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Abstract 

Friction-stir-welding (FSW) is a solid-state joining process where joint properties are 

dependent on welding process parameters. In the current study three critical process parameters 

including spindle speed (𝑁), plunge force (𝐹𝑧),  and welding speed (𝑉) are considered key factors 

in the determination of ultimate tensile strength (UTS) of welded aluminum alloy joints. A total 

of 73 weld schedules were welded and tensile properties were subsequently obtained 

experimentally. It is observed that all three process parameters have direct influence on UTS of 

the welded joints. Utilizing experimental data, an optimized adaptive neuro-fuzzy inference system 

(ANFIS) model has been developed to predict UTS of FSW joints.  A total of 1200 models were 

developed by varying the number of membership functions (MFs), type of MFs, and combination 

of four input variables (𝑁, 𝑉, 𝐹𝑧, 𝐸𝐹𝐼) utilizing a MATLAB platform. Note EFI denotes an 

empirical force index derived from the three process parameters. For comparison, optimized 

artificial neural network (ANN) models were also developed to predict UTS from FSW process 

parameters. By comparing ANFIS and ANN predicted results, it was found that optimized ANFIS 

models provide better results than ANN. This newly developed best ANFIS model could be 

utilized for prediction of UTS of FSW joints.   

https://ntrs.nasa.gov/search.jsp?R=20160004406 2019-08-29T17:54:23+00:00Z

http://appl003.lsu.edu/mech/mechweb.nsf/$Content/Muhammad+A.+Wahab/$file/Wahab_Resume.pdf


Keywords: Friction stir welding; Welding process parameters; Tensile strength; Adaptive neuro-

fuzzy inference system; Leave-one-out cross validation 

1. Introduction 

The main challenge for the friction-stir-welding (FSW) process is selecting welding 

parameters that would produce defect free and high strength joints. Since the development of the 

FSW process, trial and error techniques have been applied to find optimum weld parameters [1]. 

The quality of a FSW joint depends on several factors including tool design, clamp design, 

materials welded, and welding parameters. For a particular welding condition (i.e. pin tool, clamp, 

and material), the quality of a FSW joint depends on two factors: welding process parameters (i.e. 

spindle speed, welding speed, plunge depth / plunge force) and environmental factors (i.e. weld 

cooling, pre-weld cooling, weld location) [2]. Thus developing an appropriate physical model 

which can predict the process's main characteristics (weld defects and mechanical properties) is 

complex. Hence, researchers have attempted to build predictive models based on experimental 

data [3-8] and utilize nontraditional optimization algorithms such as the Taguchi method [9-12] 

and simulated annealing [13-15] to obtain optimum FSW process parameters. Other metaheuristic 

algorithms (i.e. ant colony optimization, differential evolution, particle swarm optimization, finite 

volume) have been used to determine optimal operating parameters for FSW processes [16].  In 

case of building data-driven empirical models as a part of the response surface methodology 

(RSM), a second order polynomial is often fitted [3, 5, 8,17]. However, the highly nonlinear 

behavior between FSW process parameters and tensile properties might not be well accommodated 

by the second order polynomial. Some investigators applied statistical learning models (i.e. 

Artificial Neural Network (ANN)) to predict mechanical responses of FSW joints [18-23]. 

Lakshminarayanan reported two articles on the comparison between RSM and ANN models to 



predict mechanical performances of FSW joints and concluded that the ANN model is much more 

robust and accurate in estimating tensile strength [22, 23]. Nevertheless, most of the above-

mentioned studies utilized limited experimental data and none are decisive.   

Adaptive network-based fuzzy inference system (ANFIS) is a hybrid predictive model 

which make use of both neural network and fuzzy logic to generate mapping relationships between 

input and output [24]. Although ANFIS is a powerful modeling tool, there has been only one study 

[25] which has utilized said technique in modeling the FSW process. In that study, pin tool profile, 

spindle rotational speed, welding speed, and axial force were utilized as input variables to predict 

UTS, yield strength, and micro-hardness in FS welded 7075 aluminum alloy joints. The authors in 

[25] utilized 31 data sets to develop a predictive model and 10 data sets for testing. Building and 

testing models based on simple data splitting is known not to be reliable. For a small data set, the 

leave-one-out cross validation (LOO-CV) [26-29] technique is beneficial to train as many 

examples as possible.  

The current investigation entails an experimental study with 73 weld schedules coupled 

with the development of an optimized ANFIS model to predict tensile properties of FSW joints of 

2219-T87 aluminum alloy. The model employs the leave-one-out cross validation (LOO-CV) 

approach for the validation of prediction accuracy. For comparison, an optimized artificial neural 

network (ANN) model was also developed. The remainder of the paper is organized as follows. 

Section 2 introduces the modeling and validation methodologies used in the study. Section 3 

describes the experiments and results. Sections 4 and 5 provide the ANFIS, ANN modeling, and 

validation results. The conclusions are given in the last section.  

 

2. Modeling and Validation Methods  



2.1. Artificial Neural Network (ANN) 

The first artificial neural network (ANN) was invented in 1958 by psychologist Frank 

Rosenblatt called ‘perceptron’. ANN is a computational model, which replicates the function of a 

biological network composed of neurons. ANN is often used to model complex nonlinear functions 

in various applications. The basic unit in the ANN is the neuron. Neurons are connected to each 

other by links known as synapses. Andersen et al. (1990) first applied ANN in the welding area to 

predict weld bead shape for the gas tungsten arc welding (GTAW) process [30]. Researchers have 

also applied ANN to develop predictive models for FSW joints [18-23]. A multilayer perceptron 

ANN system has three layers which are input, hidden, and output layers. The input layer consists 

of all the input factors. Information from input layer is then processed in the hidden layers, and 

then followed by the output layer (Figure 1). Details on the neural network modeling approach are 

given elsewhere [31].  

 

Figure 1: Schematic of artificial neural network (ANN) layers (two input variables, two hidden 

layers with 3 nodes each, and one output) 

 



Multilayer perceptron ANN can be learned using various algorithms; well-known learning 

algorithms include back-propagation, counter-propagation, and genetic algorithms. Back-

propagation neural network has been usually used to model welding processes [32]; hence, it is 

adopted in this work. In building the model-input variables, training functions, and number of 

nodes in the hidden layer were varied to obtain a model that produces lowest root mean square 

error (RMSE) and mean absolute percentage error (MAPE). MATLAB (R2012a) platform was 

utilized to train and test the ANNs.  

2.2. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro-fuzzy Inference System (ANFIS) is a class of adaptive network framework 

proposed by Jang [24]. ANFIS constructs an input-output mapping based on human knowledge 

and generates input-output data pairs by using a hybrid algorithm. According to Jang, the ANFIS 

is a neural network that is functionally similar to the Takagi-Sugeno-Kang (TSK) type inference 

model [33]. The TSK rules can be described in equation (1). 

𝐼𝐹 (𝑥1 = 𝐴𝑖1
1 )𝑎𝑛𝑑 (𝑥2 = 𝐴𝑖2

2 ) 𝑎𝑛𝑑 … .  𝑎𝑛𝑑 (𝑥𝑛 = 𝐴𝑖𝑛
𝑛 )    𝑇𝐻𝐸𝑁 𝑦 =  𝑓(𝑥𝑗)    (1) 

 

Where 𝑥𝑗  is the 𝑗𝑡ℎ input (𝑗 = 1, 2, … … . , 𝑛), 𝐴𝑖1
1  is the 𝑖𝑡ℎ linguistic term defined as a fuzzy 

membership function on 𝑥𝑗 , and the mapping function 𝑓 could be linear, nonlinear, or simply a 

real number [34]. Five distinct layers are used to explain the concept of the ANFIS structure [24]. 

The first layer is the fuzzification layer where crisp inputs are transformed into membership values 

by using the membership function at the node i. The output can be stated as equation (2). 

𝑂𝑖
1 = 𝜇𝑥𝑖

(𝑥)          (2) 

Where 𝜇𝑥𝑖 is the 𝑖𝑡ℎ membership function for the input 𝑥. 



The second layer is the rule base layer. It calculates the firing strength for the next layer by 

multiplying linguistic inputs (assuming 2) to node i of this layer (equation (3)).  

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝑥𝑖

(𝑥) ×  𝜇𝑦𝑖
(𝑦)         (3) 

The third layer performs the normalization of membership values. The normalized firing strength 

at node i of this layer is obtained using equation (4). 

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ = 𝑤𝑖/ ∑ 𝑤𝑗

𝐾
𝑗=1 ;  𝑖 = 1, 2,3 … 𝐾      (4) 

K denotes number of nodes in this layer, with each corresponding to a unique rule.  

The fourth layer is the adaptive layer. The relation between inputs (assuming 2, i.e., x and y) and 

output can be defined as equation (5).  

𝑂𝑖
4 = 𝑤𝑖̅̅ ̅ × 𝑝𝑖 = 𝑤𝑖̅̅ ̅ × (𝑠𝑖𝑥 + 𝑓𝑖𝑦 + 𝑛𝑖),      (5) 

Where parameters si, fi, and ni of node i in this layer are called consequent parameters. 

The fifth layer is the de-fuzzification layer and the output is the final result of all fuzzy rules. The 

results can be described as equation (6).  

𝑂5 = ∑ 𝑤𝑖̅̅ ̅ × 𝑝𝑖
𝐾
𝑖=1 ; 𝑖 = 1, 2, … 𝐾        (6) 

Where 𝑝𝑖 denotes the inferred output of the ANFIS rule i. Like neural network, in an ANFIS 

structure, the inputs of each layer are obtained from the nodes of the previous layer. Considering 

an ANFIS network with n inputs (𝑥1 … 𝑥𝑛) and each input having 𝑚 membership functions (MFs), 

the number of nodes (𝑁) in first layer is equal to the product of 𝑛 as number of inputs and 𝑚 as 

number of MFs (𝑁 = 𝑚. 𝑛). The number of nodes in other layers (layer 2–4) relates to the number 

of fuzzy rules [24]. Figure 2 illustrates a typical ANFIS structure showing 5 different layers.  



 

Figure 2: Schematic of ANFIS architecture for two inputs and two rules based on the first-order 

Sugeno model [24] 

 

 Construction of an ANFIS model requires the partition of the input-output data into rule 

patches. This can be achieved by using three different Generate Fuzzy Inference System (𝐺𝐸𝑁𝐹𝐼𝑆) 

methods, i.e., grid partitioning, subtractive clustering method, and fuzzy c-means (FCM)  [35]. In 

the Matlab FUZZY Toolbox, these are named GENFIS1, GENFIS2, and GENFIS3.  GENFIS1 

produces grid partitioning of the input space and GENFIS2 uses subtractive clustering to produce 

a scattering partition to define the membership functions. GENFIS3 uses fuzzy c-means (FCM) as 

a mechanism to cluster the inputs. Apart from structure identification, a fuzzy inference system 

has many other parameters that can be optimized, i.e., membership-function parameters and rule-

consequent parameters [35]. Success in obtaining a reliable and robust model depends heavily on 

the choice of the domain used for construction and training purposes. Important factors that 

contribute to produce an accurate ANFIS model include type of fuzzy based rule, number of MFs, 

and their function types. In this paper, a first order TSK type fuzzy-based rule is used for the 

creation of predictive models. Thereafter, different MF types (triangular, generalized bell, 



Gaussian, Gaussian combination) are applied to obtain the best model that produces minimum root 

mean square error (RMSE) and mean absolute percentage error (MAPE).  

 

2.3. Leave-One-Out Cross Validation (LOO-CV) Approach 

The leave-one-out cross-validation (LOO-CV) approach is a useful validation method for 

small data sets and has been applied for model selection [36]. In this technique, one sample is left 

out and the remaining samples are utilized to build a model. If 𝑛 numbers of samples are available 

in a given data set, each model is trained with 𝑛 − 1 samples and tested with the sample left out.  

This process is repeated 𝑛 times until every sample in the data set are utilized once as a cross-

validation instance. Finally, the RMSE and MAPE are calculated using equations 7 and 8, 

respectively. The model with minimum RMSE and MAPE is then selected [26].  

RMSE = √
1

𝑛
∑ (𝑒𝑖 − 𝑎𝑖)2𝑛

𝑖=1               (7) 

MAPE =
1

n
∑ ( ǀ𝑒𝑖 − 𝑎𝑖ǀ )/𝑒𝑖

𝑛
𝑖=1        (8) 

Where, 𝑛 total number of samples,  𝑒𝑖 is experimental output, and 𝑎𝑖 is ANFIS model predicted 

output.   

3. Experiments and Results 

3.1. Experiments 

FSW can be conducted in two control settings: position and load control. In position 

control, plunge depth is controlled along with spindle speed and welding speed. Whereas in load 

control, plunge force is controlled along with spindle speed and welding speed. In the current 

investigation, FSW was performed employing load control. A total of 73 weld schedules with 

different combinations of three FSW critical process parameters (rotational speed, welding speed, 

and plunge force) were conducted. Welding experiments were carried out on I-Stir PDS and UWS 



FS welders at the Michoud Assembly Facility (MAF) in New Orleans, Louisiana. A photograph 

of the PDS FS welder FSW setup with pin tool dimensions are illustrated in Figure 3. The 

experimental setup includes a fixture, pin tool, and welding material that remain constant through 

the entirety of the work. The fixture utilized for welding entailed a steel anvil. Steel bars (often 

called as “chill bars”) were placed on the Advancing Side (AS) and Retreating Side (RS) of the 

panels and were used for clamping down the panels. The tool utilized is a two-piece fixed pin tool. 

The shoulder, made from H13 steel, has a scrolled shoulder of 30.48 mm diameter with 0.76 mm 

deep counter clockwise (CCW) spiral scroll of 2.92 mm pitch. The pin, which is interchangeable, 

is a 10° tapered cone of MP159 Nickel-Cobalt based multiphase alloy, 10.16 mm average diameter 

at the shoulder and extending to a depth of 7.112 mm. The material is  8.13 mm thick AA2219-

T87 (6.7% Cu, 0.01% Mg, 0.27% Mn, 0.13% Fe, 0.01% Si, 0.12% Zr, 0.05% Ti, balance Al in 

weight percent). Each panel comprised of two plates 152 mm wide and 609 mm long and joined 

together along the center line by a conventional butt-joint. To save material, two schedules were 

experimented on each panel. A weld schedule entails three process variables including plunge 

force, welding speed, and spindle rotational speed. The ranges of parameters are: rotational speed 

(𝑁) 200 rpm to 450 rpm, welding speed (𝑉) 76.2 mm/min to 266.7 mm/min, and plunge force (𝐹𝑧) 

12.46 kN to 37.83 kN.  



 

Figure 3: Photograph of (a) PDS FS welder and (b) FSW setup showing three critical process 

parameters (𝐹𝑧, 𝑉, 𝑁) with pin-tool dimensions  

 



After welding, the crown surfaces of each panel were ground. Specimens were thereafter 

prepared for tensile tests. Three tensile specimens for each weld schedule were cut according to 

AWS specification for FSW of aluminum alloys [37] and tested according to ASTM E8/8M-11 at 

1.0 mm/min cross head speed. Dog-bone tensile test specimens before and after tensile tests are 

shown in Figure 4(a,b). During the tensile testing an extensometer was attached at the center of 

the specimens to acquire engineering strain values (Figure 4c).  

 

Figure 4: Photograph of tensile test specimens before test (a), specimens after test (b), and setup 

with extensometer (c) 

 

3.2. Experimental results 

For a particular pin tool and clamping condition, the quality of a weld largely depends on 

three critical process parameters, i.e. spindle speed (𝑁), welding speed (𝑉), and plunge force (𝐹𝑧). 

http://www.astm.org/DATABASE.CART/HISTORICAL/E8E8M-11.htm


All three critical process parameters determine the heat input [38, 39]. Usually high spindle speed 

results in high heat generation, while high welding speed results in low heat generation. Moreover, 

high plunge force is responsible for large heat generation and vice-versa. A window exists where 

adequate welding temperatures produce defect-free FSW joints. Excessive high temperatures 

promote voids and underfill and corresponding schedule is defined as a ‘hot weld’. Inadequate 

temperatures promote Wormholes (WH) or internal cavities, Trenching (TR) or surface cavities, 

and Incomplete Penetration (IP) and are considered ‘cold welds’. Three categories of weld quality 

are distinguished based on weld process parameters and anticipated weld defects. They are (i) hot 

weld (high spindle speed, low weld speed, and high plunge force), (ii) cold weld (low spindle 

speed, high weld speed, and low plunge force), and (iii) nominal weld (optimum spindle speed, 

welding speed, and plunge force). Stress-strain curves for base metal, nominal, hot, and cold welds 

are shown in Figure 5.  

 

Figure 5: Stress-strain plots of base and FS welded AA2219-T87 specimens (base, nominal, hot, 

and cold welds) 



Nominal welds exhibited UTS and toughness values equal or more than 66% and 45% of base 

metal values. The variation in tensile strength and toughness values of nominal, hot, and cold welds 

are related to weld defects and microstructure. Typical weld nugget (WN) microstructures of 

nominal, hot, and cold welds are shown in Figure 6. The grain growth in weld nugget (WN) zone 

is related to heat input during the welding process [40]. The weld nugget of a defect free FSW 

joint is commonly composed of fine equiaxed grains (Figure 6a). The high heat input in hot weld 

has resulted in growth of dynamically recrystallized grain in weld nugget zone (Figure 6b).  

Alternatively, low heat input in cold welds hinder formation of fully dynamically recrystallized 

equiaxed grain (Figure 6c). The presence of weld defects and variations in microstructures are 

related to lower tensile properties of cold and hot welds joints.          

 

Figure 6: Typical SEM micrographs showing microstructure in weld nugget (WN) of (a) 

nominal weld (NW), (b) hot weld (HW), and (c) cold weld (CW) joints 



Figure 7 illustrates variation of UTS and toughness values with defect type. Nominal welds 

were observed to have highest average UTS (332 MPa) and toughness (37 MJ/m³), followed by 

HWs with UF and micro-voids (311 MPa and 24 MJ/m³), CW with IP (271 MPa and 15 MJ/m³), 

CW with WH (273 MPa and 10 MJ/m³), and CW with TR (170 MPa and 5 MJ/m³). Average UTS 

with weld process parameters are listed in Table 1. 

 

Figure 7: Ultimate tensile stregnth (UTS) and tensile toughness of FSW joint with different weld 

defects (NW: defect free nominal weld, HW: hot weld with underfill and micro-voids, CW-IP: 

cold weld with incomplete penetration,  CW-WH: cold weld with wormhole, CW-TR: cold 

weld with trenching) 

 

 



Table 1: Friction stir welding process parameters and ultimate tensile strengths of AA-2219-T87 

joints 

SL 

# 

N 

(rpm) 

V 

(mm/min) 

Fz 

(kN) 

EFI 

(kN) 

UTS 

(MPa) 

SL 

# 

N 

(rpm) 

V 

(mm/min) 

Fz 

(kN) 

EFI 

(kN) 

UTS 

(MPa) 

1 300 152.40 21.13 0.84 288.12 38 350 76.20 16.68 1.07 324.41 

2 300 152.40 24.47 0.97 310.24 39 300 76.20 14.23 0.83 176.95 

3 350 152.40 17.79 0.77 172.95 40 300 152.40 27.58 1.10 317.33 

4 350 152.40 15.57 0.67 166.63 41 350 76.20 14.01 0.89 314.08 

5 200 152.40 26.69 0.84 283.38 42 350 76.20 17.79 1.14 314.44 

6 200 152.40 33.36 1.06 323.31 43 300 130.56 24.47 1.06 333.74 

7 450 152.40 33.36 1.66 260.17 44 350 152.40 26.69 1.16 314.44 

8 450 152.40 28.91 1.44 290.59 45 350 88.90 20.02 1.17 315.53 

9 450 152.40 35.59 1.77 211.72 46 300 101.60 22.24 1.11 335.62 

10 300 203.20 21.13 0.71 178.06 47 300 101.60 17.79 0.89 192.24 

11 300 203.20 24.47 0.83 279.81 48 200 135.38 26.69 0.90 267.32 

12 350 76.20 15.57 0.99 331.68 49 200 152.40 30.25 0.96 272.57 

13 350 152.40 20.02 0.87 353.98 50 300 76.20 17.79 1.04 320.65 

14 300 152.40 22.24 0.88 339.66 51 400 101.60 17.79 1.04 337.37 

15 300 152.40 20.02 0.79 279.06 52 400 77.98 15.57 1.06 327.46 

16 300 203.20 22.24 0.75 315.00 53 200 203.20 33.36 0.90 268.33 

17 300 203.20 20.02 0.68 237.74 54 350 88.90 17.79 1.04 343.43 

18 350 266.70 30.25 0.96 356.36 55 350 152.40 22.24 0.96 352.29 

19 350 236.98 26.69 0.90 359.96 56 350 152.40 20.02 0.87 349.41 

20 350 118.62 20.02 1.00 347.61 57 250 170.18 26.69 0.90 293.75 

21 350 88.90 16.46 0.96 333.45 58 200 152.40 36.48 1.15 326.49 

22 300 228.60 30.25 0.96 326.33 59 400 76.20 15.57 1.07 340.99 

23 200 152.40 31.14 0.98 313.99 60 350 152.40 24.47 1.06 336.01 

24 300 203.20 26.69 0.90 318.59 61 400 76.20 14.68 1.01 317.90 

25 200 152.40 27.58 0.87 267.75 62 300 76.20 22.24 1.30 322.09 

26 225 152.40 37.81 1.28 320.40 63 400 76.20 13.34 0.92 330.69 

27 300 152.40 33.36 1.32 292.16 64 250 76.20 23.58 1.25 315.43 

28 350 152.40 28.91 1.25 317.89 65 250 76.20 20.91 1.11 311.93 

29 300 101.60 16.01 0.80 167.38 66 300 203.20 31.14 1.05 343.12 

30 300 101.60 24.47 1.22 309.77 67 300 203.20 33.36 1.13 347.34 

31 350 88.90 15.57 0.91 326.84 68 300 228.60 33.36 1.06 346.34 



32 350 88.90 22.24 1.30 306.69 69 300 228.60 35.59 1.13 335.09 

33 350 76.20 12.46 0.80 157.56 70 300 228.60 31.14 0.98 354.05 

34 350 76.20 21.35 1.36 295.15 71 400 228.60 33.36 1.24 341.18 

35 300 152.40 21.69 0.86 335.87 72 400 228.60 24.47 0.91 347.44 

36 300 152.40 27.80 1.10 324.27 73 400 228.60 26.69 0.99 353.71 

37 350 76.20 14.46 0.92 320.25       

 

4. ANFIS Modeling and Validation 

4.1. Input variables for ANFIS model 

To obtain an optimized ANFIS model, a total of four input variables were utilized. The 

initial study began with only the three critical process parameters (𝑁, 𝑉, and 𝐹𝑧) as input variables. 

Thereafter, another input variable (i.e. empirical force index) is introduced to build a better ANFIS 

model. The empirical force index (𝐸𝐹𝐼) is derived from the three critical process 

parameters (𝑁, 𝑉 𝑎𝑛𝑑 𝐹𝑧), as discussed below.  

 In a FSW process, the spindle speed (𝑁) and welding speed (𝑉) has opposite consequences on the 

frictional heat generation [41]. It is believed that a better way to represent welding process 

parameters in a more concise manner can be achieved by combining 𝑁 and 𝑉 together [42] for the 

purpose of creating a 2-D plot to represent weld schedules. A dimensionless speed ratio (R) has 

been proposed as a function of 𝑁 and 𝑉 for correlating with plunge force (𝐹𝑧). To obtain a 

dimensionless speed ratio, 𝑁 was multiplied with the circumference of the pin-tool (2𝜋𝑟) and 

divided with V. After multiplying N with (2𝜋𝑟), a unit similar to welding speed is obtained 

(𝑖. 𝑒. 𝑚𝑚/min ). The dimensionless speed ratio (𝑅) is expressed in equation (9). Here, r is the pin 

tool radius. 

𝑅 =  
2𝜋𝑟𝑁

𝑉
          (9) 



The effect of individual process parameters on UTS is shown in Figure 8. Figure 8a plots speed 

ratio vs. UTS for two particular plunge forces, i.e. 22.25 kN and 26.69 kN whereas Figure 8b plots 

plunge force vs. UTS for two different speed ratios (73.27 and 146.53).  For a constant plunge 

force a narrow range of speed ratios exist where defect-free welds with high tensile properties are 

obtained. Furthermore, at a constant speed ratio a narrow range of plunge forces exists where 

maximum tensile properties are obtained. Away from the desirable window, low plunge force 

results in cold welds and high plunge force result in hot welds. As the plunge force increases, a 

lower speed ratio is required to obtain better tensile strength. Alternatively, as the speed ratio 

increases, a lower plunge force is required to obtain better tensile strength.  

 

Figure 8: Effect speed ratio (R) on tensile strength: (a) Speed ratio vs. UTS at constant 𝐹𝑧, (b) 𝐹𝑧 

vs. UTS at constant speed ratio 

From Figure 8, it is clear that all three critical process parameters (𝑁, 𝑉, and 𝐹𝑧) have direct effect 

on tensile strength. Consequently, the plunge force (𝐹𝑧) vs. speed ratio (𝑅) is plotted (Figure 9) to 

identify defective and defect free weld schedules. Any schedule within the bounded region 

produces defect-free nominal welds. Two lines have been superimposed to illustrate the 

(nominal/hot) and (nominal/cold) weld boundaries. Schedules above the bounded line contributes 



to hot welds and schedules below the bounded line produce cold welds. For nominal welds, the 

values of 𝐹𝑧 vs.  𝑅 constitute a field and their relation in non-linear. It is also observed that as the 

speed ratio increases, a lower plunge force is required for achieving defect free nominal welds with 

higher UTS. Using a non-linear regression approach, a correlation between plunge force and speed 

ratio for producing defect free nominal welds can be written as equation (10).  

  𝐹𝑧 = 𝐶1(𝑅)−𝐶2                   (10) 

Where, 𝐹𝑧 is the plunge force and 𝑅 is the dimensionless speed ratio. The Constant 𝐶1 and the 

exponent 𝐶2 depend on welding material, pin tool design, and other welding conditions (e.g., 

clamping condition, chill bar, backing plate, environmental temperature conditions, etc.). These 

constants C1 and C2 can be determined experimentally. In the current study, the values of 𝐶1 and 

the exponent 𝐶2 are 256.93 and 0.561, respectively, fitted from defect-free nominal weld data. In 

other words, equation (10) has been found to be valid for defect-free nominal welds. Now, the EFI 

can be written as seen in equation (11), which is a dimensionless ratio. When this non-dimensional 

EFI value deviates from unity, defect free welding conditions are lost.  

         𝐸𝐹𝐼 =
𝐹𝑧

𝐶1(𝑅)−𝐶2
                                                                                (11) 

 

 

  



 

Figure 9: Welding process parameter window and correlation among three critical process 

parameters (𝑁, 𝑉, 𝐹𝑧) for defect free nominal weld schedules  

 

 The empirical force index vs. experimental UTS plot is shown in Figure 10, which indicates 

that for EFI values deviating from one, a drop in UTS occurs. The change in EFI from 1 on the left 

and right hand side of Figure 10 is related to the defects formed during welding. A range of EFI 

values exist where high UTS can be obtained. The non-linear behavior as well as uncertainty in 

process parameters and tensile strength makes it difficult to model the correlation between process 

parameters and UTS. This is the main reason why statistical learning modeling (i.e. ANFIS and 

ANN) has been employed to develop a predictive model.    



 

Figure 10: Experimental transverse ultimate tensile strength (UTS) of friction stir welded 

aluminum alloy joints are plotted against empirical force index (EFI)   

 

4.2. Building a better ANFIS model to predict tensile strength 

The experimental investigation indicates three critical process parameters (𝑁, 𝑉, 𝐹𝑧) have 

direct influence on UTS of FSW joints. It is desirable to obtain a model that is able to accurately 

predict tensile strength for a given set of FSW process parameters. In this study an optimized 

adaptive neuro-fuzzy inference system (ANFIS) is developed to predict tensile strength as a 

function of four input variables (𝑁, 𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼) using experimental data listed in Table 1.  

A preliminary study was first conducted using an exhaustive search technique to obtain a 

best input parameter set. Before the exhaustive search, all 73 data points were randomized and 

divided into 50 training instances and 23 testing data instances. The same procedure was repeated 

four times. Figure 11 indicates that for the same data set, different runs result in different results. 



The variation might be caused by randomization and the bias in dividing training and testing data. 

To avoid this issue, all possible combinations of four input variables were subsequently tested with 

the leave-one-out cross validation (LOO-CV) technique to develop the best ANFIS model. Details 

of developing the optimized ANFIS model are discussed below.   

 

 

Figure 11: Variations of root mean square (RMS) error for different set of training and testing 

data  

 

Initial modeling began with the three input variables: rotational speed (𝑁), welding speed 

(𝑉), and plunge force (𝐹𝑧).  Utilizing grid partitioning fuzzy interference system (𝐺𝐸𝑁𝐹𝐼𝑆1) with 

different combinations of three input variables (N, V, Fz) and varied number and type of 

membership functions (MFs) a total of 280 models were developed. Each model was related to a 

particular membership function and number of membership function for each input variable. 

Number of membership functions was varied from ‘1 to 3’ along with ‘5’ different types of 

membership functions (i.e. trimf, gbellmf, gaussmf, gauss2mf, and pimf). In the ANFIS model, at 



least one of the input variable’s ‘number of membership functions (# MFs)’ should be greater than 

one. Therefore, the number of models can be defined as equation (12). 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑀𝑜𝑑𝑒𝑙𝑠 = [(𝑛)𝑖 × 𝑚 −  𝑚]  × 𝑐        (12) 

Where ‘n’ is the number of membership functions (n=3), ‘i’ denotes total number of input variable 

utilized to build model, ‘m’ is the different types of MFs (m=5), and ‘c’ is the number of 

combination of input variables. For example, 3 individual input variables ([N], or [V], or [Fz]) 

result in (3¹ × 5 – 5) × 3= 30 models. Similarly, 3 different combinations of two input variables 

([N, V], or [N, Fz], or [V, Fz]) result in (3² × 5 - 5) × 3= 120 models and 1 combination of three 

input variables ([N, V, Fz]) result in (3³ × 5 – 5) × 1= 130 models. Selected models with different 

combinations of input variables, types and numbers of membership functions associated with input 

variables are listed in Table 2. The ANFIS model with (1, 1, 2) Gaussian membership functions 

for the three input variables (𝑁, 𝑉, 𝐹𝑧) produced the lowest RMSE (36.87 MPa) and MAPE (10.92 

%) values.  

   

Table 2: Result from ANFIS model developed utilizing different combinations of three input 

variables (𝑁, 𝑉, 𝐹𝑧) along with types and numbers of membership functions associated with input 

variables 

Number of 'mf'    

N  V  Fz  Type of 'mf' RMSE (MPa) MAPE (%) 

3 - - trimf 50.74 14.70 

- 2 - pimf 50.80 15.17 

- - 2 pimf 51.60 15.99 

3 1  pimf 50.40 14.65 

- 2 2 gbellmf 43.29 12.45 

- 1 3 gaussmf 45.56 13.67 

1 1 2 gaussmf 36.87 10.92 

 



Based on the LOO-CV technique a total of 73 data pairs of actual experimental outputs and ANFIS 

predicted outputs were obtained for each model. In Figure 12, the ANFIS predicted and 

experimental UTS values are plotted for best ANFIS model developed using three input variables. 

If the actual experimental and ANFIS predicted UTS values match perfectly, then all points should 

follow the diagonal line. 

 

Figure 12: Experimental and ANFIS model predicted UTS plotted for best the model developed 

utilizing three input variables (𝑁, 𝑉, 𝐹𝑧) 

 

For further optimization, the empirical force index (EFI) was added as an input variable 

along with the three process parameters (𝑁, 𝑉, 𝐹𝑧). A total of 920 models were developed utilizing 

different combinations of the four input variables (𝑁, 𝑉, 𝐹𝑧, 𝐸𝐹𝐼) where EFI was reserved at every 

combination, along with varying number and type of membership functions. With different 



number and type of membership functions, using only individual input variable (EFI) result in a 

total of (3¹ × 5 – 5) × 3= 10 models. Similarly 3 different combinations of two input variables ([N, 

EFI],or [V, EFI], or [Fz, EFI]) result in (3² × 5 - 5) × 3= 120 models,  3 different combination of 

three input variables ([N, V, EFI], [V, Fz, EFI], [V, Fz, EFI]) result in (3³ × 5 – 5) × 3= 390 models, 

and 1 combination of four input variables ([N, V, Fz, EFI]) result in (34 × 5 – 5) × 1= 400 models. 

As mentioned earlier, each model is related to a particular membership function (i.e. trimf, gbellmf, 

gaussmf, gauss2mf, pimf) and number of membership function (i.e. 1 to 3) for each input variable. 

Selected models with low RMSE and MAPE values are listed in Table 3.  It is very interesting to 

observe that the ANFIS model developed utilizing only EFI as the input variable results in lower 

RMSE (36.51 MPa) and MAPE (9.90 %) values than the best model developed with 3 input 

variables without incorporating EFI (Table 2). In the current investigation, ANFIS models were 

developed based on first order TSK inference model. The highly nonlinear behavior between weld 

process parameters and UTS might result in higher RMSE and MAPE values in model developed 

without EFI. In EFI, weld process parameters are non-linearly related; this non-linear relation 

might be the reason for lower RMSE and MAPE values in ANFIS model developed utilizing EFI.  

Nevertheless, EFI incorporated with other input variables was found to obtain the lowest 

RMSE and MAPE values. Specifically, the ANFIS model with (2, 1, 3) - membership functions 

for 𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼 produced the lowest RMSE (29.7 MPa) and MAPE (7.7%) values. Similarly, 

the experimental and ANFIS model predicted UTS values are plotted in Figure 13. In Figure 13, a 

lesser amount of scattering is observed as compared to Figure 12. Lower scattering indicates a 

better model with lower RMSE and MAPE values; however, there are discrepancies observed 

between predicted and actual UTS data. The discrepancies might be related to the large variations 



in experimental UTS values produced by different weld schedules. Taking defect-free nominal 

welds as examples, UTS values vary from 310 to 360 MPa with a standard deviation of 13 MPa.  

    Table 3: Result from ANFIS model developed utilizing four input variables (𝑁, 𝑉, 𝐹𝑧, 𝐸𝐹𝐼)   

Number of 'mf'    

N  V  Fz  EFI Type of 'mf' RMSE (MPa) MAPE (%) 

   3 gaussmf 36.51 9.90 

1   4 gauss2mf 34.76 9.34 

 2  3 pimf 30.84 8.28 

  2 3 pimf 31.82 8.78 

1 2  3 pimf 31.02 7.96 

1  2 3 pimf 31.86 7.87 

 2 1 3 pimf 29.70 7.75 

1 1 2 3 pimf 30.68 7.81 

 

 

Figure 13: Experimental and ANFIS model predicted UTS plotted for best the model developed 

utilizing three input variables (𝑉, 𝐹𝑧, 𝐸𝐹𝐼) 



In previous sections, GENFIS1 structure was applied and optimized by varying 

combinations of input variables, number, and type of membership functions. As mentioned before, 

𝐺𝐸𝑁𝐹𝐼𝑆1 produces grid partitioning of the input space. To investigate performances, the other 

two partitioning methods for generating initial fuzzy inference system, namely 𝐺𝐸𝑁𝐹𝐼𝑆2 

and 𝐺𝐸𝑁𝐹𝐼𝑆3, were utilized for modeling (also available in the MATLAB fuzzy toolbox). For 

both GENFIS2 and 𝐺𝐸𝑁𝐹𝐼𝑆3, the leave-one-out cross-validation (LOO-CV) technique was also 

applied as in 𝐺𝐸𝑁𝐹𝐼𝑆1. Using the 𝐺𝐸𝑁𝐹𝐼𝑆2 structure, optimized ANFIS model was developed 

by varying two parameters, namely ‘𝑟𝑎𝑑𝑖𝑖’, ‘𝑒𝑝𝑜𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟’, and number of input variables 

(𝑁, 𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼). The ANFIS model with 𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼 as input variables and  ′𝑟𝑎𝑑𝑖𝑖 =  0.5′  

‘epoch=20’ produces the lowest RMSE (38.40 MPa) and MAPE (10.06 %). In the case 

of 𝐺𝐸𝑁𝐹𝐼𝑆3, number of input variables, ‘𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠’ and ‘𝑒𝑝𝑜𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟’ were 

varied in the process to obtain the best ANFIS model. Using  𝐺𝐸𝑁𝐹𝐼𝑆3, the ANFIS model with 

𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼  as input variables and ‘number of clusters=4’ and ‘epoch numbers = 20’ has the 

lowest RMSE (38.71 MPa) and MAPE (10.28 %). In summary, the ANFIS model generated with 

the 𝐺𝐸𝑁𝐹𝐼𝑆1 structure using three input variables (𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼) results in the lowest RMSE 

(29.7 MPa) and MAPE (7.7 %) values. 

 For validation of the developed ANFIS model, 6 schedules were experimented having 

different spindle speed (𝑁), welding speed (𝑉), and plunge force (𝐹𝑧). Tensile strength for these 

tests were obtained and compared to the ANFIS model.  Welding process parameters along with 

experimental and ANFIS predicted UTS are listed in Table 4. ANFIS predicted UTS values are 

comparable with the experimental data. The details of the best ANFIS model are given in Table 5. 

 

Table 4: Comparison between experimental and ANFIS predicted UTS 



Schedule N 

(RPM) 
V 

(mm/min) 
Fz 

(kN) 
EFI  Experimental 

UTS (MPa) 
ANFIS predicted 

UTS (MPa) 
1 250 228.60 36.48 1.04 336.69 341.08 
2 250 228.60 40.03 1.14 346.47 344.09 
3 250 203.20 28.91 0.88 285.38 286.29 
4 400 203.20 20.91 0.83 314.92 317.86 
5 400 203.20 23.58 0.94 357.46 349.02 
6 400 203.20 26.69 1.06 348.17 340.16 

 

Table 5: ANFIS parameters for the best model  

Type of Inference: Sugeno (If x is 𝑀𝐹𝑥, y is 𝑀𝐹𝑦, and z is 𝑀𝐹𝑧, then  output w=f(x,y,z)) 

Number of inputs =3 [(x, y, z)=(V, Fz, EFI)];  Number of output = 1 [w=UTS] 

Number of input MFs for [𝒙, 𝒚, 𝒛] =[2,1,3]; Consequent Output: 6 [𝑤1,  𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6] 

Number of Rules = 6 

1. If (x is 𝑀𝐹1𝑥) and (y  is 𝑀𝐹1𝑦) and (z  is 𝑀𝐹1𝑧)  then (w is 𝑤1)  

2. If (x is 𝑀𝐹1𝑥) and (y  is 𝑀𝐹1𝑦) and (z  is 𝑀𝐹2𝑧)  then (w is  𝑤2)  

3. If (x  is 𝑀𝐹1𝑥) and (y  is 𝑀𝐹1𝑦) and (z  is 𝑀𝐹3𝑧)  then (w is 𝑤3) 

4. If (x  is 𝑀𝐹2𝑥) and (y  is 𝑀𝐹1𝑦) and (z  is 𝑀𝐹1𝑧)  then (w is 𝑤4)  

5. If (x  is 𝑀𝐹2𝑥) and (y  is 𝑀𝐹1𝑦) and (z  is 𝑀𝐹2𝑧)  then (w is 𝑤5)  

6. If (x  is 𝑀𝐹2𝑥) and (y  is 𝑀𝐹1𝑦) and (z  is 𝑀𝐹3𝑧)  then (w is 𝑤6) 

Input1 Range : V= [76.2  266.7] 

Input2 Range : Fz = [12.46  37.81] 

Input3 Range: EFI=  [0.674  1.774]  

Output Range : UTS= [157.6  360] 

Input MF Types: pimf (𝜑 (𝑥;  𝑎, 𝑏, 𝑐, 𝑑)) = {  0,       𝑥 ≤ 𝑎 

                                                                      2(
𝑥−𝑎

𝑏−𝑎
)2 ;    𝑎 ≤ 𝑥 ≤

𝑎+𝑏

2
 

                                                                      1-2× (
𝑥−𝑏

𝑏−𝑎
)2 ;    

𝑎+𝑏

2
≤ 𝑥 ≤ 𝑏 

                                                                      1-2(
𝑥−𝑐

𝑑−𝑐
)2 ;    𝑐 ≤ 𝑥 ≤

𝑐+𝑑

2
 

                                                                     2(
𝑥−𝑑

𝑑−𝑐
)2 ;    

𝑐+𝑑

2
≤ 𝑥 ≤ 𝑑 

                                                                     0,       𝑥 ≥ 𝑑  } 

1𝑠𝑡 𝑀𝐹   parameter of x, 𝑀𝐹1𝑥 [𝑎, 𝑏, 𝑐, 𝑑] = [-57.15  19.05  133.3  209.5]  

2𝑛𝑑 𝑀𝐹  parameter of x, 𝑀𝐹2𝑥 [𝑎, 𝑏, 𝑐, 𝑑] = [133.3  209.5  323.9  400.1]  

1𝑠𝑡 𝑀𝐹   parameter of y, 𝑀𝐹1𝑦 [𝑎, 𝑏, 𝑐, 𝑑] = [-Inf  -Inf  Inf  Inf]  

1𝑠𝑡 𝑀𝐹   parameter of z, 𝑀𝐹1𝑧 [𝑎, 𝑏, 𝑐, 𝑑] = [0.29  0.51  0.82 1.03] 

2𝑛𝑑 𝑀𝐹  parameter of z, 𝑀𝐹2𝑧 [𝑎, 𝑏, 𝑐, 𝑑] = [0.83  1.04 1.39  1.61]   

3𝑟𝑑 𝑀𝐹   parameter of z,  𝑀𝐹3𝑧 [𝑎, 𝑏, 𝑐, 𝑑] = [1.39  1.61  1.93  2.16]  



Output  parameters: w= 𝒇(𝒙, 𝒚, 𝒛) = 𝒂𝟎 + 𝒂𝟏𝒙 + 𝒂𝟐𝒚 + 𝒂𝟑𝒛 

Output parameters of rule 1: [𝑤1: 𝑎0, 𝑎1, 𝑎2, 𝑎3] = [2.46  -11.65  1293  -919.2]     

Output Parameters of rule 2: [ 𝑤2: 𝑎0, 𝑎1, 𝑎2, 𝑎3] = [-0.0089  -0.86  -49.18  395.41] 

Output parameters of rule 3: [𝑤3: 𝑎0, 𝑎1, 𝑎2, 𝑎3] = [6.39  -20.59  -1.079  0.041]    

Output parameters of rule 4: [𝑤4: 𝑎0, 𝑎1, 𝑎2, 𝑎3] = [1.05  -9.21  661.8  -252]    

Output parameters of rule 5: [𝑤5: 𝑎0, 𝑎1, 𝑎2, 𝑎3] = [0.22  1.25  9.61  243.9]    

Output parameters of rule 6: [𝑤6: 𝑎0, 𝑎1, 𝑎2, 𝑎3] = [0.91  -2.93  -0.15  0.0059]    

 

Lastly, ANFIS predicted UTS values are plotted in Figure 14 for the model generated 

utilizing two input variables (V and EFI). For a particular weld speed (V), a range of empirical 

force indexes (EFI) exist where higher UTS values can be obtained. The Surface plot is helpful to 

visualize required welding process parameters to achieve certain tensile strength values.  

 

Figure 14: Surface plot showing ANFIS predicted ultimate tensile strength (UTS). Model 

generated utilizing weld speed (𝑉) and empirical force index (EFI) as input variables 

5. ANN Modeling and Validation 



In ANN model construction, a preliminary analysis was carried out by using all 4 input 

variables (𝑁, 𝑉, 𝐹𝑧, 𝐸𝐹𝐼) and dividing the 73 data sets into training (43 data), testing (15 data), and 

validation (15 data) sets. Before partitioning, the data was randomized. For the same data set and 

same ANN structure (4-10-1), different runs resulted in different results. To avoid the variation, 

the LOO-CV approach was utilized to build ANN models, similar to building ANFIS models. 

Efforts were made to find the best model to ensure fair comparison. Initially, all 4 data input 

variables (𝑁, 𝑉, 𝐹𝑧, 𝐸𝐹𝐼) were utilized along with different network training functions (i.e. 

Levenberg-Marquardt back propagation, quasi-Newton back propagation, and gradient descent 

with adaptive back propagation) in a MATLAB (R2012a) platform to obtain lowest RMSE and 

MAPE. It was found that Levenberg-Marquardt back propagation network training function 

produced best performance.  

Thereafter, different combinations of input variables were utilized with single hidden layer 

and 10 nodes in hidden layer. For each case, the program was repeated 6 times and average RMSE 

and MAPE values calculated (Table 6). Similar to ANFIS model, the ANN model based on the 

following three input variables (𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼) produced lowest RMSE (38.28 MPa) and MAPE 

(10.64 %) values. For further optimization, the number of nodes in the hidden layer was varied 

from 3 to 15 to obtain the best model with three input variables (𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼). For each case, 

the program was run 6 times to obtain average RMSE and MAPE values. It was found that 5 nodes 

in the hidden layer resulted in best performance (RMSE=36.70 MPa, MAPE = 10.09%). The basic 

details of the best ANN model is listed in Table 7.  

 



Table 6: RMSE and MAPE values for different combination of input variables (Number of hidden 

layer=1; Number of nodes in hidden layer = 10; Training function= Levenberg-Marquardt back 

propagation) 

Input Parameters RMSE MAPE 

N V Fz EFI (MPa) (%) 

✓ ✓ ✓ ✓ 41.03 12.38 

  ✓ ✓ ✓ 38.28 10.64 

✓ ✓ ✓  46.36 12.9 

✓ ✓  ✓ 42.27 11.61 

✓   ✓ ✓ 38.87 10.85 

✓ ✓   61.79 17.39 

✓  ✓ ✓ 52.52 15.18 

✓   ✓ 45.62 12.59 

 ✓ ✓  56.85 16.05 

 ✓  ✓ 43.5 11.57 

   ✓ ✓ 43.31 11.95 

      ✓ 49.68 13 

  ✓  68.71 19.14 

 ✓   57.14 16.46 

✓       53.35 15.66 

 

Table 7: Basic details of the ANN model with lowest RMSE and MAPE  

ANN Model  

Network Configuration 3-5-1 

Number of input nodes 3 (V, Fz, EFI)  

Number of output nodes 1 (UTS) 

Number of hidden layer 1 

Number of hidden nodes 10 

Number of epoch 100 

Learning factor (Mu) 0.001 

Training function Levenberg-Marquardt back propagation  

 

6. Conclusions 

In the current investigation, an ANFIS model has been developed utilizing weld process 

parameters to predict UTS of FS welded aluminum alloy joints.  The optimization process involves 



testing different combinations of four input variables (rotational speed, welding speed, plunge 

force, and empirical force index) and varying ANFIS parameters to obtain a model with minimum 

error (RMSE and MAPE). For comparison, the artificial neural network (ANN) approach was also 

utilized to develop a model with a similar experimental data set. 

The conclusions are: 

 For the small experimental data set (73 data points), the leave-one-out cross-validation 

(LOO-CV) approach was utilized for both ANFIS and ANN model generation and testing. 

Using the LOO-CV approach, every experimental data point was cross validated and 

biasness aroused in dividing training and testing data was avoided. LOO-CV also allowed 

determination of a predicted UTS value for every experimental data point for calculating 

mean absolute percentage error (MAPE).   

 To develop ANFIS and ANN models, four input variables (𝑁, 𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼) were utilized 

and optimized. Among the four input variables, EFI was observed to have strong 

correlation with UTS compared to other parameters. EFI was formulated from an 

experimental investigation and found to be non-linearly correlated with the three critical 

process parameters (𝑁, 𝑉, 𝐹𝑧).  

 A total of 1200 different ANFIS models were developed by varying number of membership 

functions (MFs), type of membership function, and combination of four input variables 

(𝑁, 𝑉, 𝐹𝑧, 𝐸𝐹𝐼). It was found that the ANFIS model with three input variables 

(𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼) resulted in lowest RMSE and MAPE values of 29.7 MPa and 7.7% 

respectively.  



 The ANN model with three input variables (𝑉, 𝐹𝑧, 𝑎𝑛𝑑 𝐸𝐹𝐼) resulted in minimum RMSE 

(36.7 MPa) and MAPE (10.09 %); however, prediction error of the best ANN model is 

larger than those of the optimized ANFIS model.    

 The developed best ANFIS model can be applied to select weld process parameters to 

achieve desirable joint strength and incorporated into an optimization model for further 

optimization studies.  

The same fixed pin is used throughout this study. In the future, the effect of pin tool design 

will be incorporated in the model to make the model more powerful. To this end, far more data 

is needed.  
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Appendix 

Abbreviations 

ANFIS Adaptive neuro-fuzzy inference system 

ANN Artificial neural network 

CW Cold weld 

EFI Empirical force index 

FSW Friction stir welding 

gauss2mf Gaussian combination membership function 

gaussmf Gaussian membership function 



gbellmf Generalized bell membership function 

GENFIS Generate fuzzy inference system  

HW Hot weld 

IP Incomplete penetration 

LOO-CV Leave-one-out cross validation 

MAPE Mean absolute percentage error 

MFs Membership functions 

NW Nominal weld 

pimf -membership function 

RMSE Root mean square error 

RSM Response surface methodology  

TR Trenching (surface cavity) 

trimf triangular membership function  

TSK Takagi-Sugeno-Kang  

UF Underfill 

UTS Ultimate tensile strength 

WH Wormhole (internal cavity) 

WN Weld nugget 
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