot adapt smoothly to task set changes,
nor avoid over provisioning of system resources; the latter allows full migra-
tion of tasks to processors, the performance penalty thereof being too high
to be accepted in a real-world scenario. We evaluate the RUN algorithm
[43], which is a promising solution to the optimal multiprocessor schedul-
ing problem: RUN tries to mitigate the drawbacks of both partitioned and
global approaches, taking an original approach to the problem by virtual
scheduling. While not pinning tasks to cores, RUN packs them in aggre-
gates than can be locally scheduled to significantly reduce migration while
achieving optimal schedulable utilisation. RUN is especially interesting to
our work here because it does not prescribe the local scheduling to be used
(which must obviously be optimal if full schedulable utilisation on all cores
is to be attained), and therefore allows us to reuse the solutions we devised
in this work to achieve time-composable behaviour for single-core operating
system.

c) We propose SPRINT, an extension to RUN to handle sporadic tasks, which
are not contemplated in its original formulation but must be accommodated
to schedule real-world applications.

1.4 thesis organisation

This thesis is structured as follows: Chapter 2 reviews state-of-the-art methods for
timing analysis of safety-critical real-time systems, with special attention given to
composable WCET calculation and OS analysis; we will also describe our reference
HW platform and detail the assumptions we require on it.

Chapter 3 will introduce our notion of time composability, the ARINC 653 API
specification adopted by the avionics industry and the work we performed on an
ARINC-compliant kernel with the goal of injecting time composability in it. We will
then move to a space setting to illustrate how it was possible to port those results into
a different OS kernel, the Open Ravenscar Kernel, and to extend them to implement
and take benefit from a limited-preemptive scheduling approach.

The multicore setting and the RUN algorithm are covered in Chapter 4, together
with the extension we propose to adapt the algorithm to handle sporadic task sets.

Finally in Chapter 5 we draw some final considerations and give some hints on the
future lines of research which may be conducted on this topic.
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2
B A C K G R O U N D A N D A S S U M P T I O N S

In chapter 1 we discussed how time composability may be broken at multiple places
in a system, from low-level hardware up to the application level. We now proceed
to examine how recent research has dealt with the problem of analysing the timing
behaviour of a system within the boundaries of system layers. Although considering
each abstraction layer in reciprocal isolation is probably the easiest approach for the
better control gained on the analysis, the composition and interaction of elementary
components across layers cannot be disregarded: cross-layer interactions among
heterogeneous components are in fact the place in the architecture where discontinuity
in methods and technologies may occur, putting time composability in danger and
potentially impairing the bounds calculated by a naı̈ve analysis.

We now try to identify the most critical areas at hardware, OS and application levels
by summarising the most significant existing research in the timing analysis landscape.
In parallel we introduce the assumptions made in this thesis for each of those topics.

2.1 hardware analysis

A significant amount of research on WCET calculation has been devoted so far to
precisely characterising hardware behaviour. Since bottlenecks are very likely to occur
in the presence of shared hardware resources, processors and memory hierarchies
have been the natural candidates for optimisation: indeed, modern architectures have
experienced the proliferation of new hardware features intended to boost average-case
performance at the price of local non-determinism and highly variable behaviour
across different executions. Additionally, these features interact with one other to
further complicate execution time calculation, even when single runs are considered
in isolation. Hardware manufacturers do not help in this context, as specifications
tend to be incomplete or even incorrect, both because of the unquestionable hardware
complexity and of the disclosure restrictions arising from intellectual property con-
cerns. Forcing hardware to exhibit a predictable behaviour is mandatory to provide
some minimal guarantees needed at the higher layers of the architecture and by the
analysis process: on one hand full determinism would make architecture modeling
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easier and improve the accuracy of static WCET analysis methods. However, this is not
the direction taken by hardware manufacturers, whose convenience is rather bringing
new features into COTS products for commercial reasons; at the same time the HIRTS
industry may not always have sufficient influence to change this trend. On the other
hand time randomisation would help achieve the hypotheses of independence and
identical distribution of observed timing profiles required by probabilistic methods
[44]. Unfortunately, similarly to the idea of deterministic hardware, this would re-
quire vendors to provide specialised hardware for specific system manufacturing.
Research at the hardware level has focused on considering available COTS products
and trying to characterise the state of such platforms along the execution: to this end,
high-variability resources are the best candidate for improvement. An example of
this formal approach is given by Kirner and Puschner [31], who identify the Timing-
Relevant Processor State (TRPS) as the set of those processor components, whose
values can influence the execution time of some given instructions; these components
are then studied and some composition rules are given to consider their latencies,
taking also into account timing anomalies.

processor. Processor instructions may experience variable latency on output
depending on the type of the involved operands: this is the case for example of the
division and floating point operations. Moreover, when an interrupt is raised, the
hardware may suffer variable interference to serve it. The problem has been attacked in
[45] by trying to provide an architecture (SPEAR) with a constant-time, easy-to-model
instruction set for a full-fledged 16-bit processor equipped with a 3-stage pipeline and
caches; its design is carried on with predictability rather than high efficiency in mind.
The authors interestingly outline the main sources of jitter in a processor, namely
the synchronisation period between the occurrence of an interrupt and the time at
which it starts to be served, the context switch overhead and the execution time of the
instructions themselves. They argue that the first two operations can be performed
in constant time, except for the obvious variability possibly introduced by interrupt
recognition due to the clock granularity; also instructions in SPEAR have deterministic
execution times, as they are single-word and out-of-order execution is not permitted
within the pipeline. Unfortunately, no real hardware implementation exist at present
that could guarantee such properties.

caches. Memory hierarchies are most exposed to variability, since their latency
is significantly higher than that of processors: for this reasons fast caches have been
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introduced in recent years to speed up computation on the average case, at the cost of
lower predictably. Studies in this area have tried to directly account for Cache-Related
Preemption Delay (CRPD) into schedulability analysis [46][47], or to restrain cache
behaviour by locking [48][49] or partitioning [50]. Alternatively, caches could be
replaced by fast scratchpad memories, whose behaviour can be entirely programmed
by software. Either way, instruction and data cache behaviour is usually considered
separately to keep the cost of the analysis affordable. More recent work attacks
the problem of accounting for cache unpredictable overhead by introducing time
randomisation [51][52][53], which makes them analysable by measurement-based,
PTA techniques [16]. Other authors [54] propose a two-stage compositional analysis
method for instruction caches: the preliminary module-level step aims at parametrizing
the analysis process by collecting application-specific data flow information, which is
further used to reason about potential cache evictions due to calls containing conflicting
references. Subsequently, the compositional stage uses previous information and actual
memory addresses incrementally to refine obtained results by composing modules
bottom-up in the control flow graph. Rather than performing the analysis a posteriori,
Mezzetti and Vardanega [55] advocate instead the benefits of considering different
flavours of cache interference early in HIRTS development process: a cache-aware
architecture is proposed, in which system-level countermeasures are taken at design
time to limit undesired cache effects, by considering the code size, its concurrency
layout and reuse profile.

pipelines and branch prediction. Out-of-order, speculative execution sig-
nificantly complicates WCET analysis because many potential execution states are
generated which could at any time be discarded as a consequence of wrong predic-
tions. Dynamic branch prediction intrinsically depends on execution history to collect
data flow information useful to speculate on the outcome of any branch instruction
[56]. Pipelines as well represent a serious obstacle for the analysis process, even
when considering elementary portions of code (basic blocks), because of the variable
latencies characterising different processor instructions and the presence of timing
anomalies. This consequently makes it very hard to capture interferences occurring
among non-contiguous basic blocks in the control flow graph. Li et al. [57] start by
identifying the different forms of dependency among pipeline stages; then, in the
analysis they take into account the possible initial pipeline states and the instructions
surrounding the basic block under investigation. The study also integrates pipeline
and instruction cache analysis, however experimental results cannot be considered
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satisfactory since the problem is known to be a hard one and overestimation is needed
therefore to make the solution space tractable. Betts et al. [58] adopt instead a hybrid
measurement-based approach and study pipeline behaviour in relation with code
coverage; the authors propose to identify pipeline hazard paths leading to potential
pipeline stalls. Considering longer paths may be advantageous in theory to capture
distant dependencies in the execution flow, however the number of those paths is
likely to grow exponentially and no evidence is provided in the study of the validity
of this method.

virtual memory management. Virtual memory is frequently used in HIRTS
as a means to provide spatial isolation among applications sharing the same physical
memory space, usually for security reasons. At each memory access a translation
from a virtual to a physical memory address is performed, typically with the help of
one or more intermediate data structures called Translation Lookaside Buffers (TLBs):
these buffers are in charge of hashing a portion of the address space in use, in order
to speed up performance similarly to what caches do. Time variability incurred by the
use of virtual memory is twofold: first, one may or might not pay a penalty according
to whether the required physical address is present in a TLB or not (page fault), and
in the latter case the page table must be searched through. Very few studies have
focused on virtual memory management and usually with the goal of obtaining tighter
rather than exact WCET bounds. In [59] for example the dynamic paging behaviour
is statically decided at compile time by selecting paging points, provided that some
hardware or system support is available for this technique; additionally, some effort is
required to identify which pages will be actually referenced dynamically.

Existing literature on hardware predictability attacks the issues affecting one
hardware feature at a time: very few authors try to integrate timing analysis for two or
more components and even less cope with the hardware platform in its entirety. This
is because extensive analysis of complex interleavings and interactions among separate
components is discouraging and probably unaffordable: wishing for deterministic
hardware specifications and behaviour might be a dream as well. Nonetheless precise
architecture modeling is a mandatory prerequisite to obtaining tight WCET bounds
by means of static analysis. Probabilistic methods might be more effective to capture
the complexity of such phenomena, but they impose unusual requirements on the
platform to be satisfied for their applicability, such as the independence of instruction
time profiles. Enforcing independence and composability at the finest possible grain,
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i.e. at the instruction level, may look as an attractive opportunity; however, this is a
very hard objective to achieve in practice due to the very heterogeneous components
packed into a hardware platform, each distinguished by different execution latencies
and data dependencies, which are hardly identifiable before actual execution.

2.2 os analysis

Hard real-time systems have traditionally been deployed as embedded applications,
that is without the need of general-purpose operating systems to mediate between
the application and the hardware layer. However, recent industrial trends are shifting
the development of complex HIRTS from a federated architecture to an integrated
environment where logically segregated applications share the same physical resources,
mainly for economical reasons: good examples of this trend are the Integrated Modular
Avionics (IMA) with its ARINC 653 API incarnation [40], and the AUTomotive Open
System ARchitecture (AUTOSAR) [60][61], which are recognised as de-facto standards
in the avionics and automotive industry, respectively. For the reason above research on
the role assumed by the operating system layer on WCET analysis is quite immature
and much work has still to be done.

Early works on the timing analysis of real-time operating systems started by ap-
plying similar techniques to those used for WCET analysis of application code, in
consideration of the software nature of the Real-Time Operating System (RTOS). Colin
and Puaut [62] encountered non-trivial issues in the analysis of the RTEMS kernel with
static techniques, achieving very poor results with a reported overestimation of the
86% of the real WCET. The reason for such pessimism is manifold, and its root causes
have been identified in two main works [37][63]: we summarise encountered problems
and proposed countermeasures in this section, according to their root cause. Most
of the problems arise from the use it is made of the RTOS during execution, whose
interleaved execution with the applications perturbs the state of shared HW/SW
resources, preventing static analysis techniques from precisely characterising the state
of the system before execution; while programmers can be asked for this additional
information through annotations in the case of user applications, this opportunity is
precluded at the OS level, whose code is usually considered as a black box provided
by third parties and therefore out of direct control of the end user.

static analysis. The traditional approach of static timing analysis has been
applied to OS analysis in a variety of works. In [64] all decisions about the interactions
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with the OS are taken offline: scheduling points are statically chosen and interrupts
are guaranteed to be served at time instants in which no other system or task activity
is in progress. This approach works in conjunction with the single-path programming
approach that will be illustrated later; however, this is quite a rigid requirement for
systems where performance and responsiveness to the environment are important.
More recently a comprehensive analysis of the seL4 microkernel was given in [65]:
authors build an integer linear programming problem with constraints derived from
worst-case paths and target hardware properties; then, they compare results on inter-
rupt latencies and OS primitives obtained with both static analysis on the constructed
model and measurements on real hardware, concluding with very good ratio between
computed and observed results. Unfortunately, such experiments look at the kernel
services in isolation and do not consider context dependencies naturally arising in a
real-world execution. Earlier, the authors of [66] tried to characterise the time profile
of µC/OS-II kernel primitives by means of static analysis, which showed the difficulty
of safely and precisely characterising the OS behaviour, especially in the presence
of preemption. The considerations above may suggest that RTOS analysis cannot be
performed in isolation as it is done sometimes for embedded application code, but
rather application and OS should be analysed in conjunction, as noted also in [37].
As a solution, the same author proposes a framework [67] in which schedulability
and WCET analysis are combined together: states are defined as a set of properties
of interest in the system updated over time, such as task priorities, RTOS modes and
privilege levels and applications states, which permit to better characterise the running
system as a whole. This kind of system-wide knowledge is then exploited to perform
cache-analysis, to calculate pipeline-related preemption costs and to improve WCET
accuracy according to actual RTOS and application execution conditions. Similarly,
Chong et al. [68] have recently proposed an integrated analysis of the microarchitec-
ture, OS and application code runnning as a real-world robot controller; although the
approach tries to combine different analysis techniques, significant overestimation
still emerges from the presented results, as a consequence of relying on static timing
analysis bounds used to characterise microarchitectural effects.

code structure. Much of the information required for RTOS analysis is deter-
mined by the behaviour of the running system and cannot be leveraged therefore
by static analysis techniques. For example, code constructs that break any locality
assumption such loop bounds, actual targets of dynamic function calls and jump des-
tinations are hardly-predictable yet mandatory parameters to be fed to static analysis.
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This problem is present also at the application level and is investigated later in this
work. In general, it may be argued that this is not a problem of the code alone, but
also of the sensitivity of the analysis method. When speaking about the OS though,
implementation as well as design should be carried with time composability in mind,
which unfortunately is not always the case.

low-jitter os. One promising direction of investigation that seems to be only
partially explored is making RTOS services constant-time or at least bounded by
a (small) constant factor, so that a fixed overhead can be added to the calculated
application WCET as a consequence of their invocation. Yang et al. [69] studied a
fixed-interrupt-latency kernel by removing Interrupt Service Routines (ISRs), which
usually execute in privileged mode and naturally present variable execution times
according to the service to be provided. Their job is performed instead by preemptible
kernel threads executing at the highest priority levels in the system, whose behaviour
is not any different from application tasks and therefore can be easily modeled by the
analysis process. Another parameter to consider and bound is preemption latency: as
sketched in Section 2.1 this work is most challenging in architectures equipped with
advanced hardware features, like caches and virtual memory, since a variable amount
of cache blocks and TLB entries must be invalidated depending on the context of the
preempted task. Jitter is also introduced at scheduling points by the execution of the
scheduler itself, and is measured by the scheduler latency, whose overhead usually
varies in general-purpose systems with the number of tasks present in the system and
with the number of those actually ready for execution at every scheduling point. A
constant-time scheduler can be found in recent Linux kernel implementations [70][71],
and is preferable for real-time systems because of its predictable overhead. Finally,
the protocols defined to provide mutual access to shared system resources and data
structures, such as memory-mapped I/O and communication media may introduce
latencies and increase interference: protocols devised to alleviate such problem exist,
as the priority ceiling and priority inheritance, but their implementation and use in
operating systems and programming languages might not be obvious and should be
carefully verified.

preemption and inter-task interference. While traditional WCET anal-
ysis looks at the execution of application code as if its execution were isolated and
uninterrupted, the interaction with an operating system layer dramatically breaks
this assumption. Techniques exist in response-time analysis to account for the inter-
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ference suffered from other tasks in the system; calls to system services, interrupt
servicing, scheduling, preemption and all activities to respond to asynchronous events
are instead highly unpredictable phenomena. Not only the time required to serve
such events is naturally jittery, but also the machine state is typically modified during
their execution: therefore, additional time is required to restore the execution context
and resume application execution from where it was interrupted. The state of cache
memories can be changed as well, with the additional complication that the overhead
in this case depends on the memory accesses performed in the future execution and
is therefore much more variable and inscrutable. In [72] Sandell et al. take into
consideration Disable Interrupt (DI) regions and compiler optimisations concluding
that some portions of a RTOS kernel are more easily analysable by static analysis than
others, but this is a rather restrictive setting for the general problem. Limiting the
occurrence of preemption has proven to be a more effective solution, as described
next.

limited preemption. The idea of limiting preemptions to reduce interference
caused to a task set and increase schedulability is not new to scheduling theory.
Inhibiting preemption altogether is not an option for those system whose feasibility
must be strictly guaranteed, as the optimality results obtained for fixed-priority pre-
emptive scheduling do not hold any more [73]. This observation motivates a recently
increasing interest towards less restrictive approaches aiming at finding a compromise
between reducing the effects of preemption and preserving the schedulability of a
task set [41][42]. In deferred preemption approaches in particular emphasis is placed
on the fact that preemption requests are not immediately served but may be rather
deferred (i.e. postponed) for some duration of time. Preemption deferral mechanisms
have the practical effect of splitting the execution of each task in preemptible and
non-preemptible parts. Non-preemptive regions (NPR), within which preemption
cannot take place, are either determined by fixed points in the task code or triggered
by specific scheduling or timing events. The former approach is indeed exploited by
one of the first attempts to introduce deferred preemptions within a fixed-priority
scheduling scheme (FPDS), described by Burns in [74]: the cited work proposes a
cooperative scheduling approach, where each task should explicitly request to be
preempted by invoking a “yield” routine in the kernel. Although the blocking time
due to preemption deferral was incorporated in refined response-time equations, this
seminal work did not address the problem of computing the maximum allowable
length of non-preemptive chunks. More recently, Bril et al. [75][76] improved this
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model by showing that current analysis was not precise, i.e. it can be either optimistic
or pessimistic according to the specific scenario; the authors proved that in the general
FPDS case the worst-case response time of a task cannot be calculated by only looking
at its first job, since the delay introduced by the last non-preemptive chunk of a task on
higher-priority jobs may indirectly delay its subsequent job activations (self-pushing
phenomenon). To address this problem the authors used the notion of level-i active
period and refined the analysis to account for it. Yao et al. showed in [77][78] that
no self-pushing can occur under the fixed preemption points (FPP) model if two
favourable conditions are met: (i) the task set has constrained deadlines; and (ii) it
is preemptively feasible. Unfortunately, the FPP approach suffers some drawbacks
that make its adoption impractical in real-world scenarios. Preemption points should
be explicitly programmed into application code, which is hard to do in the presence
of legacy code, and their placement needs to be reconsidered every time a new task
is added to the system, thus making the approach unsuitable for systems subject
to change over time. Additionally, the choice of preemption points placement is a
challenge itself, which as such has been addressed in some works with the specific
goal of increasing system schedulability [79] or minimising preemption overhead [80].
Alternative and more flexible approaches instead implement non-preemptive regions
without relying upon their explicit position in the code so that NPRs are said to be
floating in the code. Since there is no explicit positioning, NPRs should be initiated at a
certain time stamp or in response to some kind of event as, for example, the activation
of a higher priority task (activation-triggered approach, see Figure 5). In floating NPR
approaches the only relevant issue is thus to determine the maximum admissible
length of a floating NPR that preserves feasibility of the system. These works all
assume job arrival at their critical instant to ensure the safety of the analysis: however,
when job phasing is introduced in the task set, the length of NPRs can be further
extended with respect to the worst-case scenario of simultaneous job releases, as ex-
plained in [81]. Unfortunately, no real-world implementation of a limited-preemptive
scheduler exists and the validity of published results has been proven by simulation
only. Some initial considerations on implementation issues are given in [82] and [83],
for the mechanism of ready-queue locking and for memory occupancy and resource
sharing, respectively. Marinho et al. [84] have also investigated the beneficial effects
on the cache-related preemption delay suffered by each task under a NPR scheme, as
a function of the reduced number of preemptions. An alternative and valid approach
for limiting the effects of preemption is the Preemption Threshold Scheduling (PTS)
method introduced by Wang and Saksena [85][86]: although the authors showed that

43



Figure 5.: The activation-triggered NPR model.

schedulability can be improved by PTS, difficulties arise in the choice of thresholds.
Since preemption is still enabled in PTS, this scheduling technique can behave exactly
as fully preemptive or non-preemptive scheduling according to the specific threshold
tuning, which is therefore crucial to achieve the desired results. As an additional
consideration, none of these works takes into account the presence of shared resources
explicitly: they either ignore them or assume that no preemption can occur within
them. Of course, this assumption does not hold in the general case and may be
violated in the presence of non-preemptive regions whose placement is unknown at
design time. A solution to this problem will be presented in Section 3.6.3.

2.3 application analysis

In Sections 2.1 and 2.2 we identified the main obstacles in the present hardware and
software architectures, which make accurate HIRTS timing analysis unaffordable or
altogether impossible. Obviously, the design and implementation of the application
software itself also play a central role in determining the complexity of the analysis
process and, in the end, its feasibility. In the first place the Model-Driven Engineering
approach can help shape the system architecture to limit and characterise component
dependencies and interactions; additionally, it can significantly improve analysability
by making automatic code generation from formal specifications possible. Application
coding without automated assistance, more than being a costly and error-prone activity,
is heavily influenced by the chosen programming language itself, whose constructs
may benefit or harm timing analysability.
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Literature on WCET analysis of application code is vast, although any effort in the
direction of making application code analysis-friendly is of limited usefulness if not
supported by a time-predictable execution stack. We now try to summarise existing
research into a few main streams, highlighting the breaking points of common analysis
approaches. It is certainly desirable to use programming languages that make the
analysis process easier; unfortunately, this idea may be considered the counterpart
at software level of using custom hardware: any new language is condemned to
little penetration in industry where established knowledge, common practice and
legacy code tend to oppose to change. For this reason measurement-based and hybrid
techniques are dominant for WCET estimation in the industry, as they permit to look
at the application as a black box.

2.3.1 Coding Styles

From the very first studies on application timing predictability the focus has been put
on the expressiveness gap between language constructs and application needs: the
smaller it is, the easier the structure of the resulting code and consequently its analysis
should be. Unfortunately, the language alone cannot guarantee predictability, since the
human component still present in software programming finally determines the code
structure, i.e. its control flow graph. Although in principle all modern programming
languages are expressive enough to build any kind of software regardless of its pur-
pose, common experience suggests that choosing the “right” programming language
is an important choice affecting both the final result and the development process
itself: the adequacy of a language can be imagined in terms of the primitive con-
structs it provides relatively to the expressiveness needed by the specific application.
Some programming paradigms in their entirety fit bad with the time requirements
demanded by real-time systems: although an entire area of research is dedicated
to this family [87][88][89], unrestrained object-orientation generally is not suited for
HIRTS development, since many of its core features, like the use of dynamic binding,
dynamic memory allocation/deallocation and garbage collection, intrinsically clash
with the exigence of predictability of static analysis.

language restrictions . Application timing analysis can benefit from constrain-
ing language expressiveness for better analysability. Kligerman and Stoyenko [90],
Puschner and Koza [14] and more recently Thiele and Wilhelm [91] have spotted some
language features that obstruct static code analysability, and proposed some counter-
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measures: pointers to variables and functions can significantly decrease precision on
bounds as they cannot be resolved until run time, therefore function calls and their
parameters should be made explicit; dynamic task creation and dynamic data structures
as well cannot provide static guarantees, since their number and dimension can grow
and drop during execution. Additionally, the use of recursion and goto statements is
not permitted, and loops can be considered only provided that the number of their
iteration is statically bounded. Later on, Puschner and Schedl [92] formalised the com-
putation of maximum execution time as an integer linear programming problem on a
representation of the control flow as a graph, and Kirner [93] proposed an extension
to the popular ANSI C language realising these ideas. A similar approach is taken
by Carré and Garnsworthy in the formulation of SPARK [94], a subset of the Ada
language to support program predictability and formal analysis.

control-flow restrictions . Rather than considering programming language
constructs alone, further research has been conducted on the higher-level structures of
software, i.e. the basic blocks forming its control flow graph. A nice categorisation of
some ordinary code patterns that hinder the analysability of a program is reported
in [95] and [96]. Since every branch point appearing in the application code breaks
the execution into two or more scenarios, each determining different machine states
and typically presenting different execution times, the number of possible paths is
exponential with the length of the given code; detecting and removing from the analy-
sis the subset of infeasible paths is therefore fundamental to prune the state search
space. The easiest way to characterise and reconstruct the control flow of a portion of
code is by providing annotations to express flow facts [97][98]: some of them can be
derived automatically, as they are structural and can be inferred from the program
syntax, others must be explicitly provided by the programmer, as they concern the
intended semantics of the program [18]. As the control flow of a program typically
depends on its input, the drawback with this approach is clearly that it cannot be
fully automated, which makes it costly and error-prone. A more drastic approach
is presented by Puschner [99][100], in which WCET-analysable code1 is transformed
into single-path code. Conditional statements are replaced by “conditional-move”
assignments where each branch is calculated beforehand; loops are also transformed
in two steps, by first generating a conditional statement from the original termination
condition, and then transforming it into a “conditional-move” assignment as before.

1 In this approach code is said to be WCET-analysable if the maximum number of loop iterations for
every loop block is known.
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Some experiments were performed on the single-path programming approach [101]:
they show that precise WCET can be calculated, although some performance loss
cannot be avoided for legacy code, and the guidelines for a WCET-oriented program-
ming style are drawn. Puschner also considers the problem from an architectural
point of view, observing that this approach has higher potential when working in
cooperation with (i) a compiler generating code without branch instructions that may
cause potential pipeline stalls at the machine level and (ii) a processor implementing
branches with single machine instructions.

2.3.2 Control Flow Analysis

The power of the single-path approach illustrated in the preceding section is that it
makes the machine state predictable, as in fact only one state exists; however, the
structure of real-world and legacy code is far more complex. In this section we
show how WCET bounds are calculated for the existing control flow paths in an
application: static analysis methods usually derive bounds on paths bottom-up by
composing finer bounds on basic blocks. This method needs to assume that the
behaviour of the underlying hardware is fully controlled and does not introduce any
undesirable or unexpected effect which may invalidate the considerations made at the
software level; equivalently, the assumption is that the latencies of its primitives are
negligible. The key point with static techniques is capturing context dependencies
among basic blocks, which make their composition much more complex than a simple
summation of the individual WCET bounds. Measurement-based techniques instead
are directly concerned with how control flow paths can be actually traversed at run
time, to ensure that the longest of them are exercised by measurements and the real
WCET is captured appropriately. Different paths are determined at branching points,
where data-driven decisions are taken: for this reason different paths are stimulated
by providing different input sets to the software under analysis. Yet, the problem
becomes finding an appropriate classification of the possibly infinite set of inputs,
which guarantees sufficient accuracy of the analysis process.

composing bounds on basic blocks. If the execution times for individual
basic blocks on single control flow paths are available, three classes of methods exist
to combine them into end-to-end estimates. In structure-based methods [102] the syntax
tree built by control-flow analysis is traversed in a bottom-up fashion and WCET
values for single nodes are collapsed into bounds of coarser granularity, according
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to a composition rule specific for the kind of node. Because of the sensitivity of the
analysis to the execution history, this step can be tricky: safeness of aggregated results
can be ensured only if bounds on its individual constituents have been calculated
in virtaully all possible context flows. Alternatively, it has been proposed [103] to
build up the execution time of a path probabilistically. Path-based methods consider
program paths and determine the WCET of a task by choosing the most expensive one:
since the number of paths can be large and execution times for every path need to be
computed explicitly, path-based approach can work only when the branching factor of
the software under analysis is limited. To overcome this limitation, path clustering
has been proposed to factor out paths presenting similar execution time bounds [104].
In implicit path enumeration techniques [105] program-flow and basic-block execution
time bounds are combined together to form a set of arithmetic constraints; each of
them is given a coefficient, expressing its maximum contribution to global WCET,
and a multiplicative factor counting the number of times the entity is executed. The
resulting global timing bound is obtained by maximising such summation of products
with integer linear programming or constraint programming techniques. Elementary
components have usually the granularity of a basic block, but some studies consider
composition at the instruction level [106].

input clustering. The issue when considering the input of a non-trivial pro-
gram is that its exhaustive enumeration is infeasible, and this is even less tractable
problem than control flow paths enumeration, since in principle different input sets
may activate the same path. One technique to attack this problem is program clus-
tering: Deverge and Puaut [107] propose to split paths into smaller segments to
lower the complexity of test data generation, and then apply measurements on the
produced segments. However, this method suffers from its naı̈ve assumption of
context-independence, thus being exposed to unpredictable latencies of hardware and
to non-local interference. Fredriksson et al. [108] consider the same problem at the
component level: since components are designed to be general enough for reuse in
different contexts, it is the case that parts of them are only used in certain contexts.
From this observation authors try to cluster inputs to according to different contexts
rather than on control flow paths. The idea is promising, however some restrictive
assumptions apply, such as independence of the variables used to characterise usage
conditions which makes it harder to capture more complex effects. Additionally, one
could argue that the problem is only shifted to clustering usage scenarios, and indeed
the main problem with this approach is searching that space efficiently.
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use of heuristics. When the complexity of a problem is overwhelming, it is
often tempting to adopt some heuristics to reduce the size of the search space. This
principle has been applied to choose representatives of the input space to be used to
perform measurements: evolutionary testing based on genetic algorithms has been pro-
posed in [109][110][111][22]. The main problem with these techniques is usually tuning
the algorithm of choice: choosing the appropriate crossover point for recombination
has great impact on the convergence of the algorithm; also it is not straightforward
to understand when the algorithm should stop iterating. Although providing good
results in some benchmarks, the use of heuristics can lead to suboptimal solutions,
which means tolerating unsafeness of calculated WCET bounds, which is of course
unacceptable.

2.3.3 Compiler Support

When analysing the predictability of application code, it is important to bear in
mind that what is written at the source level is not necessarily mapped one-to-one
to machine-level instructions, which in fact determine the actual WCET value to be
calculated. In between the two layers, the compiler is responsible for transforming
the human-readable source code into a machine-executable flow of instructions: the
introduced transformations can be so extreme that the original control flow of a
program is heavily modified, especially when strong levels of optimisation are used.
Not only analysis at the source level is easier for human beings, but also some
constructs are better analysable at this level; conversely, analysis at the object level is
capable of capturing microarchitectural effects on the real target and does not suffer
from aggressive compiler optimisations. Information from both layers must be related,
and since today’s compilers already perform deep program analysis, they may appear
a good candidate to bridge the cross-layer abstraction gap and enable the analysis. In
[112] Bernat and Holsti identify some desirable features at the compiler level to express
properties on the source and object code, on the mapping between them and on the
code generation process itself. The support of compilers for WCET analysis could also
bring some benefits by limiting the use of manual annotations [113], as many of them
could be automatically generated and only a few could be provided at the source code
level. An interesting example is provided by Kirner and Puschner in [114], where GCC-
generated intermediate code is chosen as the place where knowledge from the user
is leveraged to drive WCET calculation, and the computed results are finally used to
back annotate source code in a human-readable form. A similar approach proposed by
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Gustafsson et al. [115] uses abstract interpretation to automatically generate flow facts
from an intermediate representation of programs written with the C programming
language. More recently Curtsinger and Berger [116] have proposed to apply new
transformations in the compiler with the purpose of randomising code placement at
runtime to enable probabilistic analysis. Despite these efforts, some of the usability
concerns mentioned for programming languages also apply here: compilers meant
to be used for HIRTS development must satisfy stringent requirements to sustain
certification arguments and the penetration of new technologies usually faces some
difficulties.

2.3.4 Component Analysis

So far, we presented existing approaches to time composability at the level of code
structures; however, since applications are designed and implemented by taking
benefit of component-based methodologies as explained in Section 1.1.1, achieving
time composability directly at the component level would be an attractive goal. Indeed,
it is a recurring idea in the literature that WCET analysis should be conducted as
an incremental, two-step process [117]: a first phase called abstract analysis should
consider the higher-level components of the system to produce a reusable, portable
WCET; a later phase called concrete analysis should then instantiate the computed
results to the target platform. This would significantly ease incremental and reusable
analysis of generic components, but requires an integrated approach towards WCET
analysis which is seldom found in state-of-the-art techniques. Components have
no knowledge of the context in which they are to be deployed and are therefore
the natural candidates for composability and reuse; because their design is kept
general enough, WCET analysis is even more complicated. A unifying framework is
proposed in [118], where components are supposed to make some input assumptions,
corresponding to expectations they have on other components and the environment,
and to provide some output guarantees, symmetrically. Composition is achieved on
an assumption/guarantee basis, similarly to how provided/required interfaces are
used for functional behaviour in component-based development techniques. This
approach is however very generic and does not explicitly address the provision of
timing guarantees. Fredriksson et al. [119] propose a framework in which WCET
is first calculated at the component level, and then mapped to the running tasks of
a real-time system: this distinction emphasises the separation between functional
and timing properties, but also shows that a conceptual model to reason about
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and design for predictability is missing in traditional methods. Input clustering is
adopted at the component level to handle the complexity of the input space, similarly
to what is done for control flow paths. The proposed method also accounts for
usage scenarios: they are described by sets of variables, whose values are associated
to probability distributions. WCET bounds are finally simply added together, but
it is questionable whether this is sufficient to capture more complex interactions;
the authors themselves declare that WCET is potentially tightened with respect to
traditional static analysis, but that at the same time it is difficult to reason about
the general improvements of the method. A similar approach is taken by Lisper et
al. in [120], where properties are composed by summation, assuming uninterrupted,
sequential execution. Since this assumption is quite restrictive and independence
of components from one another and from the execution context is required, the
fractional factorial design methodology [121] is chosen to perform statistical analysis
on input data. However, this framework cannot capture interactions among more than
two parameters, and the use of both branches and parameters in function calls are
excluded from experiments. Additionally, WCET composition can also be performed
by convolution of probabilistic timing profiles rather than on single values, but the
independence assumption for components is still required [122]. An interesting hybrid
approach [123][124] performs timing analysis at the component level borrowing
from the path analysis techniques developed by control-flow analysis; the functional
behaviour of components, their WCET computed in isolation and the pre-/post-
conditions in place on sub-components data flow are translated into the control, data
flow and timing constraints of a constraint programming problem, respectively. The
method requires that there are no loops in the component model and that the control
flow is formally and completely defined; moreover, since bounds are calculated with
a parametric approach there is always the issue of ensuring sufficient coverage for
all possible use cases; finally, an open problem is dealing with glue code among
components, that certainly influences WCET results. The merits of this framework are
the achievement of better context sensitivity by including control-flow information,
and the composition of tighter WCET bounds with more refined operators, rather
than by naı̈ve summation of WCET values.

2.4 compositional timing analysis

We focused so far on techniques that try to attain time composability on the elementary
components of a system architecture: the main challenge is however preserving
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the properties defined at lower levels of abstraction bottom-up in the composition
process. If the property of composability were satisfied, one could leverage the existing
frameworks to describe the timing behaviour of complex systems top-down, by only
taking a compositional view on the system. Unfortunately, these frameworks face
some difficulties in their applicability to real-world scenarios as a consequence of the
lack of composability at the lower levels of the architecture.

The most interesting research in this area is represented by hierarchical scheduling
frameworks [125][126], which find their natural application in partitioned architectures
[127]. The idea is to define a hierarchy of schedulers such that global timing properties
at the system level can be derived by composing local timing properties defined at
the component level. This form of schedulability analysis can be performed in a
two-step process, which first abstracts resource requirements for single components
and later composes them in an incremental fashion. The challenging part is again
determining safe and tight execution time requirements for individual components,
which is usually very difficult for non-trivial systems, as we already observed.

Another branch of research leverages the existing work on timed automata and tem-
poral logic [128][129]. These approaches usually describe execution as a progression
of discrete events, assuming a degree of accuracy which is in principle available in a
digital processor, but which is then lost upwards along the execution stack. Further-
more, composition of temporal relations is defined in terms of relative input/output
interfaces, while execution and communication are supposed to be synchronous. Ex-
tensions to these frameworks also exist [130], which adapt the Real-Time Calculus
to the exigences of probabilistic real-time systems, and in particular of probabilistic
schedulability analysis.

Research on composability is also inspired by distributed real-time systems [131][132];
in this area component-based design is a natural choice, since components may be
deployed on physically separate nodes. Communication in these systems is performed
across a network and is therefore subject to significant latency, when compared to
inter-component communication of an application running on a single chip. For
this reason work in this area usually adopts the time-triggered paradigm [133][134],
in which events occur as a consequence of the passing of time, similarly to what
happens in the cyclic executive execution model. These systems are known to be
more predictable but less responsive to the external world, since scheduling and inter-
rupt servicing is limited to statically defined points in time, thus increasing latency.
In fact, time-triggered system seem to enforce full determinism rather than timing
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predictability and for this reason they cannot be fairly compared with event-driven
systems.

2.5 assumptions

Below we explicit the two main assumptions we need to consider in the prosecution
of our thesis, respectively on the hardware platform and on the probabilistic analysis
method.

2.5.1 Hardware Platform

The OS, which is the main focus of our investigation, provides an abstraction layer
for the operating system primitives and services. From the timing analysability
standpoint, the role played by this layer is possibly as important as that played by the
hardware. As a fundamental enabler to compositional analysis approaches, in fact, the
kernel should preserve the degree of independence from execution history exhibited
by the underlying hardware and should not introduce additional sources of timing
variability in the execution stack. In this thesis, we do not focus directly on HW-related
composability issues, although we are perfectly aware of their relevance, especially
with respect to the possible occurrence of timing anomalies [135]. We assume, instead,
the availability of a hardware where interference from execution history on the timing
behaviour has been proactively countered. This is not an unrealistic assumption since it
can be achieved by means of simplified hardware platforms [34] or novel probabilistic
approaches, as suggested by PROARTIS [16]. In the scope of our investigation, we
focused on the PowerPC processor family, and the PPC 750 model [136] in particular,
by reason of its widespread adoption in the avionic industry. The PPC 750 was
adopted as the reference hardware by the PROARTIS project and is therefore suitable
for probabilistic timing analysis.

In the following we give an insight on some representative HW platforms proposed
in recent research, which have been explicitly designed with time analysability in
mind and try to remove dependence on execution history. Thanks to this design choice
these architectures would be the best candidates to provide a neutral HW layer which
does not impair the time composability results obtained at the kernel and application
layers.
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pret. The motivations for the study on the PREcision Time Machine (PRET) archi-
tecture [34] build on the observation that the timing properties of individual functions
in which a large system is split by compositionality at design time may be destroyed
in the integration phase; this is a consequence of the timing interference caused by
unrestricted access of shared hardware resources in modern computer architectures.
Edwards and Lee [137] proposed a paradigm shift in the design of computer archi-
tectures, focusing on timing predictability instead of average-case performance; later
on, they proposed PRET as an architecture designed for timing predictability. PRET
employs a thread-interleaved pipeline with scratchpad memories, and comes with a
predictable DRAM controller. The concurrent execution of multiple (hardware) thread
contexts on a shared platform is decoupled by making instructions independent of
their execution context within the program; moreover, no cache nor modern memory
controllers are employed so that the latency of memory operations is independent
from any previous memory access. Removing execution interference enables the
composable integration of different threads running on a shared platform, while
preserving the temporal properties of interest. This eventually facilitates a simple and
accurate architectural timing analysis of contexts associated to programs.

t-crest. The T-CREST project [138] aims at defining a high-performance, time-
predictable HW architecture for safety relevant applications, whose complexity and
timing analysis costs are kept low to make it an attractive alternative in systems where
robustness, availability and safety are important requirements. While the scope of
the project covers the design of a complete platform equipped with time-predictable
resources, such memories, a compiler [139] and an interconnection network [140], a
big effort is put in the design of its processor, called Patmos [141]. This is a 5-stage,
RISC processor which uses several local memories (for methods, stack, data and a
scratchpad), which are guaranteed to never stall the pipeline, with the goal of reducing
memory operations latency. Although the time-triggered model of computation and
some of the deriving design choices (like the TDMA access policy to the on-chip
network) have often been criticised for their sub-optimal performance, this choice is
justified by the emphasis on time predictability for easier and tighter WCET analysis.
The TiCOS kernel we developed – and which we report on in Section 3.4 – has been
succesfully ported to the T-CREST architecture.

proartis . The PROARTIS project [30] aimed at defining a HW/SW platform and
the needed methodologies and tools to enable probabilistic timing analysis of safety-
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critical, real-time embedded systems. As explained in [142], which we quote verbatim
in the following, PROARTIS classifies processor resources into 3 categories, according
to the jitter they exhibit: jitterless resources have fixed latency, with no dependency on
the input or the past history of execution, and are therefore easy to model even with
static timing analysis techniques. Jittery resources instead manifest variable behaviour
which may depend on the input data they are fed with, their state as determined
by the past history of execution or both. Depending on the relative degree of jitter
they present and the tolerance by the analysis process, it may be acceptable to always
assume their worst-case latency or, alternatively, to time randomise their behaviour.
High-jitter resources are those for which even assuming the worst-case behaviour is
unacceptable, and for this reason their behaviour is described by time randomisation.
Each such resources Ri is then assigned an Execution Time Profile (ETP) defined by

two vectors as ETP(Ri) = {
→
ti ,
→
pi}, where

→
ti= {t1

i , t2
i , ..., tNi

i } describes all the possible
execution times of Ri and

→
pi= {p1

i , p2
i , ..., pNi

i , } the corresponding probabilities of
occurrence (summing to 1). The execution time profile of a processor instruction
using some HW resources is then computed by convolution of the individual ETPs
of the accessed resources. Probability theory guarantees that the process is correct
whenever ETP probability distributions satisfy the property of independence and
identically distribution, meaning that both the execution times and the probability
values associated to them must be independent of the history of execution in the
system. Once HW manufacturers have provided PTA-compliant hardware and this
requirement is satisfied, the analysis process can focus only on the application looking
at the execution platform as a black box.

2.5.2 Probabilistic Timing Analysis

As described in [29] and in our SIES 2013 publication2, the Measurement-Based
approach to Probabilistic Timing Analysis follows the five steps depicted in Figure 6

and briefly recalled below:

1. Collecting Observations. The first step of the analysis consists in collecting the
execution time observations of a number of run of the application under analysis.

2. Grouping. The Block Maxima method is applied, which randomly picks execution
times from the set of all runs and groups them into sets of given size; from those
groups the highest values are recorded.

2 Please refer to the “List of Publications” section at the beginning of this thesis.
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Figure 6.: Steps in the application of the MBPTA-EVT technique.

3. Fitting. An EVT distribution F is derived from the set of execution times gen-
erated in the previous step F is characterised by the shape (ξ), scale (σ) and
location (µ) parameters as follows:

Fξ(x) =

 e−(1+ξ
x−µ

σ )
1
ξ

ξ 6= 0

e−e−
x−µ

σ ξ = 0

4. Convergence. In this step it is decided whether enough data (i.e. minimum
number of runs, MNR) have been observed to have sufficient confidence on
the resulting EVT distribution. This is done by using the Continuous Rank
Probability Score (CRPS) metric [143] to compare the distributions F resulting
from the previous and the current iteration: fixed a confidence threshold, smaller
CRPS values suggests that F is sufficiently precise and can therefore be safely
accepted.

5. Tail Extension. Chosen an exceedance probability threshold, a pWCET estimate is
extracted from F.

Two examples of the application of the PROARTIS method is given in the case
studies in Sections 3.4.4 and 4.2.1.

2.6 summary

Although some analysis frameworks try to characterise the timing behaviour of a
system top-down, their applicability in practice is limited by the practical impossibility
of precisely characterising the behaviour of hardware and software components that
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are either too complex to capture or obscured by lack of information. Most of existing
research on timing analysis tries therefore to build WCET bottom-up and focuses
on each layer of the system architecture separately. At the hardware level, attention
has been given to those accelerating features which are intended to speed up the
average execution time but whose worst case is hard to predict, like caches, pipelines,
virtual memories and branch predictors. At the application level the coding style,
as determined by both the programming language in use and the resulting control
flow, has been recognised to largely affect analysability. The control flow itself may be
considered at different abstraction levels, spanning from the interaction of components
down to machine code instructions. In any case, depending on the pattern of use of
shared HW resources and the invocation of OS services, computing the WCET of a
non-trivial piece of code may result very cumbersome. The operating system itself has
been studied to reduce its overhead on invoking applications, mainly by reducing its
jitter and by limiting background activities – like scheduling and preemption – to the
minimum. Finally, part of research has looked at software run times and compilers to
bridge the gap between communicating layers.

In our work we assume a “well-behaved” HW layer which does not impair the time
composability results obtained at the OS and application levels: this assumption is
met by existing proof-of-concept platform recently proposed in top-tier research. In
particular we look at the PROARTIS architecture, as one result of the FP7 research
project we were involved in.
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3
T I M E C O M P O S A B I L I T Y I N S I N G L E C O R E A R C H I T E C T U R E S

In previous chapters we motivated the importance of time composability in modern
architectures to enable incremental development and verification of HIRTS. We also
identified two places in the architecture where time composability easily risks to
be broken, namely in the unaware provisioning of HW/SW features whose timing
behaviour is not predictable and context-dependent and in the interactions between
architectural layers. We now elaborate on these ideas to focus our investigation on
time composability in single core architectures by first giving a precise characterisation
of time composability at the OS level (Section 3.1). We assume to execute on a hardware
platform which is well-behaved with respect to time composability, i.e. whose design
favours analysability rather than performance: although this is seldom the case for
nowadays COTS platforms, we singled out in Section 2.5.1 some potential candidates
resulting from active research in this area. We then spot in Section 3.2 some areas of
intervention we identified in an OS where wise implementation choices can make the
difference in preserving or impairing time composability. From there on, the chapter
is conceptually split into two parts, corresponding to the two industrial domains we
had the opportunity to investigate in our work, avionics and space. Although they
share similar concerns about timeliness and safety, the industrial process they adopt
for system delivery is quite different, as will be explained in Sections 3.3 and 3.5,
respectively. For both settings we then explain the work we performed on two
real-world kernels, TiCOS (in Section 3.4) and ORK+ (in Section 3.6), to make them
compliant with the enunciated principles of time composability. In particular, in
Section 3.6.3 we discuss a limited-preemptive scheduling approach which is applicable
to the space domain and provably benefits time composability in ORK+. Finally, we
provide evidence in Sections 3.4.3 and 3.6.4 to demonstrate the improved degree of
time composability achieved in both scenarios.

3.1 an interpretation of time composability

The property of time composability postulates that the timing behaviour of any given
component is not affected by the presence and activity of any other component
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deployed in the system. Interestingly, this definition makes no difference between
hardware and software, and thus equally applies at any level of execution granularity.
For the purposes of feasibility analysis, the timing behaviour of a component is fully
represented by the WCET bound given for it. Components seen from the analysis
perspective include the RTOS and the application, considered as a whole or parts
thereof as the analysis needs dictate.

From the application viewpoint, an application program is time-composable with the
RTOS if the WCET estimate computed for that program is not affected by the presence
and execution of the RTOS. When this condition holds, the internals of the RTOS
might be completely replaced – while of course maintaining the functionality provided
to the application – and the WCET of that application program, as determined for the
specific hardware execution platform, would not change.

The multifaceted role of the RTOS in influencing the time composability of a system
is evident from the classic layered decomposition of the execution stack (see Figure 3

in Chapter 1), which shows how the RTOS is deeply engaged in both the hardware-to-
software and software-to-software axes of composition. When it comes to operating
systems, the definition of time composability certainly includes the fact that the OS
should exhibit the same timing behaviour independently of the number and nature
of other run-time entities in the system: for example, the execution of a scheduling
primitive should not vary with the number of tasks in the system. In addition, as
the operating system interacts and consequently interferes with the user applications,
it should also avoid to negatively affect their execution time jitter: especially in
the presence of hardware features that exhibit history-dependent timing behaviour,
the execution of the OS should carefully avoid disturbing effects on the application.
Enabling and preserving time-composability in the kernel layer poses therefore two
main requirements on the way OS services should be delivered (Figure 7):

steady timing behaviour. RTOS services with jittery behaviour impair time
composition with the application: the larger the jitter the greater the pessimism in the
WCET bound for the service itself and transitively for the caller. In a measurement-
based approach, in particular, it would be difficult to attribute the measured variability
either to the application software or to the invoked (and triggered) OS services. RTOS
whose services exhibit a constant (or at least near-constant) timing behaviour will thus
reduce the jitter to be accounted for in their response time. Timing variability in the
RTOS execution depends on the interaction of software and hardware factors:

(i) the hardware state retained by stateful hardware resources;
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Jittery OS behaviour

HW disturbance

Figure 7.: Jittery OS behaviour and disturbance from history-sensitive HW propagated
to application execution.

(ii) the software state as determined by the contents of the RTOS data structures and
the algorithms used to access them: this includes, for example, thread queues in
common scheduling algorithms, as well as the port list needed by the ARINC
sampling port service which will be discussed in Section 3.3;

(iii) the input data given as parameters to the service call: this is the case, for example,
of ARINC I/O services that read or write data of different size.

Factor (i) is somehow overclouded by the symmetrical issue of hardware state pollution,
which is addressed by the next property. Factor (ii) instead, which vastly influences
the timing behaviour, is actually determined by more or less complex data structures
accessed by OS and library services and by the algorithms implemented to access
and manipulate them; therefore, it needs to be addressed by re-engineering the RTOS
internals to exhibit a constant-time and steady timing behaviour in the fashion of, e.g.,
the O(1) Linux scheduler [70]). Factor (iii) is much more difficult to attenuate with
general solutions, as the algorithmic behaviour of both the OS and the application
logic cannot be completely detached from the input parameters, unless we do not
force an overly pessimistic constant-time behaviour. In these cases, the most promising
solution consists in breaking up the input-dependent part of the kernel service and
either accounting for it in the application code or as a system-level background activity.

zero disturbance. For processor hardware that includes stateful resources
whose timing behaviour suffers history-sensitive jitter, a time composable RTOS
should be such that the execution of any of its services should not cause hardware-
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related disturbance on application timing upon return from the RTOS routines. Since
the main source of disturbance to the kernel layer and the application SW is the
underlying hardware, the idea of zero-disturbance inevitably calls for some kind of
separation that should be able to isolate the hardware from back propagating the
effects of an OS service call. Isolation is seldom provided by means of a one-way
mechanism: not being able to affect the hardware state could also mean that we are not
going to benefit from it. Techniques analogous to cache partitioning [144] may serve
that purpose; in cache partitioning approaches, in fact, the available cache space is split
into separate partitions that can be accessed by a subset of the system tasks. In the
case of the RTOS, a relatively small cache partition should be reserved for it so that the
execution of its system calls would still benefit from cache acceleration without how-
ever affecting the cache state of the application. Unfortunately, implementing software
cache partitioning in conjunction with a partitioned OS may be quite cumbersome
in practice, as mapping the RTOS and application code to separate address spaces
may be overly complex, especially for partitioned systems. An alternative (and easier
to implement) approach consists in giving up any performance benefit and simply
inhibiting all the history-dependent hardware at once when OS services are executed.
This technique would act like a padlock that prevents any OS service from accessing
(and thus altering) the state of history-dependent hardware. This comes however at the
cost of relevant performance penalty that, though not being the main concern in critical
real-time systems, could be still considered unacceptable. For example, disabling the
cache may also transparently inhibit any kind of burst access to the main memory.
In this case, cache freezing may be preferable to complete inhibition (Figure 8). Also
the execution frequency of a service is relevant with respect to disturbance: services
triggered on timer expire (such as, for example, the interrupt handler to serve a HW
decrementer) or an event basis can possibly have even more disturbing effects on the
application SW level, especially with respect to the soundness of timing analysis. The
deferred preemption mechanism in combination with the selection of predetermined
preemption points [145] could offer a reasonable solution for guaranteeing minimal
uninterrupted executions while preserving feasibility.

Finding the most effective implementation of the RTOS features that meet the above
goals is of course largely dependent on the target processor architecture as well as the
adopted task model. A periodic task model suffers less preemption overheads than a
sporadic one because periods can be made harmonic whereas sporadic arrivals cannot.
Analogously, tick scheduling is a very intrusive style of servicing dispatching needs. It
should be noted that in any case these properties should not be pursued at the cost of
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Figure 8.: Inhibition of history-dependent hardware.

performance loss: the overall performance, although not the primary concern in hard
real-time systems, should not be penalised. Figure 9 summarises the steady timing
behaviour and zero-disturbance requirements.

An OS layer that meets the above requirements is time-composable in that it can be
seamlessly composed with the user application without affecting its timing behaviour.
Alternative approaches could rely on a less stringent reformulation of the steady
timing behaviour and zero-disturbance properties, based on the claim that timing
composability between OS and application could be equally achieved if the effects
of executing an OS service or HW primitive can be somehow upperbounded. These
solutions range from the enforcement of a worst-case scenario (e.g., flushing the HW
state) on every OS service invocation, to the computation of reliable disturbance
estimates. The former approach is however unacceptably pessimistic; the latter instead
is strictly dependent on the adopted timing analysis approach, and does not account
for the nature itself of the operating system, which is actually separate from the user
application and may not even be available to the analysis. Our proposed solution
rather aims at a general reduction in the effects of the OS layer on the application
code and is expected to ease the analysis process, regardless of the timing analysis
technique of choice. In Sections 3.4 and 3.6 we present the implementation of a set
of kernel-level services that exhibit a steady timing behaviour and cause minimal
interference to the execution of user-level code.
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Figure 9.: Breakdown of the requirements for timing composability.

3.2 time-composable rtos

The kernel layer, lying in between the hardware platform and the user application,
accommodates the implementation of OS primitives and provides a unified access
point to standard libraries and all kernel services. Whereas steadiness and zero-
disturbance are universally valid principles, the practical means and the degree to
which they are exhibited by a RTOS is dependent on the underlying hardware platform,
the architectural specification and the task model assumed for the application. Since
we consider history independence to emerge as a bottom-up property, if the HW layer
were able to guarantee complete independence from the execution history then the
provision of constant-time services would suffice to guarantee timing composability
at the OS level. In fact, the zero-disturbance independence requirement would be
automatically met: if the execution time of each processor instruction did not depend
on the hardware state and the execution time of each kernel service did not vary on the
software state or the input data, then the timing behaviour of the user application would
not be affected by any kernel service at all. The disturbing effects on the execution of
the application code can be exacerbated by the nature of a kernel service: frequent
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interruptions of the user application by a hardware-triggered service (e.g., interrupt
handlers) may have disruptive effects on the applicability of measurement-based
approaches, as in the presence of history-dependent execution it may be extremely
difficult to isolate the effects of those interference on different end-to-end runs.

An extremely restrictive software architecture resting on a simple periodic task
model represents the most favourable precondition for the implementation of a time-
composable RTOS. This clearly emerged during the RTOS refactoring on which we
report in Section 3.4. Leaving aside exceptionally favourable circumstances (e.g.,
the ARINC model just mentioned), a less restrictive and more general RTOS cannot
limit itself to support periodic run-time entities only. Sporadic activations, low-level
interrupts and programmable timers (e.g., Ada timing events) make the quest for time
composability much more complicated. The support of a more flexible task model and
the resulting increased interactions among a number of run-time entities breaks the
fairly-predictable cyclic pattern of task interleaving otherwise exhibited by a system
with periodic tasks only. Moreover, mechanisms to reduce the jittery interference
introduced by task preemption are required to protect time composability.

From a more general standpoint, we identify a minimal set of desirable properties,
hence potential areas of intervention, that cannot be disregarded in any serious attempt
to inject steadiness and zero-disturbance – hence time composability – on a full-fledged
RTOS:

1. Non-intrusive time management: The way the progression of time is managed by
the operating system should have no side effects on the timing behaviour of the
applications running on top of it. Intuitively tick-based time management should
be avoided in so far as it subjects the user applications to unnecessary periodic
interruptions. Moreover the tick-based approach usually implies an intrusive
approach to task management where many activities are performed at each tick
to keep the ready queue updated.

2. Constant-time scheduling primitives: Most of the RTOS execution time is typically
spent on scheduling activities: either task state updates (activation, suspension,
resumption) or actual dispatching. Reducing the variability stemming from
scheduling primitives is intuitively an essential enabler of composable RTOS. In
particular, those primitives whose execution time is linearly dependent on the
number of tasks in a system should be revised.

3. Composable inter-task communication: We intend the area of inter-task commu-
nication to cover all kinds of interactions with bearing on hardware or soft-
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ware resources, including I/O, communication and synchronisation. From this
perspective, the problem of providing a time-composable communication sub-
systems largely intersects with the problem of providing controlled access to
shared resources. Uncontrolled forms of synchronisation and unbounded priority
inversion manifestly clash with the steadiness and zero-disturbance principles.

4. Selective hardware isolation: The very concept of zero-disturbance insists on the
opportunity of some form of isolation of the history-dependent hardware state
as a means to preventing RTOS-induced perturbations: the provided support
may vary from partitioning approaches to plain disabling of hardware resources.
Clearly this is more a system-level or hardware issue than a software one, as not
many solutions can be devised when the underlying hardware platform does
not support any form of isolation. When necessary, however, the RTOS should
be able to exploit the available features by means of ad-hoc low-level interfaces
(e.g., for advanced cache management).

Although we would like our ideal time-composable RTOS to exhibit all the above
properties, we are also aware that implementing such a comprehensive operating
system from scratch is a challenging task. We therefore considered it worthwhile to
cast time composability solutions upon existing RTOSs that would preferably already
exhibit nice properties from the analysability standpoint.

We proceed in our dissertation by presenting two industrial domains, the avionics
and the space, where criticality is a central concern in system development, to check
how different their requirements may be and how this translates into architectural
design choices. We reason about how time composability can benefit application
analysability, and in turn how the specific application domain may limit the degree of
achievable composability. At the same time we present the work we performed on
two OS kernels, TiCOS and ORK+, in Sections 3.4 and 3.6 respectively.

3.3 the ima architecture for the avionics domain

In the past, conventional avionics systems were based on the federated architecture
paradigm. In those systems each computer is a fully dedicated unit, which may
undergo local optimisations. However, since most of the federated computers perform
essentially the same functions (input acquisition, processing and output generation),
a natural global optimisation of resources is to share the development effort by
identifying common subsystems, standardising interfaces and encapsulating services,
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i.e. adopting a modular approach. That is the intent of the Integrated Modular Avionics
(IMA) concept [146], where multiple independent applications execute together on
top of one and the same physical processor sharing logical and physical resources
as needed, under the supervision of the RTOS. This contrasts with the federated
architecture concept in which every application runs in total isolation on top of
a distinct physical unit and fully replicated RTOS instance. The adoption of an
integrated architecture opens new opportunities for software modularity, portability
and reuse. In an IMA system the RTOS becomes the principal responsible for the
provision of space and time isolation and the ARINC 653 specification [40] supervises
how this has to be done. Space isolation is guaranteed by providing and enforcing
separate address spaces for each application, typically achieved by means of different
virtual memory contexts: each application, called partition in ARINC speak, is thus
assigned a strictly distinct context on execution. Time isolation is achieved by means of
partition-aware, two-level scheduling that strictly allocates all needed computational
resources, including the CPU, to one partition at a time to enforce spatial isolation. The
standard specifies the Application/Executive interface (APEX), a software interface
between a partitioning operating system on top of the avionics computer and the
application software deployed within the partitions; the ARINC architecture prescribes
the semantics of intra- and inter-partition communications, and describes how to
perform partition configuration. All APEX services are complemented by an API
specification in a high-order description language, allowing the implementation in
various programming languages and on top of diverse ARINC-compliant hardware
components.

Figure 10 shows a high-level view of ARINC 653 partition-aware scheduling. Par-
titions execute within pre-assigned scheduling slots (also known as minor frames) of
given duration, which may not be the same for all partitions. Within any such slot,
processes belonging to the active partition can be scheduled for execution, typically
according to fixed-priority preemptive scheduling policy. Running processes execute a
sequence of functions specified in a process-specific schedule computed offline. Some
partition slack may be used to fill each scheduling slot to prevent foreign activity as
well to mitigate the effect of local overruns of modest magnitude. An integral number
of scheduling slots is fitted into a major frame (MAF), which hosts the execution of all
partitions within their collective hyperperiod. In addition to the primitives needed for
partition scheduling, an ARINC-compliant RTOS must also provide a specialised API
to regulate communications inter- and intra-partitions.
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Figure 10.: Architectural decomposition of an ARINC 653 system.

A consequence that can be drawn from the architectural specification outlined
above is that the ARINC task model is strictly periodic. The set of processes statically
allocated to a scheduling slot is feasible if the period and duration of that slot meet the
application requirements; consequently, all processes that may ever become runnable
within a scheduling slot must have been statically assigned sufficient time to execute
to their worst-case duration. While this is true, process dispatching within an ARINC
scheduling slot is not table driven but rather takes place upon actual release and
completion events.

In principle, the ARINC task model may use the partition slack to accommodate
aperiodic execution, but it makes no allowances for true sporadic processes. In fact,
while some ARINC primitives may give rise to event-based scheduling, ARINC itself
includes no support for the enforcement of minimum inter-arrival time for release
events. As a consequence, the only admissible form of sporadic process in the ARINC
task model described above is assimilated to a periodic process constantly arriving
at the assigned minimum inter-arrival time. This obviously causes a fair amount of
wasted time in the scheduling slots hosting them.

The periodic nature of the ARINC task model and its restrictive assumptions offer
several opportunities and vantage points for an RTOS to achieve time-composable
behaviour, for both the specialised API services and the kernel primitives underneath
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them. In particular we identified the following areas of intervention which significantly
influence how time composability can be achieved in an IMA environment, and which
mostly follow the categorisation presented in previous section:

time management. The fundamentally periodic nature of the ARINC task model
allows simplifying assumptions in the implementation of time management which
make it possible to dispense with classic tick scheduling altogether.

scheduling . In a context where processes are essentially equivalent to statically-
scheduled function sequencers, preemption serves strictly no other purpose than
acknowledging asynchronous events. Arguably, servicing those events can be selec-
tively deferred to either the end of the current process or to a dedicated fraction of the
partition slack, while incurring fully bounded latency and thus without intolerable per-
formance degradation. This simplification facilitates the adoption of run-to-completion
semantics [145] for processes, with obvious benefits in the terms of time composability.

selective hardware isolation. The isolation of the history-dependent hard-
ware state is an essential feature to prevent RTOS-induced perturbations. Isolation,
however, would only be needed within scheduling slots at all times that partition
processes execute. No isolation would be needed instead at the time of partition
switches, where the RTOS is the sole entity allowed to execute: the more computation-
ally demanding services may be scheduled for execution at those points, so long as
they cause no jitter in the dispatching of partition processes and detract bounded time
from the slot duration.

inter-partition communications Under the influence of their off-line com-
puted schedule, all avionics functions fundamentally adhere to the one and same
pattern of execution, which consists of three phases in succession: input acquisition,
data processing, and output generation. One distinct consequence of this setting
is that the RTOS processing of the inter-partition input and output calls made by
functions need not be served at the point of call, thereby saving the calling process
from suffering RTOS interference that endangers time composability. The obvious
alternative is to position fractions of each partition slack in the scheduling slot in a
manner that allows serving the pending I/O calls without causing RTOS interference
on application processes while also ensuring data freshness to the consumer.
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These observations, together with a few others for serving the synchronisation
calls too generously allowed for by the ARINC 653 standard, form the basis to our
time-composable implementation of an ARINC 653-compliant RTOS which we present
in Section 3.4.

3.4 ticos

The OS we consider is TiCOS, which we developed upon substantial refactoring of
POK [147]; POK was initially chosen as part of the PROARTIS execution stack because
of its lightweight dimensions, its availability in the open source and its embryonic
implementation of the ARINC 653 [40] specification. POK comprised both a common
interface to all the functionality offered by the operating system (inclusive of an
implementation of the ARINC APEX), and a set of common scheduling primitives.
Operating system primitives and ARINC services can be either executed in response
to an explicit request from the application code, or implicitly triggered by a timer or
scheduling event. We evaluated the services it provided from the standpoint of time
composability, that is with respect to the steady timing behaviour and zero disturbance
properties. The execution of these kernel services did not meet our requirements set
on timing variability and inter-layer interference. The original release provided a set
of kernel and ARINC services that were not developed with time composability in
mind, as their implementation was clearly oriented towards an optimisation of the
average-case performance. In particular, the OS timing profile depended on both the
execution history and the actual values given as an input to services invocation; in
turn, the execution of a kernel service itself determined new hardware/software states
affecting application execution times.

To conform to the actual production environment as much as possible, we focused
our study on the PowerPC processor family, which is baseline to lead avionics industry.
We re-targeted the kernel to the PPC 750 processor model [136] and completed its
partial implementation of the ARINC 653 Application Executive middleware layer. At
that point we set on redesigning the kernel primitives and ARINC services that had
the highest influence on time composability and analysability from the perspective of
the partition-aware scheduling presented in Section 3.3. The ARINC-653 architectural
specification allowed us to introduce several simplifying assumptions: the reduction to
a strictly periodic task model was probably the most important one. In order to cause
no repercussion on legacy avionics software, we made sure that our re-engineered
APEX services directly exposed to the application, stayed syntactically equivalent
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Figure 11.: Structural decomposition of TiCOS.

to and semantically consistent with the standard specification. We finally provided
experimental evidence that the degree of time composability may greatly benefit from
proper design choices in the implementation of the operating system, without giving
up performance.

Figure 11 shows a structural breakdown of TiCOS: the kernel layer provides an
interface to a set of standard libraries (e.g., C standard library) and core OS services
(e.g., scheduling primitives) to the application SW layer. In addition, TiCOS also
provides an implementation of a subset of the ARINC APEX. OS and ARINC services
are implemented via a system call mechanism (often mediated by a middleware-layer
redirection) that performs the switch to the supervisor mode and executes the required
TiCOS kernel services and primitives.

Not all OS services, however, are required to exhibit a steady timing nor to affect the
user-level code. We focused exclusively on those services that can be invoked as part of
the nominal behaviour of the system or the user application. This strategy permits to
exclude all those services and primitives that are invoked on system initialisation and
start up, before the system enters the nominal operation state. Each kernel service can
be classified by the sources of variability it may suffer from and by the degree of history
dependence it may carry in the execution stack. Besides the amount of variability,
however, we should also consider the way a service is invoked and its frequency of
execution. The repeated execution of services on timer expire or an event basis can
possibly have even more disturbing effects on the application SW level, especially
with respect to how measurements should be collected in practice. The execution
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of this kind of kernel primitives (such as, for example, the decrementer interrupt
handler) impedes the collection of measurements on an uninterrupted execution of
the measured piece of code. As long as we cannot guarantee a fully composable
kernel layer this would incur even more history dependence on the execution of the
application SW layer.

We continue our discussion by presenting an alternative design and implementation
of the OS layer services, aimed at injecting time composability in the kernel, explaining
the modifications to time management and system scheduling. We refer the reader to
Annex A for the discussion on ARINC library services.

3.4.1 Time Management

Time management is one of the core services provided by the operating system,
distinct from the front-office work of serving calls issued by the application, as it
permits to control the passing of time during execution and to react accordingly. The
notion of time is needed by both the operating system itself, to perform back office
activities, and the application, which may intentionally program time-triggered actions.
Managing task states and scheduling execution are highly dependent on how time is
represented in the system: most common time-management approaches adopted in
real-time systems rely on either a tick counter or on one-shot timers. When the RTOS
design can make no assumption on the application task model, time management
knows no better than being tick based. The tick is a constant time span chosen at
initialisation by which the processor notifies the RTOS of the elapse of one step in
logical time. All timing events that the RTOS can handle are an integral multiple of
that step. This is the most general strategy for implementing time management in
an RTOS and its requirements on the processor hardware reduce to a periodic timer
that fires at constant predefined intervals. When the pairing between the RTOS and
the task model is stricter, then one can consider doing away with the tick and use a
programmable one-shot timer instead, which allows setting timing events at variable
distances, thus being more general than the tick based solution. Unfortunately, not
all processors provide one-shot timers, which makes this implementation model less
general.

The original POK implementation provided a tick-based time management where a
discrete counter is periodically incremented according to a frequency consistent with
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Figure 12.: Tick-based scheduling within a major frame.

the real hardware clock rate1. In Figure 12 execution proceeds clockwise within the
Major Frame of a partitioned application: the size of every interval xi corresponds to
the time elapsed between two updates of the tick counter, and there are exactly

length o f major f rame
tick f requency

such intervals in each MAF2. Unfortunately, measuring time this way has the disadvan-
tage of causing massive disturbance to executing applications, as time management
operations are preemptively performed at every increment of the logical clock, typi-
cally served at the highest priority in the system. The negative effects of this RTOS
activity on time composability cannot be easily attenuated because the length of the
tick interval determines the latency with which the RTOS responds to time-related
application needs.

However, we argue that a tick-based solution would still be acceptable if one
can guarantee that the tick management (i.e., the set of kernel-level procedures
triggered upon each time tick) is both lightweight and constant-time. In terms of
the actual TiCOS PowerPC implementation, this means that the decrementer (DEC)
interrupt handler, which is used to increment the tick counter, and the triggered

1 TiCOS in its implementation for PowerPC exploits the decrementer register and the TBU to periodically
increment the tick counter.

2 A MAF is assumed to be a perfect multiple of the tick frequency.
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Figure 13.: Timer-based scheduling within a major frame.

scheduling (update) operations should have a minimal time duration (so as to reduce
disturbance). Additionally, the behaviour of such interrupt service routines should
present no jitter to satisfy the steady timing behaviour requirement in accordance
with the implementation of constant-time operating system primitives. To offer a
lightweight and steady behaviour we have implemented a constant-time scheduler
that is illustrated in the next section. The adoption of a fully discrete tick-based
time management together with constant time scheduling primitives would enable
constant-time scheduling of user-level applications.

The above solution, however, suffers from severe scalability issues with respect
to the required time granularity and, more importantly, prevents achieving zero-
disturbance. We therefore investigated and implemented an alternative solution, based
on one-shot timers. The other solution, also known as the interval-timer model, has
a much milder impact on the application: in a timer-based implementation clock
interrupts are not necessarily periodic and can be programmed according to the
specific application needs. Intuitively, a timer-based implementation can be designed
to incur less interference in the timing behaviour of the user application. The obvious
reason for this reduction is that with the interval timer the RTOS may schedule
dispatching points instead of polling for them.

If we consider the task model described in Section 3.3, the temporal isolation fences
defined by ARINC major frames and scheduling slots naturally form the boundaries of
independent, segregated and statically-sized intervals of execution. This arrangement
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allows programming the interval timer to fire at the edge of each of the smallest-sized
of such frames (the scheduling slot, see Figure 10) and let application execution
progress undisturbed within them until the next dispatching point. In Figure 13 a
timer-based representation of time is given, where each Si corresponds to one of the
n distinct scheduling slots allocated for partition execution within a MAF which is
divided into n slots, regardless of how these are effectively organised into minor
frames. Inside each slot alternative techniques must be devised to arbitrate task
execution: we adopt a fixed-priority deferred scheduling policy [42][145], in which
scheduling points are chosen at design time in a way that minimises disturbance to
application code. Bringing this idea to the extreme serves our purpose very well:
programming preemption only after the end of a job permits to run it to completion
with no interruption from the outer world.

3.4.2 Scheduling Primitives

The illustrative schedule shown in Figure 10 is strongly influenced by the nature of
control processing, which assumes strictly periodic processes that repeatedly execute
a sequence of rigidly sequential functions each of which follows a read-compute-
write processing pattern. For this very restricted task model and its dominant type
of processes, fully preemptive scheduling is plain overkill: in general the set of
processes that has to be dispatched within a scheduling slot is defined statically
as part of intra-partition scheduling and the period of the corresponding processes
is computed backwards as an integral multiple of the minor frame to which the
scheduling slot is assigned. On this account, we may safely consider all processes
within a scheduling slot to have one and the same release time, which occurs at the
edge of the scheduling slot (where a partition switch occurs) and deadlines no later
than the end of the scheduling slot. This simplification has no negative repercussion
on system feasibility, which continues to be guaranteed exactly as in the original
schedule because each process must have been reserved the time to complete its
execution within the slot it is assigned to. At the same time we can draw important
benefits on time composability. We may in fact contemplate using an extreme form
of deferred preemption [145] that allows all processes to run to completion, thus
incurring no preemption whatsoever, neither from concurrent processes nor – in force
of the solution discussed in section 3.4.1 – from back-office activities of the RTOS. In
this degraded form of fixed-priority scheduling within slots, the partition switch that
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starts the slot is the only time-programmed scheduling point; all other dispatching
points are deferred to process completion events.

Partition scheduling is easily performed in constant time on a circular list (per MAF),
as it follows a recurring scheme that resembles cyclic scheduling. Ordered queues
are the most common and intuitive way of managing process scheduling instead,
including dispatching and status update: the main, yet deadly for us, drawback
of this classic solution is that it does not lend itself to constant-time execution of
process status updates. For that reason, we redesigned the fixed-priority scheduler
using extremely compact representation of task states by bit arrays where the kth bit
holds information on the kth process. Bit arrays are updated by fast, fixed-latency
bitwise operations; in order to perform scheduling operations in constant time, we
also assume that all processes defined in the same partition have distinct priorities.
Since hard real-time operating systems typically define 255 distinct priority levels,
requiring distinct priorities poses no restriction on ARINC applications, which should
be capable of supporting up to 128 processes per partition [40]. It should be noted
that process is the ARINC equivalent of a task in classic real-time theory.

This basic scheduling approach is illustrated in Figure 14 where the circle on the left
represents the sequence of scheduling slots within a MAF, which is strictly periodic.
A dispatching point (b) is triggered by the transition between two neighbouring slots –
in which case it is preceded by a process status update (a) – or a process completion
event.

The global data structures needed by our scheduler are the following:

• An array of the processes (say N) defined in the system, ordered by decreasing
priority

• The static configuration of the major frame, i.e. the time slots defined and the
allocation of partitions to them

• A set of bit masks MASKstate
current of size N, one for each state a process can assume

(i.e., dormant, waiting, ready and running in ARINC speak), which collectively
describe the current state of all application processes

• A set of bit masks MASKstate
slot of size N, one for each state a process can assume,

to describe how process states are changed in the transition to every slot defined
in the major frame.

At every slot (i.e. partition) switch, both scheduling and dispatching are performed:
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Figure 14.: Core scheduling data structures and operations.

• The status of all processes is updated by using the MASKstate
slot of the upcoming

slot to modify MASKstate
current, such that

MASKstate
current[τ] =

{
1 process τ should switch to state in the next slot
0 otherwise

As Figure 14 (a) shows, updating the status S of the kth process is done in
constant time by bit-wise OR-ing the MASKstate

current with the 1� k bit-array (or
its dual ∼(1� k).

• As a consequence of the previous step, processes that can be executed in the
new slot are characterised by a “1” in the corresponding position of MASKready

current:
since processes are ordered by decreasing priority, the position of the most
significant bit in MASKready

current corresponds to the position in the process array of
the next process to be executed (Figure 14 (b)). Identifying such position means
calculating the log2 of the base-10 number represented by MASKready

current: this
can be done for example by using the builtin clz GCC built-in function, which
counts the leading “0”s in a word. However, since this operation is implemented
by using the cntlz PowerPC assembly instruction, whose implementation is not
guaranteed to take constant-time to execute, we may want to use De Bruijn
sequences3 for this purpose [148].

3 De Bruijn sequences allow implementing perfect hashing for binary sequences that are exact powers of
two.
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The implemented scheduling mechanism is better explained by a simple example.
Let us consider a simplified partitioned system consisting of just two partitions PA and
PB that are assigned two consecutive scheduling slots Sa, Sb. Each partition supports
the execution of two user processes, namely τa1 ,τa2 ,τb1 and τb2 , which are all activated
simultaneously at the beginning of the respective partition slot4. Initially (i.e. at
system start-up, prior to the first major frame execution) the system is in the following
state:

MASKready
current = [

τb2
τb1

τa2 τa1
0 0 0 0 ]

which means that no process is ready at this point. A state mask is associated to
each scheduling slot to configure the state transitions that are to be performed when
entering that same slot. Accordingly, the ready state mask associated to slot Sa is thus

MASKready
Sa

= [
τb2

τb1
τa2 τa1

0 0 1 1 ]

since processes τa1 and τa1 are expected to become runnable at the beginning of Sa.
State masks corresponding to the other process states are conveniently initialised and
updated in a similar fashion, and are therefore not considered in this example. When
entering slot Sa, process state mask is updated by applying a bitwise OR:

MASKready
current | = MASKready

Sa
= [

τb2
τb1

τa2 τa1
0 0 1 1 ]

Since threads are ordered by decreasing priority within a partition and since all
threads are assigned distinct priority levels, it is straightforward to determine their
execution order. When a thread completes a period of execution, a “0” is placed into
its corresponding position in MASKready

current.

In this context, a process may switch to a ready state only at the beginning of
the current scheduling slot and never in between two scheduling slots. Therefore,
according to the Fixed-Priority Preemptive Scheduling (FPPS) policy, all processes in
the ready queue are guaranteed by construction to have their jobs executed without
being interrupted (as shown in Figure 15 below).

We are aware, however, that this solution conforms to the strictly periodic inter-
pretation of the ARINC task model, i.e. it relies on the strong assumption that all
processes are actually activated at the beginning of a partition slot. This assumption
is clearly violated when process activations events can be dynamically programmed

4 Processes are labelled by increasing priority order, e.g., π(τa1) < π(τa2).
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Figure 15.: Execution within a time slot.

by the user application, and thus outside of partition switches (i.e., scheduling slots).
This is the case, for example, when a synchronous kernel service requires a scheduling
event to be triggered as a consequence of a timeout5. This kind of timeout can be used
to enforce, for example, a timed self-suspension (i.e., with “delay until” semantics) or
a phased execution of a process.

Since we want to ensure that every process is run to completion, preemption is
necessarily deferred at the end of process execution, which therefore becomes the next
serviceable dispatching point, as shown in Figure 16 (a); dispatching is performed
using the same method presented above. The solution we implemented in this case
consists in programming our timer to fire at the time this special event occurs, thus
in advance with respect to partition switching: the executing application process is
interrupted for the amount of time needed to set a “1” in the current MASKstate

current

corresponding to the status to be changed. Timer must be then reset, according to
the next event to be served, which could be either another time-triggered event or
the concluding partition switch. Since we do not know in principle how many such
time-triggered events have to be served within a time slot, we need to maintain them
sorted in a queue, whose management cannot be performed in constant time. We can
bound the jitter introduced by the use of such a queue by reasoning about the number
of timeout events present in the slot: the variable timing introduced by the use of the
phased (delayed) execution service can be ignored, since its invocation is supposed

5 The DELAYED START and TIMED WAIT ARINC services are representative examples of requests for
a timed-out process activation.
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to be limited in the early start up phase of the system. For timed self-suspension,
instead, variability can be bounded by looking at the differences between the best-
and the worst-case scenarios: the former arises when every timeout is served before
the following is set, while the latter case happens when all timeouts are set at the
same time. We can conclude therefore that jitter is proportional to the number of
timed self-suspension events defined in the slot, which seems to be a reasonable price
to pay if having that sort of disturbing events in the system cannot be avoided. A
similar mechanism is exploited to manage aperiodic processes (i.e., sporadic tasks): in
this case, as reported in Figure 16 (b), the deferred scheduling event is triggered by a
synchronous activation request, which does not involve the use of timers.

Before dispatching the next process to execution, the RTOS may need to check the
presence of pending asynchronous activation events, whose timer may have expired
in the meanwhile and therefore needs servicing. Those dynamically programmed
task activations cannot be handled within the same MASK mechanism and require a
separate data structure to specifically collect asynchronous events (again represented
as bit arrays). That data structure is checked for expired events at every dispatching
point. The bit arrays for which a timer has expired are used to update MASKstate

current, as
shown in Figure 14(c). Whereas quite good at time composability, this approach may
reduce the responsiveness of the system, as it defers the servicing of time events until
after completion of the running process. The resulting latency within the scheduling
slot of the partition of interest (which is treated as blocking in feasibility analysis) is
bounded by the longest process execution in that slot.

The timing composability property we claimed to subsist on the operating system
services presented so far needs to be assessed and corroborated by means of selective
experiments, which are reported in the next section.

3.4.3 Evaluation of the Kernel Layer

In this section we provide numerical evidence of how time composability has been
injected into TiCOS and how end-user applications which leverage its services can
benefit thereof. To this end we assessed our redesigned implementation of ARINC-
compliant RTOS against the original version of POK, which is simple and perhaps
exceedingly simplified, but still representative of an RTOS designed without timing
composability in mind.
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Figure 16.: Deferred dispatching mechanism within a time slot.

Approach and Setup

We evaluated our approach by assessing the redesigned OS services from the twofold
dimension of the execution time jitter exhibited by the services themselves and the
interference they may incur in the execution time of the user applications. We expected
our redesigned services to have no side effect on the timing behaviour of the user
application. The only allowed effect would be that resulting from a simple composition
of the service timing behaviour with that of the user application. Ideally, given a
unit of composition (UoC) f then its execution behaviour on a generic run r should

81



be computable as the self 6 execution time of f plus the execution time of all the OS
services S that have been synchronously or asynchronously executed in the same run
r:

OBSERVED TIMEr( f ) = SELF TIMEr( f ) + ∑
si∈Sr

TIME(si)

This would mean that the observed behaviour of a user UoC is determined by a simple
composition of the execution time of the function and the execution time of the OS
services that were executing at the same time. The execution time of such services si

would not depend on the specific run r.
We performed our analysis on the basis of the timing information collected by

uninterrupted and consecutive end-to-end runs of software units at the granularity
level of kernel primitives, ARINC services and process main procedures. Our experi-
mental evaluation encompasses several target procedures under different inputs or
different task workloads. Particularly, experiments were conducted over a relevant
set of OS services, which we considered to be the most critical ones from the timing
composability standpoint: time management, scheduling primitives, and sampling port
communication.

time management. Representation of time evolution and handling of timing
events should incur a minimal overhead and possibly no disturbance on the user
application. As for our objectives, we wanted to measure whether and to what
extent the basic time management primitives may affect the timing behaviour of a
generic user application: we evaluated the performance of our time management
implementation, based on interval timers, against the standard tick-based approach7,
originally implemented in POK. Under tick-based time management the operations
involved are periodically executed, even when there is no need to; this is likely to
incur timing interference (i.e. disturbance) on user applications, depending on the tick
frequency. By exploiting interval-based timers we guarantee that the execution of a
user application is interrupted only when strictly required. Making a step further, it
also enables to control and possibly postpone timer expires at desired points in time
and possibly in a way such that user applications are not interrupted.

scheduling primitives. Implementation and design choices may affect both
the latency and jitter incurred by scheduling primitives such as partition switch,

6 The self quota of the overall observed execution is the time spent in executing the UoC itself, as opposed
to the cumulative execution time.

7 Tick-based approaches represents a classical option for real-time operating systems.
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process dispatching or state update, which incidentally are also strictly coupled with
the time management approach. The original implementation of POK came with
an incarnation of the standard FPPS policy. The specific implementation, however,
exhibited a variable timing behaviour, highly dependent on the task workload. We
designed and implemented new kernel data structures to provide extremely fast
and constant-time – O(1) – scheduling primitives for both tasks and partitions (e.g.,
partition switch, thread activation, suspension and selection). This provision, in
conjunction with a deferred handling of timing events (preemption included), allows
excluding most disturbing effects on the user-level applications. In doing so we collect
timing measurements under different task and partition workloads.

arinc services. Message-based communication between partitions is undoubt-
edly one of the most challenging ARINC services from the timing composability
standpoint, critically impacting on the application. As observed in Section 3.4, both
intra- and inter-partition communications suffer from considerable variability as their
execution varies on the amount of exchanged data (i.e., message size). Moreover,
the execution of such primitives as part of an OS layer service may have indirect
disturbing effects on the execution context of the user application. By relocating the
execution of read and write services at the beginning and end of a partition scheduling
slot respectively we avoid any variable overhead on the user application. We can
also benefit from the cache in executing such loop-intensive services as we have no
constraint on preserving the hardware state at partition switch.

The properties we want to prove on the OS layer (steady timing behaviour and
zero-disturbance) do not need to be studied with probabilistic techniques over a large
volume of observations. Arguably instead, those properties can be assessed just by
measuring a small number of selective examples. This claim is further corroborated
by the fact that the PROARTIS Sim tool8, which was used to collect timing traces,
complies with the hardware features required by PTA techniques described in Section
2.5.2. In particular, this implies that all hardware instructions are guaranteed to execute
with a fixed latency, except for memory accesses whose latency depends on the current
cache state. Since caches are the only residual source of history dependence we were
able to exclude, when needed, any source of interference in the execution time by
simply enforcing a constant response of the cache, either always miss (i.e., inhibition)
or always hit (i.e., perfect cache). For example, the interrupt handling mechanism

8 PROARTIS Sim is a highly-configurable SocLib-based PowerPC 750 simulation platform [16], graciously
supplied by the PROARTIS project team.
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has been modified to automatically disable caches on interrupt, thus enabling a sharp
approach to zero-disturbance. This allowed us to restrain our observations to a limited
number of runs. Moreover, thanks to the characteristics of the execution platform,
it is not rare for the concocted test cases to exhibit a strictly deterministic execution
runs that follow a periodic pattern, which allowed us to further reduce the number of
required observations for scheduling primitives.

Although we identified cache inhibition to be the main countermeasure to potential
disturbance9 from the execution of kernel services, we also highlighted how several
of those services can actually be postponed and executed outside the execution of
the user application. The baseline PROARTIS Sim configuration in our experiments
includes the perfect cache option, which corresponds to enforcing the latency of a
cache hit on every memory access. In the absence of a fine-grained control over the
cache behaviour, this parametrisation is meant to exclude the variability stemming
from caches without incurring the performance penalty of thoroughly disabling them.
According to our overall approach, in fact, the majority of our experiments addresses
those services that are executed outside of the user application and there is no need to
execute them with acceleration features disabled. The deferred preemption and the
redesigned sampling port services perfectly fit this scenario.

Some performance loss is inevitably incurred by those services that do not lend
themselves to be deferred: the enforcement of the zero-disturbance property will
prevent them from taking benefit from history-dependent hardware acceleration
features. However, if we exclude those ARINC services that are executed at system
start-up (i.e., they are not part of the nominal behaviour) and inter- and intra- partition
communication services (as we explicitly handle them), we do not expect the kernel
services to greatly benefit from caches. Although the time penalty incurred by those
services should be in principle assessed and evaluated against the derived benefits,
we expect it not to overly penalise the overall execution of a system.

The execution traces obtained through the simulator were then interpreted on
Rapitime [26], a hybrid measurement-based timing analysis tool from Rapita Systems
Ltd. The information-rich tracing capabilities of PROARTIS Sim allowed us to collect
execution traces without resorting to software instrumentation, thus avoiding our
experiments to incur the so-called probe effect.
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Figure 17.: Tick counter interference on the application under different workloads
and scheduling policies, Fixed-Priority Preemptive Scheduling (FPPS) and
constant-time (O1).

Results

As a starting point, we first wanted to evaluate and compare the interference expe-
rienced by user applications because of the different time management approach. To
this end we selected the “statemate” routine from the Mälardalen benchmark [149] as
our sample application and we measured it under different time management configu-
rations and different system workloads. The main procedure of the analysed process
was designed to periodically execute a loop intensive routine, as loop intensiveness is
intended as a means to make the application sensible to the cache behaviour; caches
have been enabled and configured with Least Recently Used (LRU) replacement policy.
We first measured the example application within an implementation which uses
the decrementer register as a tick counter. Successively, we set up a new scenario
where no interference from the time management service is experienced, as the latter
is implemented by interval timers set to fire outside the execution boundaries of the
examined procedure. We observed the timing behaviour of our target application
over several end-to-end runs under both settings, expecting to notice and quantify the
difference between them. The system workload instead has been configured to range
from a minimum of a couple of processes to a maximum of 32 processes competing
with our target benchmark.

9 As caches are the only history dependent hardware feature in our execution platform.
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The experimental results in Figure 17 show that an interval-timer policy (lower lines
in figure) always outperforms a tick-based one, since the latter introduces significant
interference on the application code, as a consequence of the time-management
activities performed on every tick. Moreover, even when considering the same policy
in isolation, the tick-based time management presents larger fluctuations depending
on the presence of other processes in the system (i.e the pending workload); in fact,
the presence of caches is responsible for amplifying the jitter suffered by the analysed
process in both settings. An application scheduled with an appropriate interval-timer
is instead less prone to polluting cache effects and presents therefore smaller variations
in observed execution times. Interestingly, as highlighted by the relative gap between
extreme lines, the cache-induced variability experienced by the application under a
tick-counter policy is relatively higher than that suffered under interval-based timer;
this is explained by the fact that the user application is disturbed by the tick counting
system activity, which typically consists in updating the OS software state and is likely
to negatively affect the cache state.

Considering the scheduling policy itself, our interest falls on the kernel primitives
implemented to perform the status update of the active processes and the election
of the candidate that will be actually dispatched next. We compare two scheduling
policies by measuring execution times of their routines: in the FPPS setting we measure
the scheduling routine end-to-end, since thread status update and selection are always
performed together as an atomic operation, at every clock tick. In the constant time
scheduler case instead we track the execution times of the two routines separately, since
thread status updates can only occur at partition switch, whereas process election for
dispatching needs to be performed every once a process has completed its execution,
which is guaranteed to run to completion with no external interruption. The results
prove and measure the jitter present in the original FPPS scheduler, while our new
scheduler is shown to execute in constant-time, thanks to the smart representation of
task and tasks states through bit masks and the efficient register operations over them.
In the experiments we enforced a perfect cache behaviour so that no overhead from
the hardware is accounted for in measured execution times. Moreover, exploiting the
features of our execution platform and the adoption of the FPPS policy with distinct
priorities, we designed our experiments to include only periodic tasks. This guarantees
the execution of test cases to follow a strictly deterministic periodic pattern, which
allowed us to limit our observations to a small number of runs. We first focused on
the timing variability that stems from the number of run-time entities and the way
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Figure 18.: FPPS thread selection under different workloads.

these are organised and managed. Figure 18 shows the observed execution times for
the fixed-priority scheduler: more precisely, the values reported herein refer to the
thread selection routine that is part of the larger scheduling primitive. The setting
in the top chart is two partitions, with three and two threads respectively, while the
bottom chart reports a larger example comprising three partitions with ten, five and
two threads each.

The FPPS scheduler always performs the same operations at every clock tick, mainly
checking whether the current partition and thread should be switched to the next
ones; there are two sources of variability in here given by the possibility that a
partition/thread actually needs to be switched at a particular scheduling point, and
by the number of threads to be managed in the executing partition, respectively. The
graphs above illustrate very well this situation: higher peaks correspond to partition
switches, when the state of all threads in the new partition changes to ready and
they must be therefore inserted in the appropriate scheduler queues. Those peaks
have different heights in accordance to the number of threads defined in each such
partitions. Values following the higher peaks correspond to thread switches within the
same partition: here execution time is determined by the operations needed to find
the next thread to be dispatched, which depends once more on the number of threads
in the partition. Additionally, the number such operations is slightly increasing since
ready queues are progressively emptied and their exploration requires more time10.

For the constant-time scheduler we implemented we must distinguish two cases,
since its behaviour is different at partition and thread switch. Figure 19 shows the

10 Even though this step could be performed in constant time, the reported graphs suggest that the gain
on the average case would be negligible and still dominated by the worst-case time experienced at
partition switch.
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Figure 19.: Constant-time thread status update under different workloads.

Figure 20.: Constant-time thread selection in a test case with three partitions and
seventeen threads.

execution time of the routine invoked at partition switch, which only needs to update
thread states11. Though the settings are exactly the same as Figure 18 above, status
updates are performed in constant time thanks to the bitwise operations on thread
masks, as explained in Section 3.4.2.

Actual thread selection is performed at every thread switch: Figure 20 shows that
our constant-time scheduler is capable of detecting the highest-priority thread to
be dispatched with fixed overhead regardless of the system workload, by using De
Bruijn sequences as explained in Section 3.4.2. For the same reason, our constant-time
scheduler performs better than FPPS even when the cumulative execution cycles and
jitter of the two routines are considered. In Figure 20 lower peaks correspond to the
selection of the system idle thread. The raw numbers for the illustrated experiments
are reported in Table 1 below. It is worth noting that the small delta exhibited
by our thread switch implementation is actually due to the difference between the
selection of any thread (95) and the idle thread (45). The delta measured on the FPPS
implementation instead represents real jitter.

11 This is no longer true when the system includes communication ports, as we will discuss in the next
section.
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Table 1.: Execution times for a user application with tick-based and interval-timer
scheduling.

FPPS O(1) scheduler O(1) scheduler
(standard POK) (partition switch) (thread switch)
Min Max Delta Min Max Delta Min Max Delta

2 partitions
5 threads 255 714 459 232 232 0 N/A

3 partitions
17 threads 259 1759 1500 232 232 0 45 95 50

We presented in Annex A the implementation of a new communication mechanism
for sampling ports12 based on posted writes and prefetched reads that permits to
remove the sources of variability and disturbance from the service itself and serve
them out at partition switch.

In order to assess our approach, we focused on the READ SAMPLING MESSAGE and
WRITE SAMPLING MESSAGE ARINC services and compared our novel implementation
against the standard one. We performed such a comparison on the maximum observed
execution times, collected by triggering the execution of the above services under
different inputs. As observed in Section 3.4.3, we forced the simulator to resemble a
perfect cache when measuring this services as we wanted to exclude the variability
stemming from the cache behaviour without incurring the performance penalty of a
disabled cache: a positive effect of relocating the message management in between the
execution of two partitions is in fact that of being able to exploit the caches without
any side-effect on the user application.

Having excluded the cache variability, the analysed service exhibits a steady timing
(actually constant) behaviour where the execution time only varies as a function over
the input (message) size. We triggered the execution of the sampling services with
different sizes of the data to be exchanged. Figure 21 below provides an overview of
the execution times we observed in our experiments for the standard implementation
(on the left) and our respective variant (on the right). The rightmost columns in
each chart in Figure 21 instead show the variation in the execution time required to
perform a partition switch, which is the penalty that has to be paid for relocating
the message passing mechanism. As expected, the new implementation of the READ

and WRITE services exhibits a major reduction in their execution times with respect
to their standard counterparts. In addition, we observe that our expectations on
steady behaviour are perfectly met for both services as they run in constant time

12 Queuing ports services exploit exactly the same mechanism.
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Figure 21.: Overall comparison of the two implementation variants.

regardless of input data. The reduction and stabilisation in the execution time of
both services is easily explained by the fact that their most time-consuming part has
been removed and postponed at partition switch. The standard implementation of
the WRITE SAMPLING MESSAGE, for example, included the loop-intensive copy of the
raw data in input to the specified source port. This code pattern inevitably exhibits a
timing behaviour that varies on the amount of data that has to be written to a port
location. The READ SAMPLING MESSAGE shares a similar but specular structure where
the message data has to be retrieved from a port location.

As a further source of timing variability, the amount of data that is read (written)
from (to) one and the same port is not guaranteed to be statically fixed13. The new
mechanism based on posted writes and prefetched reads, instead, enforces a steady
timing behaviour, regardless of the input data. The dependence of READ and WRITE

services on the input size is shown in Figure 22 where the increase in the execution
time of each service is related to an increase in the input data size, here ranging from
1 to 256 Bytes as reported in Table 2.

Our implementation of the sampling I/O services is based on the decision of
postponing the actual read and write activities at partition switch. All valid reads
required by a partition will cause the prefetching of a message in the partition memory
space before the partition itself starts executing; similarly, all writes commanded
by a partition will be performed before executing the successive partition. Thus,
the kernel primitives involved in partition switching have to execute those offline

13 Only the maximum message size is always defined for sampling and queuing ports.
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Table 2.: Execution times for the READ and WRITE services.
WRITE NewWRITE READ NewREAD

1B 523 436 618 448

4B 580 436 794 448

32B 1112 436 1383 448

64B 1720 436 1758 448

96B 2024 436 2086 448

128B 2936 436 2974 448

256B 5368 436 5406 448

Figure 22.: Steady vs. input-dependent timing behaviour.

Table 3.: Maximum observed partition switch overhead.
32 B 64 B 96 B 128 B 192 B 256 B 384 B

Partition Switch (standard) 27674 29498 32224 33146 37686 41619 48630

Read+Write Overhead + 661 + 1269 + 1973 + 2485 + 3807 + 5118 + 7455
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Figure 23.: Steady vs. input-dependent timing behaviour.

activities on behalf of the partitions themselves. We do not require the OS layer to be
not-disturbing when executing between partitions as no expectation is made on the
hardware state upon partition switch. Nonetheless, the partition switch primitives still
have to exhibit a boundable timing behaviour and should not excessively suffer from
the new communication-oriented activities. In our experiments we defined a small
system consisting of only two communicating partitions as we just wanted to draw
out some figures on the relationship between the size of the exchanged data and the
increase in the partition switch time. Figure 23 and Table 3 show the partition switch
overhead we observed under different input sizes. From what we observed in our
experiments, the incurred time penalty is quite limited and, more importantly, when
summed to the time previously spent in executing the READ or WRITE service, it does
not exceed the execution time of the standard implementation (with the same input).

Finally, we wanted to measure the overhead that we had to pay in return for
introducing sporadic processes in the task model. We knew from the beginning
that, as a consequence of extending the task model, the complexity of the scheduling
mechanism would increase. In our experiments we focused on WAIT EVENT and
SET EVENT, the two main synchronisation services (for listening and signaling an event)
that we reimplemented for the servicing of sporadic activations in accordance with
the process split pattern described in Annex A. Both services have been measured
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SET EVENT WAIT EVENT
(end-to-end run)

Min Max δ Min Max δ
ARINC-compliant 5791 9370 3579 8472 9053 581

Process Split pattern 7895 8300 405 42299 42319 20

Table 4.: Sporadic overhead.

under different workloads, ranging from 5 to 20 processes. As reported in Table 4, our
SET EVENT implementation exhibits a notably less variable timing behaviour compared
to the original implementation, thanks to the use of constant-time data structures (still
based on bit arrays). The residual variability is due to the cache behaviour as the cache
is enabled in the part of the API that is exposed at the application level. Table 4 also
reports the results observed on an end-to-end run of a process calling the WAIT EVENT

service, intended to measure the overhead introduced by our solution when the call is
actually non-blocking (i.e., the guard is open). In this case, we observed a considerable
execution time overhead when used in conjunction with the process split pattern. The
difference is explained by the fact that the service now always generates a dispatching
call.

3.4.4 Avionics Case Study14

Examining the timing behaviour of a time composable kernel in isolation or on an
ad-hoc case study may be a valuable exercise; however, our effort reveals to be more
significant in a more realistic scenario, where the OS manages HW resources and
interacts with an application. In this respect, we had the opportunity to test our
refactored kernel to support the execution of a real-world application run by Airbus in
the context of the PROARTIS project. The application test bed is designed according to
the IMA architecture illustrated in Section 3.3. This case study is interesting not only
to show that our time composable kernel smoothly enables timing analysis, but also
to give an example of how the Measurement-Based approach to Probabilistic Timing
Analysis (MBPTA) works.

14 Contributions to this section are taken from PROARTIS publication at SIES 2013, jointly authored by
the PROARTIS Consortium.
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Figure 24.: Reference processor architecture

Approach and Setup

The processor architecture considered in this case study fulfils the PTA requirements
which we illustrated in Section 2.5.1 and avoids timing anomalies by construction [150].
In particular, the PROARTIS processor features a 4-stage in-order pipelined core
architecture with separate TLB and two levels of caches for instructions and data
(see Figure 24). In-order instructions issue and finalisation avoids using resources
out-of-order in the final stage of the pipeline, which could cause timing anomalies
otherwise.

The cache system is composed of two separate 8-way set-associative L1 caches
for instruction and data, of 32 KB in size and 32-byte cache line each, with random
placement and replacement policies, operating in write-through mode [151]; a unified
L2 8-ways set-associative cache of 64 KB in size and 32-byte cache line each operating
in copy-back mode with random placement and replacement policies is also provided.
4 KB pages memory management is performed by two 2-way set-associative TLB
(separate for instruction and data) with 128 entries each, also with random placement
and replacement. TLB and caches are accessed in parallel so that instructions are
stalled in the corresponding stage until both cache and TLB can serve the request.
The use of random placement and replacement policies in caches and TLB attaches
a distinct probability to hits and misses [27]. That is, the latency of the fetch stage
depends on whether the access hits or misses in the instruction caches and TLB: for
instance, a cache and TLB hit has a 1-cycle latency, whereas TLB and cache misses
have a 100-cycles latency. After the decode stage, memory operations access the data
cache and TLB analogously to the fetch stage. Overall, the possible latencies of a
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Figure 25.: Functional blocks and A653 services executed within a MIF and called by
an A653 Periodic Process. Grey blocks denote the analysed programs.

non-memory instruction depend on whether it hits or not in the instruction cache
and TLB, and the particular (fixed) execution latency of the operation (e.g. integer
additions take 1 cycle). The latency for memory instructions depends on the hit/miss
behaviour in both instruction and data caches and TLB. As a result, the observed
execution times meet MBPTA requirements by construction. It is important to remark
that the MBPTA approach cannot be applied to a standard deterministic architecture
since the frequencies of the execution times observed during testing do not represent
actual probabilities [29]. This is so because the events that affect execution time are not
randomised. Hence, no probabilistic guarantees can be determined from the observed
behaviour for the probability of occurrence of any given execution time in the future.

The avionics application considered in the case study executes with a period of P ms
over N consecutive MIF. As illustrated in Figure 25, the application activity consists
of five functional blocks, each of which is a high-level procedure, root of a finite and
acyclic call graph which changes at the boundaries of every MIF:

• Functional blocks FUNC1 (Read Sampling Port Normal, or RSPN in brief) ac-
quire raw data from the I/O ports. Data are acquired through the A653
READ SAMPLING MESSAGE API service.
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• Functional blocks FUNC2 (Extract Local Name Normal, or ELNN in brief) de-serialise
raw data. Raw payload data are parsed and allocated to global variables used in
the subsequent steps.

• Functional blocks FUNC3 (Normal Scade, or NS in brief) perform data processing.
These functions are automatically generated from a SCADE [152] model.

• Functional blocks FUNC4 (Format Local Name Normal, or FLNN in brief) serialise
the processed data.

• Functional blocks FUNC5 (WSPN, or Write Sampling Port Normal) post the output
data to external physical I/O ports.

The real application is hosted on a computer board embedding a MPC 755 processor,
with L1 data cache operating in copy-back mode. Experts cannot apply state-of-the-art
STA to it within acceptable bounds of engineering effort and containment of pessimism.
The major difficulties are caused by the caches operating in copy-back mode, and
by the massive presence of interfering Operating System code in the application
space – typical for ARINC 653 implementations –, which cannot be sanely analysed
by application-level state-of-the-art STA tools. The results presented thereafter were
obtained by running the application on the PTA-friendly time-accurate simulator
presented above. The application was run on top of our ARINC 653 compliant TiCOS
that provided zero-disturbance constant-time services, which proved to be a good
facilitator to application-level timing analysis.

Results

We first focus on the OS: Figure 26 shows the periodic execution pattern exhibited by
the READ SAMPLING MESSAGE service called by FUNC1. As expected, the routine
manifests a nearly-constant time behaviour for all invocations performed during parti-
tion execution (lower bars). Higher peaks correspond instead to invocations occurring
at partition switch, as a consequence of the cache flushing activities programmed at
this point and of input data pre-fetching, as needed by the next executing partition.
This makes it possible to define the probabilistic WCET distribution function for the
READ SAMPLING MESSAGE service shown in Figure 27, which enables probabilistic
timing analysis of the avionics application described before.

We can therefore study FUNC1, FUNC2, and FUNC3 and Partition Switch time,
when operating system activity deferred during the execution of the application is
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Figure 26.: Observed execution times for the READ SAMPLING MESSAGE TiCOS
service.

Figure 27.: pWCET distribution for the READ SAMPLING MESSAGE TiCOS service.

finally performed15. The five steps of the MBPTA technique depicted in Figure 6 of
Section 2.5.2 are followed.

• Collecting observations. In our experiments we started collecting 100 exe-
cution time observations, with Ndelta = 5016. At every collection round, we
checked whether the data are described by i.i.d random variables: the two-
sample Kolmogorov-Smirnov (KS) [153] test evaluates the fulfilment of the
identical distribution property, and the runs-test [143] the fulfilment of the inde-
pendence property. These verification steps are mandatory for MBPTA with EVT.
Table 5 shows the results of the i.i.d. tests for all programs under analysis, for

15 The processing in FUNC4 and FUNC5 is analogous to that in FUNC2 and FUNC1 respectively and so
is their timing behaviour.

16 Ndelta is the number of observations fed to the next steps in case more observations were required to be
able to compute the pWCET distribution
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Table 5.: p-value for the identical distribution (considering two samples of m = 50 and
m = 100 elements) and independence test.

Identical Distr. Indep Passed?
m=50 m=100 p

FUNC1 0.77 0.89 0.85 Ok
FUNC2 0.69 0.90 0.08 Ok
FUNC3 0.52 0.68 0.68 Ok

PS 0.11 0.89 0.07 Ok

Table 6.: Minimum number of runs (MNR) per program.
Program FUNC1 FUNC2 FUNC3 PS

MNR 600 250 300 250

the set of observation runs sufficient to derive the pWCET distribution (see Table
6). In order to apply the KS test, two smaller samples of m = 50 and m = 100
elements were created by randomly taking sequences of m consecutive elements
from the original sample [29]. The the two-sample KS test were then applied to
the two smaller samples to prove that the distribution does not change over time.
The fact that in all cases the p-value obtained from the data for the KS test is
higher than the required threshold indicates that data are identically distributed.
All the data collected from the observation runs also pass the independence test.

• Grouping. A block size of 50 is used in this case as it provides a good balance
between accuracy and number of executions required by the method.

• Fitting. EVT requires that two hypotheses are verified: (1) the n random variables
are independent and identically distributed (which we checked in the Collecting
step) and (2) the maximum of the n random variables converges to one of the
three possible EVT distributions: Gumbel, Frechet or Weibull. The Gumbel
distribution, with shape parameter ξ = 0, has been proven to fit well the problem
of WCET estimation [29][154]. In our application of EVT we use the exponential
tail (ET) test [155] to validate that the distribution fits a Gumbel distribution, as
shown in table 7, and to determine the σ and the µ that characterise the specific
Gumbel distribution.

• Convergence. In the experiment a difference threshold of 0.001 is considered as
shown in Figure 28. If the distribution had not yet converged instead, the process
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Table 7.: ET test results. Inf Conf. Interval and Sup Conf. Interval stand for inferior and
superior confidence interval bounds respectively.

Estimated q Inf Conf. Sup Conf. passed?
Interval Interval

FUNC1 2732099.95 2731953.71 2732199.27 Ok
FUNC2 1290199.02 1290198.36 1290441.20 Ok
FUNC3 1414051.63 1410751.90 1414588.60 Ok

PS 1110203.18 1109958.36 1110642.24 Ok

would return to the first step and collect Ndelta more observations. Notably,
passing the ET test ensures that the method always converges [29].

• Tail extension. Figure 29 shows the pWCET estimates obtained for the FUNC1

(a), FUNC2 (b), FUNC3 (c) and Partition Switch (d) procedures. As explained
in [29], for multi-path programs (as FUNC3 in our experiments) the pWCET
obtained from the MBPTA-EVT method only holds for the set of paths actually
traversed in the measurement runs17. The path coverage we obtained for FUNC3

was deemed sufficient by the scrutiny of our industrial experts.

As MBPTA can only be meaningfully applied to programs running on a PTA-
friendly architecture, the case-study application has been run on a processor simulator
that supports the required features. At that point, the only practical solution for
a cycle-true accurate comparison was to set the simulator cache to operate with
modulo placement and least recently used (LRU) replacement, and to use the common
industrial practice of taking the highest measurement for each program of interest
and adding an engineering margin to it as determined by in-house knowledge on
the system. The bounds obtained by running the same experiments on the simulator
with caches configured in deterministic LRU mode are shown as dashed vertical lines
in Figure 29. pWCET estimates are significantly below a traditional LRU+margin%
WCET estimate, where the additional margin determined by engineering judgement
is usually chosen around 20%. As shown in Figure 29, pWCET estimates are slightly
above LRU execution times (between 0.1% and 3.8%), so they are between 16% and
20% below the WCET estimates for LRU+20%.

Currently, for commercial airborne systems at the highest integrity level (DAL-A),
the maximum allowed failure rate in a system component is 10−9 per hour of operation

17 Note that, as opposed to MBTA methods on top of deterministic architectures, MBTPA on top of
PTA-friendly architectures has no dependence on the particular mapping of data and instructions in
memory.
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(a) FUNC1 (b) FUNC2

(c) FUNC3 (d) PS

Figure 28.: CRPS variation as we increase number of collected execution times. Ndelta =
50 and threshold = 0.001

[156]. To translate that failure rate requirement into the equivalent exceedance proba-
bility threshold, we need to know the frequency at which jobs are released. Thus, if we
consider that tasks under analysis are released with a frequency of 10−2 seconds (i.e.
102 activations per second), the pWCET of that task should have an exceedance prob-
ability in the range [10−14, 10−15]: 10−9 f ailures

hour /
(

3600× 102 task activations
hour

)
. Therefore,

an exceedance probability threshold of 10−15 suffices to achieve the highest integrity
level.
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Figure 29.: pWCET estimates (in processor cycles) for the programs under study.
Horizontal lines stand for particular exceedance probability thresholds.
Vertical lines stand for execution maximum observed time on deterministic
LRU cache setup.

For the sake of illustration, we set our range of probabilities of interest to lie in the
interval [10−13, 10−16]. Table 8 shows the pWCET estimates increment when increasing
the exceedance probability from 10−10 to 10−13 and 10−16 (corresponding to a failure
rate per hour of 10−5, 10−8 and 10−11 respectively), highlighting that, as far as the
functional blocks of the application under test are concerned, reasonably low extra
time must be taken into account to decrease the exceedance probability threshold.

101



Table 8.: pWCET increase when raising the exceedance probability from 10−10 to 10−13

and 10−16, which corresponds a failure rate per hour of 10−5, 10−8 and 10−11

respectively.
10−13 10−16

FUNC1 0.03% 0.03%
FUNC2 0.06% 0.07%
FUNC3 0.81% 0.87%

PS 0.26% 0.28%

Table 9.: Comparison of relative distance between max observed value wit LRU cache
configuration and pWcet estimate with MBPTA

LRU MAX pWCET pWCET relative distance
FUNC1 2731095 2735109 0.14%
FUNC2 1289408 1294519 0.39%
FUNC3 1416794 1470490 3.78%

PS 1107376 1124934 1.58%

Figure 30 compares the density function of the observed execution times when
running the programs under study on a processor equipped with the time-randomised
cache (continuous curve) implementing random placement and replacement policies
against a deterministic cache implementing modulo placement and LRU replacement
policies (dashed vertical line), under exactly the same execution conditions. As shown
in Table 10 and not surprisingly, the deterministic cache achieves better average per-
formance on account of better average preservation of locality, however the overhead
on average performance introduced by time-randomised cache is very low, actually
below 1%. This suggests that the minor average performance loss caused by the
time-randomised cache for the selected application is more than compensated by the
low cost of applying probabilistic timing analysis.

Figure 29 also relates the average execution time obtained with the deterministic
cache configuration against the pWCET estimates computed at an exceedance proba-
bility threshold of 10−16 using the random cache design. From those plots we see that

Table 10.: Comparison of relative distance between mean execution time value with
deterministic cache configuration and time-randomised one.

LRU Mean RP RR Mean Relative distance
FUNC1 2731095 2731293 0.007%
FUNC2 1289390 1289415 0.001%
FUNC3 1381245 1391076 0.712%

PS 1105708 1106801 0.099%
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Figure 30.: Comparison of the density functions of observed execution times (in pro-
cessor cycles) when running with the time-randomised cache (continuous
curve) and a deterministic cache (dashed vertical line).

MBPTA produces tight bounds. As shown in Table 9 the pWCET are slightly higher
but very close to the maximum observed execution time with caches configured in a
deterministic way.
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3.5 the space domain

While sharing some common concerns with the avionics and other high-integrity
application domains, the space industry also features some very specific requirements
which stem from the peculiarity of its development process. The first category
comprises the traits common to the broader software development activity, such as
reducing costs and time schedules, supporting incrementality of development and
verification to mitigate changes and accommodate future needs. However, some other
factors such as the requirement of fault isolation and recovery, and the technological
limitations constraining flight maintenance operations are very domain-specific [10].
In this context, the limited size of this market and consequently the number of its
contractors opened the door to the proliferation of different concepts, methodologies
and technologies with respect to on-board software development, leading to distinct
ways of producing the final software artefacts, whose interoperability is quite hard
to guarantee. Although recent initiatives exist, mainly promoted by governative
stakeholders as the European Space Agency (ESA), that aim at the definition and
realisation of a software reference architecture [10] to be used in future missions,
no unique framework has emerged so far as a standard practice for delivering a
universally-accepted software architecture for space systems, as it is the case of IMA in
the avionics. The convergence to a single, commonly agreed architecture would have
the clear advantage of delivering software products which meet the intended quality,
by focusing on the definition of their functional contents and avoiding unnecessary
engineering effort; furthermore, that would make it possible for prime contractors to
only focus competition on functionality and performance. As a consequence of this
situation, when compared to the avionics world, the space industry lends itself to a
more open and ambitious exploration of new design solutions which are not confined
within the boundaries of a reference architecture anymore. We present next how the
concepts related to time composability can be applied in this world.

3.6 ork+

Moving within the boundaries of a restrictive specification like ARINC certainly
represents the best condition to enforce time composability, thanks to the limited
constructs and interactions thereof to be considered for system analysis, as discussed
in Section 3.4. Unfortunately, the favourable assumptions on which that particular
solution was built do not hold in general: they are instead of scarce utility outside the

104



very specific application domain of partitioned operating systems. For these reasons
TiCOS can be considered a first attempt to inject time composability in a RTOS and the
starting point towards the definition of a time-composable RTOS that is more flexible
and lends itself to wider application. We want therefore to focus on understanding
how and to what extent time composability, described in terms of zero disturbance
and steady timing behaviour, can be achieved in a RTOS that supports a more general
sporadic task model. The immediate challenge brought in by leaving the simple
periodic task model is the absence of a priori knowledge on the release times of all
tasks in the system.

In this context, the Open Ravenscar Kernel (ORK+ [157]), developed by the Technical
University of Madrid, represented the perfect candidate as a reference OS on which
we could try to inject time composability. ORK+ is an open-source real-time kernel of
limited size and complexity, especially suited for mission-critical space applications,
providing an environment supporting both Ada 2005 [158] and C applications. As
the namesake suggests, ORK+ also complies with the Ravenscar profile [159, 160], a
standard subset of the Ada language that specifies a reduced tasking model where all
language constructs that are exposed to non-determinism or unbounded execution
cost are strictly excluded18. As additional distinctive features, the Ravenscar profile
prescribes the use of a static memory model and forces task communication and
synchronisation via protected objects under the ceiling locking protocol. Ravenscar-
compliant systems are expected to be amenable to static analysis by construction.

The design and implementation of a time-composable operating system of the scale
and completeness of ORK+ is not an easy target however. Its extent and complexity
require to approach the final solution by successive approximations. We attack
the problem of injecting time composability into ORK+ in two steps, incrementally
addressing what we singled out in Section 3.2 as characterising properties for a
time-composable RTOS. As a first step we describe and assess some preliminary
modifications we have made to ORK+ in order to improve its behaviour with respect
to time composability, focusing on time management and scheduling primitives and
under the simplifying assumption of a simple periodic task model; then we reason
on whether and how our preliminary solution can be extended to also cover the
remaining properties within a more complete task model.

18 ORK+ is therefore meant to support the restricted subset of the Ada 2005 standard, as determined by
the Ravenscar profile.
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3.6.1 Time Management

Keeping track of the passing of time in the OS kernel is heavily dependent on the
underlying hardware components available to this purpose. In parallel to our effort of
injecting time composability within ORK+, we also committed ourselves to porting
the run time – which was originally available for the LEON2 processor (i.e., SPARC
architecture) – to the PowerPC 750 board in the PowerPC family [161]. The porting
effort was motivated by the poor support offered for time representation by the
LEON platform, which made a zero-disturbance implementation of time management
very hard: the SPARC platform does not offer any better than two 24-bit resolution
timers, which alone cannot provide the clock resolution required by Annex D of
the Ada Reference Manual[158]; the PowerPC 750 platform provides ]fixinstead a
64-bit monotonic time base register and a 32-bit programmable one-shot timer. ORK+
cleverly copes with the LEON hardware limitation by complementing the 24-bit timer
by software to obtain the accuracy of a 64-bit register [162].

As observed in Section 3.4.1, time composability may be easily disrupted by tick-
based time management approaches that may inattentively interrupt and cause dis-
turbance on the user application. Time composability instead is favoured where the
hardware platform provides accurate interval timers that operating system can exploit
to implement time management services with as less interference as possible. On the
one hand ORK+ embraces this principle by basing its scheduling on a programmable
interval timer, implemented as an ordered queue of alarms; on the other hand the
kernel needs to use a periodic timer to handle the software part of its interval timer.
Although the tick frequency is not likely to incur significant interference in the current
ORK+ implementation a pure interval timer solution (i.e., with no periodic ticks) is
still preferable as it better fits our call for zero disturbance and is facilitated by the
PowerPC hardware.

3.6.2 Scheduling Primitives

Scheduling activities include maintaining a list of active tasks and keeping it ordered
according to the applicable dispatching policy: in the restricted periodic task model we
are considering for now, scheduling decisions are taken according to the fixed-priority
preemptive scheduling policy and can occur only at task release and completion events.
In ORK+ an activation event is managed by programming a dedicated alarm to fire at
the time a task needs to be activated; ready tasks are then stored in a unique priority
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Figure 31.: Constant-time scheduling in ORK+

queue, ordered by decreasing execution priority and activation, where dispatching
is performed by popping the head of such queue. At task termination nothing more
than dispatching the next ready task needs to be done.

Although common practice, such an implementation has the undesirable effect of
incurring highly variable execution times on accesses and updates to the involved data
structures. In particular, having the alarm queue ordered by expiration time makes
the insertion of a new alarm highly dependent on the elements already present in
the queue (i.e. the number and value of the pending alarms at the time of insertion).
This behaviour clashes with the mentioned principle of steady timing behaviour of
OS primitives, with the risk for user applications to be exposed to variable – and only
pessimistically boundable – interference from the execution of those primitives.

We re-designed the base ORK+ scheduling structures in a way to avoid this kind
of interference. As an additional requirement we assume that tasks cannot share
the same priority level. Since in our initial setting periodic tasks are not allowed to
interact through protected objects, no priority inheritance mechanism is needed, and
thus a task can never change the priority level it has been assigned to at the time
of declaration. Our constant-time scheduler performs task management operations
with fixed overhead, by leveraging on elementary operations over bit-masks, with
a mechanism which is similar to that implemented by TiCOS; however in this case
the scheduling operations are simplified, since we do not need to deal with the
complications introduced by ARINC partitions and asynchronous services.

As shown in Figure 31, the two basic scheduling operations are (a) task insertion
into the ready queue at the time of release, and (b) election of the next task to dispatch,
which could either happen at the time of release of a higher priority task or upon task
completion. The only required data structure we need to maintain is a 256-bit mask,
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where each bit corresponds to one of the priority levels defined by ORK+: under
the restriction that tasks should take distinct priorities, a 1 in position n means that
the task with priority n is eligible for execution, 0 otherwise19. Our implementation
consists of a 2-layered hierarchical data structure: the bit-mask itself is represented as
a collection of eight 32-bit unsigned integers, and one additional 8-bit mask is required
as root, in which a 1 is present in position k if the k-th child mask has at least one bit
set to 1.

As a preliminary activity, during system start-up we initialise the alarms corre-
sponding to all the task activations occurring during the hyper-period of the task set.
Besides the timestamp of an event, each alarm also tracks which tasks need to be
activated at that time, by keeping a mask with 1s set to the corresponding positions.
Alarms are then organised in a circular linked list, similarly to [163], which will be
looked up as execution time elapses to update the task states and set the next alarm.
As soon as one alarm fires to signal the activation of a task, the following actions are
performed:

(a) The mask corresponding to the fired alarm is bitwise OR-ed with the correspond-
ing child bit-mask: in this way a 1 is set in the position corresponding to the task
to be released.

(b) The task to be dispatched is identified by the most significant bit (MSB) set in
the complete 256-bit-wide mask: the corresponding child mask can be identified
in turn by looking at the most significant bit set in the root mask.

Performing step (b) above consists of finding the most significant bit within the
base-two representation of an integer, once for the root mask to identify the leftmost
non-empty child bit-mask and once to find the most significant bit within the child
mask. This can be easily done by applying the constant-time de Bruijn algorithm
[148] to both masks, thus guaranteeing constant-time latency in thread selection. At
task completion nothing needs to be done for the terminating task, since alarms for
next activations have been set at system initialisation; the election of the next task to
dispatch is performed similarly.

Single-level bit-mask structures have been previously exploited by the Linux O(1)
scheduler [164] (in the Linux kernel up to version 2.6.23) to provide a constant-time
dispatcher. That solution, however, only applies to a strict time-slice model that acutely

19 A value of 0 is assigned also in case task at priority level n has not been defined in the considered task
set.
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clashes with our idea of zero disturbance. By exploiting bit-masks also in the time
model we are delivering a more generic constant-time task activation mechanism that
can be in principle extended to handle sporadic activations.

3.6.3 Limited Preemption

Modifying the kernel by addressing only a subset of the requirements we set on the
RTOS, as described in the previous section, is sufficient to enforce time composability
within the boundaries of a restricted periodic task model. Extending the proposed
solution to support sporadic run time entities, programmable interrupts and protected
objects is not straightforward as such a richer RTOS is much less amenable to time
composability. Nonetheless those extensions are definitely required for a comprehen-
sive RTOS, and especially so for Ravenscar-compliant systems where, for example,
shared resources are the only permitted construct to provide task synchronisation.

Admitting sporadic task activations, the first natural extension of the task model,
is difficult to accommodate in a time-composable manner. With the introduction of
sporadic tasks, in fact, there is no longer static knowledge on task activation times,
rather only a minimum inter-arrival time is known for them. The static activation
table determined at system start-up works well for periodic tasks but can easily treat
event-triggered sporadic activations by simply allowing update operations on the
ready task bit-mask. Nevertheless, sporadic tasks need a prompt reaction (low latency)
by the kernel when their release event occurs: prompt acknowledgement of sporadic
activation events cannot be had without producing intrusive and disturbing effects
on the user applications. Besides acknowledgement, the fact that each sporadic task
activation may be followed by a task preemption runs against the concept of zero
disturbance as the effects of preemption on a task do not follow a (more predictable and
accountable) periodic pattern any more20. We have already mentioned how resorting
to a simplified (and less performing) hardware architecture or taking interference into
account in complex forms of schedulability analysis are not fully satisfactory solutions.

An alternative approach consists in trying to reduce inter-task interference by focus-
ing on task preemption as its main root source, although it is widely acknowledged
that preemption allows in the general case to improve the feasibility of a task set. In
that light, a reduction in the number of preemptions experienced by each job of a
task directly entails a reduction in the amount of possible interference. In fact, several
approaches have been recently proposed to limit – or even altogether avoid – the

20 The same problem arises from low-level interrupts.
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occurrence of preemption, while at the same time preserving the feasibility of the task
set [41][75][165]. Those methods fall under the umbrella term of limited preemptive
scheduling and have been recalled in Section 2.2. Most of existing approaches however
rely on the simplifying assumption of task independence and seem not to make much
of the fact that real systems often include shared resources which multiple tasks can
access in mutual exclusion.

Limited Preemption and Shared Resources

Shared resources are often explicitly ignored in the proposed models to allow an easier
mathematical formulation of the schedulability analysis problem or, when mentioned,
are simplistically assumed to be encapsulated within non-preemptive chunks of
execution. In real-world systems, instead, shared resources are a fundamental enabler
to functional decoupling and predictable synchronisation patterns among tasks. As
such, they convey design-level constraints that cannot be disregarded or handled
retrospectively in a limited preemption scheme that aspires to be industrially relevant.
In fully-preemptive systems shared resources typically need to be accessed in mutual
exclusion so that data consistency is preserved across accesses. As a result of serialising
accesses, a task may be blocked as it tries to access a resource that is already in use
by a lower priority task, and thus may need to wait for the latter to relinquish the
resource. In this case, the system is vulnerable to either potentially unbounded priority
inversion or risk of deadlock. The use of an appropriate resource access protocol can
prevent deadlock and establish a bound to the duration of priority inversion. Limited
preemption scheduling arguably mitigates the problem of providing safe accesses to
shared resources. At one end of the spectrum of limited preemption approaches, for
totally non-preemptive systems, mutual exclusion, priority inversion and deadlock
do not pose any threat as resources are not concurrently accessed anymore. While
providing clear advantages in terms of time composability, disabling preemption may
reduce system feasibility21 and cannot always assure the required responsiveness for
critical tasks. In less restrictive approaches, the problem of shared resource accesses is
not avoided a priori but assumed to be solved by enforcing proper nesting of critical
sections within non-preemptive execution chunks. This assumption, however, is only
viable in static approaches where preemption points can be selected ad-hoc to include
access to shared resources. The identification of fixed preemption points for all tasks in
a system is a most undesirable obligation, also scarcely scalable to real-world systems.

21 Some task sets that are infeasible under rate monotonic scheduling are indeed schedulable in non-
preemptive mode and vice-versa [166].
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Ci Ti = Di Ui qmax

τ1 2 5 0.4 -
τ2 2 9 0.222 3

τ3 5 20 0.25 3

Table 11.: Example task set.

As noted in Section 2.2, the confinement of all shared resource accesses within non-
preemptive regions cannot be generally taken for granted. In the activation-triggered
deferred preemption approach, for example, the analysis model does not tell the exact
position of preemption points, and the boundaries of a non-preemptive region depend
on run-time events such as the activation of higher priority tasks. In this case the
safeness of the model cannot be guaranteed and the schedulability of a task set may
be compromised unless some sort of countermeasure is taken. This eventuality is
confirmed by a simple motivating example involving the synthetic task set reported in
Table 11, consisting in three periodic tasks {τ1, τ2, τ3} with total utilisation U=0.872.

As shown in Figure 32(a), the task set is schedulable under Rate Monotonic schedul-
ing. In this particular case, non-preemptive execution is not an option: the task
set simply becomes unfeasible when preemption is disabled as the uninterrupted
execution of τ3 causes τ1 to miss its deadline, as shown in Figure 32(b).

According to the activation-triggered deferred preemption approach, the task set
in Table 11 allows for nprs of length qmax

2 =qmax
3 = 3 for both τ2 and τ3. Figure 32(c)

shows how tasks τ2 and τ3 can exploit those nprs to reduce the maximum number
of preemption suffered while still preserving feasibility. Problems may arise, instead,
when τ1 and τ3 share a resource. As shown in Figure 32(d), even in case of relatively
short critical sections (just one time unit in the example) an unfortunate placement of a
npr in τ3 may cause τ1 to suffer more blocking than allowed, thus incurring a deadline
miss. In this case, the problem is that the critical section begins but does not complete
within the npr and thus extends the non-preemptive region to some value qmax

3 + ε,
which cannot be sustained. Notably, the presence of the shared resources alone
does not compromise system feasibility as the adoption of a proper resource access
protocol, even the simple priority inheritance protocol (PIP)[167], would produce a
valid schedule for the example task set.

We regard the activation-triggered model as the most promising variant of the
deferred preemption approach as it achieves a good compromise between effectiveness
and applicability. This model in fact allows taking benefit of the slack in a system
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Figure 32.: Motivating example.
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Figure 33.: Possible cases of overlapping.

without imposing any restrictive choice on the design: any decision is in fact deferred
to run time. On the other hand, however, the activation-triggered deferred preemption
model alone cannot prevent harmful overlap of nprs with critical sections.

Handling Shared Resources

According to the activation-triggered model22, an npr of a task τi starts with the
(first) activation of a higher priority task τj ∈ T +

i and finishes exactly after qmax
j units

of execution. Since we cannot predict the exact starting point of the npr, its actual
placement may overlap with a critical section in any of the four cases reported in
Figure 33, some of which can potentially harm the correctness and/or effectiveness of
the deferred preemption model:

• Perfect nesting: pattern A© portrays the most convenient arrangement where
a critical section is completely nested within a non-preemptive region, i.e.,
cs ⊆ npr;

• Forerunning: the overlapping in pattern B© is determined by the fact that a task
τi may have already started its execution within a critical section when the
activation of a higher priority task τj ∈ T +

i triggers a npr. In this case τi will
complete the execution within the critical section before the end of the npr, i.e.,
startcs < startnpr ∧ endcs ≤ endnpr;

• Spillover: a similar pattern in C© represents the eventuality that a task τi enters
a critical section within a commenced npr but cannot relinquish the resource
before the end of the latter, i.e., startcs ≥ startnpr ∧ endcs > endnpr;

22 In this section we refer to the mathematical notation introduced in Annex B.
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• Reverse nesting: the worst possible overlapping occurs in pattern D©, where τi

enters a critical section before the start of a npr and will not release the resource
before the end of the latter, i.e., cs ⊃ npr.

Some preliminary observations are in order before discussing these patterns. The
case when critical section and npr do not overlap (cs∩npr = ∅) is not accounted
in the taxonomy: this is so because under the activation-triggered model it would
just mean that no higher priority task can interrupt the execution within the critical
section. Moreover, taking them to the extreme, patterns B© and C© may degenerate to
a special occurrence of pattern D©. In addition, the activation event that is supposed to
trigger the npr in B© and D© is not easy to determine, as it may depend on the adopted
resource access protocol, if any.

The perfect nesting in A© clearly shows the ideal situation that previous approaches
to deferred preemption assume. In this case the npr envelops the critical section and
naturally grants mutually exclusive access to the shared resource. In fact, the form of
protection guaranteed by nprs to a task τi executing within a critical section is stronger
than that provided by common protocols, as it inhibits all preemption requests from
all tasks in the system instead of only those τj such that πb

i < πb
j ≤ πa

i , where πa
i is the

priority that a task assumes when holding critical sections in force of the applicable
access control protocol.

The silent assumption in A© is that the execution within the critical section cannot
exceed the duration of the npr: csR

i∗ ≤ qmax
i , ∀τi ∈ T . This is a reasonable assumption

as critical sections typically consist of short chunks of code. It is also true, however,
that in case of nested or transactional23 resource requests the cumulative length of a
critical section becomes relevant. Interestingly, the opposite assumption is at the base
of the reverse nesting pattern D© where the critical section strictly includes the npr,
implying that ∃τi, R, k|csR

i,k > qmax
i .

The relationship between Bcs

i and Bnpr

i can be exploited to resolve this contradiction.
Both Bcs

i and Bnpr

i contribute to the upper bound to blocking time that is included in
the computation of the response time of a task. In those limited preemptive approaches
where resource access protocols may coexist with nprs (as they are limited to the final
chunk of a job as in [166]) the maximum blocking suffered by a task is determined by
the worst case blocking, that is

Bi = max
{

BCS
i , Bnpr

i
}

(1)

23 Sequential (non-cumulative) accesses to shared resources that require a protection mechanism to
guarantee end-to-end consistency.
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Within the activation-triggered approach, instead, blocking can only occur in conjunc-
tion with a npr as for blocking to exist there must be an active higher priority task,
which in turn is the condition for triggering a npr.

It is therefore easy to prove that the duration of a critical section can never exceed
the value of the longest non-preemptive region, thus at the same time confuting
the assumption in D© (which becomes infeasible) and reinforcing the assumption
in A©. We recall from Equations 5 and 8 in Annex B that both kinds of blocking
are determined by a specific subset of T . In particular Bnpr

i is determined by npr,
the longest npr from tasks in T −i , whereas Bcs

i is determined by cs the longest
outermost critical section in T B

i ⊆ T
−

i . Given a task τj ∈ T B
i the longest outermost

critical section in τj that can block τi acts exactly as a npr with respect to τi and by
definition qmax

j = max
{

npr, cs
}
≮ cs, ∀cs in τj. Consequently we may reformulate the

relationships between the two kinds of blocking and observe that a safe upper bound
to the amount of blocking suffered by τi is

Bi = Bnpr

i ≥ Bcs

i (2)

which is still consistent with the schedulability condition in the deferred preemption
model.

Besides proving the infeasibility of D©, this observation also dispels the extreme
cases in B© and C© where the end (resp. start) of npr and critical section could in
principle overlap. This notwithstanding, in contrast with the perfect nesting case,
the interaction of npr and critical section in those latter patterns does not seem to fit
smoothly into the activation-triggered deferred preemption model.

The fact that the execution of a task τi within a critical section cs either precedes
the beginning of a npr, as in B©, or exceeds its end, like in C©, by an even small
value ε, raises a twofold issue. On the one hand, it makes evident that, in standard
activation-triggered model, npr alone cannot guarantee serialised access to shared
resources and thus a subsidiary protection mechanism (i.e., access protocol) may be
required. On the other hand, enforcing mutually exclusive accesses regardless of their
interaction with nprs may incur the same effects as of extending the blocking factor
Bj for all tasks τj∈T B

i that can be blocked because of cs. For these tasks qmax
i becomes

qmax
i +ε, which in turn invalidates the schedulability condition BNPR

i ≤βi.

In both cases we identified two possible approaches to preserve the task set schedu-
lability. One possible direction consists in adapting the deferred preemption model to
safely accommodate critical sections with a proper protection mechanism. Moreover,
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Figure 34.: Earlier start of NPR aligned with start of CS.

in consideration of the potentially negative effects of additional conservative choices
in the model, we also put forward and evaluate a complimentary approach based on
explicit support from the real-time kernel.

model extension. When τi enters a critical section csR
i,k, an access protocol to

reduce priority inversion and avoid deadlock is required, regardless of the relative
position of the cs and npr. Ideally the implementation should support ICPP, which is
our protocol of choice. Unfortunately, the risk of overlap (and its destructive effects on
schedulabililty) categorically excludes a naive application of ICPP.

Pattern B© is relatively simple to address. On the proved assumption that cs≤ npr,
we can conservatively modify the model and trigger a npr as soon as τi enters the cs,
as shown in the bottom half of Figure 34. Triggering the npr ahead of time protects
the execution within the cs and preserves the upper bound on qmax

i as the maximum
blocking caused to higher priority tasks will be bounded by qmax

i − ε, where ε is the
time elapsed between the beginning of the npr and the first next arrival of a higher
priority task. From the shared resource standpoint the positive effects are exactly the
same as those of ICPP with ceil(R) = >. The only drawback from bringing the npr

forward is that in the worst case we may incur one additional context switch as a
result of the npr finishing earlier.

Different issues arise when τi enters csR
i,k whilst executing within a npr. In the best

case τi will release R before exiting the npr, hence falling into the perfect nesting
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Figure 35.: NPR with safety margin.

pattern A©. In the worst case, instead, at the end of the npr τi will still hold the lock
on R; at this point inhibiting preemption any longer (by means of a resource access
protocol) would break the schedulability condition, whereas allowing preemption
would expose the system to the risks related to unprotected resource sharing.

The original model suggests in this case to deliberately reduce qmax
i so as to allow

for an occasional spillover of τi over the npr to complete its execution within csR
i,k. The

rightmost part of Figure 35 shows the two possible outcomes of this approach: we
may either acquire the cs within the reduced npr or not even be able to try.

Conservatively adopting a more pessimistic qmax
i may reduce the effectiveness of

the deferred preemption approach, proportionally to the length of the cs. The new
q̂max

i should in fact be able to amortise the longest critical section in τi (if any), that is
q̂max

i = qmax
i −max

R
csR

i,∗, which may result in extremely small non-preemptive regions.

To summarise, our model augmented to accommodate shared resources differs from
the activation-triggered formulation in that a npr can now be commenced in response
to one of two events, either the activation of a higher priority task or the acquisition of
the lock on a critical section, in case we are not already within a npr. With regard to
schedulability, since nprs are floating within τi we cannot determine which overlap
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will actually occur; hence q̂max
i should be taken as a safe value. This is clearly a minus

in systems characterised by critical sections of comparatively long duration.

run time support. The proposed extensions to the activation-triggered model
are not fully satisfactory from the time composability standpoint. In cases B© and C©
in Figure 33 the pessimism caused by the need to support ICPP brings in additional
and not always necessary preemptions, which is against our main motivation. Better
results can be obtained by exploiting run-time knowledge to reduce the pessimism in
the model. To this end, low-level support from the underlying operating system is
required.

We identified some room for improvement in both solutions and implemented
a run-time mechanism to limit the pessimism entailed by the conservative choices
made at the model level. The shortcomings in the model originate from the need
to guarantee protected access of τi to a shared resource without violating the upper
bound computed on qmax

i . Setting aside a safe margin from qmax
i , as we did, has the

effect of reducing our taxonomy to pattern A© alone. In fact, all critical sections turn out
to be perfectly nested within the implicit interval q̂max

i + max
R

csR
i,∗, where max

R
csR

i,∗ is a

safe bound. Over-provisioning is not always necessary: a dynamic control based on
run-time knowledge allows intercepting potentially harmful effects of uninterrupted
execution and prevent them from occurring. The only information we need from the
underlying kernel concerns the set of active tasks and the kernel clock; and this is only
relevant at the beginning and end of a critical section, where common resource access
protocols operate.

With respect to pattern B©, triggering a qmax
i long npr just to protect the execution

of τi within a critical section may be an unnecessary precaution (from the deferred
preemption standpoint) when no higher priority task was released in the meanwhile.
We use this information when τi exits the cs and decide whether to execute a further
npr of length q̂max

i , which is still safe, or to simply keep on executing, in case no higher
priority task had been released yet, as depicted in Figure 36. This solution avoids any
unnecessary preemption due to bringing forward the start of the npr.

Pattern C© is a bit more thorny. Once τi enters a cs it is in fact just too late for any
decision to be taken. As previously observed in this section, we cannot protect the
execution of τi within the cs solely against a subset of the task set, as it would still
count as a npr for those tasks and possibly produce a cumulative npr of unsustainable
duration. Therefore accessing a resource from within a npr is an all-or-nothing choice:
once τi is granted a resource it should be also guaranteed to execute undisturbed at
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Figure 36.: Selective NPR at run time.

least until the end of the cs itself, at the unacceptable risk of exceeding qmax
i . Again,

enforcing a curtailed upper bound q̂max
i , though safe, is functional to having a safety

margin to cover the execution if τi runs into a cs within the npr.

In fact, it suffices to determine that enough residual npr time is left to accommodate
cs. Based on this information, which we are able to compute when τi requests cs,
we decide whether to grant it or deny it. In the latter case, we also prematurely
interrupt the npr. Returning to the example in Figure 35, the blank space between the
reduced npr and the (blurry) cs in the upper-right corner hints at the improvement
we can expect to the npr duration: in the average case, τi is granted to execute in a
npr of duration q̃max

i , which improves on the conservative approach as it holds that
q̂max

i ≤ q̃max
i ≤ qmax

i .

3.6.4 Evaluation

The assessment of time composability achieved on the modified ORK+ has been
conducted on two fronts: first we performed a preliminary evaluation of the modified
kernel primitives against their original implementation in ORK+. It is worth noting
that although ORK+ was not designed with time composability in mind, at least it has
been inspired to timing analysability and predictability. For this reason, the original
ORK+ was already well-behaved with respect to time composability and the effects
of our modifications may not stand out as in the case of less educated operating
systems like TiCOS. Second, we wanted to confirm the expectations on our approach
and evaluate both correctness and effectiveness of the extensions we proposed to the
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deferred preemption model for handling shared resources. To this end we compare our
solution, which is based on a safe interaction of nprs and cs, against a standard fully
preemptive model, implementing a resource access protocol. We expect our approach
to incur less preemptions, while at the same time providing the same guarantees on
mutual exclusion. At the same time, we also want to compare the more conservative
model solution with the respective run-time optimisation, to evaluate the effectiveness
of our solution in avoiding unnecessary preemptions and size the degree of pessimism
in the model. Unfortunately, no comparison is possible between our solution and the
original activation-triggered model since we cannot integrate critical sections in the
latter, as we already observed.

Approach and Setup

We conducted our experiments on top of the highly-configurable SocLib-based Pow-
erPC 750 [161] simulation platform we used as TiCOS experimental setup. This allowed
us to implement a zero-overhead instrumentation mechanism to gather experimental
data.

For what concerns the memory layout, we configured the simulator to operate
with 2 different set-ups depending on the two categories of experiments we wanted
to perform. A configuration with 16 KB, 4-way set associative and 16 B line size
instruction and data caches with Least Recently Used (LRU) replacement policy has
been chosen for the measurement of the kernel first refactoring and its disturbance on
the application. In this case we wanted to observe the timing behaviour of the task
management primitives in isolation as well as the disturbing effects that the latter may
have on an end-to-end run of the user applications. No measurements have been made
on time management services in that, as observed in Section 3.6, both the original and
our implementations, though different, incur no interference. This setup is motivated
by the need of making our setting as close as possible to a real-world scenario; the LRU
replacement policy has been chosen in consideration of its predictable behaviour [168].
Since zero disturbance was one of our guiding principles towards time composability,
we generally took advantage of an automatic cache disabling mechanism available in
the simulator as a quick workaround to isolate the effects of the RTOS on the user
application cache state24. We then exploited measurement-based timing analysis, as
we observe that the assessment of the steady timing behaviour and zero disturbance

24 We are aware of the potential implications of this solution on the overall performance and we considered
implementing and evaluating a limited form of software-based cache partitioning approach to prevent
that kind of side effects by reserving a piece of cache for the RTOS.
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properties can be more easily conducted by means of measuring a small number of
examples. On the contrary, we think that the use of a safer static analysis tool would
have made it more complicated to perceive the execution time jitter. Once again, we
used RapiTime [26], a hybrid measurement-based timing analysis tool from Rapita
Systems Ltd., to collect and elaborate the timing information from execution traces.
We performed an exhaustive set of measurements under different inputs or different
workloads so as to highlight the weaknesses of the RTOS services with respect to time
composability.

When evaluating our extension to the deferred-preemption framework instead, we
configured the simulator to operate with both instruction and data cache disabled so as
to level the costs of preemptions and avoid jittery timing behaviour in the application
tasks. In this case indeed we are just interested in the raw number of preemptions
incurred by each task set without caring about kernel overheads25.

Results

constant-time scheduler . We focused our experiments on those kernel prim-
itives that are responsible for updating the ready queue in ORK+. The ready queue is
accessed by the Insert and Extract procedures that are respectively invoked upon task
activation and self-suspension (at the end of the current job). Task selection, according
to the FIFO-within-priorities dispatching policy, is done by exploiting a reference (thus
trivially in constant time) that is constantly updated to always point to next thread to
execute. The Insert and Extract procedures are also used to access the data structures
involved in our modified implementation and are thus directly comparable with their
original version. In addition, thread selection in our implementation does not consist
in dereferencing a pointer anymore, but uses a dedicated procedure Get First Thread
to extract this information from a hierarchical bit-mask. However, it was not necessary
to measure the Get First Thread in isolation, as it implements a constant-time perfect
hashing function and its execution time is included in the invocation of both the Insert
and Extract procedure.

Figure 37 contrasts the timing behaviour of the scheduling primitives from the
original ORK+ (left) with that obtained from our modified implementation (right).
The jittery execution time of the Insert procedure in ORK+ stems from the nature
itself of the data structure: the position in the queue in which the task will be
inserted depends on the number and priority of the already enqueued tasks. On

25 Considering kernel overhead in a limited-preemptive scheduling framework is part of our ongoing
work.
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Figure 37.: Experimental results on scheduling primitives.

the contrary, the implementation based on bit-wise operations exhibits an inherently
constant behaviour and a remarkably low execution bound. The Extract procedure
instead already exhibits a constant-time behaviour in ORK+, as it simply consists in
dereferencing a pointer. Our implementation, again relying on a bit-mask structure, is
still constant though slightly less performing than its original counterpart. Yet, the
performance loss is negligible in our reference platform, as the constant-time operation
takes less than 100 cycles.

When it comes to gauging the effects of different implementations of kernel primi-
tives on the application, we measured the same synthetic application when executing
under different workloads (form 2 to 32) of strictly periodic tasks, each performing
though at different rates, an identical set of constant-time operations. We measured
the end-to-end execution time needed to complete each task’s job and the scheduling
operations, without including the cost of the low-level context switch itself.

Results are shown in Figure 38, where each point in the graph represents the
difference between the maximum and minimum observed values along more than
1000 runs. The jitter, though bounded, in ORK+ grows proportionally to the number of
tasks in the system, as a consequence of the variable size of its data structures, whereas
our implementation performs in constant time regardless of the workload. The jittery
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Figure 38.: Execution time jitter as a function of the task set dimension.

timing behaviour is explained by the variable execution time of the insertion of a new
alarm in the ordered alarm queue, which is required to program the next activation of
a periodic task.

limited-preemptive scheduler. The evaluation of the limited-preemptive
scheduler with shared resources was performed on randomly generated task sets with
increasing overall system utilisation, ranging in between 20% and 90%26. Single task
utilizations were generated according to a random uniform distribution within the
range [0.001, 0.1]. Tasks were also constrained to exhibit integral harmonic periods
uniformly distributed within the [10ms, 250ms] range, so as to keep the experiment
size manageable and to have full understanding of task interactions on shared re-
sources. With respect to the effect of shared resources, we wanted our experiments
to considerably vary also on number, duration and relative position (within the task
body) of critical sections in the system. In order to avoid an explosion in the possible
scenarios we focused on the worst-case setting were all tasks share the one and same
resource and thus compete for the same (system) ceiling. The cs duration, instead, is
expressed as a fraction of the maximum allowed blocking (which also corresponds
to qmax) and varies within 25% and 100% of the latter. The relative position of the cs

accessing the shared resource is randomly determined following a uniform distribu-

26 Task sets with utilisation lying outside the considered range were either scarcely relevant or largely
infeasible.
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Figure 39.: Maximum and minimum cumulative preemptions for fully-preemptive
and limited-preemptive scheduling in the presence of shared resources.

tion with range [0, 1], the extreme ends of which stand for the beginning and the end
of task body respectively. All the experimental scenarios were verified to be feasible
by RTA (accounting for kernel overheads) and where confirmed to be so by run-time
monitoring in the kernel.

Our first set of experiments had a twofold objective. As an initial step, we wanted
to ascertain the soundness of our approach with respect to shared resource access
protection. Then, we wanted to assess whether our limited-preemptive scheduling
approach in the presence of shared resources still allows a reduction in the number
of preemptions, as the state-of-the-art model does. We instrumented the kernel to
intercept potential deadline misses and to count the number of preemptions globally
incurred by all tasks in a task set during its hyperperiod. We collected the run-
time traces of more than 100 randomly generated task sets per each utilisation level
in the range 20-90%. Each task set was characterised by a random combination
of cs durations and relative position within each task. Figure 39 compares our
implementation against the fully-preemptive scheduler provided by ORK+. The
graph herein reports maximum and minimum number of preemptions cumulatively
incurred in a task set for each utilisation level by FP, LP MOD and LP RT, respectively the
baseline deferred-preemption model accounting for shared resources and its run-time
optimisation.

As a preliminary observation, we note that the absence of deadline misses confirms
that our implementation of limited-preemptive scheduling provides a sound protection
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Figure 40.: Maximum number of preemptions avoided per task set.

mechanism for shared resources. Focusing on each algorithm separately, we observe
that the number of preemptions in a task set simply increases with the total utilisation.
This is in part due to the way the task sets were generated, as greater utilisations are
obtained by increasing the size of the task set. However, higher utilisation levels (with
relatively small tasks) typically entail more complex task interleaving and thus more
preemptions. The most important observation that can be made from Figure 39 is that,
in accordance to state-of-the-art results on limited-preemptive scheduling, limited-
preemptive schedulers generally outperforms the fully preemptive one, even in the
presence of shared resources. As expected, the basic LP MOD scheduler performs slightly
better than the FP algorithm in approximately achieving a 5% uniform reduction in the
number of preemptions in medium- and high-utilisation task sets. No remarkable gain
can be observed instead at extremely low utilisation levels (i.e., 20%). Besides proving
the validity of our basic model Figure 39 also provides evidence of the improvement
achievable at run time by adopting the optimisations described in Section 3.6.3.
As already observed, a simple-minded extension of the limited-preemptive model
to account for shared resources may incur some unnecessary preemptions. The
LP RT scheduler implementation, in fact, improves on the basic model extension and
guarantees up to a 8% reduction in the number of preemptions globally incurred by
the task set under scrutiny.

The potential benefit from applying our run-time optimisation is even more evident
from the histogram in Figure 40, showing the maximum number of preemptions
avoided by our LP scheduler implementations, in relation to the number of preemp-
tions incurred by FP on the same task set. Data are extracted from the same set of
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Figure 41.: Preemptions incurred by the three algorithms when the duration of critical
section are stretched up to the theoretical bound.

experiments reported by Figure 39. They represent those task sets per utilisation
for which we observed the maximum reduction in the number of preemptions for
both variants. The number of preemptions incurred with LP RT (the right-most bar of
any triplet) is always no worse than what observed without it, for any scenario and
any utilisation rate. This difference with respect FP and LP MOD is increasingly more
evident as the task set utilisation grows.

We finally investigated how the total number of preemptions incurred by the task
set in a hyperperiod varies as a consequence of increasing the duration of blocking
caused by resource sharing. To this end we gradually increased the duration of the
critical sections (proportionally to each task duration) so as to cause larger blocking
on higher-priority tasks. Figure 41 shows the results of a comparison between the
fully-preemptive (FP) and our limited-preemptive variants LP MOD and LP RT on the
number of preemptions incurred when the size of such critical section ranges over a
representative set of equivalence classes (namely 25, 50, 75 and 100% of the theoretically
admissible blocking derived from the computation of qmax), under increasing task
set utilisation. The results confirm the goodness of the LP RT implementation which
incurs always less preemptions than those observed under the other settings. In
addition, whereas the preemptions suffered by LP MOD slightly increase with larger
critical sections, the LP RT solutions always incurs a constant number of preemptions,
regardless of the duration of the critical section.

3.7 summary

In this chapter we introduced our notion of time composability within the OS layer
in terms of zero disturbance and steady behaviour, the former to counter the OS-
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induced perturbations on history-sensitive HW/SW resources, the latter applying
to the timing behaviour of the individual OS primitives. We spotted 5 areas of in-
tervention which should be accounted for in the process of designing or refactoring
a time-composable OS: a non-intrusive time management mechanism based on in-
terval timers together with a constant-time scheduler implementation help reduce
the major part of OS-induced interference. Additionally, selective isolation of highly-
unpredictable hardware resources is needed to reduce disturbance from the HW layer.
Time-composable support to an expressive task model and to inter-task communica-
tion in particular is essential to provide solutions which aspire to be relevant in an
industrial context.

We used those principles in the refactoring of an ARINC 653-compliant kernel
for the avionics domain designed without composability in mind: the experimental
evidence we provided demonstrates the reduced interference on user applications of
both kernel routines and API-specific services. An additional case study developed in
the scope of the EU FP7 PROARTIS project demonstrated how our time-composable
kernel is crucial to enable the probabilistic timing analysis of a real-world Airbus
application.

Finally, we moved to the space domain to explore a more ambitious task model
which posed additional challenges in dealing with asynchronous events and inter-
task communication. We implemented a limited-preemptive scheduler within the
Ada Ravenscar-compliant ORK+ kernel and devised an extension to the deferred
preemption framework to handle resource sharing among tasks. Experimental results
confirmed the good results achieved in the ARINC setting previously investigated, and
demonstrated how time composability may greatly benefit from reduced interference
from task preemption.
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4
T I M E C O M P O S A B I L I T Y I N M U LT I C O R E A R C H I T E C T U R E S

So far we restricted the scope of our investigation on time composability to a favourable
uniprocessor environment. We studied how the operating system contributes to the
timing behaviour of applications, influenced by the use made of the available HW
resources and the behaviour of the provided services, eventually determining the
degree of achievable composability. Clearly, the task of providing a time-composable
OS is greatly facilitated by the presence of a simple HW platform, whose features
are designed with analysability in mind, which avoids the use of advanced, complex
features for the purpose of boosting the average-case performance.

Although time composability is difficult to guarantee even on common single-core
architectures and the provision of safety bounds through certification is still an ex-
tremely costly process, the interest in multicore platforms has rapidly grown in the
high-criticality systems industry in recent times. Whether right or wrong, multi-
core processors are considered as an effective solution to cope with the increasing
performance requirements of current and future real-time embedded systems. Multi-
cores integrate multiple processing units or cores into a single chip, sharing multiple
hardware resources, like caches, buses and memory controllers. By doing so, the
hardware utilisation is increased, while cost, size, weight and power requirements are
minimised. Moreover, multicore processors ideally enable co-hosting applications with
different criticality levels. Unfortunately, even though a relatively simple core design
is maintained, resulting HW architectures are usually convoluted and the interactions
among their components are more difficult to capture than in a single-core setting;
in this scenario the methodology and results of single-core timing are likely to be
impaired once again as a consequence of the existing gap between system design and
verification.

In this chapter we attack the problem of providing time composability in a mul-
ticore environment step-by-step: in Section 4.1 we look at the HW configuration to
identify the sources of interference present in such platforms; then we consider two
different computational models, multiprogram and multithreaded, corresponding to
different ways of understanding multicore computing and of taking advantage from it
(Section 4.2). In detail, in Section 4.2.1 we give an example of partitioned multicore

129



by looking at the avionics case study discussed in Chapter 3; this gives an insight on
how the MBPTA techniques proposed by PROARTIS may be applied in a multicore
scenario. More importantly, we show how time composability as discussed for single
cores may apply to multicores as well, under specific conditions. In Section 4.2.2 we
then focus our attention on the OS layer in a more ambitious multithreaded setup;
in particular we investigate the multiprocessor scheduling problem to understand
how the increased availability of HW resources affects the scheduling decisions to
be taken, when matching available processors to application needs. We look at RUN
as a valid algorithm to achieve a good compromise between time composability and
performance (Section 4.3), and we propose an extension (called SPRINT) to handle
sporadic task activations and make the algorithm more attractive from an industrial
application perspective. We finally evaluate our new algorithm in Section 4.3.3 against
state-of-the-art multiprocessor scheduling techniques.

4.1 hardware architecture

Multicore processors can be broadly classified into two groups, heterogeneous and
homogeneous, based on the computational power of their individual cores and on the
memory access layout. Homogeneous multicore processors include only cores with
the same computational power, whereas in heterogeneous multicore processors the
speed of different cores can be different. Multicores can also be classified based on
their design as symmetric (SMP) or asymmetric (AMP). In the first case all cores have
access to a single memory address space, while in the latter cores are connected to
disjoint memory address spaces.

Figure 42 [169] shows an example of a homogeneous symmetric (PTA-capable)
multicore platform composed of four cores, sharing a second level cache and a
memory controller through a shared bus. This is a good reference architecture for
the discussion in this section, where we focus on homogeneous SMPs with a small
number of cores to confine ourselves within a simple Network on Chip (NoC) design
with few shared resources. The reason is that a larger number of cores complicates
the interactions for access to shared hardware resources.
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Figure 42.: Example of homogeneous symmetric multicore processor.

4.1.1 Sources of Interference in a Multicore System1

As discussed in the preceding chapters, the disturbance suffered by an executing
application largely depends on the timing behaviour of the HW resources featured
by the processor of choice. In a traditional single-core setting – i.e. outside the scope
of probabilistic analysis techniques – shared HW resources like memory hierarchies,
pipelines and TLBs are largely responsible for the jittery timing behaviour of an
application, whose execution time is likely to depend on the execution history of
the system, as determined by the execution pattern of active applications. Given
two instructions Ix and Iy, where x and y are the cycles in which each instruction is
executed, Iy may impact the execution time of Ix if it belongs to its execution history,
i.e. if y ≤ x.

Because in multicore systems many processing units execute in parallel, applications
are exposed to an additional form of interference which originates from the race for
gaining exclusive access to the same shared HW resources. This form of inter-task
interference makes the execution time of a task dependent on the other execution
threads running simultaneously. Therefore, the timing behaviour of an instruction
does not only depend on the instructions previously executed in the history of the
system, but also on those belonging to other tasks running simultaneously. Given two
instructions Iτ1

x and Iτ2
y belonging to two different tasks τ1 and τ2, Iτ2

y may impact the
execution time of Iτ1

x if it belongs to its execution history, i.e. if y ≤ x. If no precedence

1 Contributions to this section are taken from [170], authored by the Barcelona Supercomputing Center.
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order can be established on the execution of the tasks, then any instruction of τ1 may
affect τ2 and vice-versa.

In fact, this means that multicores take dependence on execution history to the next
level: not only the execution time of a piece of software varies as a function of the
past history of execution, but it also depends on the current execution, as evolving
in parallel on other cores. For this reason some studies [171] propose to desist from
chasing multicore time composability, and to rather characterise applications timing
behaviour as a function of their co-runners, in a degraded form of compositional (as
opposed to composable) analysis.

Given that different HW resources have different impact on task execution times,
interference can be classified into three types, according to its root source [170].

arbitration interference. Arbitration occurs when two or more tasks run-
ning on different cores try to access a shared resource at the same time. To handle
this kind of contention an arbitration mechanism is required, which causes one task to
wait until the other completes and relinquishes the resource. Resources that suffer this
type of interference are the following:

• Buses have fixed latency, which is the amount of time necessary for a request to
cross them. When a request is granted access to the bus, no other simultaneous
use is allowed and therefore interference occurs. The most common arbitration
policies are priority-based, round-robin and time-division multiplexing.

• Caches are normally composed of multiple independent banks to enable parallel
access, so that different memory operations can address different banks simulta-
neously. However, a bank can only handle one memory request at a time. When
a bank is serving a memory request, it is inaccessible for any other operation and
any arbitration choice introduces cache-bank interferences. In most processor
designs, since the shared cache is connected to cores through a bus, the bus
arbiter itself can be charged with resolving bank conflicts.

• Main memory is composed of a memory controller and one or more off-chip
memory devices. The memory controller regulates the accesses to the off-chip
memory, acting as a proxy between processor and memory. The memory device
itself is composed of independent banks. Similarly to buses, the channel to access
the memory device is shared among tasks, thus an arbitration policy is required
to avoid conflicts; similarly to caches, banks can only handle one request at a
time, thus the same arbiter can avoid bank conflicts as well.
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storage interference . Storage interference appears in shared-memory schemes
when one task evicts valid memory data blocks used by another task. As a result the
latter task requires accessing to higher memory hierarchy levels in order to re-fetch its
data, increasing the overall latency. Resources that suffer this type of contention are:

• The shared cache, which maintains data recently accessed by all tasks. Due to
its limited size, cache lines from different tasks are evicted when new space is
required, producing additional conflicts that do not exist when tasks are run in
isolation.

• The main memory, which can suffer storage contention due to page swapping
similarly to the cache. However, this effect only happens when the machine
runs out of memory, which is usually not allowed in real-time systems due to
overhead implications.

resource-state interference . Resource-state interference occurs in resources
whose response time is sensitive to their specific state at run time. As a result, the
latency of such resources depends on the operations performed by other tasks that
recently accessed them. This is the case for example of DRAM memory devices,
whose response time may vary according to the Row-Buffer Management policy
used; for example, the latency of a “read” operation may depend on the previously
served requests, getting shorter if the preceding request was also a “read” than if the
preceding request was a “write” operation.

The approaches to counter these forms of interference are twofold, either removing
them by assuming their worst case at any time or bounding them by means of
probabilistic approaches, as it was done for the single-core setting.

In the former case, to account for arbitration interference, the worst-case latency
of a request on the interconnection network can be assumed. Requests on the bus
are delayed, at analysis and deployment time, so that they manifest always this
latency. For example, if a bus connecting all on-chip elements with a latency of 2

cycles and a round-robin arbitration policy is considered , the maximum inter-task
latency for accessing the bus is InterTaskLatency = (NumCores− 1)× BusLatency. To
remove storage interferences instead partitioning techniques can be applied. Cache
partitioning is a well-known technique that eliminates storage interferences by splitting
the cache into private portions, each assigned to a different task.
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In the latter case instead interference is characterised by means of probability theory.
Random arbitration policies can be used to reduce arbitration interference, so that the
task accessing a shared resource is randomly selected. In this case the probability of
being granted access to the resource depends on the number of simultaneous requests
n.

For example, considering a shared bus with a random arbitration policy with a
latency of L cycles, the Execution Time Profile (ETP) can be defined as:

ETPBUS = ({L, 2L, 3L, . . . , kL}, {1/n, (n− 1/n)(1/n), (n− 1/n)2(1/n), . . . , (n− 1/n)k− 1(1/n)})

where k is the number of tries a bus request is not granted access to the bus. This
may result in an infinite ETP, in which there is an infinitesimal probability of never
being granted access to the bus. For storage interference instead, random cache
designs can make the address of an operation independent from the cache line in
which it is actually placed. As a result, the impact due to storage interference on
one task can be bounded, provided that the number of accesses from other tasks are
known.

Having restricted ourselves to the simplified HW architecture in Figure 42 makes
it possible to ignore additional issues related to interference in heterogeneous multi-
cores, like in the presence of Dynamic Voltage Frequency Scaling (DVFS) techniques.
Heterogeneous multicore processors differ from homogeneous processors in the way
they access to shared resources. Because cores have different computational power, the
frequency of access to shared resources varies among different cores and, as a result,
the impact that one task may have on other tasks depends on the core assigned for
execution. Similarly, if cores are allowed to dynamically shift their operation voltage
(DVFS), the speed and so the frequency of access to shared resources will depend on
the voltage operations of the core in which the task is run; clearly, the impact that this
task will have on the execution time of other tasks will vary consequently.

4.2 model of computation

Not only the HW configuration in use, also the way applications are deployed in
a system and the use they make of the available HW resources largely concur to
determining the run time behaviour of a system and eventually facilitate or impede
its timing analysability. In the homogeneous multicore architecture presented in
Section 4.1 the following two setups can be devised.
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Figure 43.: Basic view of the MP setup.

multiprogram (mp) setup. In this configuration a single control flow (associ-
ated to one executable image) is pinned to each core and is the only one allowed to
execute on it. An image could consist of a single main procedure or an entire OS
kernel with some application software running on top of it. In this case, the executable
images loaded on each core are assumed to be single threaded and to exchange no data.
Hence each application procedure is executed sequentially on a statically allocated
core. In these conditions no direct inter-task interference can occur among applications
running on different cores, defining in fact a partitioned architecture. In this scenario,
the only focus is on bounding the effect of inter-core interferences, either by accepting
their worst case or by enforcing mechanisms to guarantee the identical distribution
and independence of processor instructions timing, this way enabling PTA techniques.
In relation to the IMA system architecture referred to in Chapter 3 this arrangement
maps to the case of having one TiCOS image per core, each containing any number of
IMA partitions (Figure 43).

multithreaded (mt) setup. In this setting, tasks are allowed to execute on any
core and to exhibit data dependencies. In addition to the inter-core issues brought
in by the MP multicore processor setup, this arrangement presents other challenges
related to inter-task interference, like dealing with memory sharing, global scheduling
of applications (including task migrations) and resource locking at the OS level. In
relation to the IMA system architecture discussed in Chapter 3, this arrangement
would correspond to having a single TiCOS executable containing a single IMA
partition, whose threads can migrate across cores to be executed in any of them
(Figure 44). However, applying this setup to an IMA architecture is just a conceptual
exercise, since such a scenario would run against the space and time isolation concerns
advocated by that specification.
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Figure 44.: Basic view of the MT setup.

The two arrangements share one main challenge, which is upper-bounding or
probabilistically measuring the effects of HW inter-core interferences on application
execution times. At the application level instead, when a software architecture for a
multicore system needs to be designed, little-to-no help can be drawn from existing
standards and reference architectures. The AUTOSAR and ARINC architectural
specifications mentioned at the beginning of our dissertation conservatively deal
with multicores by adopting a MP approach, thus resulting in the definition of a
federated architecture. From an application perspective however this approach is
no different from having a number of isolated single core computing nodes, which
greatly simplifies software design, since an application is completely unaware of others
possibly running on different cores. Segregation is so strong that, in the favourable
conditions of the ARINC task model, run-to-completion semantics could also be
adopted for the same reasons discussed in Chapter 3.

The choice of adopting the MP approach has the advantage of better controlling the
computational resources embedded in a platform, but draws minimal benefit from
the potential of a real multiprocessor system. The MT approach instead is certainly
the most promising in terms of achievable performance as it allows, at least in theory,
to fully utilise the available system resources, thus exploiting the computing power
of a multicore architecture. Although this is what was originally expected when the
number of processors increased, a number of issues at HW and OS level complicate
real-world embrace of the MT philosophy. These issues have limited the penetration of
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multicores in high-criticality industrial domains so far which explains the interest and
presence of all leading manufacturers in today’s cutting-edge research on multicore
systems design and analysis.

The upcoming discussion conceptually follows the distinction between the MP and
MT setups we gave above. In Section 4.2.1 we consider again the PROARTIS avionics
case study to see how similar results to those obtained for the single-core setting can
be replicated on a multiprocessor platform under a MP setup.

We then focus on the OS to study how the goal of providing time composability
at this level becomes dramatically more complex in a multiprocessing environment
under the multithreaded (MT) computing style. Nonetheless we look at the MT setup
as a less conservative and more promising paradigm for multicore adoption. We do
so for two reasons: first, the MT paradigm has arguably great potential to satisfy
the increasing computational demand of real-time systems, without incurring the
significant inefficiency (i.e. resource over-provisioning and low utilisation) introduced
by the MP setup. Secondly, the MT paradigm poses the toughest challenges from
a research point of view in terms of composability at every architectural layer: for
instance, apart from the issues related to shared HW resources which undermine a
system’s timing behaviour, leveraging the potential of parallel execution is a promising
technique to be investigated at the application level.

4.2.1 The Avionics Case Study on Multicore2

This section presents the results obtained by PROARTIS [172] for the probabilistic
timing analysis of the FCDC application presented in Section 3.4.4, now running
on a partitioned multicore architecture, similar to that presented in Figure 42 of
Section 4.1. In this setting, multiple instances of the application run on segregated
cores and take advantage of the time-composable TiCOS services, which we guarantee
to cause bounded interference as in the single core scenario. Residual disturbance can
arise from contention on shared HW resources, specifically the bus and the memory
controller.

Approach and Setup

For the multicore case study the ARINC 653 Flight Control Data Concentrator (FCDC)
application presented in Section 3.4.4 is considered. Additionally, to make the setting

2 Contributions to this section are taken from [172], authored by Barcelona Supercomputing Center.
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Figure 45.: WBBC A653 APPL processes (APPLICATION) executed within the third
MIF.

more realistic, a second application called Weight and Balance Back-up Computation
(WBBC) was selected to run in parallel with FCDC.

The WBBC application computes an independent estimation of the centre of gravity
(CG) of the aircraft and generates warnings and caution functions in case anomalies
are observed. Moreover, it supplies to the whole aircraft computers, weight and
CG values that are used for monitoring and backup purposes. The application is
composed of three main software components:

• APPL. Functional normal mode logic, cyclic acquisitions and transmissions of ex-
ternal I/Os and sequence I/Os acquisitions and emissions with pure algorithmic
processing.

• BIB. Library of automated generated symbols used by APPLICATION A653

process.

• SYSTEM. It manages initialisation of WBBC software at A653 level (creation
of resources such as processes, I/Os API ports, initialisation of internal WBBC
variables, . . . ).

The APPL software component represents more than 80% of the WBBC code and is
composed of the same A653 processes of FCDC application, i.e. RSPN, ELNN, NS,
FLNN and WSPN. Moreover, similarly to FCDC, WBBC is scheduled within a Major
Frame composed of 16 Minor Frames: Figure 45 shows the processes activated within
the third MIF. At the end of WBBC application a slot is reserved for partition switch in
which all deferred TiCOS operations are performed.

Sticking to the MP multicore setup, the two applications under study run on top
of identical replicas of the PROARTIS operating system TiCOS, which provides the
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Figure 46.: Block diagram of the system configuration considered in the multicore
phase.

ARINC 653 API services required by both applications with a steady timing behaviour
and zero disturbance properties. Figure 46 shows a block diagram of the system
configuration used for the experiments presented in this section. Each core executes
an independent image of TiCOS in which a ARINC 653 partition is executed. No data
is shared among cores. Because the MP design implicitly guarantees horizontal time
composability (i.e. among applications running on different cores), the pWCET estimate
of each application can be calculated in isolation, i.e. having no information about
the execution on other cores, and stay valid upon the composition of those individual
units into the whole system.

Results

The step of PROARTIS MBPTA procedure depicted in Figure 6 of Section 2.5.2 were
applied to the FCDC NS function and the WBBC partition switch executed in the
PROARTIS multicore processor. For the WBBC application, end-to-end measurements
of the partition switch have been considered (marked in grey in Figure 45): this is
mandatory to show how the I/O pre-fetch and post-write activities performed by
TiCOS at these points to improve composability can be probabilistically analysed.
Randomisation is introduced within the bus and memory controller to guarantee that
observed execution times fulfil the properties required by MBPTA. This is confirmed
by Table 12, which shows the results obtained applying the same i.i.d. tests presented
in section 3.4.4 to the execution of FCDC and WBBC alone (labelled as FCDC NS
alone and WBBC Part alone respectively), i.e. when all other cores are idle, and to the
execution of FCDC and WBBC simultaneously on different cores (labelled as FCDC
NS + WBBC for FCDC NS execution time measurements and WBBC Part + FCDC for
WBBC partition switch execution time measurements). Table 13 reports instead the
minimum number of runs (MNR) and the amount of time (in seconds) required to
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A653 Application Indep. Identically Distr. (m = 50/m = 100) Both test passed ?
FCDC NS Alone 0.20 0.62/0.48 Ok
FCDC NS + WBBC 0.34 0.69/0.54 Ok
WBBC Part Alone 0.25 0.75/0.60 Ok
WBBC Part + FCDC 0.37 0.57/0.55 Ok

Table 12.: Independence and identical distribution tests results.

MNR time
FCDC NS 300 36 s

WBBC Part 250 15 s

Table 13.: Minimum number of runs (MNR) and required analysis time for FCDC NS
and WBBC partition switch.

perform the timing analysis of the FCDC NS process and the WBBC partition switch
(FCDC NS and WBBC part respectively).

Figure 47(a) and 47(b) show the pWCET estimates with MBPTA-EVT of FCDC NS
process and WBBC partition switch respectively, when executing each application
in isolation. We notice how the shape of the plot in Figure 47(a) related to the NS
function is identical to the plot for the correspondin FUNC3 function in the single-core
experiment shown in Figure 29(c) in Section 3.4.4; just an increasing constant factor is
present, due to the contention on the shared bus and the higher levels of the memory
hierarchy. Similarly, the plot in Figure 47(b) corresponds to the result reported in
Figure 29(d).

The observations above support our claim that the composability results achieved
on single cores can be somehow replicated on a partitioned multicore. The use of
random arbitration policies in the shared bus and the memory controller, and the
use of cache partitioning mechanisms makes the pWCET estimate of each application
being independent of the execution on other cores. As a result, the MP multicore setup
allows the use of the MBPTA-EVT techniques developed for the uniprocessor setup
without any single modification, thanks to the provided horizontal time composability
property.

4.2.2 Challenges for a Multicore OS

In Section 3.1 we characterised time composability in single cores as a combined
product of the principles of zero disturbance and steady timing behaviour. In our under-
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(a) (b)

Figure 47.: pWCET estimate distributions of FCDC NS process (a) and WBBC partition
switch (b) when executing on the PROARTIS multicore processor.

standing, thanks to its privileged position in between hardware and applications, a
real-time operating system has the responsibility of remedying to unpredictable HW
behaviour by provisioning services with timing guarantees. Ideally, the goal should
be no different in a multicore setting, although the challenges to address are likely to
be even tougher.

In Section 4.1.1 we already showed how the sources of disturbance inevitably
increase as a consequence of the growing number of shared HW resources and
their reciprocal interactions. However, once undesired HW effects are characterised
and under the favourable assumptions of the MP model of computation, results
comparable to those obtained on a uniprocessor are achievable even on a multicore, as
demonstrated in Section 4.2.1.

Steady behaviour is far more difficult to provide instead under a MT setting, where
tasks are allowed to migrate across cores and to communicate to each other, even when
deployed simultaneously on different processing units. Additionally, the disrupting
effects of synchronous events are much amplified in a multicore environment as a
consequence of inter-core dependencies. For example, the release of a sporadic event
on one processor may cause tasks migrations across cores. In Section 3.2 we identified
a minimal set of desirable properties, hence potential areas of intervention, that cannot
be disregarded when trying to inject composability on a full-fledged single-core RTOS;
we now reason on the new challenges when moving to a multicore MT setting.
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1. Non-intrusive time management: As already mentioned, the way the progression
of time is managed by the operating system should have no side effects on the
timing behaviour of the applications running on top of it. For this reason we
abandon the use of an intrusive tick-based time management, which periodically
triggers possibly unnecessary scheduling operations, in favour of programmable
timers. Moreover, the problem of correctly dispatching interrupts (and time
interrupts in general) may be not trivial to attack on a multicore platform: in a
MP setup it may be sufficient to replicate interrupts coming from a unique HW
source on all cores, where identical replicas of the OS are executed. This is also
the case of MT where the OS is statically pinned to one core. Instead, if the OS is
allowed to migrate across cores as well, the processor where the OS temporarily
resides must be identified to properly acknowledge the fired interrupt. This has
clear implications in terms of disturbance on the core-specific HW resources
involved in this process and in the responsiveness of the system.

2. Constant-time scheduling primitives: Most of the RTOS execution time is typically
spent on task scheduling and dispatching activities, therefore reducing the vari-
ability of such primitives is essential in a composable RTOS. Aside from making
the execution time of these primitives independent from the number of tasks in
the system, the problem of globally assigning applications to processing units
assumes great importance to achieve high system utilisation. Unfortunately, this
entails the possibility of bearing task migrations among cores, which completely
invalidates the working set of moved applications and causes therefore great
disturbance to their timing behaviour. This is the focus of Section 4.3.

3. Composable inter-task communication: In our discussion on single core we defined
inter-task communication as covering the broad area of interactions with hard-
ware and software resources, including I/O, communication and synchronisation.
There, the problem of providing a time-composable communication subsystems
was reduced to the one of providing controlled access to shared resources. Since
in a multiprocessor most resources are globally shared and tasks may be al-
lowed to communicate across cores, a global resource locking mechanism may
be needed. Its impact in terms of blocking time caused to all contenders needs
to be carefully evaluated to avoid the introduction of unbounded sources of jitter
in the system.

4. Selective hardware isolation: The idea of isolating the history-dependent hardware
state as a means to preventing RTOS-induced disturbance is very similar in
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multiprocessor and single-core architectures. Clearly, the emphasis placed on
the former scenario is stronger as a consequence of the even higher penalty
paid for HW interferences, as already discussed. Depending on the mechanisms
possibly provided to the purpose, the RTOS should exploit the available features
by means of ad-hoc low-level interfaces.

Whether and to what extent the OS-level solutions we adopted in the single-core
setting can drive the quest for time composability in the multiprocessor case largely
depends on how well they can fit with the properties of the scheduling algorithm of
choice. The reason of that dependence stems from the trade-off brought forward by
multiprocessor scheduling: seeking high schedulable utilisation intrinsically requires
task migration, which is arch-enemy to time composability; banning task migration
pollutes the system design problem with bin-packing that cannot contemplate func-
tional aggregation. For this reason we focus the last leg of our research on the search
for a multiprocessor scheduling solution that achieves a good balance in the way of
time composability.

4.3 multiprocessor scheduling

4.3.1 Background

The problem of multiprocessor scheduling has been extensively investigated, both
because of its relevance in real-time systems and of the challenges it presents. Given
a task set τ and a scheduling algorithm S, the schedulability problem can be defined
as finding a schedule for τ constructed with S that respects all the deadlines of the
jobs released by the tasks in τ. Research in scheduling theory is therefore devoted to
finding such an algorithm S, which is usually required to be optimal, i.e. to always find
a schedule for τ whenever it exists, according to the deadline constraints imposed to
its jobs (in this case the task set is said to be feasible). The performance of a scheduling
algorithm is usually measured in terms of its worst-case utilisation bound, that is the
minimum utilisation of any task set schedulable with it, and its approximation ratio, i.e.
its performance when compared to a known optimal scheduling algorithm for the
specific constraints on the scheduling problem.

Referring to the taxonomy given in [173], the multiprocessor scheduling problem
can be intended as an attempt to solve two distinct problems, the allocation problem
to determine on which processor a task should execute and the priority problem to
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determine in which respective order the jobs of different tasks should be run. The latter
problem is very similar to its single-core counterpart and in its respect scheduling
algorithms can be classified into fixed task priority, where priorities are statically
assigned to tasks and never change, fixed job priority, when the different jobs of a task
may be statically assigned different priorities and dynamic priority, in case each job is
allowed to take different priority levels during execution.

The allocation problem instead is the distinctive trait of multicore scheduling and
distinguishes scheduling algorithms into partitioned and global.

partitioned scheduling . In partitioned approaches each task is allocated to a
processor selected offline and no migration is allowed during execution (Figure 48).
Hence, the task set is partitioned once by design and then a uniprocessor scheduling al-
gorithm is used to schedule tasks within each core, possibly using different algorithms
for different processors. A representative of this class is Partitioned EDF (P-EDF),
which schedules tasks with EDF on each processor independently, thus on the subset
of tasks assigned for execution to one specific processing unit. Although the optimality
of EDF has been proven on uniprocessors, this property does not hold anymore for
P-EDF in a multicore setting, essentially because the local best scheduling choice has
no direct correlation with the global best decision to be taken. In fact, the problem
of partitioned multicore scheduling can be seen as a bin packing problem, which is
known to be NP-hard [174]; and even when a solution can be found, the process of
partitioning the task set is limited by the performance of the chosen bin-packing algo-
rithm. The focus of existing research has therefore moved to finding the best algorithm
to partition a specific task set, giving the rise to plenty of algorithms, usually based on
Rate Monotonic [175] or EDF [174], which are characterised by relative improvements
on their utilisation bound.

Partitioned approaches have the advantage of paying no penalty in terms of migra-
tion cost, which is in fact prohibited, and of dealing with separate task queues per
processor, thus incurring more lightweight overhead when accessing and updating
those data structures. Partitioned scheduling perfectly fits the MP paradigm illustrated
in Section 4.2 and it is indeed appealing from an industrial perspective, especially
where the scarcity of best practices tested on-the-field pushes towards conservative
choices.

global scheduling . With global scheduling, tasks are allowed to migrate across
processors (Figure 49), thus at any point in time the m jobs with the highest priority
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Figure 48.: Partitioned multiprocessor scheduling.

in the system are executed on the m available processors. As an example, the global
version of the EDF algorithm called Global EDF (G-EDF) schedules tasks among all
available processors according to the EDF discipline. Typically, global approaches are
capable of achieving higher system utilisation, as a consequence of the possibility of
migrating tasks across cores to benefit from the available spare capacity in the system,
generated whenever tasks execute for less than their expected worst case.

Although from a historical perspective global scheduling has been sometimes
neglected due to the so-called Dhall’s effect [176], renewed interest has appeared
after the observation that the necessary conditions for the Dhall’s effect to occur
can be precisely characterised [177][178] and therefore countered or even avoided in
a real-world usage scenario. The seminal work by Baruah [179][180] gave a boost
to research on global scheduling techniques by observing that optimality is in fact
achievable through fairness, that is by dividing the timeline into equally long slices
and assigning processing time to tasks within each slice according to their utilisation
demand. Unfortunately, the algorithm originating from this intuition, called P-Fair,
can be hardly implemented in practice, because an infinitesimally small size of time
quanta needs to be considered to achieve optimality. Other algorithms trying to
enforce fairness include PD [181], PD2 [182], BF [183] and DP-Fair with its incarnation
DP-Wrap [184][185]. Other algorithms instead rely on the concept of laxity to take
their scheduling decisions, such as LLREF [186] and EDZL [187]. Recently, Nelissen
et al. [188][189][190] and Regnier et al. [191][43][192] demonstrated that enforcing
fairness in scheduling decisions is not a necessary requirement for optimal multicore
scheduling.

From an industrial perspective the promises of global scheduling are very attractive,
since achieving full system utilisation defeats over-provisioning and the incremental
system development is supported with minimal requalification effort. However, the
performance penalty paid in the occurrence of job migrations and the impossibility of
precisely predicting these events have discouraged the adoption of global scheduling
techniques. Additionally, depending on the specific case, some of the assumptions and

145



Figure 49.: Global multiprocessor scheduling.

requirements imposed by global schedulers to ensure optimality may be impractical
or even impossible to implement in the real world.

As neither partitioned nor global scheduling are fully satisfactory because of
practical limitations, hybrid scheduling approaches have emerged in between trying to
leverage the strength of both families and mitigate their drawbacks. Semi-partitioned
algorithms like EKG [193] adopt a partitioned approach for most of the tasks in the task
set by assigning them to a specific processor, and let a smaller subset globally migrate
as long as the packing heuristic fails to allocate them to one single processor. Clustered
algorithms like Clustered EDF (C-EDF) consider instead shared HW resources to define
clusters of processors where task migration is allowed within one cluster and forbidden
across different clusters; considering in particular memory hierarchies, this approach
permits to lower incurred migration overhead. Hierarchical scheduling algorithms
like NPS-F [194] and RUN [43][192] partition tasks into higher-level structures (called
servers or supertasks) which are scheduled globally, while a uniprocessor scheduling
algorithm is used within each server. This makes it possible to solve the scheduling
problem at a coarser-grained level so that an optimal solution is likely to be found
more easily.

In our study on time composability in high-criticality systems, when actual imple-
mentation and deployment in a real-world industrial context cannot be ignored, we
regard hybrid methods as the most promising solution to the multicore scheduling
problem. In particular we focused or attention on RUN, which takes benefit from parti-
tioning of task aggregates in a first offline step, and then allows task migrations during
execution. RUN has proven to be very efficient in terms of incurred preemptions and
migrations and is briefly discussed in the next section.
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RUN

The Reduction to UNiprocessor (RUN) algorithm is an optimal technique for multicore
scheduling which has recently attracted the attention of researchers for its out-of-the-
box approach taken on the problem. Together with U-EDF [188][189][190], RUN is
the only optimal algorithm to guarantee optimality without explicitly resorting to a
notion of fairness. RUN consists of two steps: first a reduction tree for the task set is
created in a preliminary offline phase. Then at run time tasks on the leaves of the
reduction tree are globally scheduled across the m processors by traversing the tree
downwards from the root.

The simple observation behind RUN is that scheduling a task’s execution time
is equivalent to scheduling its idle time. This approach named dual scheduling had
already been investigated in a few previous works [181][195][185][196]. The dual
schedule of a set of tasks T consists in the schedule produced for the dual set T ∗

defined as follows:

Definition 1 (Dual task). Given a task τi with utilization U(τi), the dual task τ∗i of τi is a

task with the same period and deadline of τi and utilisation U(τ∗i )
def
= 1−U(τi).

Definition 2 (Dual task set). T ∗ is the dual task set of the task set T if (i) for each task
τi ∈ T its dual task τ∗i is in T ∗, and (ii) for each τ∗i ∈ T ∗ there is a corresponding τi ∈ T .

The definitions above suggest that scheduling the tasks in T ∗ is equivalent to
schedule the idle times of the tasks in T , therefore a schedule for T can be derived
from a schedule for the dual T ∗. Indeed, if τ∗i is running at time t in the dual schedule,
then τi must stay idle in the actual schedule of τ (also called primal schedule). Inversely,
if τ∗i is idle in the dual schedule, then τi must execute in the primal schedule.

Example 1. Figure 50 shows an example of the correspondence between the dual and the
primal schedule of a set T composed of three tasks executed on two processors. In this example
the three tasks τ1 to τ3 have a utilization of 2

3 each, implying that their dual tasks τ∗1 to τ∗3 have
utilizations of 1

3 . The dual task set is therefore schedulable on one processor while the primal
tasks τ1 to τ3 need two processors. Whenever a dual task τ∗i is running in the dual schedule,
the primal task τi remains idle in the primal schedule; inversely, when τ∗i is idling in the dual
schedule then τi is running in the primal schedule. Note that the number of processors does
not always diminish in the dual schedule. This actually depends on the utilization of the tasks
in the particular task set.

Lemma 1 explicits the relation existing between the utilisation of a task set and the
utilisation of its dual:
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Figure 50.: Correspondence between the primal and the dual schedule on the three
first time units for three tasks τ1 to τ3 with utilizations of 2

3 and deadlines
equal to 3.

Lemma 1. Let T be a set of n periodic tasks. If the total utilization of T is U(T ), then the

utilization of T ∗ is U(T ∗) def
= n−U(T ).

Hence, if U(T ) is an integer then T and T ∗ are feasible on m = U(T ) and
m∗ = n−U(T ) processors, respectively. Consequently, in systems where n is small
enough to get

(n−U(T )) < m (3)

the number of processors can be reduced – and so the complexity of the scheduling
problem – by scheduling the dual task set T ∗ instead of T . In Example 1, we have
U(T ) = 2 thereby implying that T is feasible on two processors. However, we have
n = 3, which leads to U(T ∗) = n−U(T ) = 1. Therefore, the dual task set T ∗ is
feasible on one processor.

RUN resorts to the concept of “server” which can be related to the supertasking
approach described in [197]; as a first step to build RUN reduction tree each individual
task τi is wrapped into a server Si with the same utilisation and deadline. To enforce
Expression 3 being true, RUN then uses a bin-packing heuristic to pack servers into as
few bins as possible; each bin should have utilisation smaller than or equal to 1, to
benefit from duality in further reduction steps.

Definition 3 (Pack operation/Packed server). Given a set of servers {S1, S2, . . . , Sn}, the
pack operation defines a server S with utilisation U(S) = ∑n

i=1 U(τi). S is called the packed
server of {S1, S2, . . . , Sn}.

In the following discussion we will use the notation S ∈ B to specify that server
S is packed into server B or that server S is included in the subtree rooted in B,
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interchangeably. RUN then leverages the notion of duality to schedule idle times of
existing servers.

Definition 4 (Dual operation/Dual server). Given a server S, the dual operation defines
a server S∗ with utilisation U(S∗) = 1−U(S). S∗ is called the dual server of S.

The process of constructing the tree then proceeds by iteratively applying the two
operations above alternatively, which define new levels in the tree.

Definition 5 (Reduction operation). The operation consisting in successively applying a
dual and a pack operation is called reduction .

Definition 6 (Reduction level). Named S0 the pack of the initial servers {S1, S2, . . . , Sn},
the application of the reduction operation to the set of servers S i at level i defines a new set
of servers S i+1 at level i + 1 in the reduction tree. The intermediate level between i and i + 1
(i.e. when the dual operation has been applied but the pack operation has not) is indicated by
i∗ (see Figure 51 as an example).

By recursively applying the reduction operation, [43] proved that the number
of processors eventually reaches one. Hence, the initial multiprocessor scheduling
problem can be reduced to the scheduling of a uniprocessor system. More formally,
this means that ∃l, Sl

k : |S l| = 1 ∧U(Sl
k) = 1, where S l is the set of servers at level

l and Sl
k ∈ S

l. In fact, at every application of the reduction operation (i.e. at each
level of the reduction tree) the number of servers is reduced by at least one half, i.e.
|S l+1| ≤

⌈
|S l |

2

⌉
.

Example 2. Figure 51 shows an illustrative reduction tree for a task set comprising 6 tasks,
represented as leaves, and 17 servers, represented as internal nodes. Let T be composed of 6 tasks
τ1 to τ6 such that U(τ1) = U(τ2) = U(τ3) = U(τ4) = 0.6 and U(τ5) = U(τ6) = 0.3. The
total utilization of T is 3 and T is therefore feasible of 3 processors. If we directly applied duality
on T , we would have U(τ∗1 ) = U(τ∗2 ) = U(τ∗3 ) = U(τ∗4 ) = 0.4 and U(τ∗5 ) = U(τ∗6 ) = 0.7.
Hence, U(T ∗) would be equal to 3 and we would gain nothing by scheduling the dual task
set T ∗ instead of T . Therefore, as shown in Figure 51, RUN first applies the pack operation
which creates 5 servers S0

1 to S0
5 such that S0

1 = {τ1}, S0
2 = {τ2}, S0

3 = {τ3}, S0
4 = {τ4}

and S0
5 = {τ5, τ6}. Hence, U(S0

1) = U(S0
2) = U(S0

3) = U(S0
4) = U(S0

5) = 0.6 and
U(S0∗

1 ) = U(S0∗
2 ) = U(S0∗

3 ) = U(S0∗
4 ) = U(S0∗

5 ) = 0.4 (where U(Sl
i) and U(Sl∗

i ) are
the utilizations of Sl

i , the ith server of reduction level l, and its dual Sl∗
i , respectively). The

set of dual servers now has a total utilization U(S0∗) = 2 implying that this set of dual
servers in feasible on 2 processors. If we apply once more the pack and dual operations, we
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Figure 51.: RUN reduction tree for a task set of 6 tasks.

have three new servers S1
1 =

{
S0∗

1 , S0∗
2
}

, S1
2 =

{
S0∗

3 , S0∗
4
}

and S1
3 =

{
S0∗

5
}

with utilizations
U(S1

1) = U(S1
2) = 0.8 and U(S1

3) = 0.4. The dual servers of this second reduction level
therefore have utilizations U(S1∗

1 ) = U(S1∗
2 ) = 0.2 and U(S1∗

3 ) = 0.6. Consequently, the
total utilization of the dual set of servers of this second reduction level can be packed into
S2

1 =
{

S1∗
1 , S1∗

2 , S1∗
3
}

with U(S2
1) = 1, implying that they are feasible on a uniprocessor

platform.

The online phase of RUN consists in deriving the schedule for T from the schedule
constructed with EDF at the uppermost reduction level (i.e. for the equivalent unipro-
cessor system). At any time t of execution any server S is characterized by a current
deadline and a given budget.
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Definition 7 (Server deadline in RUN). At any time t, the deadline of server Sl
k on level l

is given by

dl
k(t)

def
= min

Sl−1
i ∈Sl

k

{dl−1
i (t)}

and the deadline of the dual server Sl∗
k on level l∗ is given by

dl∗
k (t)

def
= dl

k(t)

Deadline and budget are related in that whenever a server Sl
k reaches its deadline, it

replenishes its budget by an amount proportional to its utilisation U(Sk), as follows:

Definition 8 (Budget replenishment in RUN). Let R(Sl
k)

def
= {r0(Sl

k), . . . , rn(Sl
k), . . . } the

time instants at which Sl
k replenishes its budget, with r0(Sl

k) = 0 and rn+1(Sl
k) = dl

k(rn(Sl
k)).

At any instant rn(Sl
k) ∈ R(Sl

k) server Sl
k is assigned an execution budget bdgt(Sl

k, rn(Sl
k))

def
=

U(Sl
k)×

(
rn+1(Sl

k)− rn(Sl
k)
)
.

Note that the budget of a sever is decremented with its execution. That is, assuming
that the budget of Sl

k was not replenished within the time interval (t1, t2],

bdgt(Sl
k, t2) = bdgt(Sl

k, t1)− exec(Sl
k, t1, t2) (4)

where exec(Sl
k, t1, t2) is the time Sl

k executed during (t1, t2].
The schedule for T is finally built by applying the two following rules at each

reduction level:

Rule 1. Each server of reduction level l which is running in the primal schedule at time
t executes its component server (or task) with the earliest deadline in the dual schedule
at reduction level (l − 1)∗;

Rule 2. Each server of reduction level (l − 1)∗ which is not running in the dual
schedule is executed in the primal schedule at level l− 1 and inversely, each server which
is running in the dual schedule is kept idle in the primal schedule.

Example 3. Let us take the same task set T from Example 2 depicted in Figure 51 and let us
assume that each of the six tasks τi ∈ T has an active job at time t such that d1(t) < d2(t) <
d3(t) < d4(t) < d5(t) < d6(t). Since a server inherits the deadlines of its component tasks,
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each server S0
i (with 1 ≤ i ≤ 5) on the first reduction level L0 inherits the deadline di(t) of

the corresponding task τi. At the second reduction level L1, the deadline of S1
1 is equal to d1(t)

while the deadline of S1
2 is d3(t) and S1

3 has the same deadline as τ5. Because a dual server has
the same deadline as the corresponding primal server, if we execute EDF on the set of dual
servers at level 1∗, the dual server S1∗

1 is chosen to be executed at time t (see Figure 51). This
means that both S1

2 and S1
3 should be running in the primal schedule of the second reduction

level. Applying EDF in each of these servers, we get that S0∗
3 and S0∗

5 must be running in the
dual schedule of the first reduction level. Therefore, S0

3 and S0
5 must stay idle while S0

1, S0
2, S0

4

must be executed in the primal schedule of the first reduction level. Consequently, it results
that τ1, τ2 and τ4 must execute on the platform at time t.

It was proven in [43, 191] that the online part of RUN has a complexity of O(jn log(m))

when there is a total of j jobs released by n tasks on m processors within any interval
of time.

Although its authors classified it as semi-partitioned, the algorithm presents the
traits of different categories: the use of supertasks to reduce the size of the problem
certainly recalls hierarchical algorithms. The idea of packing tasks into servers borrows
instead from purely partitioned approaches, even though partitioning is not performed
per processor but rather among servers and is not as critical for the performance of
the algorithm as in other partitioned approaches (e.g. P-EDF). Finally, tasks are not
pinned to processors and are free of migrating to any core when scheduling decisions
are taken, as in global scheduling techniques. As mentioned earlier, RUN does not
explicitly deal with the notion of fairness in a strong sense, i.e. it does not try to assign
proportional execution to each task in the task set to generate a fluid schedule; rather,
some kind of “partitioned” proportional fairness is enforced among servers on higher
levels of the reduction tree. This results in a relaxed flavour of fairness, which is
enforced only between consecutive time boundaries, as in BF2 [188], represented by
job deadlines. This causes significantly less scheduling overhead when compared to
global scheduling algorithms like P-Fair [179][180], which also translates into a smaller
number of preemptions and migrations3.

More than just reducing the number of incurred preemptions and migrations, RUN
takes on a divide-et-impera approach to the multiprocessor scheduling problem,
which parallels current best practices of system development, and makes therefore

3 The authors claim to have observed an average of less than 3 preemptions per job in their simulation
results and proved that the average number of preemptions per job is upper bounded by

⌈
3p+1

2

⌉
when

p reduction opperations are required.
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its application appealing from an industrial perspective. First of all, the algorithm
can gracefully adapt to changes in the task set, since just the computation of a new
reduction tree is required in that event, which is however performed offline. This
feature is highly desirable in settings where incrementality is a necessary requirement
of the development and qualification processes, as it is the case of real-time systems.
In this context incrementality is indeed the key enabler to achieve compositional design,
which permits to express the behaviour of a system as a function of its elementary
components. In this scenario RUN servers mimic functionally cohesive and indepen-
dent subsystems, enclosing part of the overall system functionality, which may be
allocated to a dedicated subset of system resources and analysed in isolation. While
this is usually achieved by strict partitioning and not being a partitioned technique in
the strong sense, RUN is capable of achieving high schedulable utilisation at run time,
thus avoiding over provisioning of system resources.

Unfortunately, in its original formulation, RUN presents two major limitations that
hinder its applicability in a real-world scenario:

• Missing support for sporadic tasks. One big issue with RUN is that it is
intended only for periodic task sets. Clearly, for a scheduling algorithm to be
industrially relevant, the support of asynchronous events like interrupts and
sporadic task activations is a mandatory requirement.

• Missing support for resource sharing. The problem of resource sharing in a
multicore environment, although highly critical from a real-world point of view,
is often ignored in the first place when a new scheduling algorithm is defined.
The reason thereof is that various forms of blocking among tasks are introduced
when exclusive access to critical sections needs to be guaranteed, and this needs
to be taken into account by the analysis. This is also the case of RUN, whose tasks
are considered to be independent from each other. Recently, Burns and Wellings
proposed a locking protocol [198] for partitioned multiprocessor systems whose
response-time analysis is as easy as the analysis of the ceiling protocol in the
single core case. A viable solution to this problem recently investigated at the
University of Padova consists in packing those tasks sharing the same resource
together within the same server, which is then made non-migrating.

In [199] it has been demonstrated that a real implementation of RUN4 is indeed
possible with reasonable performance when compared to other existing partitioned

4 The mentioned implementation has been realised on the LITMUSRT extension to the Linux kernel
developed by UNC [200][201].
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Figure 52.: Evaluation of RUN on a real implementation.

and global algorithms. Figures 52(a) and 52(b) from that work report the number
of preemptions and migrations, respectively, incurred by task sets schdeuled under
different policies: RUN shows comparable performance to G-EDF and P-EDF until
85% utilisation. After this threshold the number of unfeasible task sets for those
algorithms increases (Figures 52(c)) causing therefore more deadline misses (Figures
52(d)), whereas RUN is capable of scheduling them up to an utilisation bound of 100%
as a consequence of its optimality.

RUN represents therefore a promising solution to real-world multicore scheduling,
and is worth being more deeply investigated to the purpose of countering the men-
tioned limitations. In particular, we are interested in extending the periodic task model
considered by RUN to support sporadic task sets, which would make the algorithm
more appealing to real industrial adoption. The next section presents this work.
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Figure 53.: Reduction tree for the task set in Example 4.

4.3.2 SPRINT

Preliminaries

The impossibility of scheduling sporadic task sets with RUN is a serious limitation
which confines its validity to academic research and poses a serious obstacle to its
adoption in a realistic context. Consider the next motivating example, where a feasible
task set cannot be scheduled with RUN as a consequence of the the sporadic nature of
some of its tasks.

Figure 54.: Possible schedules for the task set in Example 4.
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Example 4. Consider the following task set composed by 4 tasks with implicit deadlines,
T = {τ1A = 〈3, 10〉, τ1B = 〈3, 10〉, τ2 = 〈6, 10〉, τ3 = 〈8, 10〉}, whose reduction tree is
shown in Figure 53. A possible schedule constructed by RUN (Figure 54(a)) allocates tasks τ1A

to processor π1 at time t = 0; however, if τ1A were a sporadic task with arrival time tτ1A = 1,
then it would be impossible for RUN to execute it for the 3 units of time required, therefore
missing deadline d1A = 10 for task τ1A. In this case the problem could be solved with RUN by
choosing the schedule where the allocation of τ1A and τ1B are switched, although there is no
way to capture this requirement in the original algorithm. Moreover, this patch would not solve
the general problem, as evident in the case of task set T ′ in Figure 54(b), which is identical to
task set T with the only exception that tasks τ1A and τ1B are now collapsed into a single task
τ1 with the same deadline and utilisation equal to their sum. In this case, if τ1 and τ2 were
sporadic tasks no valid RUN schedule exists in which a late arrival of both τ1 and τ2 can be
accommodated.

Example 4 above highlights the main problem with RUN: the algorithm assumes
that new jobs for tasks in T can be only released at fixed points in time, i.e. at
boundaries di, corresponding to multiples of task periods. After jobs are released
and new deadlines are propagated up to the root, a new schedule for T is computed
by traversing the reduction tree top-down, i.e. by first finding a solution to the
uniprocessor problem of scheduling jobs released by servers at level n. By applying
Rules 1 and 2 the process proceeds downwards eventually producing a schedule for
the actual tasks on the leaves. However, no clue is given to the scheduling process on
how to select servers at intermediate levels and the corresponding branches in the tree
to favour/ignore the scheduling of specific tasks, which may not have been activated
yet. Additionally, we observe that RUN needs to assume full system utilisation when
the reduction tree is created to guarantee the convergence of the reduction process.
This means that in a system with m processors the cumulative utilisation of the task
set T to be scheduled must be UTS = ∑

τi∈TS

Ci
Ti

= m. Even in case this condition is not

met, it can be easily achieved by adding some dummy tasks to fill system utilisation
up to m. We might equally consider those tasks to be sporadic and inactive in the
system until their activation event is fired.

It is therefore both interesting and promising to investigate a possible generalization
of the algorithm, which could account for dynamic arrival times and handle sporadic
task sets. Since it was proven in [43] that the structure of RUN reduction tree based
on the notion of dual schedule is the key enabler for the low number of observed
preemptions and migrations, we decided to maintain this core idea while relaxing any
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assumption on job arrival times. This gave rise to SPRINT, an algorithm for scheduling
sporadic task sets, which is presented next. Only the online phase of RUN is affected
in SPRINT. The ofline part — i.e., the construction of the reduction tree — is identical
in SPRINT and RUN.

The Algorithm

The algorithm we present is no different from RUN in its basic mechanism: servers are
characterized by deadlines and at the firing of any of them the execution budget of servers
is replenished to provide additional computational resources for new jobs execution;
however, the way those quantities (i.e., deadlines and budgets) are computed changes
to accommodate possible sporadic releases. Additionally, we need to enforce a new
server priority mechanism for the scheduling of component servers to avoid the waste
of processor time when the transient load of the system is low. However, differently
from RUN, SPRINT currently only works on reduction trees up to 2 levels: although
all the task sets we generated for our experimental evaluation (Section 4.3.3) satisfy
this property, part of our future work is making SPRINT more general to schedule any
given task set. We now show how these key modifications the differentiate SPRINT
from RUN.

server deadlines . Server deadlines play a central role in influencing the schedul-
ing process of RUN, as they directly map to priorities under the EDF scheduling policy
(Rule 1). It is therefore critical to carefully assign deadlines so that proper scheduling
decisions are taken online. This principle still holds in SPRINT, with the further
complication that the deadlines of servers at level 0 should account for the possible
sporadic nature of the individual tasks wrapped into them.

Let rn(S0
k) be the release of a new job of server S0

k at level l = 0. In RUN the job
released by S0

k would be assigned a deadline equal to the minimum deadline of the
tasks packed in S0

k [43]. However, in SPRINT, because of the sporadic nature of the
tasks, some task τi may exist in S0

k which is not active at time rn(S0
k) and therefore has

no defined deadline. Nonetheless, we need to compute a deadline d0
k(rn(S0

k)) for the
job released by server S0

k at time rn(S0
k). While computing this deadline, we want to

preserve an important property of RUN: the firing of a deadline of any job released
by any task τi always corresponds to the firing of a deadline in any server Sl

p such
that τi ∈ Sl

p. Furthermore, for the sake of simplicity, we do not want to update the
deadline of S0

k at any instant other than the release of one of its job.
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In order to fulfil those two requirements, for all the tasks τi ∈ S0
k that are inactive at

time rn(S0
k), we consider their earliest possible deadline assuming that they release a

job right after rn(S0
k). That is, for each inactive task τi ∈ S0

k , we assume an artificial
deadline rn(S0

k) + Di. Thanks to the discussion above, the deadline of a server in
SPRINT can be defined as follows:

Definition 9 (Server deadline in SPRINT). At any time t the deadline of a server S0
k on

level l = 0 is given by

d0
k(t)

def
= min

τi∈S0
k

{di(r0
k(t))| if τi ∈ A(r0

k(t));

r0
k(t) + Di| if τi /∈ A(r0

k(t))}

where r0
k(t) is the latest arrival time of a job of server S0

k , i.e. r0
k(t)

def
= max

rn(S0
k)∈R(S

0
k)

{
rn(S0

k) | rn(S0
k) ≤ t

}
.

At any time t the deadline of any other server Sl
k on a level l > 0 is defined as in RUN. That is,

dl
k(t)

def
= min

Sl−1
i ∈Sl

k

{dl−1
i (t)}

It is worth noticing that, as expected, this definition preserves the property of RUN
saying that the firing of a deadline of any job released by any task τi always corre-
sponds to the firing of a deadline in any server Sl

k such that τi ∈ Sl
k. Note however that

the converse although true in RUN is not valid in SPRINT anymore, i.e. a deadline
may be fired by a job of server Sl

k without any corresponding deadline in the task set T .

reduction at level 0. As a more challenging modification to RUN, SPRINT
must redefine the budget replenishment rules for servers. This is needed because the
execution budget assigned to a server Sl

k at any level up to the root must reflect the
execution time demand of the component tasks on the leaves placed below the subtree
rooted in Sl

k. This time demand may now vary at any point in time as a consequence of
sporadic releases and must be preserved upon the reduction process performed along
the tree. While in RUN just one rule is needed to compute the budget of any server in
the reduction tree, in SPRINT we need to distinguish different budget replenishment
rules corresponding to the different levels at which a server is located in the reduction
tree.
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Let R(S0
k)

def
= {r0(S0

k), . . . , rn(S0
k), . . . } be the sequence of time instants at which the

budget of S0
k is replenished, where r0(S0

k)
def
= 0 and rn+1(S0

k)
def
= d0

k(rn(S0
k)). Similarly

to RUN, the budget allocated to S0
k at time rn(S0

k) is a function of the utilisation of the
active task in S0

k at time rn(S0
k) and is given by

bdgt(S0
k , rn(S0

k))
def
= ∑

τj∈S0
k∩A(rn(S0

k))

U(τj)×
(

rn+1(S0
k)− rn(S0

k)
)

where A(rn(S0
k)) is the set of active tasks at time rn(S0

k).

However, in SPRINT, because of their sporadic nature, tasks packed in S0
k can also

release jobs at any time t between two replenishment instants rn(S0
k) and rn+1(S0

k). At
such a job release, the budget of S0

k should then be incremented to account for the new
workload to be executed. More generally, if a set of tasks becomes active in a server S0

k
at time ta ∈

(
rn(S0

k), rn+1(S0
k)
)
, the budget of S0

k should be incremented of an amount
proportional to the cumulative utilisation of all released jobs. Formally,

bdgt(S0
k , ta)

def
= bdgt(S0

k , t−a ) + ∑
τi∈S0

k∩Rel(ta)

U(τi)× (d0
k(ta)− ta)

where Rel(ta) is the set of tasks releasing a job at time ta and bdgt(S0
k , t−a ) is the

remaining execution budget of S0
k right before the arrival of those jobs at time ta.

Considering the dual server S0∗
k , we need to ensure that the budget assigned to S0∗

k
is sufficiently small to allow the execution of the primal packed server S0

k . Indeed, by
definition of a dual server, the primal server S0

k executes only when S0∗
k is idle, and

conversely S0
k is kept idle when S0∗

k executes. Therefore, as a minimal requirement
we need to ensure that bdgt(S0∗

k , t) ≤ (d0
k(t)− t)− bdgt(S0

k , t) at any time t. Since in
RUN the budget assigned to a server S0

k may only vary at instants rn(Sl
k) ∈ R(Sl

k), it is

sufficient to respect the equality bdgt(S0∗ , t) def
= (d0

k(t)− t)− bdgt(S0
k , t) at any time t.

In SPRINT instead the budget of S0
k may increase as soon as an inactive task τi ∈ S0

k
releases a new job (Rule 3). Therefore whenever the budget bdgt(S0

k , t) increases at
any time t due to the release of a new job of S0

k or a job of an inactive task τi ∈ S0
k the

budget of S0∗
k needs to be computed according to the following equation:

bdgt(S0∗
k , t) = (d0

k(t)− t)− bdgt(S0
k , t)− ∑

τi∈S0
k ,τi 6∈A(t)

U(τi)× (d0
k(t)− t)
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where the last term accounts for the maximum workload by which the budget of S0
k

could be inflated as a consequence of potential future job releases by the inactive tasks
in S0

k .
To summarize, in SPRINT the computation of the budgets of any servers S0

k and S0∗
k

at level l = 0 must comply with the two following rules:

Rule 3 (Budget replenishment at level 0). At any instant rn(S0
k) ∈ R(S0

k) servers S0
k and

S0∗
k are assigned execution budgets



bdgt(S0
k , rn(S0

k)) =

∑
τj∈S0

k∩A(rn(S0
k))

U(τj)×
(
rn+1(S0

k)− rn(S0
k)
)

bdgt(S0∗
k , rn(S0

k)) = (d0
k(t)− rn(S0

k))− bdgt(S0
k , rn(S0

k))

− ∑
τi∈S0

k ,τi 6∈A(rn(S0
k))

U(τi)× (d0
k(t)− rn(S0

k))

where A(rn(S0
k)) is the set of active tasks at time rn(S0

k).

Rule 4 (Budget update at level 0). At any instant t (such that rn(S0
k) < t < rn+1(S0

k))
corresponding to the release of one or more jobs from one or more tasks τi in server S0

k , the
execution budgets of servers S0

k and S0∗
k are updated as follows:



bdgt(S0
k , t) = bdgt(S0

k , t−)

+ ∑
τj∈S0

k∩Rel(t)
U(τj)× (d0

k(t)− t)

bdgt(S0∗
k , t) = (d0

k(t)− t)− bdgt(S0
k , t)

− ∑
τi∈S0

k ,τi 6∈A(t)
U(τi)× (d0

k(t)− t)

where Rel(t) is the set of tasks releasing a job at time t and bdgt(S0
k , t−) is the remaining

execution budget of S0
k right before the arrival of those jobs at time t.

The following example shows how server budget can be computed in presence of
both active and inactive tasks, resuming from our initial motivating example.

Example 5. Let us consider level l = 0 in the reduction tree, i.e. the result of applying the
pack operation on the n individual tasks resulting into |S0| ≤ n servers. Figure 53 shows this
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situtaion, where τ1A is a sporadic task and is initially inactive. Assuming that dτ1B(0) ≤ Dτ1A ,
the deadline at time 0 of server τ1 in which τ1A is packed is d0

τ1
(0) = dτ1B , corresponding

to the deadline of task τ1B, and server τ1 is assigned budget proportional to the acive tasks
packed in it, i.e. BDGT(τ1, 0) = ∑

τj∈τ1∩A(0)
U(τj) × (d1B − 0). Supposing now that τ1A

becomes active (and thus releases a job) at time t1, with 0 < t1 < d1B, the budget of server τ1

should be raised to satisfy the execution demand of τ1A. The amount such increment is given
by ∆BDGT(τ1, t1) = ∑

τj∈τ1∩Rel(t1)
U(τj)× (d0

τ1
(t1)− t1) = U(τ1A)× (d1B − t1). Later at

time d1B the budget is reset to BDGT(τ1, d1B) = (U(τ1B) + U(τ1A))× (d1A − d1B) since
both τ1B and τ1A are active at d1B. Thus overall the budget assigned to τ1 for the execution
of τ1A is given by the sum of the budgets assigned in the 2 slots, i.e. BDGT(τ1A, dτ1A) =

BDGT(τ1A, [t1, d1B]) + BDGT(τ1A, [d1B, d1A]) = BDGT(τ1A, [t1, d1A]) = U(τ1A)(d1A−
t1) = C1A.

We now prove formally that scheduling the packed servers at level 0 is equivalent
to scheduling the task set T .

Lemma 2. Let S0
k be a server at level l = 0 of the reduction tree and assume that S0

k complies
with Rules 3 and 4 for computing its budget. If S0

k always exhausts its budget by its deadlines
then all jobs released by the tasks in S0

k respect their deadlines.

Proof. In the following, we provide a proof sketch. According to Definition 9, all the
deadlines of the jobs released by the tasks in S0

k correspond to the deadlines of the jobs
of S0

k . Therefore, from Rules 3 and 4, the budget allocated to S0
k between any instant

corresponding to the release of a job by a task τi ∈ S0
k and the deadline of any job

released by the same or another task τj ∈ S0
k , is proportional to the utilisation of the

tasks in S0
k that are active between those two instants. That is, the budget allocated

to the server (i.e., the supply) is larger than or equal to the sum of the worst-case
execution times of the jobs of the tasks in S0

k with both an arrival and a deadline in
the interval (i.e., the demand). And because EDF is an optimal scheduling algorithm,
all those jobs respect their deadlines.

Properly assigning deadlines and budgets to servers is not sufficient to guarantee
that the algorithm works. As mentioned at the beginning of this section, due to the
fact that all tasks are not always active at any given time t, the prioritisation rules of
the servers must also be adapted in SPRINT in order to avoid to waste computing
time while there is still pending work in the system. Indeed, as shown in Example 4,
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blindly using EDF to schedule the servers in the presence of sporadic tasks may lead
to deadline misses. Because a sufficient condition for guaranteing the schedulability
of the tasks in T is that all jobs of the servers at level l = 0 respect their deadlines
(as proven by Lemma 2), then it is straightforward to conclude that there is no need
to execute any server S0

k of level l = 0 for more than its assigned budget. To enforce
this situation we rely on the idea of dual schedule, ensuring that S0

k does not execute
when S0∗

k is running. Therefore, we just need to enforce the execution of S0∗
k as soon

as a server S0
k exhausts its budget (even if S0∗

k already exhausted its own budget, i.e.
bdgt(S0∗

k , t) = 0): this can be achieved by assigning the highest priority to S0∗
k . As a

consequence, by virtue of Rule 2, S0∗
k will be favourably chosen to execute at level

l = 0∗ (unless antoher server S0
p also completed its execution), thereby implying that

S0
k will not execute (Rule 1). These observations are formalised by the following rule:

Rule 5 (Server priorities at level l = 0∗). If the budget of a server S0
k is exhausted at time

t, i.e. bdgt(S0
k , t) = 0, then the dual server S0∗

k is given the highest priority. Otherwise, if
bdgt(S0

k , t) > 0, the priority of S0∗
k is given by its deadline d0

k(t) as defined in Definition 9.

reduction at level 1. We can extend the reasoning above to determine how
the execution budgets should be replenished and how the scheduling decisions should
be taken at levels l = 1 and l = 1∗ of the reduction tree. We first start with the
observations in the following lemmas.

Lemma 3. If S1∗
i executes at time t then all severs S0

k ∈ S1
i execute at time t.

Proof. This lemma is a consequence of the dual operation applied in Rule 2. If S1∗
i

executes at time t then, by Rule 2, S1
i does not execute at time t. Consequently, no

component server S0∗
k ∈ S1

i executes either, which implies (applying again Rule 2) that
all tasks S0

k ∈ S1
i execute at time t.

Lemma 4. If S1∗
i does not execute at time t then all severs S0

k ∈ S1
i but one execute at time t.

Proof. If S1∗
i does not execute at time t then, by Rule 2, S1

i executes at time t. Con-
sequently, by Rule 1, one component server S0∗

p ∈ S1
i executes at time t. Therefore,

applying Rule 2 again, we get that all tasks S0
k ∈ {S

1
i } \ S0

p execute at time t.

A direct consequence of Lemmas 3 and 4 is that there is no need for executing
S1∗

i when at least one of the servers S0
k ∈ S1

i exhausted its budget. Therefore, S1∗
i is

assigned the lowest priority to prevent its execution as long as a server S0
k ∈ S1

i has
budget bdgt(S0

k , t) = 0. Hence, the following rule applies at level l = 1∗:
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Rule 6 (Server priorities at level l = 1∗). If the budget of a server S0
k is exhausted at time

t, i.e. bdgt(S0
k , t) = 0, then the server S1∗

k such that S0
k ∈ S1∗

k is given the lowest priority.
Otherwise, if bdgt(S0

k , t) > 0 for all S0
k ∈ S1∗

k , the priority of S1∗
k is given by its deadline d1

k(t)
as defined in Definition 9.

At levels 1 and 1∗, the budget replenishment policy applied at any instant rn(S1
k) ∈

R(S1
k) is not different from RUN. Hence, the algorithm still respects the following rule:

Rule 7 (Budget replenishment at level 1). At any instant rn(S1
k) ∈ R(S1

k) servers S1
k and

S1∗
k are assigned execution budgets


bdgt(S1

k , rn(S1
k)) = U(S1

k)×
(
rn+1(S1

k)− rn(S1
k)
)

bdgt(S1∗
k , rn(S1

k)) = (d1
k(t)− rn(S1

k))− bdgt(S1
k , rn(S1

k))

Additionally, one more rule is needed to define the behaviour of the algorithm when
a task releases a job at time t such that rn(S1

k) < t < rn+1(S1
k). This rule is given below

and uses the operator [x]zy defined as min{z, max{y, x}}.

Rule 8 (Budget update at level 1). At any instant t such that rn(S1
k) < t < rn+1(S1

k), corre-
sponding to the update of one or more jobs from one or more server S0

p ∈ S1
k , if bdgt(S0

p, t−) = 0
and calling t0 ≥ rn(S1

k) the instant at which bdgt(S0
p, t) became equal to 0, then the execution

budgets of servers S1
k and S1∗

k are updated as follows:bdgt(S1
k , t) =

[
U(S1

k)× (d0
k(t)− t)

]bdgt(S1
k ,t0)

bdgt(S1
k ,t0)−(t−t0)

bdgt(S0∗
k , t) = (d1

k(t)− t)− bdgt(S1
k , t)

where bdgt(S0
k , t−) and bdgt(S1

k , t−) are the remaining execution budgets of S0
k and S1

k ,
respectively, right before the budget updates occurrs at time t.

reduction at level 2. By assumption, there is a maximum of two reduction
levels in SPRINT. Consequently, level 2 can only be the root of the reduction tree. Since
by definition the root has always an utilisation equal to 100%, it is always executing
and no budget nor priority have to be computed. Therefore, servers on level 1∗ will
always be scheduled for execution according to their relative priorities, computed
using Rule 6.
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4.3.3 Evaluation

We now compare SPRINT to state-of-the-art multicore scheduling algorithms: in
particular, we are interested in counting the number of preemptions and migrations
incurred by the task sets to be scheduled. These two metrics are a trustworthy indicator
of the interference caused by OS back-end activities to the executing applications, and
eventually give a hint on how composability is the eased or impaired by the choice of
a specific algorithm.

It has been demonstrated in [199] that RUN can be actually implemented with
reasonable performance when compared to other existing partitioned and global
algorithms. We therefore assume that this result can be easily extended to SPRINT,
which is in the end based on RUN, to only focus on simulations for now; we are
perfectly aware however that the implementation of a scheduling algorithm on a real
target entails considering run time overheads and other implementation issues, whose
solutions may question some of the results obtained by simulations.

All our experiments compare SPRINT with Partitioned-EDF (P-EDF), Global-EDF
(G-EDF) and U-EDF by scheduling randomly generated sporadic task sets. Individual
tasks are characterised by their period, randomly chosen in the a range of [5, 100]
time units; sporadic release is simulated by randomly picking a task’s arrival delay
in a range of values depending on the specific scenario. Every point in the graphs
we present in this section is the result of the scheduling of 1000 task sets with each
algorithm. During the offline reduction process of SPRINT, no task set required more
than 2 levels in its reduction tree.

In the first batch of experiments we wanted to study SPRINT performance as a func-
tion of the varying system utilisation. We simulated a system with 8 processors and we
randomly generated task utilizations between 0.01 and 0.99 until the targeted system
utilisation was reached, increasing it progressively from 55% to 100%. Sporadic inter-
arrival times of tasks were generated by adding a value in the range [0, 100], randomly
picked from a uniform integer distribution, to their period. Figures 55(a) and 55(b)
show the good results obtained for SPRINT in terms of preemptions and migrations
per job, respectively; in particular, we notice that the number of migrations incurred
by SPRINT is always smaller than the number experienced under both G-EDF and
U-EDF. The number of preemptions approaches the well-known results for P-EDF,
at least up to a utilisation of 85%, i.e. U = 7. After that point however, the number
of scheduled task sets for P-EDF and G-EDF drops substantially, as evident from
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Figure 55(c)5, until the extreme of 100% utilisation where not even a valid partitioning
is found for P-EDF. The schedulability ratio does not change instead for U-EDF and
SPRINT as a consequence of their optimality results.

We tried then to repeat a similar experiment, this time keeping system utilisation
fixed to 90%, i.e. U = 7.2, and rather making the number of tasks vary. In our expec-
tations this would challenge even more the relative performance of the algorithms,
since growing the number of concurrent tasks in the system increases the potential
operations to be performed by the scheduling algorithm. Figures 56(a) and 56(b) show
that the number of preemptions for SPRINT is similar to that of P-EDF and G-EDF,
while the number of migrations is even smaller (in fact null) than the migrations
registered by G-EDF and U-EDF. However, with a small number of tasks, whose
individual utilisation must be therefore large, P-EDF and G-EDF fail to schedule some
task sets as a consequence of the impossibility of finding a good partitioning and
of taking advantage of task migration, respectively (Figure 56(c)). U-EDF is instead
comparable to SPRINT in terms of achieved schedulability, still paying some penalty
due to a higher number of preemptions and migrations.

As a final experiment we observed the behaviour of SPRINT and U-EDF when
the number of processors in the system increases, while keeping the system fully
utilised. As expected, both the number of preemptions (Figure 57(a)) and migrations
(Figure 57(b)) increase for U-EDF with the size of the system, whereas for SPRINT it
remains constant on average, and always below the value of 3. This is in line with
the results obtained for RUN and by virtue of the observation that no task set in our
experiments requires more than 2 reduction levels.

At the same time we were interested in understanding how the behaviour of both
algorithms is affected by changes in the minimum inter-arrival times of sporadic
releases. To this purpose we defined three representative equivalence classes for
sporadic release times. represened again as random delays to be added to task periods:
(i) the first is [0, 0], which corresponds to having only periodic tasks and is therefore
suitable to roughly compare SPRINT and U-EDF on a strictly periodic system; (ii)
the second is the range [0, max period], so that there is at least one job release every
two task periods; finally, (iii) the third range [0, 10×max period] allows larger delays
than task periods. What we notice is that case (ii) is the most expensive both in terms
of preemptions and migrations, for both algorithms. This is explained by the fact
that in that scenario jobs are released often enough to cause a significant amount of

5 In this case we only count the number of preemptions and migrations incurred by the schedulable task
sets.
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scheduling; additionally such releases are likely to happen out-of- phase with respect
to each other, therefore generating even more scheduling points. On the contrary
in setting (i) jobs are more likely to be released in phase, whereas in setting (iii) job
releases are far less frequent, thus diluting the number of dispatched scheduling
events.

4.4 summary

In this section we attacked the problem of providing time composability in a multi-
processor environment. We first identified the sources of interference within the HW
layer, whose behaviour is likely to be even more disrupting to time composability
than in a single core scenario as a consequence of the increased number of shared
HW resources and interactions thereof. We then showed how different models of
computation have different implications on the applicability of multicore processing
in a real-world industrial setting, defining either a partitioned architecture or a more
ambitious setup where, in the quest for work conservation, tasks are allowed to mi-
grate across processors. As an example of the former setting we showed how the
PROARTIS avionics case study has been deployed to a partitioned multicore setup,
where the degree of time composability achieved in TiCOS enables probabilistic timing
analysis, similarly to the single-core setting. . Initial results finally proved the limited
increase in the runtime overhead that SPRINT incurs over RUN. We then proceeded
by studying how the design decisions taken in the areas of intervention presented in
Chapter 3 are affected by the deployment in a real multiprocessor environment, and
identified the problem of optimal multicore scheduling as the most critical to time
composability.

Looking at the existing algorithms for multiprocessor scheduling, we observed
that both partitioned and global approaches present some drawbacks which limit
their usefulness to real-world applications: the former have to cope with the bin-
packing problem, which does not account for inter-task dependencies, and introduce
over provisioning in the system; the latter leave freedom of migration to tasks, whose
overhead may be unacceptable in practice. In this scenario, the approach taken by RUN
mediates between both partitioned and global scheduling, grouping tasks into servers
and partitioning among them while allowing migration at run time; RUN has proven to
be effective in practice by limiting the number of incurred preemptions and migrations
to a minimum. Building on this analysis, our interest has focused on providing a
solution to counter one limitation of RUN, i.e. the support to sporadic task sets, giving
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rise to a new algorithm which we called SPRINT. Although not general enough yet
to support task sets requiring more than 2 reduction levels in RUN reduction tree,
SPRINT has proven to outperform other state-of-the-art algorithm for multiprocessor
scheduling in terms of both tasks incurred preemptions and migrations.
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Figure 55.: Comparative results for SPRINT with respect to G-EDF, P-EDF and U-EDF
in terms of preemptions (a) and migrations (b) per job, and number of
schedulable task sets (c) with increasing system utilisation.
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Figure 56.: Comparative results for SPRINT with respect to G-EDF, P-EDF and U-EDF
in terms of preemptions (a) and migrations (b) per job, with increasing
number of tasks and limited to the number of scheduled tasks (c).
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Figure 57.: Comparative results for SPRINT with respect to U-EDF in terms of pre-
emptions (a) and migrations (b) per job, with different inter-arrival times
and increasing number of processors.
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5
C O N C L U S I O N S A N D F U T U R E W O R K

5.1 time composability and the role of the os

The increasing performance expectations placed on real-time systems are pushing
even the more conservative industrial stakeholders to consider the use of advanced
hardware features into architecture designs. Moreover, the need of cutting production
costs causes COTS components to become an attractive alternative to ad-hoc expensive
solutions. This is not an immediate option for the high-integrity domain, where large
investments are dedicated to qualification activities, which cover significant amounts
of project budgets.

In the industrial scenario of interest to this work, incrementality and compositional-
ity are the cornerstone principles guiding all the phases of the system delivery process.
When those two properties are injected into a system blueprint, the resulting product
will be more robust to both unstable requirements or execution conditions and to the
technology shift pushing towards the adoption of more performing solutions.

Unfortunately, the advocacy of compositionality and its supporting methodologies
are scarcely supported by existing technology. When it comes to assessing the timing
behaviour of a system in fact, existing timing analysis techniques hit the composability
wall, which prevents the analysis of each individual component in isolation without
considering the contingent execution conditions and dependencies on the specific
deployment environment. Providing composability is therefore crucial to the industrial
process at the basis of HIRTS production, which eventually results into improved
performance and rationalised costs.

In this dissertation we started by observing that existing research on time compos-
ability has attacked the problem either at the hardware level, to study unpredictable
and disruptive hardware effects or at the application level, by looking at those com-
putation paradigms that make an application more easily analysable. Unfortunately,
at either level the problem of enumerating all possible HW/SW interactions during
execution is known to be hard and it is far from being solved, even in a uniproces-
sor environment, unless resorting to a simplified or overprovisioned architecture is
accepted. We contend that the role played by the Real-Time Operating System in this
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problem deserves deeper investigation: as a consequence of its privileged mediating
position in the architecture, the OS may potentially mitigate the reciprocal perturbation
effects between the HW platform and the applications deployed on top of it. We have
given a characterisation of time composability in terms of zero disturbance and steady
behaviour, which we have sought as distinctive properties emerging from an educated
OS design. If the OS is time composable with applications, its contribution to their
cumulative execution time is a linear function of the invoked services. Additionally,
its internals may be completely replaced requiring minimal re-qualification effort of
client applications. In parallel to this benefits we demonstrated how a time compos-
able operating system is also one mandatory enabler of the emerging probabilistic
timing analysis techniques, in which the hypotheses of independence and identical
distribution of described events are satisfied only if interference effects are removed
from the intra- and inter-layer interactions among architectural components.

5.2 summary of contributions

The main goal of our work shifts the attention to the role played by the OS in the
challenge of providing time composability in the delivery process of complex high-
integrity real-time systems. Along our quest for time composability, however, we
wanted to sustain our claims with real-world evidence on the good results that can be
achieved when OS design is performed with composability in mind, thus favouring
analysability over raw average performance. This approach has led to the following
contributions:

1. Time composability has been characterised in Section 3.1 in terms of disturbance
and steady behaviour, in a way that can be adapted to a broad variety of existing
real-time systems, with no assumption on the specific system architecture. Later
in Section 3.2 we spotted those areas of an OS which are most critical to achieve
composable timing behaviour of the entire system and we instantiated those
principles in the context of an RTOS design.

2. With a solid notion of time composability in our hands, we focused our investiga-
tion in Section 3.3 on the IMA architecture for the avionics domain: we showed
how the design of an ARINC 653 RTOS kernel can be modified to inject time com-
posability into it (Section 3.4). The results of our refactored kernel, TiCOS, have
been validated both in isolation and in the context of a real-world Airbus case
study application (Section 3.4.3), by comparing against a non-time-composable
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design of the same OS. We then moved outside the boundaries of the simplified
task model defined by the ARINC specification by studying time composability
in the space domain. We presented in Section 3.6 the implementation of an
activation-triggered limited-preemptive scheduler on top of a Ravenscar Ada
compliant RTOS kernel, ORK+, which is to-date the only existing implementation
of this kind in a real-world OS. Its beneficial effects on time composability have
been demonstrated in Section 3.6.4. Additionally, we proposed a solution to
the problem of dealing with resource sharing in a limite-preemptive scheduling
framework.

3. As a final contribution, the problem of providing time composability in mul-
ticores has been attacked. We showed how the criticalities identified in the
design of a single core OS are possibly amplified in a multiprocessor setup
(Section 4.2.2). We proved how the time composable behaviour of TiCOS enables
probabilistic analysis of applications running on a partitioned multiprocessor
platform (Section 4.2.1). In order to support the industrial adoption of more
ambitious multicore computing styles, we looked at multicore scheduling in
Section 4.3.1 as a crucial problem to facilitate system design while ensuring high
system performance. We motivated our interest in the RUN algorithm by illus-
trating its virtues and we proposed a way to extended it to handle sporadic tasks
which defines a new algorithm called SPRINT (Section 4.3.2). In Section 4.3.3
we show the good performance of SPRINT when compared to state-of-the-art
multicore scheduling techniques.

5.3 future work

The contributions above try to cover a number of aspects in the multifaceted problem
of injecting time composability in both unicore and multicore systems. An extensive
evaluation of the problem would probably require an effort which goes well beyond
the scope of a PhD thesis. Therefore we focused on the study of the OS layer where
we observed the most promising margin for improvement over existing design and
analysis techniques. In our study however we spotted a number of open problems
which are certainly at least as stimulating as those we already faced, and which we
are currently investigating or we want to cope with in the near future.

In the single core setting it would be nice to provide a low-level OS API to manipulate
those HW shared resources whose behaviour is immutably defined at design time.
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For example, the possibility of selectively enabling and disabling the use of hardware
acceleration features (like caches) would permit to consciously take benefit from
their use in moments of execution when performance matters; on the contrary, when
timeliness is a major concern one may want to disable them to guarantee predictable
timing behaviour of an application. This clearly emerged while refactoring the ARINC
653 input/output API interface.

In the implementation of our limited-preemptive scheduler in ORK+, we had the
chance to observe how an activation-triggered scheduling policy, which lazily defers
any scheduling operation until the laxity of a job drops to zero, is particularly sensitive
to kernel primitives overhead. This means that even modest overruns of the expected
execution time within the kernel may eventually result in job missing their deadlines.
We are therefore interested in precisely characterising the timing behaviour of time
composable ORK+ primitives, so that a precise response-time analysis accounting for
kernel overheads can be devised.

For the continuation of the multiprocessor investigation we certainly need to study
whether and how SPRINT can be made more general to be applied to reduction
trees with more than two levels. If this were possible, we could start reasoning
about the possible optimality of SPRINT, deriving from the results obtained for RUN.
Additionally, we need to produce further data to confirm (or deny) the promising
simulation results obtained in the comparison with other existing multicore scheduling
algorithms. In this particular regard, we plan to implement both U-EDF and SPRINT
on top of LITMUSRT to compare their relative performance on a real platform.
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A
A R I N C A P E X

We provided an implementation of a subset of the ARINC APEX services, as required
by the Flight Control Data Concentrator (FCDC) industrial case study we were involved
in (see Section 3.4.4). In our effort of redesigning part of the ARINC API layer according
to the principle of time composability we obviously preserved the original semantics
and the signature of the standard services. The intent is that legacy application could
be ported on our RTOS with no change. Not all ARINC services needed attention:
those that belong to the system initialization phase (e.g., process creation during
partition WARM START mode) have no effect on time composability. Similarly, a
number of other ARINC services just operate as simple wrappers to RTOS kernel
primitives that we redesigned to be time composable. What is most interesting
to this work is the implementation of the I/O communication services and other
synchronisation primitives. Table 14 summarises the set of ARINC services involved
in the FCDC case study and evaluates their potential effects on timing composability:
the next sections discuss each of them in more detail.

Partition Management

The ARINC 653 model is centred on the concept of partitions as a means to guarantee
time and memory isolation between separate functions. Partitioning allows separate
software functions (possibly characterised by different criticality levels) to execute
in the same computational node without affecting each other. The effects of timing
or memory faults should remain within a partition and should not propagate to the
system.

GET PARTITION STATUS returns the status of the partition that is currently executing.
This service naturally exhibits a constant timing behaviour, as the current partition in
TiCOS is represented by a PARTITION ID that allows an O(1) access to a global array of
data structures storing the information required by the implementation of this service.
Although data dependent hardware features will be polluted by the execution of this
service, the incurred interference is quite limited and should be easily bounded (e.g.,
number of unique memory accesses for caches). As this service is not loop-intensive
and does not exhibit any temporal locality (only spatial), we expect it not to take great
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Table 14.: ARINC services required in the FCDC case study.
Id Service name Composability issues

Disturbance Unsteady behaviour
PARTITION MANAGEMENT

S 1 GET PARTITION STATUS Limited, boundable Almost constant-time
S 2 GET PARTITION START CONDITION Limited, boundable Almost constant-time
S 3 SET PARTITION MODE Not invoked in nominal behaviour
PROCESS MANAGEMENT

S 4 PERIODIC WAIT Limited Implementation-
dependent

S 5 GET TIME Boundable Slight (input-dependent)
S 6 CREATE PROCESS Not invoked in nominal behaviour
S 7 STOP Reduced interfer-

ence
Implementation-
dependent

S 8 START Potentially large Context-dependent
LOGBOOK MANAGEMENT

... Discarded (not used in FCDC)

SAMPLING PORTS MANAGEMENT

S 9 CREATE SAMPLING PORT Not invoked in nominal behaviour
S10 WRITE SAMPLING MESSAGE Variable Input-dependent
S11 READ SAMPLING MESSAGE Variable Input-dependent
S12 GET SAMPLING PORT ID Not invoked in nominal behaviour
QUEUING PORTS MANAGEMENT

S13 CREATE QUEUING PORT Not invoked in nominal behaviour
S14 WRITE QUEUING MESSAGE Variable+blocking Input-dependent
S15 READ QUEUING MESSAGE Variable+blocking Input-dependent
S16 GET QUEUING PORT ID Not invoked in nominal behaviour

benefit of history-dependent acceleration features. In this case, freezing the hardware
state could be a reasonable option as it would not incur overly penalising effects on
performance.

GET PARTITION START CONDITION returns the reason why the partition is started. In
our case study this service has been stubbed to return always NORMAL START as start
condition. The same considerations as above can be applied to this service.

SET PARTITION MODE switches the partition execution mode. Partition execution
modes and the respective transitions play a relevant role during system initialisation,
when a partition enters the NORMAL MODE, and error handling. When entering the
NORMAL MODE, the partition processes can be scheduled for execution. The timing
behaviour of this service is extremely variable on both the input parameter (i.e., the
new partition MODE) and the number of processes in the partition – O(#processes).
The latter dependence is due to the fact this service may need to iterate over all the
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partition processes either to change their state to READY or to set the respective release
points. In fact, this service can be disregarded when considering composability issues
as its invocation is confined to the system initialisation or error handling phases. Both
cases are typically not accounted for when analysing the timing behaviour.

Process Management

Each partition supports the concurrent execution of several processes, characterised by
either a periodic or sporadic (aperiodic in ARINC terminology) behaviour. Processes
exist only within their partition, which is responsible for their scheduling. Besides
a proper scheduling and dispatching mechanism, the underlying OS must therefore
provide a set of scheduling services to control the process execution.

PERIODIC WAIT enforces the cyclic execution of periodic processes. The service is
invoked by the process itself, which therefore self-suspends until its next periodic
activation. From the functional standpoint, this service consists in accessing and
manipulating the scheduling data structures to set the next process activation1. The
behaviour of this service may suffer from large variability when timing-unaware OS
data structures are adopted to manage the system processes. In an ideal case, when
a constant-time OS data structures – with O(1) process queue management2 – is
provided, the timing behaviour is pretty stable (i.e., exhibiting a single execution path).
We already discussed on constant-time scheduling data-structures and functions in
section 3.4.2. With respect to the amount of disturbance possibly generated by this OS
primitive, we should note that this is the last call of a process before self-suspension.
Thanks to the run-to-completion policy, the execution of this OS call cannot have any
disturbing effect on other processes as they have either terminated or not started their
execution yet.

GET TIME returns the value of the system-wide clock, starting from the system start
up, which is globally valid for all partitions. Transforming the values retrieved from
the PPC TIME BASE into µseconds requires a 64-bit division which is a relatively fast
but not constant-time operation as it depends on the division operands. It should be
possible, however, to provide a safe upperbound to its worst-case execution time.

CREATE PROCESS creates an ARINC process within a partition. A process is fully
characterised by a set of qualifying attributes given as parameters on process creation.
An ARINC-compliant system is required to support no more than 128 processes per

1 Next activation of a periodic process is just the time of the previous activation plus the process period
(with no need to retrieve the current time).

2 This includes constant-time insertion, selection and process state update.
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partition. Since process creation is allowed only during the initialisation phase, before
entering the partition NORMAL mode, we do not consider this service as part of the
nominal system behaviour.

STOP stops the execution and inhibits the schedulability of any other process, except
itself3. The stopped process cannot be scheduled until another process invokes the
dual START service. In order to stop a process the OS scheduling data structures need
to be accessed and manipulated (e.g., update of process queues). As observed for the
PERIODIC WAIT service, the timing variability incurred by the stop service depends on
the actual implementation of the scheduling data-structures and functions. When it
comes to disturbance, the STOP service has positive effects on preserving the HW state
as it actually implies the removal of a potential source of interference.

START triggers the execution of another process within the same partition of the
calling process. This service causes the started process to be initialised to its default
attributes value. According to [40] the effects of the invocation of this service vary
on the nature of the started process. Staring an aperiodic process, in particular, is
considered as a dispatching point and may cause the preemption of the calling process.
Such behaviour is at the same time extremely variable (depending on the call context)
and disturbing, as it can clearly introduce additional inter-task interferences on the
HW state. By enforcing run-to-completion semantics we do not allow the START service
to trigger a dispatching point, but we defer it until after the process job has returned.

Inter-Partition Communication

With respect to the subset of ARINC services provided by current implementation, the
main timing-composability issues are to be ascribed to the I/O communication between
partitions. The basic message-oriented communication mechanisms provided by the
ARINC specification are channels [40], which are defined as logical links between one
source and one or more destinations. Partitions can then gain access to communication
channels via points called PORTS4. Channels, ports and their associations are statically
predetermined and defined via configuration tables, and cannot be modified at run-
time. Two kinds of communication modes are defined for inter-partition message
exchange: sampling mode and queuing mode. Each system port must be either a
sampling or a queuing port. While in sampling mode, successive messages typically
carry identical but updated data, in the queuing mode each new instance of a message
is unique and cannot be overwritten.

3 The STOP SELF service is used in this case.
4 A channel thus connects a SOURCE port to a DESTINATION port.

178



On the one hand, the execution time of I/O-related activities, as those involved in
reading from and writing into a communication channel, are inherently dependent on
the amount of data in hand. On the other hand, the communication mechanisms them-
selves break the assumption of isolation between partitions: read and write become
potentially blocking operations, depending on the semantics of the communication
port.

CREATE SAMPLING PORT and CREATE QUEUING PORT create a sampling or queuing
port, respectively. Ports are not actually created but only mapped to an already
reserved memory area defined at configuration time. The main effect of the port
creation service is the association of a unique identifier to a port name. Port creation,
of course, also comes with a set of parameters that correctly initialise the identified
port. From our standpoint, however, these services are quite irrelevant as they are
invoked at initialisation time and are not included in the canonical concept of nominal
execution.

GET SAMPLING PORT ID and GET QUEUING PORT ID are typically invoked from within
the respective port creation services to associate a unique identifier to the newly
created port. This PORT ID can be used to identify a port without using the port name.
The use of a proper port id allows to organise the system ports into constant-time
access data structures. In our implementation we assume that these services are
exclusively invoked at port initialisation and the returned port id is visible within the
owning partition.

READ SAMPLING MESSAGE and WRITE SAMPLING MESSAGE provide the APEX inter-
face for I/O operations on sampling ports. As observed before, in sampling mode
each read request to a destination port simply reads the last value that can be found
in the temporary storage area of the port (which in turn is overwritten upon every
new message reception); each write request to a source port, instead, overwrites the
previous one. A READ request then simply copies the value in the port to a specified
address. A WRITE request, instead, simply writes a message of a specific length form a
defined address to the port. The invocation of any of these operations cannot block
the execution of a job awaiting data, which are instead simply read/written from/to a
memory location with no guarantee on its actual content 5.

READ QUEUING MESSAGE and WRITE QUEUING MESSAGE have exactly the same role as
the previous ones except for the fact that they apply to queuing mode communication.
In queuing mode each write message request is temporarily stored in an ordered
message queue associated to the port: in contrast with sampling ports however, if the

5 A read request when no message is still available would just result in an invalid message.
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queue cannot accept the message (i.e., it is full or has insufficient space) the calling
process gets blocked, waiting for the required space (eventually setting a timeout);
each read request will eventually pick up the first message from the receive queue.
Although the level of implementation required by the FCDC experiments excludes the
occurrence of blocking and the use of timeout timers, a potentially blocking service is
extremely challenging from the time composability point of view.

To summarise, the time composability issues raised by I/O services, either through
sampling or queuing ports are mainly due to the variability induced by the amount
of data to be read or written. Whereas ports are characterised by a maximum size,
forcing the exchange of the maximum amount of data would obtain a constant-time
behaviour at the cost of an unacceptable performance loss. Moreover, the potential
blocking incurred by queuing port could further complicate the disturbing effects
of inter-partition communication. Also the natural countermeasure of isolating the
effects of the service execution on the hardware state cannot be seamlessly applied in
this context. Inhibiting the caches for example is likely to kill performance since the
read and write operations are inherently loop intensive and greatly benefit from both
temporal and spatial locality.

To counter this unstable and disturbing behaviour we separate the variable part of
the read/write services (i.e., the loop intensive data transfer operations). Unfortunately,
we cannot simply use the service as a trigger for a separate sporadic process which
would do the dirty job, as memory partitioning does not allow it. Although we cannot
simply remove the I/O-related variability, we can always decide to accommodate such
variability so that it is likely to incur less disturbing effects on the execution of the
application code. Based on the fact that communication channels are entirely defined
at configuration time, we exploit the available information on the inter-partition
communication patterns to perform some sort of preventive I/O in between partition
switch, as depicted in Figure 58. Assuming that the addresses – local to a partition
– involved in the I/O are statically known we postpone all actual port writes to the
slack time at the end of a partition scheduling slot. Similarly, we preload the required
data into partition destination ports (and the respective local variables) in a specular
slack time at the beginning of a scheduling slot. The information flow is guaranteed to
be preserved as we are dealing with inter-partition communication: (i) the state of all
destination (input) ports is already determined at the beginning of a partition slot; (ii)
the state of all source (output) ports is not relevant until the partition slot terminates
and another partitions gets scheduled for execution.
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Figure 58.: Inter-partition I/O management.

This way, we should not worry about the disturbing effects on the hardware state as
no optimistic assumption should ever be made on partition switching; moreover, the
input-dependent variability can be analysed within some sort of end-to-end analysis.

We further present some additional ARINC services whose behaviour poses serious
challenges to the achievement of time composability, although they are not directly
involved in the Airbus FCDC case study.

Intra-Partition Communication

All communications involving processes within a partition are realised through BLACK-

BOARD and BUFFER services. Similarly to the inter-partition case, variable-size data
messages are exchanged in a sampling or queueing fashion respectively. The main
concern with intra-partition I/O services, comes from potentially blocking calls as the
timing variability stemming from different workloads can easily be accountable for at
application level. Potentially blocking calls are removed and treated with the process
split pattern as explained below.

A process that makes potentially blocking calls has more than one source of activa-
tion events. We know that this feature complicates timing analysis, as the functional
behaviour of that process can no longer be studied as a single sequential program
with a single entry point. So we want to be break it into as many parts as its sources
of activation events. Conversely, from the ARINC task model perspective discussed
in Section 3.3, the segment of the original (periodic) process that is released after
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the blocking event must be regarded as an indistinguishable part of the original
periodic process. Hence, the CPU time needed for executing the whole process must
be accounted for in the scheduling slot regardless of whether the blocking condition is
satisfied or not.

In our solution we want all processes to have a single source of activation event,
whether time- or event-triggered. To this end we systematically break all processes
that make potentially blocking calls into concatenation of processes. For the sake of
discussion, let us consider a single blocking call while the argument easily extends
to multiple such calls. Any such process can be divided in two parts: the first part
(predecessor) performs all the activities of the original process up to the potentially
blocking call; the other part (successor) includes all the activities from past the blocking
call until the end. The release event for the predecessor is the same as the original
process. The release event for the successor occurs when the predecessor has completed
and the blocking condition has been asserted to open.

The adoption of the process split pattern in the ARINC architecture introduces
a new run-time entity, which would correspond to a true sporadic process if we
added to its release event the condition that a specified minimum inter-arrival time
had elapsed since its last run. Unfortunately, the introduction of sporadic processes
resulting from the process split pattern in our RTOS complicates scheduling. The
policy we implemented to guarantee good responsiveness places sporadic processes
in a separate FIFO queue (similar to the one we used for asynchronous activations).
As shown in Figure 14 (d) sporadic processes may be dispatched as early as possible
so long as the following condition holds: they should be able to complete within their
absolute deadline without causing a deadline overrun to ready periodic processes.
If periodic processes were conceptually ordered by increasing slack time, a sporadic
process would be run in the earliest eligible scheduling slot where its WCET was no
greater than the slack of the periodic process at the head of the periodic ready queue.

Low-Level Synchronisation Services

The adoption of a run-to-completion semantics and the avoidance of of any form of
process blocking downsizes somehow the role of ARINC process synchronisation
services, such as EVENTS and SEMAPHORES. EVENTS still have a raison d’être as a trigger
for application-level synchronisation: for the sake of time composability they are
implemented according to the process split pattern, with constant time signal and
broadcast operations. Conversely SEMAPHORES become pretty useless in a system
were processes are guaranteed not to be preempted since there is no need to worry

182



about mutual exclusion. SEMAPHORES are implemented in our OS only as a means to
support legacy applications.

Table 15 summarises the solutions we adopted for the sake of a time-composable
OS layer.
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Table 15.: TiCOS implementation status.
Id Primitive/Service name Implemented solution
KERNEL

K 1 Time management Switch from tick-based (decrementer) time
management to a timer-based one.
Enforcement of the run-to-completion se-
mantics.

K 2 Scheduling primitives Constant-time dispatching.
Constant-time process state update.
Limited deferral of asynchronous events.

ARINC-653 PARTITION MANAGEMENT

S 1 GET PARTITION STATUS Standard implementation.
S 2 GET PARTITION START CONDITION Standard implementation.
S 3 SET PARTITION MODE [Start-up phase]Standard implementation.
ARINC-653 PROCESS MANAGEMENT

S 4 PERIODIC WAIT Standard implementation.
S 5 GET TIME Standard implementation.
S 6 CREATE PROCESS [Start-up phase]Standard implementation.
S 7 STOP Standard implementation.
S 8 START Standard implementation.
ARINC-653 LOGBOOK MANAGEMENT

... Discarded —

ARINC-653 SAMPLING PORTS MANAGEMENT

S 9 CREATE SAMPLING PORT [Start-up phase]Standard implementation.
S10 WRITE SAMPLING MESSAGE Zero-disturbance posted writes.
S11 READ SAMPLING MESSAGE Zero-disturbance read prefetch.
S12 GET SAMPLING PORT ID [Start-up phase]Standard implementation.
ARINC-653 QUEUING PORTS MANAGEMENT – Not in FCDC

S13 CREATE QUEUING PORT [Start-up phase]Standard implementation.
S14 WRITE QUEUING MESSAGE Zero-disturbance posted writes.
S15 READ QUEUING MESSAGE Zero-disturbance read prefetch.
S16 GET QUEUING PORT ID [Start-up phase]Standard implementation.
ARINC-653 BLACKBOARDS MANAGEMENT – Not in FCDC

S17 CREATE BLACKBOARD [Start-up phase]Standard implementation.
S18 DISPLAY BLACKBOARD Process split pattern.
S19 READ BLACKBOARD Process split pattern.
S20 GET BLACKBOARD ID [Start-up phase]Standard implementation.
ARINC-653 BUFFERS MANAGEMENT – Not in FCDC

S21 CREATE BUFFER [Start-up phase]Standard implementation.
S22 SEND BUFFER Process split pattern.
S23 RECEIVE BUFFER Process split pattern.
S24 GET BUFFER ID [Start-up phase]Standard implementation.
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B
S Y S T E M M O D E L A N D N O TAT I O N F O R L I M I T E D P R E E M P T I O N

We address the problem of scheduling a set T of n periodic or sporadic tasks on a
uniprocessor system. Each task τi ∈ T is characterized by a worst-case execution
time Ci, a period (respectively minimum inter-arrival time) Ti and a constrained
deadline Di ≤ Ti. A task is also assigned a fixed priority πb

i that subsumes a total
ordering between tasks such that i ≤ j if πb

i >πb
j : hence τ1 is the highest priority task.

Accordingly we define T +
i

.
= {τj|j < i} resp. T −i

.
= {τj|j> i} as the sets of higher resp.

lower priority tasks of τi.

In deferred preemption approaches, a task τj can defer a preemption request and
continue to execute for a limited amount of time. As observed in [202, 41], the effect of
this temporary inhibition of preemption is that all tasks in T +

j may be blocked for the
duration of qmax

j , the longest npr in τj. For preemptively feasible task sets, an upper
bound Bi to the blocking suffered by task τi is given by:

Bnpr

i = max
i<j≤n

{
qmax

j
}

(5)

The maximum length of a npr in τj that preserves feasibility with respect to a fully
preemptive case is termed Qj and its computation is based on the concept of blocking
tolerance βi of all tasks τi ∈ T +

j . βi in fact is an upper bound to the maximum blocking
suffered from τi that preserves the task set feasibility. The computation of βi, in turn,
depends on the cumulative execution request of all tasks in T +

i on the longest level-i
busy period in the general case. However, as long as we consider preemptively feasible
task sets, and knowing that limited preemptive approaches dominate fully preemptive
scheduling [41], we can restrict the analysis to a smaller set of points in time, as proven
by Bini and Buttazzo in [203]. In case of preemptively feasible task sets in fact, a
necessary and sufficient schedulability condition under deferred preemption is given
in [202, 41] as:

Bnpr

i ≤ βi
.
= max

a∈A,a≤Di

{
a−∑

j≤i

⌈ a
Tj

⌉
Cj

}
(6)

with
A = {kTj, k ∈N, 1 ≤ j < n} (7)
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Aside from limiting preemption, task blocking also stems from serialized accesses
to shared resources. In a typical system a set of shared resources are accessed from
within critical sections: a task τi may thus access a shared resource R through a critical
section csR

i,k, where the latter identifies the kth critical section in τi accessing resource R.
Critical sections are assumed to be properly nested so that they can never overlap and
csR

i∗ is the longest outermost critical section in τi accessing R. The maximum blocking
suffered from a task depends on the resource access protocol in use[167].

In the Immediate Ceiling Priority Protocol (ICPP), a derivative of Baker’s Stack
Resource Policy[204], each shared resource R is assigned a ceiling priority, ceil(R),
which is set to at least the priority value of the highest-priority task that uses that
resource. Upon entering a critical section a task immediately gets its active priority
raised to the ceiling priority. Amongst other properties (i.e., deadlocks are prevented
and blocking can occur only once, just before task activation) ICPP minimizes the
blocking duration for a task τi, BCS

i , to the longest outermost critical section executed
by a lower-priority task τj using a resource with a ceiling priority greater than or equal
to the priority of τi, whereby:

BCS
i ≤ max

i<j≤n,

ceil(R)≥πb
i

csR
j∗ (8)

where csR
j∗ = 0 if τj does not access shared resource R. For the sake of notation we

denote T B
i ⊆ T

−
i as the set of lower priority tasks that may block τi.

Table 16 summarizes the notation that we adopted in Section 3.6.3.

Symbol Meaning

Ci Worst-case execution time
Ti Period (or minimum inter-arrival)
Di relative deadline
πb

i Base priority
πactive

i Active priority (ceiling)
qmax

i Longest non preemptive region
βi blocking tolerance

csR
i,k kth critical section in τi accessing R

csR
i∗ Longest outermost critical section in τi accessing R
T +

i Set of higher priority tasks
T −i Set of lower priority tasks
T B

i Subset of lower priority tasks that may block τi

Table 16.: Characterization of a task.
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