
Adaptive Control:

an introduction

Claudio Melchiorri

Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione (DEI)
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Introduction

Adaptive regulators

An adaptive regulator is able to modify automatically its own behaviour in order
to react to variations in the process dynamics and/or to external disturbances.
The goal is to guarantee in any case the achievement of pre-assigned constraints
(design specifications) on the controlled system. Adaptive control schemes allow
to:

estimate online the value of the plant parameters (not known or
time-varying),

adapt the control parameters on the basis of this estimation.

In an adaptive control system, two feedback loops may be defined:

the standard control feedback loop based on the output signal and acting on
the input of the process (higher frequency)

a loop taking into account the design specifications, acting on the parameters
of the controller (lower frequency).
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Introduction

Adaptive regulators

Two general control schemes have been defined in the literature:

Model Reference Adaptive System (MRAS)

Self Tuning Regulator (STR)

In MRAS schemes, the adaptation law affects the control parameters in order to
keep y , the output of the process, as similar as possible to ym, the output of a
reference model.

Regulator Process

Adaptation
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✲ ✲ ✲
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✲
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Introduction

Adaptive regulators

STR (Self Tuning Regulator) schemes:

- Indirect methods: the adaptation algorithm estimates the parameters of the plant,
and then a synthesis procedure is used for the control algorithm

- Direct methods: the parameters of the control law are directly modified by the
adaptation algorithm (as for MRAS)

Indirect STR scheme

Regulator Process

EstimatorSynthesis

✲ ✲ ✲✲

✛✲

v u y❄

❄
estimated plant parameters

Direct (implicit) STR scheme

Regulator Process

Estimator

✲✲✲
✲

✛✲

❄ yv u

control parameters
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Introduction

Adaptive regulators

Adaptive control schemes:

- Certainty equivalence property: the parameters estimated online are
considered, for the control synthesis, equal to the true ones (not known)

- Adaptive control schemes are non linear dynamic systems with time-varying
parameters

Only a specific class of adaptive controllers is considered here: STR with least
squares estimation and synthesis based on pole/zero placement.
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Introduction

Adaptive regulators - An example

Let us consider the control of the variable φ̇ = ω (angular velocity about the
vertical axis).

Define:

τm: input torque applied by the motor (joint φ)

τa: friction torque

Jl : load inertia seen at the motor side, Jl = Jl (M, θ)

Balance of torques at joint axis (if M is constant) and variation of
angular momentum:

∑

τi =
d
dt

(

Jφ̇
)

= Jφ̈+ d J
dθ

θ̇φ̇, if θ̇ = 0 =⇒ Jφ̈ = τa + τm
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Introduction

Adaptive regulators - An example
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θ
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φ

✒

The inertia J seen at the motor is given by

J = Jm +
Jl
k2
r

where
Jl = M a2 sin2(θ)

and kr is the reduction ratio of the motor.
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Introduction

Adaptive regulators - An example

Assuming θ constant and τa = 0, then Jφ̈ = τm, with τm = kmi

PI Motor Joint ✲✲ ✲
✲
✲ωr ω = φ̇i τm

With a PI controller, the motor current i is computed as

i = k

[

(ωr − ω) +
1

Ti

∫ t

0

(ωr − ω)dt

]

Therefore J
d2 ω

dt2
+ kmk

d ω

dt
+

kmk

Ti

ω = kmk
d ωr

dt
+

kmk

Ti

ωr

that is
ω(s)

ωr (s)
= G0(s) =

2δ0ω0s + ω2
0

s2 + 2δ0ω0s + ω2
0

with















k =
2δ0ω0J

km

Ti =
2δ0
ω0
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Introduction

Adaptive regulators - An example

If the PI parameters k ,Ti are computed for a nominal inertia value J0, while the
true value is J, one obtains:

G ′

0(s) =
2δ0ω0sJ0/J + ω2

0J0/J

s2 + 2δ0ω0sJ0/J + ω2
0J0/J

with natural frequency and dumping coefficient

ωn = ω0

√

J0
J
, δ = δ0

√

J0
J

Assuming ω0 = 1.25 rad/s, δ0 = 1,

with J = 2J0 → ωn = 0.8839, δ ≈ 0.7071

with J = 1
2J0 → ωn = 1.7678, δ ≈ 1.4142
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Introduction

Adaptive regulators - An example
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Least squares estimation

Least squares estimation

An essential component of a STR control scheme is the parameter estimation
algorithm, used to obtain the (unknown) parameters of the process.

Regulator Process

Estimator

parameters of the regulator

✲✲✲
✲

✛✲

❄ yv u

A quite common method is based
on the Least Squares algorithm.

Need of a recursive formulation of
the algorithm.

In case of linear dynamic systems expressed by

G(z) =
b1z

−1 + b2z
−2 + · · ·+ bnz

−m

1 + a1z−1 + a2z−2 + · · ·+ anz−m
=

Y (z)

U(z)

the output y in a given time instant k is expressed as

y(k) = −a1y(k − 1)− a2y(k − 2)− · · · − amy(k −m) +

+b1u(k − 1) + b2u(k − 2) + · · ·+ bmu(k −m) (1)

that is as a linear function of the parameters ai , bi , i = 1, . . . ,m
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Least squares estimation

Least squares estimation

A more general expression of this equation is given by the following regression
model (linear in the parameters αi):

yk = φ1(xk )α1 + φ2(xk )α2 + . . .+ φn(xk)αn + ek

where the variable ek (the error) takes into account the uncertainties in the
parameters.

If the values {yk , xk}, k = 1, . . . ,N , are known, the goal is to determine the
parameters αi , i = 1, . . . , n (note: n ≤ N) so that the error ek is minimised.

Assuming that a proper norm can be defined (i.e. ‖e‖ =
∑

k e
2
k = eT e), a formal

way to achieve this result is to compute the parameters αi in order to minimize,
for example, the function:

V =

N
∑

k=1

e2k , i.e. min
αi

N
∑

k=1

e2k
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Least squares estimation

Least squares estimation

This problem may be written in vector form by defining

y = [y1, y2, . . . , yN ]
T

e = [e1, e2, . . . , eN ]
T

α = [α1, α2, . . . , αn]
T

φ(k) = [φ1(xk ), φ2(xk ), . . . , φn(xk )]
T Φ =









φT (1)
φT (2)
· · ·

φT (N)









Therefore, the following minimisation problem must be solved

{

min
α

eT e

y = Φα+ e
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Least squares estimation

Least squares estimation

Problem:
{

min
α

eT e

y = Φα+ e

The solution α̂ of this problem, quadratic with linear constraints, satisfies

ΦTΦ α̂ = ΦT y

If ΦTΦ is non singular, the solution is unique and given by

α̂ = (ΦTΦ)−1ΦT y (2)

As a matter of fact, from y = Φα+ e (assuming e = 0) we have

ΦTΦ α = ΦT y

from which, if (ΦTΦ)−1 exists, we obtain α = (ΦTΦ)−1ΦT y , that is eq. (2).
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Least squares estimation Geometric interpretation

Least squares estimation - Geometric interpretation

The regression model

yk = φ1(xk )α1 + φ2(xk )α2 + . . .+ φn(xk)αn + ek

for k = 1, . . . ,N can be written as









y1
y2
· · ·
yN









−









φ1(x1)
φ1(x2)
· · ·

φ1(xN)









α1 − . . .









φn(x1)
φn(x2)
· · ·

φn(xN)









αn =









e1
e2
· · ·
eN









or
y − φ1α1 − φ2α2 − . . .− φnαn = e

Assume that vectors y , φ1, . . . , φn are elements of an Eucledian N-dimensional
vector space with norm ‖x‖ = xT x .
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Least squares estimation Geometric interpretation

Least squares estimation - Geometric interpretation

If y is the true value, and y∗ = Φ α̂ its value computed on the basis of the
estimated α̂ parameters, then the following geometrical interpretation can be
obtained:

�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�

✓
✓
✓
✓
✓
✓
✓
✓
✓
✓✓✼

✟✟✟✟✟✟✟✟✯

y

y∗

e

R(φ1, . . . , φn)

y∗ = Φ α̂ ∈ R(φ1, . . . , φn)

R(φ1, . . . , φn) = R(Φ)

range space of {φ1, . . . , φn}

The vector y∗ is the orthogonal projection of y on the subspace R(φ1, . . . , φn).
In this manner the error, defined as e = y − y∗, has
minimum norm ‖e‖ = ‖y − y∗‖ ⇔ vectors e and y∗ are orthogonal.
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Least squares estimation Geometric interpretation

Least squares estimation - Geometric interpretation

Since the error e = (y − y∗) is orthogonal to R(φ1, . . . , φn), then







(y − y∗)Tφ1 = 0
. . .

(y − y∗)Tφn = 0

Moreover, since y∗ = α1φ1 + . . .+ αnφn we can write:





















φT
1 φ1 φT

1 φ2 · · · φT
1 φn

φT
2 φ1 φT

2 φ2 · · · φT
2 φn

...

φT
n φ1 φT

n φ2 · · · φT
n φn





















α =





















yTφ1

yTφ2

...

yTφn





















Therefore
ΦTΦα̂ = ΦT y ⇒ α̂ = (ΦTΦ)−1ΦT y
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Least squares estimation Geometric interpretation

Least squares estimation - Example

Let us assume to have the sequence of N = 21 data

x = [0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50,

5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, 9.00, 9.50, 10.00]T

y = [0.0000, 2.8628, 5.0224, 6.0693, 5.8465, 4.4955, 2.4306, 0.2455,−1.4240,

−2.0470,−1.3196, 0.7692, 3.9429, 7.7137, 11.5099, 14.8244, 17.3468,

19.0481, 20.1956, 21.2961, 22.9799]T

0 1 2 3 4 5 6 7 8 9 10
−5

0
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10

15

20

25

x

y
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Least squares estimation Geometric interpretation

Least squares estimation - Example

Also, let assume that the function that interpolates the data is

y(x) = ax3 + bx2 + cx + d sin x

We want to estimate, given the data {xk , yk}, k = 1, . . . , 21, the unknown
parameters a, b, c , d . Therefore:

1) we define

α = [a, b, c , d ]T ,

y = [y1, y2, . . . , y21]
T

Φ =

















x31 x21 x1 sin x1

x32 x22 x2 sin x2

. . .

x321 x221 x21 sin x21

















2) we use the equation

α̂ = (ΦTΦ)−1ΦT y

to estimate the unknown parameters
α.
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Least squares estimation Geometric interpretation

Least squares estimation - Example

Therefore:

Φ =











































































0.0000 0.0000 0.0000 0.0000
0.1250 0.2500 0.5000 0.4794
1.0000 1.0000 1.0000 0.8415
3.3750 2.2500 1.5000 0.9975
8.0000 4.0000 2.0000 0.9093

15.6250 6.2500 2.5000 0.5985
27.0000 9.0000 3.0000 0.1411
42.8750 12.2500 3.5000 −0.3508
64.0000 16.0000 4.0000 −0.7568
91.1250 20.2500 4.5000 −0.9775

125.0000 25.0000 5.0000 −0.9589
166.3750 30.2500 5.5000 −0.7055
216.0000 36.0000 6.0000 −0.2794
274.6250 42.2500 6.5000 0.2151
343.0000 49.0000 7.0000 0.6570
421.8750 56.2500 7.5000 0.9380
512.0000 64.0000 8.0000 0.9894
614.1250 72.2500 8.5000 0.7985
729.0000 81.0000 9.0000 0.4121
857.3750 90.2500 9.5000 −0.0752

1000.0000 100.0000 10.0000 −0.5440











































































and

α̂ = [0.045,

−0.300,

1.070,

5.000]

In this case, the parameters have
been exactly identified, and

V =
∑

e2
k
=

∑

(yk − y∗

k
)2 = 0
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Least squares estimation Geometric interpretation

Least squares estimation - Example

Original data (red) and interpolation (blue)
with the function y(x) = ax3+bx2+cx+d sin x
and with α̂ = [0.045,−0.300, 1.070, 5.000]T
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[−2.5, 2.5], added to each yk).
In this case, the estimated parameters are
α̂ = [0.05,−0.3467, 1.1132, 5.1583]T

and V =
∑
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k
= 11.7293
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Least squares estimation Geometric interpretation

Least squares estimation - Example

Note that in the above case the interpolating function
y(x) = ax3 + bx2 + cx + d sin x was known, i.e. only the parameters α had to
be estimated, and not the structure of the function itself.

In a more general case, also the interpolating function is not known and must be
defined.

For data interpolation, quite often polynomial functions of proper order are used,
such as:

y(x) = anx
n + an−1x

n−1 + . . .+ a1x + a0

where both the order n and the n + 1 parameters ai must be identified.

Note that often a tradeoff between the complexity of the function (that is the
order n) and the quality of the result must be defined.
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Least squares estimation Geometric interpretation

Least squares estimation - Example

Interpolation of the data {xk , yk} with polynomial functions of order n, with n ∈ [2, . . . , 9] (left)
and corresponding cost function V =

∑

e2
k
(right). Notice that for n ≥ 8 the cost function is

almost null, and therefore the proper value for the polynomial order is 8.
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Cost function V

In case of linear dynamic systems expressed as G(z) =
b1z

−1 + b2z
−2 + · · ·+ bnz

−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n
,

it is necessary to define the degrees m, n of the polynomials.
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation

According to the Least Square technique, an estimation of a set α of parameters
is given by

α̂ = (ΦTΦ)−1ΦT y

Note that in this manner the vector α̂ can be computed only once all the data
yk , xk , k = 1, . . .N are available (see the previous example).

On the other hand, in many practical application, it is of interest to compute α̂ in
real time, that is updating the current estimation α̂k when new data {yk+1, xk+1}
are available. In particular, this is important in control applications, and/or when
the parameters are not constant in time.

For this purpose, it is therefore convenient to define a recursive formulation of the
Least Square estimation algorithm.
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation

Let us define

- Φ(N), y(N), α(N) → elements relative to N couples of data {xi , yi}
and let assume that a new couple of data {xN+1, yN+1} is available.

Then

Φ(N + 1) =

[

Φ(N)
γT (N + 1)

]

, y(N + 1) =

[

y(N)
yN+1

]

γT (N + 1) = [φ1(xN+1), . . . φn(xN+1)]

Therefore, the new parameter estimation

α̂(N + 1) = [ΦT (N + 1)Φ(N + 1)]−1ΦT (N + 1)y(N + 1)

may be rewritten as

α̂(N + 1) = [ΦT (N)Φ(N) + γ(N + 1)γT (N + 1)]−1[ΦT (N)y(N) + γ(N + 1)yN+1]
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation

We exploit now the Inversion Lemma

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

Therefore, by defining:

A = ΦTΦ, B = DT = γ, C = 1

we have:

[ΦTΦ+ γγT ]−1 = (ΦTΦ)−1 − (ΦTΦ)−1γ[1 + γT (ΦTΦ)−1γ]−1γT (ΦTΦ)−1

from which it follows:

α̂(N + 1) = α̂(N)− k(N + 1)γT α̂(N) + k(N + 1)yN+1

= α̂(N) + k(N + 1)[yN+1 − γT α̂(N)]

where
k(N + 1) = (ΦTΦ)−1γ[1 + γT (ΦTΦ)−1γ]−1
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation

Moreover, in order to have also k(N + 1) in a recursive formulation, we define

P(N) = [ΦT (N)Φ(N)]−1 (3)

Then
k(N + 1) = P(N)γ[1 + γTP(N)γ]−1

and
P(N + 1) = (ΦTΦ+ γγT )−1

= P(N)− P(N)γ[1 + γTP(N)γ]−1γTP(N)

= [I − k(N + 1)γT ]P(N)

Finally, the recursive formulation of the LS algorithm is


















α̂(N + 1) = α̂(N) + k(N + 1)[yN+1 − γT α̂(N)]

k(N + 1) = P(N)γ[1 + γTP(N)γ]−1

P(N + 1) = [In − k(N + 1)γT ]P(N)
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation

By analyzing the expression of α̂(N + 1)

α̂(N + 1) = α̂(N) + k(N + 1)[yN+1 − γT α̂(N)]

it may be noticed that the new value is obtained from the previous one α̂(N) by
adding a correction term proportional to [yN+1 − γT α̂(N)].

This is the difference between the new measured value of y (i.e. yN+1) and y∗,
that is its (one step) prediction based on the data available up to step N

y∗ = γT α̂(N)

= [φ1(xN+1), . . . φn(xN+1)]
T









α̂1(N)
α̂2(N)
. . .

α̂n(N)








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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation

Initialization of the algorithm
For the recursive algorithm, an initialisation problem exists, since matrix
P(N) = (ΦTΦ)−1 ∈ IR

n×n may be non singular only for values N ≥ n.

Necessary condition. Matrix P(N) may be non singular only if N ≥ n; in this
case, Φ may be full column rank (Φ is a N × n matrix).

Therefore, a value N0 > n should be chosen such that

P(N0) = [ΦT (N0)Φ(N0)]
−1

α̂(N0) = [ΦT (N0)Φ(N0)]
−1ΦT (N0) y(N0)

However, it is possible to use the recursive algorithm starting with the first pair of
data {x1, y1} by admitting an arbitrarily small error. This is possible by defining

P(N) = [P−1
0 +ΦT (N)Φ(N)]−1, P(0) = P0 =

1

ǫ
In, ǫ ≪ 1 (4)

It is clear that (4) is always invertible, and that it differs by an arbitrary small
quantity from (3) (In is a n× n identity matrix).
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation - example

Recursive estimation of the parameters a, b, c , d of the previous example.

Two different initialisation of the algorithm are used: ǫ = 10−2 and ǫ = 10−6, and
initial value for α̂(0) = [1, 1, 1, 1]T , no noise.
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Least squares estimation Recursive formulation

Least squares estimation: Recursive formulation - example

Recursive estimation of the parameters a, b, c , d of the previous example.

Two different initialisation of the algorithm are used: ǫ = 10−2 and ǫ = 10−6, and
initial value for α̂(0) = [1, 1, 1, 1]T , with noise.
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Least squares estimation: Time-varying parameters

In the previous expression of the RLS algorithm , the unknown parameters α have
been assumed as constant in time. Therefore, the cost function to be minimized
has been defined as

V =

N
∑

k=1

e2k ,

where all the samples ek have the same “importance”, i.e they have the same
(unit) cost. A more general expression of the cost function is

V =

N
∑

k=1

wke
2
k ,

where wk is a proper (non constant) weight to be defined according to some
proper criterion.

As a matter of fact, in many practical control applications (some of) the
parameters of the controlled plant may vary in time, with variation that can be
considered “slow” with respect to the dynamics of the plant.

C. Melchiorri (DEI) Adaptive Control: an introduction 33 / 68



Least squares estimation Time-varying parameters

Least squares estimation: Time-varying parameters

In these cases, in order to have a better estimation of the parameters, it is
necessary to use a cost function V that gives more importance to recent data with
respect to old ones.

In other words, it is necessary to define an algorithm with a finite lenght memory.

The “length” of the period must be properly tuned on the basis of the velocity of
variation of the parameters.

A solution is to define the cost function as

V =

N
∑

k=1

βN−ke2k , → min
αi

N
∑

k=1

βN−ke2k , 0 < β ≤ 1
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Least squares estimation Time-varying parameters

Least squares estimation: Time-varying parameters

V =

N
∑

k=1

βN−ke2k , 0 < β ≤ 1

The parameter β is called the forgetting

factor

With β = 1, the standard case is obtained

Typically 0.95 ≤ β ≤ 0.99

The “equivalent” number of samples
considered in the RLS algorithm is given
by

m =
1

1− β

β = 0.99 → m = 100,
β = 0.95 → m = 20
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β
1
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β
2
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β
3
 = 0.95,    m = 20
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Least squares estimation: Time-varying parameters

V =

N
∑

k=1

βN−ke2k , 0 < β ≤ 1

In this way, the most recent data (k = N) has unit weight, while data of
previous p steps, corresponding to time instants in which the values of the
parameters may be different from the current ones, are weighted with βp < 1.

“Low” values (β = 0.95) are used when there are fast variations in the
parameters, viceversa “high” values (β = 0.99) are adopted for slow varying
parameters.

With low values for β, the tracking of the parameters is better, but on the
other side there is a larger variance of the estimated parameters (possible
problems with noise).
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Least squares estimation: Time-varying parameters

With the introduction of the forgetting factor, the RLS algorithm becomes:















α̂(N + 1) = α̂(N) + k(N + 1)[yN+1 − γT α̂(N)]

k(N + 1) = P(N)γ[β + γTP(N)γ]−1

P(N + 1) = 1
β
[I − k(N + 1)γT ]P(N)

At each step, the matrix P is multiplied by a factor 1/β > 1, and therefore the
weight vector k is always non zero.

This is justified since it may be verified that, without the multiplication by 1/β,
‖P‖ → 0 for N → ∞. In this case, also ‖k‖ → 0 and then α̂(N + 1) = α̂(N).

In these conditions, the algorithm is non sensitive to estimation errors
e(k) = [yk+1 − γT α̂(k)], generated by parameters variations.

If matrix P is multiplied at each step by a factor 1/β > 1, its norm (and therefore the
value of k) is maintained non null, and the updated value α̂(N + 1) takes into
consideration possible estimation errors generated by changes in the parameters.
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Least squares estimation: Time-varying parameters

Another version of the RLS algorithm achieving the forgetting property (based on
an addition operation) is the following















α̂(N + 1) = α̂(N) + k(N + 1)[yN+1 − γT α̂(N)]

k(N + 1) = P(N)γ[r2 + γTP(N)γ]−1

P(N + 1) = R1 + [I − k(N + 1)γT ]P(N)

where usually r2 = 1 and R1 = q I , with q ∈ [10−4 ÷ 10−2].

The three algorithms, i.e. the standard RLS, with a multiplicative β factor or in
the additive version, coincide for r2 = 1, q = 0 e β = 1.
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Least squares estimation: Time-varying parameters

A further improvement for the RLS algorithm with forgetting factor consists in
computing the value of the parameter β as a function of the “variability” of the
system’s parameters.

Indeed, as already pointed out, “small” values of β are better when parameters
changes rapidly, while for slow changing (or even constant) parameters an “high”
value is preferable.

For example, β could be computed as follows

if |e(k)| > ē

then β(k) = 0.95

else β(k) = 1− λ [1− β(k − 1)]

endif

where e(k) = [yk+1 − γT α̂(k)] is the prediction error, and λ < 1 a proper
parameter used to tune the transition between the “low” value (0.95) and 1.
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Application to linear dynamic systems

Let us consider a dynamic systems expressed by the transfer function

G(z) =
b1z

−1 + b2z
−2 + · · ·+ bnz

−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
=

Y (z)

U(z)

The output, at the generic time instant k , is given by

y(k) = −a1y(k−1)−a2y(k−2)−· · ·−any(k−n)+

+b1u(k−1)+b2u(k−2)+· · ·+bnu(k−n)+e(k)

Assume that the parameters ai , bi , i = 1, . . . , n are not known.
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Application to linear dynamic systems

In this case, in n+ N pairs of data u(k), y(k) are available, let us define:

y =









y(n + 1)
y(n + 2)

. . .
y(n + N)









, e =









e(n+ 1)
e(n+ 2)

. . .
e(n+ N)









, α = [−a1, . . . ,−an, b1, . . . , bn]
T

Φ =





















y(n) y(n−1) · · · y(1) u(n) · · · u(1)

y(n+1) y(n) · · · y(2) u(n+1) · · · u(2)

y(n+2) y(n+1) · · · y(3) u(n+2) · · · u(3)

...
...

y(n+N−1) y(n+N−2) · · · y(N) u(n+N−1) · · · u(N)





















Note that Φ is a N × 2n matrix.
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Application to linear dynamic systems

As before, the estimation of the unknown parameters is given by

α̂ = (ΦTΦ)−1ΦT y

where

ΦTΦ =

[

A B
BT C

]

with

A = AT =







































N+n−1
∑

k=n

y2(k)

N+n−1
∑

k=n

y(k)y(k−1) · · ·

N+n−1
∑

k=n

y(k)y(k−n+1)

N+n−2
∑

k=n

y2(k) · · ·

N+n−2
∑

k=n

y(k)y(k−n+2)

...
. . .

N
∑

k=1

y2(k)






































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Application to linear dynamic systems

and

B =

































N+n−1
∑

k=n

y(k)u(k) · · ·

N+n−1
∑

k=n

y(k)u(k−n+1)

N+n−2
∑

k=n

y(k)u(k+1) · · ·

N+n−2
∑

k=n

y(k)u(k−n+2)

N
∑

k=1

y(k)u(n+k−1) · · ·
N
∑

k=1

y(k)u(k)

































C = CT =































N+n−1
∑

k=n

u2(k) · · ·

N+n−1
∑

k=n

u(k)u(k−n+1)

...
. . .

N
∑

k=1

u2(k)






























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Application to linear dynamic systems

Application to linear dynamic systems

Moreover

ΦT y =

[

p

q

]

with

p =

























































N+n
∑

k=n+1

y(k)y(k−1)

N+n
∑

k=n+1

y(k)y(k−2)

.

..

N+n
∑

k=n+1

y(k)y(k−n)

























































q =

























































N+n
∑

k=n+1

y(k)u(k−1)

N+n
∑

k=n+1

y(k)u(k−2)

.

..

N+n
∑

k=n+1

y(k)u(k−n)
























































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Application to linear dynamic systems: implementation
aspects

The RLS algorithm























α̂(N + 1) = α̂(N) + k(N + 1)[yN+1 − γT α̂(N)]

k(N + 1) = P(N)γ[β + γTP(N)γ]−1

P(N + 1) = 1
β
[I − k(N + 1)γT ]P(N)

gives at each iteration the estimation α̂ of the plant’s parameters.

However, there are some aspects in the implementation of this algorithms that
have to be properly taken into account.
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Application to linear dynamic systems Some implementation aspects

Application to linear dynamic systems: implementation
aspects

The issues to be considered are:

The input signal has to be adequately “exciting” for the system dynamics

For the limit case of constant input, the RLS algorithm may only estimate the static gain

of the process: during the estimation phases, the input signal must excite all the dynamics

of the process (persistently exciting signals)

Initialization of the algorithm (as discussed)

Matrix P , for numerical reasons could result not symmetric and positive
definite. Therefore, it could be defined as a factorization:

P = UDUT

with U upper triangular and D diagonal, or

P = SST

being S the square root of P
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Application to linear dynamic systems Some implementation aspects

Application to linear dynamic systems: implementation
aspects

Wind-up problem of the matrix P .

Since with the forgetting factor and in case of good estimation of the parameters, it results
P(N + 1) ≈ P(N)/β, then its norm grows exponentially in time. Since α̂ is good, the
difference [yN+1 − γT α̂(N)] is practically null, and the fact that the norm of P grows is not
important.
On the other hand, if a parameter or the reference signal changes, the RLS algorithm
generates wrong estimations, with a “burst” behaviour due to the high value of P (and
then of k).
As already discussed, a variable forgetting factor can be adopted (equal to 1 when the
estimation is good). As an alternative, the RLS algorithm could be deactivated when the
prediction error is lower than a given threshold.
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ST regulators by poles/zeros assignment

We analyze now the design of a ST regulator, according to the scheme

Regulator Process

EstimatorSynthesis

estimated parameters

✲ ✲ ✲✲

✛✲

v u y❄

❄

The controller design is based on the poles/zeros assignment, based on the scheme

✲ T

R
✲ ❞ ✲ ❞✲ B

A
✲ ❞ ✲

✻

−
S

R

✻

❄ ❄v u x y

d1 d2

controller

where the polynomials S,T ,R have to be defined according to some given specifications.
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ST regulators by poles/zeros assignment

Given a desired transfer function to be obtained

Gm(z) =
Y (z)

V (z)
=

Bm(z)

Am(z)
or Gm(z) =

A0(z)Bm(z)

A0(z)Am(z)

the design equation is

B T

AR + B S
=

A0Bm

A0Am

= Gm(z)

with
B = B+ B− B− unstable zeros → Bm = B−B ′

m

and then
AR ′ + B−S = A0Am

T = A0B
′

m

with R = B+R ′.
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ST regulators by poles/zeros assignment

Since the design equations have to be computed in real time (because of
variations of the parameters in A, B−), it is necessary to implement the algorithm
in a computationally efficient way.

For this purpose, if possible, it is better not to factorize the polynomial B.

This can be obtained in two ways:

E1 eliminating all the zeros, that is considering B+ = B and B− = 1

E2 leaving all the zeros, that is assuming B+ = 1 and B− = B

Note that the first method E1 can be applied only if the transfer function Gp(z)
of the plant is minimum phase (the zeros are within the unit circle), while E2 can
be used in any case.
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ST regulators by poles/zeros assignment

Algorithm E1 (zeros are cancelled: B+ = B and B− = 1)

Given Am, Bm(= 1), and A0, at each iteration:

the parameters Â and B̂ are computed with the RLS method

the equation
Â R ′ + S = A0Am

is solved with respect to S and R ′

the value of T is computed as

T = kA0, k = Am(1)

the new control value u is computed according to

Ru = Tv − Sy

where R = B+ R ′ = B̂ R ′

C. Melchiorri (DEI) Adaptive Control: an introduction 51 / 68
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ST regulators by poles/zeros assignment

Algorithm E2 (zeros are not cancelled: B+ = 1 and B− = B)

Given Am, Bm(= B− = B) and A0, at each iteration:

the parameters Â and B̂ are computed with the RLS method
the equation

Â R + B̂ S = A0 Am

is solved with respect to S and R
the new control value u is computed according to

Ru = Tv − Sy , with T = k =
Am(1)

B̂(1)

Note that in this manner we get

Gm(z) =
kB̂(z)

Am(z)

Variations in the parameters affect the controlled dynamics (i.e. Gm(z))
This algorithm can be applied even if Gp(z) is non minimum phase.
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ST regulators by poles/zeros assignment

The above is the “explicit” formulation of the control design procedure. Another
version is the “implicit” one, where the parameters of the controller (not of the
process) are estimated in real time. From

AR ′y + B−Sy = A0 Amy

Ay = Bu

we get
A0 Amy = B R ′u + B−Sy = B−(Ru + Sy)

If B− = 1, then this equation is linear in the parameters of the R , S polynomials,
and therefore the RLS algorithm can be used.

The overall procedure is simpler but can be applied only for minimum phase
systems, since all the zeros must be cancelled (B− = 1).
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ST regulators by poles/zeros assignment

Algorithm I1 (zeros are cancelled)

Given Am, Bm and A0, at each iteration:

the parameters R̂ and Ŝ of the model

A0Amy = Ru + Sy

are estimated with the RLS method

the new control input u is computed by

R̂u = Tv − Ŝy

with T = k A0, k = Am(1) (as in E1).
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ST regulators by poles/zeros assignment: Example

Let us consider a system described by

G(s) =
0.4

(s + 1)(s + 2)(s + 0.2)
=

Y (s)

U(s)

Open loop response to a unit step

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

t  (s)

y(
t)

Process output

Two design procedures will be exam-
ined:

algorithm E2 (zeros not cancelled)

algorithm I1 (zeros cancelled)

C. Melchiorri (DEI) Adaptive Control: an introduction 55 / 68



Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example

Let us assume that the following discrete-time model of the process is given

G(z) = z−1 b0 + b1z
−1

1 + a1z−1
=

Y (z)

U(z)
→ y(k) = −a1y(k−1)+b0u(k−1)+b1u(k−2)

with a sampling period T = 1 s.

Moreover, define the desired polynomial Am(z) as

Am(z) = 1−2e−δωnT cosωnT
√
1−δ2z−1+e−2δωnT z−2

= 1 + c1z
−1 + c2z

−2

in which the values δ = 0.7, ωn = 0.25 rad/s are considered.
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ST regulators by poles/zeros assignment: Example – E2

ST controller according to algorithm E2 - zeros NOT canceled

The parameters a1, b0, b1 of the model

y(k) = −a1y(k − 1) + b0u(k − 1) + b1u(k − 2)

are estimated. Consider

A0(z) = 1, R(z) = 1 + r1z
−1, S(z) = s0

Block scheme of the algorithm E2

Controller H0(s) G(s)

EstimationSynthesis
✛

❄

✲ ✛

✲✲ ��✲✲�� �� ✲

R,T ,S

θ̂(k)

y(k)
v(k)

u(k)
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – E2

The design equation is

(1 + â1z
−1)(1 + r1z

−1) + z−1(b̂0 + b̂1z
−1)s0 = 1 + c1z

−1 + c2z
−2

→ 1 + (r1 + â1 + b̂0s0)z
−1 + (â1r1 + b̂1s0)z

−2 = 1 + c1z
−1 + c2z

−2

to be solved with respect to r1 and s0:

s0 = (c2 − â1c1 + â21)/(b̂1 − â1b̂0)

r1 = c1 − â1 − s0b̂0

The control equation is

(1 + r1z
−1)u(k) = K v(k)− s0y(k)

from which
u(k) = K v(k)− s0y(k)− r1u(k − 1)

with K = (1 + c1 + c2)/(b̂0 + b̂1) (unit gain for Gm(z)).
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – E2

System response with controller E2
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – E2

System response with controller E2
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Forgetting factor β, estimation of the parameters a1, b0, b1 and estimation error. Note that the
RLS algorithm gives satisfying results even at the second step of the reference signal.
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – E2

System response with controller E2: variation of the process’s gain at t = 80 s.
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – E2

System response with controller E2: variation of the process’s gain at t = 80 s.
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – E2

The discrete time model has been assumed as:

G(z) = z−1 b0 + b1z
−1

1 + a1z−1
=

Y (z)

U(z)
→ y(k) = −a1y(k−1)+b0u(k−1)+b1u(k−2)

The final values of the parameters estimated by the RLS algorithm are:

In case of constant gain:

a1 = −0.850393, b0 = −0.135577, b1 = 0.286491

In case of variable gain:

a1 = −0.850609, b0 = −0.269460, b1 = 0.570891

In both cases:
- the pole is p ≈ 0.85, stable
- the zero is z = 2.11, → unstable!
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – I1

ST controller according to algorithm I1 - zeros are canceled

Controller H0(s) G(s)

Estimation

❄

✲ ✛

✲✲ ✲✲ ✲
y(k)v(k)

u(k)

R̂ , Ŝ

By assuming

A0(z) = 1, R(z) = r0 + r1z
−1, S(z) = s0 + s1z

−1

we get

(1+c1z
−1+c2z

−2)y(k) = z−1[(r0+r1z
−1)u(k)+(s0+s1z

−1)y(k)]
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – I1

From which

y(k)+c1y(k − 1)+c2y(k − 2) =

= s0y(k − 1)+s1y(k − 2)+r0u(k − 1)+r1u(k − 2)

The parameters s0, s1, r0, r1 are estimated. One gets:

(r̂0 + r̂1z
−1)u(k) = kv(k)− (ŝ0 + ŝ1z

−1)y(k)

and then

u(k) =
1

r̂0
[k v(k)− ŝ0y(k)− ŝ1y(k − 1)− r̂1u(k − 1)]

with k = 1 + c1 + c2.
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – I1

System response with controller I1 and T = 1 s.
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Unstable behaviour due to cancelation of non-minimum phase zero (z = −2.11).
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – I1

System output with algorithm I1, T = 3 s.
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With a higher sampling period, non-minimum phase zeros are absent.
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Design of ST controllers by poles/zeros assignment

ST regulators by poles/zeros assignment: Example – I1
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