Adaptive Control: an introduction

Claudio Melchiorri

Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione (DEI)

Università di Bologna

email: claudio.melchiorri@unibo.it

イロト イ部 トメ ヨ トメ ヨト

Summary

[Introduction](#page-2-0)

- [Least squares estimation](#page-11-0)
	- **•** [Geometric interpretation](#page-15-0)
	- **•** [Recursive formulation](#page-24-0)
	- **[Time-varying parameters](#page-32-0)**

3 [Application to linear dynamic systems](#page-39-0)

• [Some implementation aspects](#page-44-0)

4 [Design of ST controllers by poles/zeros assignment](#page-47-0)

← ロ → → ← 何 →

ラメ メラメ

An adaptive regulator is able to modify *automatically* its own behaviour in order to react to variations in the process dynamics and/or to external disturbances. The goal is to guarantee in any case the achievement of pre-assigned constraints (design specifications) on the controlled system. Adaptive control schemes allow to:

- **Example 3** estimate online the value of the plant parameters (not known or time-varying),
- adapt the control parameters on the basis of this estimation.

In an adaptive control system, two feedback loops may be defined:

- the standard control feedback loop based on the output signal and acting on the input of the process (higher frequency)
- a loop taking into account the design specifications, acting on the parameters of the controller (lower frequency).

イロメ イ部メ イヨメ イヨメー

Two general control schemes have been defined in the literature:

- Model Reference Adaptive System (MRAS)
- Self Tuning Regulator (STR)

In MRAS schemes, the adaptation law affects the control parameters in order to keep y, the output of the process, as similar as possible to y_m , the output of a reference model.

イロメ イ部メ イヨメ イヨメー

STR (Self Tuning Regulator) schemes:

- Indirect methods: the adaptation algorithm estimates the parameters of the plant, and then a synthesis procedure is used for the control algorithm
- Direct methods: the parameters of the control law are directly modified by the adaptation algorithm (as for MRAS)

Indirect STR scheme

Direct (implicit) STR scheme

Adaptive control schemes:

- Certainty equivalence property: the parameters estimated online are considered, for the control synthesis, equal to the true ones (not known)
- Adaptive control schemes are non linear dynamic systems with time-varying parameters

Only a specific class of adaptive controllers is considered here: STR with *least* squares estimation and synthesis based on pole/zero placement.

イロト イ押ト イヨト イヨト

Let us consider the control of the variable $\dot{\phi} = \omega$ (angular velocity about the vertical axis).

Define:

- τ_m : input torque applied by the motor (joint ϕ)
- τ_a : friction torque
- J_l : load inertia seen at the motor side, $J_l = J_l(M, \theta)$

Balance of torques at joint axis (if M is constant) and variation of angular momentum:

$$
\sum \tau_i = \frac{d}{dt} \left(J \dot{\phi} \right) = J \ddot{\phi} + \frac{d}{d\theta} \dot{\theta} \dot{\phi}, \qquad \text{if } \dot{\theta} = 0 \implies J \ddot{\phi} = \tau_a + \tau_m
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

The inertia J seen at the motor is given by

$$
J = J_m + \frac{J_l}{k_r^2}
$$

where

$$
J_l = M a^2 \sin^2(\theta)
$$

イロト イ部 トイモト イモト

and k_r is the reduction ratio of the motor.

Assuming θ constant and $\tau_a = 0$, then $J\ddot{\phi} = \tau_m$, with $\tau_m = k_m i$

With a PI controller, the motor current i is computed as

$$
i = k \left[(\omega_r - \omega) + \frac{1}{T_i} \int_0^t (\omega_r - \omega) dt \right]
$$

$$
\frac{d^2 \omega}{dt^2} + k_m k \frac{d \omega}{dt} + \frac{k_m k}{T_i} \omega = k_m k \frac{d \omega_r}{dt} + \frac{k_m k}{T_i} \omega_r
$$

 $\frac{m}{T_i}\omega_r$

Therefore $J\frac{d^2\omega}{dt^2}$

that is
$$
\frac{\omega(s)}{\omega_r(s)} = G_0(s) = \frac{2\delta_0\omega_0 s + \omega_0^2}{s^2 + 2\delta_0\omega_0 s + \omega_0^2}
$$
 with $\begin{cases} k = \frac{2\delta_0\omega_0 J}{k_m} \\ T_i = \frac{2\delta_0}{\omega_0} \\ T_i = \frac{\omega_0}{\omega_0} \end{cases}$

If the PI parameters k, T_i are computed for a nominal inertia value J_0 , while the true value is J, one obtains:

$$
G_0'(s) = \frac{2\delta_0 \omega_0 s J_0 / J + \omega_0^2 J_0 / J}{s^2 + 2\delta_0 \omega_0 s J_0 / J + \omega_0^2 J_0 / J}
$$

with natural frequency and dumping coefficient

$$
\omega_n = \omega_0 \sqrt{\frac{J_0}{J}}, \qquad \delta = \delta_0 \sqrt{\frac{J_0}{J}}
$$

Assuming $\omega_0 = 1.25$ rad/s, $\delta_0 = 1$,

with $J = 2J_0 \rightarrow \omega_n = 0.8839$, $\delta \approx 0.7071$ with $J=\frac{1}{2}J_0$ \rightarrow $\omega_n=1.7678$, $\delta \approx 1.4142$

イロト イ団 ト イミト イヨト 一番

1) Poles when $J \in [0.2 \div 2] J_0$ 2) Value of $J_l = M a^2 \sin^2(\theta)$

イロメ イ部メ イヨメ イヨメー

Plot of ω for $J \in [0.2 \div 2] J_0$ in red the nominal behaviour

An essential component of a STR control scheme is the *parameter estimation* algorithm, used to obtain the (unknown) parameters of the process.

- A quite common method is based on the Least Squares algorithm.
- Need of a *recursive formulation* of the algorithm.

In case of linear dynamic systems expressed by

$$
G(z) = \frac{b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-m}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-m}} = \frac{Y(z)}{U(z)}
$$

the output γ in a given time instant k is expressed as

$$
y(k) = -a_1y(k-1) - a_2y(k-2) - \cdots - a_my(k-m) ++b_1u(k-1) + b_2u(k-2) + \cdots + b_mu(k-m)
$$
 (1)

thatis as a *linear function* of the para[m](#page-10-0)eters $a_i, b_i, \; i = 1, \ldots_p, m$ $a_i, b_i, \; i = 1, \ldots_p, m$

A more general expression of this equation is given by the following regression model (linear in the parameters α_i):

$$
y_k = \phi_1(x_k)\alpha_1 + \phi_2(x_k)\alpha_2 + \ldots + \phi_n(x_k)\alpha_n + e_k
$$

where the variable e_k (the error) takes into account the uncertainties in the parameters.

If the values $\{y_k, x_k\}, k = 1, \ldots, N$, are known, the goal is to determine the parameters $\alpha_i, i = 1, \ldots, n$ (note: $n \leq N$) so that the error e_k is minimised.

Assuming that a proper norm can be defined (i.e. $||e|| = \sum_k e_k^2 = e^T e$), a formal way to achieve this result is to compute the parameters α_i in order to minimize, for example, the function:

$$
V = \sum_{k=1}^{N} e_k^2, \qquad \text{i.e.} \qquad \min_{\alpha_i} \sum_{k=1}^{N} e_k^2
$$

c. Melchiorri (DEI) Addaptive Control: an introduction

$$
13 / 68
$$

This problem may be written in vector form by defining

$$
y = [y_1, y_2, \dots, y_N]^T
$$

\n
$$
e = [e_1, e_2, \dots, e_N]^T
$$

\n
$$
\alpha = [\alpha_1, \alpha_2, \dots, \alpha_n]^T
$$

$$
\phi(k) = [\phi_1(x_k), \phi_2(x_k), \dots, \phi_n(x_k)]^T \qquad \phi = \begin{bmatrix} \phi^T(1) \\ \phi^T(2) \\ \dots \\ \phi^T(N) \end{bmatrix}
$$

Therefore, the following minimisation problem must be solved

$$
\begin{cases} \min_{\alpha} e^T e \\ y = \Phi \alpha + e \end{cases}
$$

イロメ イ部メ イヨメ イヨメー

Problem:

$$
\begin{cases}\n\min_{\alpha} e^{T} e \\
y = \Phi \alpha + e\n\end{cases}
$$

The solution $\hat{\alpha}$ of this problem, quadratic with linear constraints, satisfies

$$
\Phi^T \Phi \; \hat{\alpha} = \Phi^T y
$$

If $\Phi^{\mathsf{T}}\Phi$ is non singular, the solution is unique and given by

$$
\hat{\alpha} = (\Phi^{\mathsf{T}} \Phi)^{-1} \Phi^{\mathsf{T}} y \tag{2}
$$

As a matter of fact, from $y = \Phi \alpha + e$ (assuming $e = 0$) we have

$$
\Phi^T \Phi \alpha = \Phi^T y
$$

from which, if $(\Phi^T \Phi)^{-1}$ exists, we obtain $\alpha = (\Phi^T \Phi)^{-1} \Phi^T y$, that is eq. [\(2\)](#page-14-1).

K ロ X K @ X K 할 X K 할 X - 할 X YO Q @

Least squares estimation - Geometric interpretation

The regression model

$$
y_k = \phi_1(x_k)\alpha_1 + \phi_2(x_k)\alpha_2 + \ldots + \phi_n(x_k)\alpha_n + e_k
$$

for $k = 1, \ldots, N$ can be written as

$$
\begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_N \end{bmatrix} - \begin{bmatrix} \phi_1(x_1) \\ \phi_1(x_2) \\ \cdots \\ \phi_1(x_N) \end{bmatrix} \alpha_1 - \cdots \begin{bmatrix} \phi_n(x_1) \\ \phi_n(x_2) \\ \cdots \\ \phi_n(x_N) \end{bmatrix} \alpha_n = \begin{bmatrix} e_1 \\ e_2 \\ \cdots \\ e_N \end{bmatrix}
$$

or

$$
y - \phi_1 \alpha_1 - \phi_2 \alpha_2 - \ldots - \phi_n \alpha_n = e
$$

Assume that vectors y, ϕ_1, \ldots, ϕ_n are elements of an Eucledian N-dimensional vector space with norm $||x|| = x^T x$.

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Least squares estimation - Geometric interpretation

If y is the true value, and $y^* = \Phi \hat{\alpha}$ its value computed on the basis of the estimated $\hat{\alpha}$ parameters, then the following geometrical interpretation can be obtained:

 $y^* = \Phi \hat{\alpha} \in \mathcal{R}(\phi_1, \ldots, \phi_n)$ $\mathcal{R}(\phi_1,\ldots,\phi_n)=\mathcal{R}(\Phi)$ range space of $\{\phi_1, \ldots, \phi_n\}$

The vector y^* is the orthogonal projection of y on the subspace $\mathcal{R}(\phi_1,\ldots,\phi_n)$. In this manner the error, defined as $e = y - y^*$, has minimum norm $||e|| = ||y - y^*||$ ⇔ vectors e and y^* are orthogonal. イロト イ団 ト イをト イをトー

Least squares estimation - Geometric interpretation

Since the error $e = (y - y^*)$ is orthogonal to $\mathcal{R}(\phi_1, \ldots, \phi_n)$, then

$$
\begin{cases} (y - y^*)^T \phi_1 = 0 \\ \dots \\ (y - y^*)^T \phi_n = 0 \end{cases}
$$

Moreover, since $y^* = \alpha_1 \phi_1 + \ldots + \alpha_n \phi_n$ we can write:

$$
\begin{bmatrix}\n\phi_1^T \phi_1 & \phi_1^T \phi_2 & \cdots & \phi_1^T \phi_n \\
\phi_2^T \phi_1 & \phi_2^T \phi_2 & \cdots & \phi_2^T \phi_n \\
\vdots \\
\phi_n^T \phi_1 & \phi_n^T \phi_2 & \cdots & \phi_n^T \phi_n\n\end{bmatrix}\n\alpha =\n\begin{bmatrix}\ny^T \phi_1 \\
y^T \phi_2 \\
\vdots \\
y^T \phi_n\n\end{bmatrix}
$$

Therefore

$$
\Phi^T \Phi \hat{\alpha} = \Phi^T y \qquad \Rightarrow \qquad \hat{\alpha} = (\Phi^T \Phi)^{-1} \Phi^T y
$$

Let us assume to have the sequence of $N = 21$ data

- $x = [0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00, 4.50,$ $5.00, 5.50, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, 9.00, 9.50, 10.00$ ^T
- $y = [0.0000, 2.8628, 5.0224, 6.0693, 5.8465, 4.4955, 2.4306, 0.2455, -1.4240,$ −2.0470, −1.3196, 0.7692, 3.9429, 7.7137, 11.5099, 14.8244, 17.3468, $19.0481, 20.1956, 21.2961, 22.9799$ ^T

Also, let assume that the function that interpolates the data is

$$
y(x) = ax^3 + bx^2 + cx + d \sin x
$$

We want to estimate, given the data $\{x_k, y_k\}$, $k = 1, \ldots, 21$, the unknown parameters a, b, c, d . Therefore:

1) we define 2) we use the equation

$$
\alpha = [a, b, c, d]^T,
$$
\n
$$
\hat{\alpha} = (\Phi^T \Phi)^{-1} \Phi^T y
$$
\nto estimate the unknown parameters\n
$$
\Phi = \begin{bmatrix}\nx_1^3 & x_1^2 & x_1 & \sin x_1 \\
x_2^3 & x_2^2 & x_2 & \sin x_2 \\
\vdots & \vdots & \ddots & \vdots \\
x_{21}^3 & x_{21}^2 & x_{21} & \sin x_{21}\n\end{bmatrix}
$$
\n
$$
\alpha.
$$

イロメ イ部メ イヨメ イヨメー

Therefore:

and

In this case, the parameters have been exactly identified, and

$$
V=\sum e_k^2=\sum (y_k-y_k^*)^2=0
$$

イロト イ部 トメ ヨ トメ ヨト

 299 C. Melchiorri (DEI) 21 / 68

目

Original data (red) and interpolation (blue) with the function $y(x) = ax^3+bx^2+cx+d \sin x$ and with $\hat{\alpha} = [0.045, -0.300, 1.070, 5.000]^{T}$

Noisy data (random values, in the range $[-2.5, 2.5]$, added to each y_k). In this case, the estimated parameters are $\hat{\alpha} = [0.05, -0.3467, 1.1132, 5.1583]^{T}$ and $V = \sum e_k^2 = 11.7293$

4.0.3

 $\mathbf{A} = \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A} \oplus \mathbf{A}$

Note that in the above case the interpolating function $y(x) = ax^3 + bx^2 + cx + d \sin x$ was known, i.e. only the parameters α had to be estimated, and not the structure of the function itself.

In a more general case, also the interpolating function is not known and must be defined.

For data interpolation, quite often polynomial functions of proper order are used, such as:

$$
y(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0
$$

where both the order n and the $n+1$ parameters a_i must be identified.

Note that often a tradeoff between the complexity of the function (that is the order n) and the quality of the result must be defined.

イロト 不優 ト 不重 ト 不重 トー 重

Interpolation of the data $\{x_k, y_k\}$ with polynomial functions of order n, with $n \in [2, \ldots, 9]$ (left) and corresponding cost function $V=\sum e_k^2$ (right). Notice that for $n\geq 8$ the cost function is almost null, and therefore the proper value for the polynomial order is 8.

it is necessary to define the degrees m, n of the polynomials.

イロト 不優 ト 不重 ト 不重 トー

According to the Least Square technique, an estimation of a set α of parameters is given by

$$
\hat{\alpha} = (\Phi^T \Phi)^{-1} \Phi^T y
$$

Note that in this manner the vector $\hat{\alpha}$ can be computed only once all the data $y_k, x_k, k = 1, \ldots N$ are available (see the previous example).

On the other hand, in many practical application, it is of interest to compute $\hat{\alpha}$ in real time, that is updating the current estimation $\hat{\alpha}_k$ when new data $\{y_{k+1}, x_{k+1}\}\$ are available. In particular, this is important in control applications, and/or when the parameters are not constant in time.

For this purpose, it is therefore convenient to define a *recursive formulation* of the Least Square estimation algorithm.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ │ 唐

Let us define

- Φ(N), $y(N)$, $α(N)$ \rightarrow elements relative to N couples of data $\{x_i, y_i\}$ and let assume that a new couple of data $\{x_{N+1}, y_{N+1}\}$ is available. Then

$$
\Phi(N+1) = \left[\frac{\Phi(N)}{\gamma'(N+1)}\right], \qquad \qquad y(N+1) = \left[\frac{y(N)}{y_{N+1}}\right]
$$

$$
\gamma^{T}(N+1) = [\phi_1(x_{N+1}), \dots \phi_n(x_{N+1})]
$$

Therefore, the new parameter estimation

$$
\hat{\alpha}(N+1) = [\Phi^{\mathsf{T}}(N+1)\Phi(N+1)]^{-1}\Phi^{\mathsf{T}}(N+1)y(N+1)
$$

may be rewritten as

$$
\hat{\alpha}(N+1) = [\Phi^{\mathcal{T}}(N)\Phi(N) + \gamma(N+1)\gamma^{\mathcal{T}}(N+1)]^{-1}[\Phi^{\mathcal{T}}(N)y(N) + \gamma(N+1)y_{N+1}]
$$

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

We exploit now the Inversion Lemma

$$
(A + BCD)^{-1} = A^{-1} - A^{-1}B(C^{-1} + DA^{-1}B)^{-1}DA^{-1}
$$

Therefore, by defining:

$$
A = \Phi^T \Phi, \qquad \qquad B = D^T = \gamma, \qquad \qquad C = 1
$$

we have:

$$
[\Phi^{\mathcal{T}}\Phi+\gamma\gamma^{\mathcal{T}}]^{-1}=(\Phi^{\mathcal{T}}\Phi)^{-1}-(\Phi^{\mathcal{T}}\Phi)^{-1}\gamma[1+\gamma^{\mathcal{T}}(\Phi^{\mathcal{T}}\Phi)^{-1}\gamma]^{-1}\gamma^{\mathcal{T}}(\Phi^{\mathcal{T}}\Phi)^{-1}
$$

from which it follows:

$$
\hat{\alpha}(N+1) = \hat{\alpha}(N) - k(N+1)\gamma^T\hat{\alpha}(N) + k(N+1)y_{N+1}
$$

=
$$
\hat{\alpha}(N) + k(N+1)[y_{N+1} - \gamma^T\hat{\alpha}(N)]
$$

where

$$
k(N+1) = (\Phi^T \Phi)^{-1} \gamma [1 + \gamma^T (\Phi^T \Phi)^{-1} \gamma]^{-1}
$$

그 돈이

Moreover, in order to have also $k(N + 1)$ in a recursive formulation, we define

$$
P(N) = [\Phi^{\top}(N)\Phi(N)]^{-1}
$$
 (3)

イロメ イ部メ イヨメ イヨメー

Then

$$
k(N+1) = P(N)\gamma[1 + \gamma^T P(N)\gamma]^{-1}
$$

and

$$
P(N+1) = (\Phi^T \Phi + \gamma \gamma^T)^{-1}
$$

=
$$
P(N) - P(N) \gamma [1 + \gamma^T P(N) \gamma]^{-1} \gamma^T P(N)
$$

=
$$
[I - k(N+1) \gamma^T] P(N)
$$

Finally, the recursive formulation of the LS algorithm is

$$
\begin{cases}\n\hat{\alpha}(N+1) = \hat{\alpha}(N) + k(N+1)[y_{N+1} - \gamma^T \hat{\alpha}(N)] \\
k(N+1) = P(N)\gamma[1 + \gamma^T P(N)\gamma]^{-1} \\
P(N+1) = [I_n - k(N+1)\gamma^T]P(N)\n\end{cases}
$$

By analyzing the expression of $\hat{\alpha}(N+1)$

$$
\hat{\alpha}(N+1) = \hat{\alpha}(N) + k(N+1)[y_{N+1} - \gamma^T \hat{\alpha}(N)]
$$

it may be noticed that the new value is obtained from the previous one $\hat{\alpha}(N)$ by adding a correction term proportional to $[y_{N+1}-\gamma^T\hat{\alpha}(N)].$

This is the difference between the new measured value of y (i.e. y_{N+1}) and y^* , that is its (one step) prediction based on the data available up to step N

$$
y^* = \gamma^T \hat{\alpha}(N)
$$

=
$$
[\phi_1(x_{N+1}), \ldots \phi_n(x_{N+1})]^T \begin{bmatrix} \hat{\alpha}_1(N) \\ \hat{\alpha}_2(N) \\ \ldots \\ \hat{\alpha}_n(N) \end{bmatrix}
$$

イロメ イ部メ イヨメ イヨメー

Initialization of the algorithm

For the recursive algorithm, an initialisation problem exists, since matrix $P(N) = (\Phi^T \Phi)^{-1} \in \mathbb{R}^{n \times n}$ may be non singular only for values $N \ge n$.

Necessary condition. Matrix $P(N)$ may be non singular only if $N \ge n$; in this case, Φ may be full column rank (Φ is a $N \times n$ matrix).

Therefore, a value $N_0 > n$ should be chosen such that

$$
P(N_0) = [\Phi^T(N_0)\Phi(N_0)]^{-1}
$$

\n
$$
\hat{\alpha}(N_0) = [\Phi^T(N_0)\Phi(N_0)]^{-1}\Phi^T(N_0) y(N_0)
$$

However, it is possible to use the recursive algorithm starting with the first pair of data $\{x_1, y_1\}$ by admitting an arbitrarily small error. This is possible by defining

$$
P(N) = [P_0^{-1} + \Phi^{\mathsf{T}}(N)\Phi(N)]^{-1}, \qquad P(0) = P_0 = \frac{1}{\epsilon}I_n, \qquad \epsilon \ll 1 \qquad (4)
$$

It is clear that [\(4\)](#page-29-1) is always invertible, and that it differs by an arbitrary small quantity from [\(3\)](#page-27-1) $(I_n$ is a $n \times n$ identity matrix). イロト イ部 トイ君 トイ君 トッ 著

C. Melchiorri (DEI) **[Adaptive Control: an introduction](#page-0-0)** 30 / 68

Recursive estimation of the parameters a, b, c, d of the previous example.

Two different initialisation of the algorithm are used: $\epsilon=10^{-2}$ and $\epsilon=10^{-6}$, and initial value for $\hat{\alpha}(0) = [1, 1, 1, 1]^T$, no noise.

Recursive estimation of the parameters a, b, c, d of the previous example.

Two different initialisation of the algorithm are used: $\epsilon=10^{-2}$ and $\epsilon=10^{-6}$, and initial value for $\hat{\alpha}(0) = [1, 1, 1, 1]^T$, with noise.

In the previous expression of the RLS algorithm, the unknown parameters α have been assumed as constant in time. Therefore, the cost function to be minimized has been defined as N

$$
V=\sum_{k=1}^N e_k^2,
$$

where all the samples e_k have the same "importance", i.e they have the same (unit) cost. A more general expression of the cost function is

$$
V=\sum_{k=1}^N w_k e_k^2,
$$

where w_k is a proper (non constant) weight to be defined according to some proper criterion.

As a matter of fact, in many practical control applications (some of) the parameters of the controlled plant may vary in time, with variation that can be considered "slow" with respect to t[he](#page-31-0) dynamics of the p[la](#page-33-0)[n](#page-31-0)[t.](#page-32-0)

In these cases, in order to have a better estimation of the parameters, it is necessary to use a cost function V that gives more importance to recent data with respect to old ones.

In other words, it is necessary to define an algorithm with a *finite lenght* memory.

The "length" of the period must be properly tuned on the basis of the velocity of variation of the parameters.

A solution is to define the cost function as

$$
V = \sum_{k=1}^{N} \beta^{N-k} e_k^2, \qquad \rightarrow \qquad \min_{\alpha_i} \sum_{k=1}^{N} \beta^{N-k} e_k^2, \qquad 0 < \beta \le 1
$$

イロト イ母ト イヨト イヨト

 $\ddot{}$

Least squares estimation: Time-varying parameters

$$
V = \sum_{k=1}^{N} \beta^{N-k} e_k^2, \qquad 0 < \beta \le 1
$$

- **•** The parameter β is called the forgetting factor
- With $\beta = 1$, the standard case is obtained
- Typically $0.95 < \beta < 0.99$
- **•** The "equivalent" number of samples considered in the RLS algorithm is given by

$$
m = \frac{1}{1 - \beta}
$$

$$
\beta = 0.99 \rightarrow m = 100,
$$

$$
\beta = 0.95 \rightarrow m = 20
$$

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 日下

$$
V = \sum_{k=1}^{N} \beta^{N-k} e_k^2, \qquad 0 < \beta \le 1
$$

- • In this way, the most recent data $(k = N)$ has unit weight, while data of previous p steps, corresponding to time instants in which the values of the parameters may be different from the current ones, are weighted with $\beta^p < 1$.
- "Low" values ($\beta = 0.95$) are used when there are fast variations in the parameters, viceversa "high" values ($\beta = 0.99$) are adopted for slow varying parameters.
- \bullet With low values for β , the tracking of the parameters is better, but on the other side there is a larger variance of the estimated parameters (possible problems with noise).

K ロ X X 個 X X 差 X X 差 X … 差

With the introduction of the forgetting factor, the RLS algorithm becomes:

$$
\begin{cases}\n\hat{\alpha}(N+1) = \hat{\alpha}(N) + k(N+1)[y_{N+1} - \gamma^T \hat{\alpha}(N)] \\
k(N+1) = P(N)\gamma[\beta + \gamma^T P(N)\gamma]^{-1} \\
P(N+1) = \frac{1}{\beta}[I - k(N+1)\gamma^T]P(N)\n\end{cases}
$$

At each step, the matrix P is multiplied by a factor $1/\beta > 1$, and therefore the weight vector k is always non zero.

This is justified since it may be verified that, without the multiplication by $1/\beta$, $\|P\| \to 0$ for $N \to \infty$. In this case, also $\|k\| \to 0$ and then $\hat{\alpha}(N + 1) = \hat{\alpha}(N)$.

In these conditions, the algorithm is non sensitive to estimation errors $e(k) = [y_{k+1} - \gamma^T \hat{\alpha}(k)]$, generated by parameters variations.

If matrix P is multiplied at each step by a factor $1/\beta > 1$, its norm (and therefore the value of k) is maintained non null, and the updated value $\hat{\alpha}(N+1)$ takes into consideration possible estimation errors generated by changes in the parameters.

K ロ > K @ > K 할 > K 할 > (할 >

Another version of the RLS algorithm achieving the forgetting property (based on an *addition* operation) is the following

$$
\begin{cases}\n\hat{\alpha}(N+1) = \hat{\alpha}(N) + k(N+1)[y_{N+1} - \gamma^T \hat{\alpha}(N)] \\
k(N+1) = P(N)\gamma[r_2 + \gamma^T P(N)\gamma]^{-1} \\
P(N+1) = \mathbf{R}_1 + [I - k(N+1)\gamma^T]P(N)\n\end{cases}
$$

where usually $\mathbf{r}_2 = 1$ and $R_1 = q$ l, with $q \in [10^{-4} \div 10^{-2}]$.

The three algorithms, i.e. the standard RLS, with a multiplicative β factor or in the additive version, coincide for $r_2 = 1$, $q = 0$ e $\beta = 1$.

イロト 不優 ト 不重 ト 不重 トー 重

A further improvement for the RLS algorithm with forgetting factor consists in computing the value of the parameter β as a function of the "variability" of the system's parameters.

Indeed, as already pointed out, "small" values of β are better when parameters changes rapidly, while for slow changing (or even constant) parameters an "high" value is preferable.

For example, β could be computed as follows

if
$$
|e(k)| > \bar{e}
$$

\nthen $\beta(k) = 0.95$
\nelse $\beta(k) = 1 - \lambda [1 - \beta(k-1)]$
\nendif

where $e(k) = [y_{k+1} - \gamma^T \hat{\alpha}(k)]$ is the prediction error, and $\lambda < 1$ a proper parameter used to tune the transition between the "low" value (0.95) and 1.

イロト 不優 ト 不重 ト 不重 トー 重

Let us consider a dynamic systems expressed by the transfer function

$$
G(z) = \frac{b_1 z^{-1} + b_2 z^{-2} + \dots + b_n z^{-n}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}} = \frac{Y(z)}{U(z)}
$$

The output, at the generic time instant k , is given by

$$
y(k) = -a_1y(k-1)-a_2y(k-2)-\cdots-a_ny(k-n)++b_1u(k-1)+b_2u(k-2)+\cdots+b_nu(k-n)+e(k)
$$

Assume that the parameters $a_i, b_i, i = 1, \ldots, n$ are not known.

イロト イ部 トイ君 トイ君 トー

In this case, in $n + N$ pairs of data $u(k)$, $y(k)$ are available, let us define:

$$
y = \begin{bmatrix} y(n+1) \\ y(n+2) \\ \dots \\ y(n+N) \end{bmatrix}, \quad e = \begin{bmatrix} e(n+1) \\ e(n+2) \\ \dots \\ e(n+N) \end{bmatrix}, \quad \alpha = [-a_1, \dots, -a_n, b_1, \dots, b_n]^T
$$

$$
\Phi = \begin{bmatrix}\ny(n) & y(n-1) & \cdots & y(1) & u(n) & \cdots & u(1) \\
y(n+1) & y(n) & \cdots & y(2) & u(n+1) & \cdots & u(2) \\
y(n+2) & y(n+1) & \cdots & y(3) & u(n+2) & \cdots & u(3) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
y(n+N-1) & y(n+N-2) & \cdots & y(N) & u(n+N-1) & \cdots & u(N)\n\end{bmatrix}
$$

Note that Φ is a $N \times 2n$ matrix.

イロメ イ部メ イヨメ イヨメー

As before, the estimation of the unknown parameters is given by

$$
\hat{\alpha} = (\Phi^T \Phi)^{-1} \Phi^T y
$$

where

$$
\Phi^T \Phi = \left[\begin{array}{cc} A & B \\ B^T & C \end{array} \right]
$$

with

$$
A = A^{T} = \begin{bmatrix} \sum_{k=n}^{N+n-1} y^{2}(k) & \sum_{k=n}^{N+n-1} y(k)y(k-1) & \cdots & \sum_{k=n}^{N+n-1} y(k)y(k-n+1) \\ & \sum_{k=n}^{N+n-2} y^{2}(k) & \cdots & \sum_{k=n}^{N+n-2} y(k)y(k-n+2) \\ & \vdots & \ddots & \vdots \\ & & \vdots & \ddots & \vdots \\ & & & \sum_{k=n}^{N} y^{2}(k) \\ & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & & & & & & \sum_{k=1}^{N} y^{2}(k) \\ & & &
$$

and

$$
B = \begin{bmatrix} \sum_{k=n}^{N+n-1} y(k)u(k) & \cdots & \sum_{k=n}^{N+n-1} y(k)u(k-n+1) \\ \sum_{k=n}^{N+n-2} y(k)u(k+1) & \cdots & \sum_{k=n}^{N+n-2} y(k)u(k-n+2) \\ \sum_{k=1}^{N} y(k)u(n+k-1) & \cdots & \sum_{k=1}^{N} y(k)u(k) \\ \sum_{k=n}^{N+n-1} u^{2}(k) & \cdots & \sum_{k=n}^{N+n-1} u(k)u(k-n+1) \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{N} u^{2}(k) & \sum_{k=1}^{N} u^{2}(k) \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{N} u^{2}(k) & \cdots & \sum_{k=1}^{N} u^{2}(k) \end{bmatrix}
$$

Moreover $|p$ $\overline{ }$ $\Phi^T y =$ q $\sum_{ }^{\mathcal{N}+n}$ $\sum_{ }^{\mathcal{N}+n}$ $\sqrt{ }$ 1 $\sqrt{ }$ 1 y(k)y(k−1) y(k)u(k−1) $k=n+1$ $k=n+1$ $\sum_{ }^{\mathcal{N}+n}$ $\sum_{ }^{\mathcal{N}+n}$ y(k)y(k−2) y(k)u(k−2) $k=n+1$ $k=n+1$ $p =$ $q =$ $\frac{N+n}{\sum}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $\overline{1}$ I $\Bigg\vert \Bigg\vert \sum_{n=1}^{N+n}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ y(k)y(k−n) y(k)u(k−n) $k=n+1$ $k=n+1$ $k=n+1$ $k=n+1$ $k=n+1$ イロメ イ部メ イヨメ イヨメー

with

Application to linear dynamic systems: implementation aspects

The RLS algorithm

$$
\begin{cases}\n\hat{\alpha}(N+1) = \hat{\alpha}(N) + k(N+1)[y_{N+1} - \gamma^T \hat{\alpha}(N)] \\
k(N+1) = P(N)\gamma[\beta + \gamma^T P(N)\gamma]^{-1} \\
P(N+1) = \frac{1}{\beta}[I - k(N+1)\gamma^T]P(N)\n\end{cases}
$$

gives at each iteration the estimation $\hat{\alpha}$ of the plant's parameters.

However, there are some aspects in the implementation of this algorithms that have to be properly taken into account.

イロメ イ部メ イヨメ イヨメー

Application to linear dynamic systems: implementation aspects

The issues to be considered are:

• The input signal has to be adequately "exciting" for the system dynamics

For the limit case of constant input, the RLS algorithm may only estimate the static gain of the process: during the estimation phases, the input signal must excite all the dynamics of the process (persistently exciting signals)

- Initialization of the algorithm (as discussed)
- \bullet Matrix P , for numerical reasons could result not symmetric and positive definite. Therefore, it could be defined as a factorization:

$$
P = UDU^{T}
$$

with U upper triangular and D diagonal, or

$$
P = SS^T
$$

being S the square root of P

K ロ ▶ | K 母 ▶ | K ヨ ▶ | K ヨ ▶

Application to linear dynamic systems: implementation aspects

• Wind-up problem of the matrix P.

Since with the forgetting factor and in case of good estimation of the parameters, it results $P(N+1) \approx P(N)/\beta$, then its norm grows exponentially in time. Since $\hat{\alpha}$ is good, the difference $[y_{N+1}-\gamma^T\hat{\alpha}(N)]$ is practically null, and the fact that the norm of P grows is not important.

On the other hand, if a parameter or the reference signal changes, the RLS algorithm generates wrong estimations, with a "burst" behaviour due to the high value of P (and then of k).

As already discussed, a variable forgetting factor can be adopted (equal to 1 when the estimation is good). As an alternative, the RLS algorithm could be deactivated when the prediction error is lower than a given threshold.

イロト イ母ト イヨト イヨト

We analyze now the design of a ST regulator, according to the scheme

The controller design is based on the poles/zeros assignment, based on the scheme

where the poly[n](#page-48-0)omi[a](#page-47-0)ls S, T, R have to be defined according t[o so](#page-46-0)[me](#page-48-0) [g](#page-46-0)[ive](#page-47-0)n [s](#page-46-0)[p](#page-47-0)[eci](#page-67-0)[fic](#page-46-0)a[tio](#page-67-0)[ns.](#page-0-0) つへへ

Given a desired transfer function to be obtained

$$
G_m(z) = \frac{Y(z)}{V(z)} = \frac{B_m(z)}{A_m(z)}
$$
 or $G_m(z) = \frac{A_0(z)B_m(z)}{A_0(z)A_m(z)}$

the design equation is

$$
\frac{BT}{AR+BS}=\frac{A_0B_m}{A_0A_m}=G_m(z)
$$

with

$$
B = B^+ B^- \qquad \qquad B^- \quad \text{unstable zeros} \ \to \ B_m = B^- B'_m
$$

and then

$$
AR'+B-S = A_0A_m
$$

$$
T = A_0B'_m
$$

with $R = B^+R'$.

イロメ イ部メ イヨメ イヨメー

Since the design equations have to be computed in real time (because of variations of the parameters in $A,~B^-$), it is necessary to implement the algorithm in a computationally efficient way.

For this purpose, if possible, it is better not to factorize the polynomial B.

This can be obtained in two ways:

- $E1$ eliminating all the zeros, that is considering $^+= B$ and $B^-=1$
- $E2$ leaving all the zeros, that is assuming

 $^+=1$ and $B^-=B$

イロト 不優 ト 不重 ト 不重 トー

Note that the first method E1 can be applied only if the transfer function $G_p(z)$ of the plant is minimum phase (the zeros are within the unit circle), while E2 can be used in any case.

Algorithm E1 (zeros are cancelled: $B^+=B$ and $B^-=1$)

Given A_m , $B_m (= 1)$, and A_0 , at each iteration:

- the parameters \hat{A} and \hat{B} are computed with the RLS method
- the equation

$$
\hat{A}R'+S=A_0A_m
$$

is solved with respect to S and R'

 \bullet the value of T is computed as

$$
T = kA_0, \qquad k = A_m(1)
$$

 \bullet the new control value u is computed according to

$$
Ru = Tv - Sy
$$

where $R=B^+$ $R'=\hat{B}$ R'

イロメ イ部メ イヨメ イヨメー

Algorithm E2 (zeros are not cancelled: $B^+=1$ and $B^-=B$)

Given A_m , $B_m (= B^- = B)$ and A_0 , at each iteration:

- the parameters \hat{A} and \hat{B} are computed with the RLS method
- the equation

$$
\hat{A}R+\hat{B}S=A_0A_m
$$

is solved with respect to S and R

 \bullet the new control value u is computed according to

$$
Ru = Tv - Sy, \qquad \text{with} \quad T = k = \frac{A_m(1)}{\hat{B}(1)}
$$

Note that in this manner we get

$$
G_m(z) = \frac{k\hat{B}(z)}{A_m(z)}
$$

• Variations in the parameters affect the controlled dynamics (i.e. $G_m(z)$) • This algorith[m](#page-46-0) c[a](#page-46-0)n be applied even if $G_p(z)$ is n[on](#page-50-0) [m](#page-52-0)[in](#page-50-0)[im](#page-51-0)[u](#page-52-0)m [ph](#page-67-0)a[s](#page-47-0)[e.](#page-67-0)

The above is the "explicit" formulation of the control design procedure. Another version is the "implicit" one, where the parameters of the controller (not of the process) are estimated in real time. From

$$
AR'y + B^{-}Sy = A_0 A_m y
$$

$$
Av = Bu
$$

we get

$$
A_0 A_m y = B R' u + B^- S y = B^-(Ru + Sy)
$$

If $B^- = 1$, then this equation is linear in the parameters of the R, S polynomials, and therefore the RLS algorithm can be used.

The overall procedure is simpler but can be applied only for minimum phase systems, since all the zeros must be cancelled $(B^{-}=1)$.

K ロンス 御 > ス ヨ > ス ヨ > 一 ヨ

Algorithm I1 (zeros are cancelled)

Given A_m , B_m and A_0 , at each iteration:

• the parameters \hat{R} and \hat{S} of the model

$$
A_0A_my = Ru + Sy
$$

are estimated with the RLS method

 \bullet the new control input u is computed by

$$
\hat{R}u=Tv-\hat{S}y
$$

with $T = k A_0$, $k = A_m(1)$ (as in E1).

イロメ イ部メ イヨメ イヨメー

Let us consider a system described by

$$
G(s) = \frac{0.4}{(s+1)(s+2)(s+0.2)} = \frac{Y(s)}{U(s)}
$$

Open loop response to a unit step

Two design procedures will be examined:

• algorithm E2 (zeros not cancelled)

 \triangleright and \exists \triangleright and \exists \triangleright

• algorithm I1 (zeros cancelled)

4.0.3

Let us assume that the following discrete-time model of the process is given

$$
G(z) = z^{-1} \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}} = \frac{Y(z)}{U(z)} \rightarrow y(k) = -a_1 y(k-1) + b_0 u(k-1) + b_1 u(k-2)
$$

with a sampling period $T = 1$ s.

Moreover, define the desired polynomial $A_m(z)$ as

$$
A_m(z) = 1 - 2e^{-\delta \omega_n T} \cos \omega_n T \sqrt{1 - \delta^2} z^{-1} + e^{-2\delta \omega_n T} z^{-2}
$$

$$
= 1 + c_1 z^{-1} + c_2 z^{-2}
$$

in which the values $\delta = 0.7$, $\omega_n = 0.25$ rad/s are considered.

제 ロン 제 御 시 제 결 시 제 결 시 시 결

ST controller according to algorithm E2 - zeros NOT canceled

The parameters a_1, b_0, b_1 of the model

$$
y(k) = -a_1y(k-1) + b_0u(k-1) + b_1u(k-2)
$$

are estimated. Consider

$$
A_0(z) = 1, \hspace{1cm} R(z) = 1 + r_1 z^{-1}, \hspace{1cm} S(z) = s_0
$$

Block scheme of the algorithm E2

 $4.171 - 6$

 \rightarrow \Rightarrow \rightarrow \Rightarrow \rightarrow

The design equation is

$$
(1+\hat{a}_1z^{-1})(1+r_1z^{-1})+z^{-1}(\hat{b}_0+\hat{b}_1z^{-1})s_0 = 1+c_1z^{-1}+c_2z^{-2}
$$

\n
$$
\rightarrow 1+(r_1+\hat{a}_1+\hat{b}_0s_0)z^{-1}+(\hat{a}_1r_1+\hat{b}_1s_0)z^{-2} = 1+c_1z^{-1}+c_2z^{-2}
$$

to be solved with respect to r_1 and s_0 :

$$
s_0 = (c_2 - \hat{a}_1 c_1 + \hat{a}_1^2) / (\hat{b}_1 - \hat{a}_1 \hat{b}_0)
$$

$$
r_1 = c_1 - \hat{a}_1 - s_0 \hat{b}_0
$$

The control equation is

$$
(1 + r_1 z^{-1})u(k) = K v(k) - s_0 y(k)
$$

from which

$$
u(k) = K v(k) - s_0 y(k) - r_1 u(k-1)
$$

with $\mathcal{K}=(1+c_1+c_2)/(\hat{b}_0+\hat{b}_1)$ (unit gain for $\mathcal{G}_m(z)$)[.](#page-58-0)

System response with controller E2

イロト イ部 トメ ヨ トメ ヨト

System response with controller E2

Forgetting factor β , estimation of the parameters a_1 , b_0 , b_1 and estimation error. Note that the RLS algorithm gives satisfying results even at the second step [of](#page-58-0) t[he](#page-60-0) [r](#page-58-0)[efe](#page-59-0)[re](#page-60-0)[n](#page-46-0)[ce](#page-47-0) [si](#page-67-0)[gn](#page-46-0)[a](#page-47-0)[l.](#page-67-0) 299

System response with controller E2: variation of the process's gain at $t = 80$ s.

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 日下

System response with controller E2: variation of the process's gain at $t = 80$ s.

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

4 日下

The discrete time model has been assumed as:

$$
G(z) = z^{-1} \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1}} = \frac{Y(z)}{U(z)} \rightarrow y(k) = -a_1 y(k-1) + b_0 u(k-1) + b_1 u(k-2)
$$

The final values of the parameters estimated by the RLS algorithm are: In case of constant gain:

$$
a_1=-0.850393,\quad b_0=-0.135577,\quad b_1=0.286491
$$

In case of variable gain:

$$
a_1 = -0.850609, \quad b_0 = -0.269460, \quad b_1 = 0.570891
$$

In both cases:

- the pole is $p \approx 0.85$, stable
- the zero is $z = 2.11$, \rightarrow **unstable!**

イロメ イ部メ イヨメ イヨメー

ST controller according to algorithm I1 - zeros are canceled

By assuming

$$
A_0(z) = 1, \qquad R(z) = r_0 + r_1 z^{-1}, \qquad S(z) = s_0 + s_1 z^{-1}
$$

we get

$$
(1+c_1z^{-1}+c_2z^{-2})y(k)=z^{-1}[(r_0+r_1z^{-1})u(k)+(s_0+s_1z^{-1})y(k)]
$$

4.0.3

- 4 重 8 - 4 重 8

From which

$$
y(k)+c_1y(k-1)+c_2y(k-2)=
$$

= s₀y(k-1)+s₁y(k-2)+r₀u(k-1)+r₁u(k-2)

The parameters s_0, s_1, r_0, r_1 are estimated. One gets:

$$
(\hat{r}_0 + \hat{r}_1 z^{-1})u(k) = kv(k) - (\hat{s}_0 + \hat{s}_1 z^{-1})y(k)
$$

and then

$$
u(k) = \frac{1}{\hat{r}_0}[k \ v(k) - \hat{s}_0 y(k) - \hat{s}_1 y(k-1) - \hat{r}_1 u(k-1)]
$$

with $k = 1 + c_1 + c_2$.

イロト イ部 トイミト イミト

System response with controller I1 and $T = 1$ s.

Unstable behaviour due to cancelation of non-minimum phase zero $(z = -2.11)$.

 299

System output with algorithm 11, $T = 3$ s.

With a higher sampling period, non-minimum phase zeros are absent.

メタトメ ミトメ ミト

4 0 8