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Abstract 

 

Boron nitride nanotubes (BNNTs) are more thermally and chemically compatible with metal- 

and ceramic-matrix composites than carbon nanotubes (CNTs).  The lack of an abundant supply 

of defect-free, high-aspect-ratio BNNTs has hindered development as reinforcing agents in 

structural materials.  Recent activities at the National Research Council – Canada (NRC-C) and 

the University of California – Berkeley (UC-B) have resulted in bulk synthesis of few-walled, 

small diameter BNNTs.  Both processes employ induction plasma technology to create boron 

vapor and highly reactive nitrogen species at temperatures in excess of 8000 K.  Subsequent 

recombination under controlled cooling conditions results in the formation of BNNTs at a rate of 

20 g/hr and 35 g/hr, respectively.  The end product tends to consist of tangled masses of fibril-, 

sheet-, and cotton candy-like materials, which accumulate within the processing equipment. 

The radio frequency plasma spray (RFPS) facility at NASA Langley Research Center (LaRC), 

developed for metallic materials deposition, has been re-tooled for in-situ synthesis of BNNTs.  

The NRC-C and UC-B facilities comprise a 60 kW RF torch, a reactor with a stove pipe 

geometry, and a filtration system.  In contrast, the LaRC facility has a 100 kW torch mounted 

atop an expansive reaction chamber coupled with a cyclone separator.  The intent is to take 

advantage of both the extra power and the equipment configuration to simultaneously produce 

and gather BNNTs in a macroscopic form amenable to structural material applications.  Reverse 

engineering of the incumbent methods permits the processing parameters to be used as a 

guideline for the LaRC effort.  The ultimate objectives include (a), the generation of a 

predominantly “cotton candy”-like product, and (b), in-line sorting of the crude product using 

dry separation techniques. 
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1. Introduction 

1.1. Background 

The impetus for this report stems from the potential increase in performance to be gained by 

employing nanotubes (NTs) in multi-functional aerospace structures.  The room temperature, 

specific tensile properties of defect-free, single-walled nanotubes (SWNT) and candidate 

materials for vehicle structures are presented in figure 1 [ref. 1].  The density-compensated 

modulus and strength of NTs and materials containing NTs are compared with select fiber 

reinforcing agents and metal-, polymer-, or carbon-matrix composites.  On a theoretical basis, 

the potential increase in tensile properties offered by SWNTs is an order of magnitude.  Such a 

breakthrough improvement would expand engineering design space, but realistically these values 

may only be considered as a target.  As with all engineering materials, the presence of defects 

will undoubtedly render this limit unattainable.  Specific modulus and strength values reported in 

the literature also vary widely as a result of the cross-sectional area selected to calculate density 

and stress.  Experimental results from reliable sources for materials containing carbon nanotubes 

(CNTs) and boron nitride nanotubes (BNNTs) are included in figure 1 [refs. 2–5].  Noting the 

log scale, the NT-related data reveal a significant strength improvement over state-of-the-art 

fiber reinforcements and advanced composites. 

 

 

Figure 1. The density-compensated modulus and strength of nanotube-containing 
materials are compared with incumbent reinforcing agents and composites [ref. 1].  The 
theoretical properties of SWNTs, and some verifiable measured properties for CNT- and 
BNNT-based materials are included [refs. 2–5]. 
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BNNTs are a structural analog of CNTs, i.e., the carbon atoms are alternately replaced by boron 

and nitrogen atoms.  Similar to CNTs, high-purity, low-defect BNNTs exhibit extremely high 

strength and stiffness but possess better chemical and thermal stability than CNTs [ref. 6].  This 

results in a broader range of structural applications, particularly as reinforcing agents for metal- 

and ceramic-matrix composites or hybrid laminates.  In contrast with CNTs, BNNTs are 

dielectrics and exhibit a high neutron absorption cross-section [ref. 7].  First, the low 

conductivity of BNNTs negates the galvanic imbalance which would be created at reinforcement 

interfaces in CNT-containing metal matrix composites.  Second, the potential exists to create 

multi-functional structures, such as for radiation protection [ref. 8].  For most applications, the 

quality of NTs can be equated with microscopic characteristics, i.e., crystallinity, purity, and 

number of walls [ref. 6].  These requirements can be extended for composite material usage to 

include macroscopic characteristics, such as NT length, diameter, and aspect ratio. 

The race to mass produce high quality BNNTs has been ongoing since they were first 

synthesized in 1995 [ref. 9].  The lack of a reliable and reproducible method for mass production 

of such high quality BNNTs has hindered the development of applications in fiber form, or as 

matrix reinforcing agents.  Small quantities of varying quality have yielded encouraging results, 

but it is apparent from the data included in figure 1 that there is much room for improvement.  

The combined results of world-wide research activities suggest that the physical characteristics 

of BNNTs are strongly dependent on the production method employed.  Among methods 

investigated, high temperature processes seem best poised to achieve the elusive goal. 

Although it has been the front-runner in terms of quality for many years, the laser-vaporization 

method pioneered by Smith et al. still suffers from low throughput (~100 mg/h) and is confined 

to batch processing [ref. 10].  Inductively-coupled plasma (ICP) synthesis technology has 

emerged as the most viable candidate.  In contrast with high velocity / low volume, direct current 

(DC) plasmas, the low velocity / high volume characteristics of ICP techniques offer extended 

dwell times in the reaction zone.  The velocity is lowered from 600–2300 ms-1 to 300–400 ms-1, 

and the internal diameter of the torch is raised from 6–8 mm to 35–70 mm [ref. 11].  Longer 

residence times and larger plasma plumes are much more effective at processing mass quantities.  

As a consequence, the research at two institutions is close to fruition and is summarized below. 

 

1.1.1. University of California – Berkeley (UC-B) 

The BNNT synthesis facility developed at UC-B is referred to as the extended-pressure, 

inductively-coupled (EPIC) plasma system shown in figure 2 [ref. 12].  The approach represents 

a natural extension of an earlier campaign to produce BNNTs via DC plasma synthesis 

techniques [ref. 13].  The facility consists of a 60 kW Tekna RF torch mounted on top of a 

“stove-pipe” reaction/quenching chamber coupled with filtration devices and an exhaust system. 

The internal dimensions of the ceramic-lined reactor are ~1.2 m long by ~0.15 m diameter.  A 

controlled temperature gradient is created along the length of the high-temperature plasma 

plume.  Reactants can be injected in solid, liquid, or gas form at a variety of locations (ports A, 

B, and C), i.e., at different temperatures.  Ports D-K are for the insertion of diagnostic 

equipment, quench modifiers, and/or pressure-assisted purging devices.  The product can be 

extracted manually (batch processing) or by gas purging (semi-continuous).  The BNNT 

materials, produced at a maximum rate of 35 g/hr, comprise nano-ribbons, nano-cocoons, and 

nano-capsules [ref. 12]. 
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Figure 2. The facility developed at the University of California – Berkeley for RF plasma 
synthesis of BNNTs at a production rate of ~35 g/hr.  Processing conditions include a PL-
50 Tekna torch operating at ~45 kW, a pure N2 plasma gas, reactor pressures greater than 
atmosphere, and elemental B powder feedstock [ref. 12]. 

Synthesis conditions are selected in the ranges of 40–50 kW plasma power, 101–517 kPa 

chamber pressure, 50 slpm N2 plasma gas, 2–5 slpm N2 carrier gas, and –325 mesh (d ≤ 44 μm), 

amorphous B powder at 100–1700 mg/min feed rate [ref. 12].   Example processing parameters 

given include 

 40 kW, 172 kPa, 50 slpm, 2.5 slpm, 150 mg/min => 9 g/hr 

 40 kW, 103–310 kPa (ramp), 50 slpm, 2.5 slpm, 246 mg/min => 14.8 g/hr 

Quotation from UC-B summarizing the effort;  

The EPIC system immediately generates a fibrous, light-colored, cotton-candy web-like 

material, which soon occupies the entire cross-sectional area of the synthesis chamber.  

The material initially accumulates in the upper half of the chamber, and as the run is 
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continued, the synthesis chamber gets successively packed, filling half the total chamber 

volume in approximately 30 min.  In conjunction with fibrils packing the interior volume 

of the synthesis chamber, the chamber walls typically also become coated in a similarly 

light colored material, which can be easily peeled off as a continuous felt-like film.  Both 

the (cotton-candy-like) fibril, and (felt-like) sheet materials are predominantly composed 

of pure BNNTs. The lower density material consists of mm to cm bundles, with rough 

macroscopic alignment of the fibrils. [ref. 12] 

 

1.1.2. National Research Council – Canada (NRC-C) 

The facility developed at NRC-C, now referred to as the hydrogen-assisted BNNT synthesis 

(HABS) system, is shown in figure 3 [refs. 14 and 15].  The facility also consists of a 60 kW 

Tekna RF torch mounted on top of a “stove-pipe” reaction/quenching chamber, coupled with 

filtration devices, and a vacuum system.  The internal dimensions of the graphite-lined reactor 

are ~1 m long by ~0.15 m diameter.  The NRC-C effort is also a redirection of methodology 

developed earlier for continuous production of single-walled CNTs using RF plasma synthesis 

techniques [refs. 16 and 17].  Employing a similar processing philosophy to BNNT production, 

the best results are obtained when hexagonal boron nitride (h-BN) powder is used as feedstock, 

the plasma forming gas is a ternary mixture of Ar, N2, and H2, and the plasma chamber is 

operating at close to atmospheric pressure.  A variety of BNNT-containing products have been 

generated at a combined rate of up to 20 g/hr [ref. 15]. 

Synthesis conditions are selected in the ranges of 35–60 kW plasma power, 91–101 kPa chamber 

pressure, 100–120 slpm Ar/N2/H2 sheath gas, 30 slpm Ar central gas, 3 slpm Ar carrier gas, and 

–50–100 nm h-BN (or B) powder at 500 mg/min feed rate [ref. 14].  Examples of the given 

processing parameters include 

 35 kW, 96 kPa, 45/55/20 slpm, 30 slpm, 3 slpm, 500 mg/min => 6.3 g/hr 

 35 kW, 96 kPa, 25/55/30 slpm, 30 slpm, 3 slpm, 500 mg/min => 20 g/hr 

Quotation from NRC-C summarizing the effort;  

BNNT material grown by the HABS process exhibits three distinct macro-morphologies 

depending on where and how it deposits within the reactor.  Entangled fibrils, 

macroscopic cloth-like sheets, and very low density cotton-like deposits are formed as a 

result of gas-flow-driven segregation.  Microscopically, all of the products predominantly 

consist of small diameter (~5 nm), few-walled, and highly crystalline BNNTs. [ref. 15] 

Of the two approaches, the UC-B method is attractive because of its simplicity, i.e., using coarse, 

pure B feedstock and pure N2 as the plasma gas.  But, the best BNNT yields (35 g/hr) are 

associated with reactor pressures of greater than 1 atmosphere.  Therefore, the approach is not 

compatible with the sub-atmospheric chamber at the Langley Research Center (LaRC).  

However, the processing details which lead to a higher production rate than the NRC-C method 

may prove beneficial. 

The reaction chamber and filtration systems are rapidly clogged with product using either the 

UC-B or the NRC-C method, as shown in figure 4 [refs. 12, 15, and 18].  The need for a user-

friendly BNNT material exists, i.e., a predominantly macroscopic product form which can be 
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continuously extracted and sorted during the actual synthesis process.  The bulk of the BNNT 

material rapidly accumulates in reactors (figure 4(i) and Figure 5(ii)) [refs. 12 and 15] and/or 

filters (figure 4(iii)) [ref. 12].  The predominantly fibril-like product is extracted manually, 

resulting in a tangled mass of material, as shown in figure 4(iv) [ref. 15].  Considerable post-

processing, typically using wet separation techniques, is required to obtain a usable product [e.g., 

ref. 19].  The fact that mass quantities of BNNTs have not been available until recently 

somewhat negates this issue.  However, there is obviously room for improvement for structural 

material applications.  It is suggested that if BNNTs can be produced in “cotton candy”-like 

form, then many of the continuous, dry processing techniques common in the cotton and 

microfiber industries may be utilized, e.g., alignment by conventional or electrostatic carding 

[e.g., ref. 20]. 

 

 

Figure 3. The facility developed at the National Research Council – Canada for the RF 
plasma synthesis of BNNTs at a production rate of ~20 g/hr.  Processing conditions 
include a PL-50 Tekna torch operating at ~35 kW, an Ar/N2/H2 plasma gas mix, reactor 
pressures less than atmosphere, and BN powder feedstock [ref. 14]. 
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Figure 4. Accumulation of bulk product during the incumbent RF plasma synthesis 
processes: (i) in the UC-B reactor [ref. 12]; (ii) in the NRC-C reactor [ref. 15]; (iii) in the 
NRC-C filtration system [ref. 18]; and (iv) BNNT materials weighing ~20 g, manually 
extracted from the NRC-C filters [ref. 15]. 

Both the UC-B and the NRC-C methods generate material with three distinct morphologies 

which possess a high BNNT content [refs. 12 and 18].  The color of the as-grown products has a 

grayish hue which transforms to snow white following purification procedures.  NRC-C has 

demonstrated that the structural quality of the BNNT is the same within these different materials; 

only the macroscopic morphologies differ. The lengths of the BNNTs are estimated at a few 

microns, based on more detailed analyses of small samples [ref. 18].  The images shown in 

figure 5 indicate that the major difference between the various BNNT materials is the density.  

Figure 5(i) shows that the fibril-like materials appear as bundles of “fibers,” and BNNT yarns 

can be drawn directly from them.  Figure 5(ii) shows that the fibrils are composed of 

agglomerated micron-sized strands, displaying coarse alignment along the fibril axis.  Figure 

5(iii) shows that the cloth-like sheets have a multilayered structure, and thin diaphanous 

membranes can be peeled off [ref. 18].  Figure 5(iv) shows that the cloth-like materials show 
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randomly oriented BNNTs along with non-tubular materials that have been identified as h-BN 

fragments.  Figure 5(v) shows that the cotton candy-like deposits have a low density, and cover 

the entire wall of the filtration chamber.  Figure 5(vi) shows that the fluffy materials consist of 

widely-dispersed BNNTs and some non-tubular materials, also characterized as h-BN fragments 

[ref. 18]. 

The success of the NRC-C effort in producing large quantities of BNNTs has recently led to the 

technology being licensed by a commercial vendor.  The following public releases of 

information attest to the progress that has been made towards mass production; 

 Press release, August 27, 2014: NRC makes world-first demonstration of pilot-scale 

boron nitride nanotube production; “With the breakthrough demonstration of the world's 

first pilot-scale production of boron nitride nanotubes, the National Research Council of 

Canada (NRC) has unlocked an advanced material to drive high-value manufacturing in 

Canada” [ref. 21]. 

 Patent filing, October 23, 2014: Canadian patent application, PCT/CA 2014/050340; 

“Boron nitride nanotubes and process for production thereof,” Keun Su Kim, Christopher 

T. Kingston, and Benoit Simard, National Research Council of Canada, Ottawa, Ontario, 

CA [ref. 14]. 

 Press release, May 27, 2015: Tekna launches a revolutionary material on the market: 

boron nitride nanotubes; “Tekna Holdings Canada Inc. has entered into an exclusive 

agreement with the National Research Council of Canada (NRC) to allow the firm to 

manufacture BNNTs in commercial quantities using a process developed by NRC on a 

Tekna machine” [ref. 22]. 

 

1.2. Technical Overview 

One feature that the UC-B, NRC-C and LaRC efforts have in common is that a RF torch 

manufactured by Tekna Plasma Systems, Inc., Sherbrooke, QC, Canada, is employed.  Examples 

of the different sizes of torch produced and a schematic of the typical internal configuration are 

shown in figure 6 [refs. 23 and 24].  The inductively-coupled torches are available in power 

ratings ranging from 30 to 200 kW in the same configuration.  Tekna also offers a complete 

range of torches for industrial customers with power levels extending up to 1 MW, as illustrated 

in figure 6(i) [ref. 23].  The anatomy of a Tekna RF torch consists of four basic elements: 

induction coil, confinement tube(s), injection probe, and gas distributor head, as shown in figure 

6(ii) [ref. 24].  The water-cooled coil, which has a proprietary configuration, generates the RF 

field responsible for ionizing the incoming gases and creating the thermal plasma.  The outer and 

inner confinement tubes effectively corral the plasma and are fabricated from silicon nitride and 

quartz, respectively.  A water-cooled, double-walled injection probe allows for the introduction 

of powder feedstock along the central axis of the plasma.  The vertical height of this probe is 

adjustable within the discharge zone, which allows for more precise control of the initial thermal 

exposure of the injected feedstock, i.e., heating rate and total heat input [ref. 25].  The powder 

feedstock enters the center of the plasma on an axial trajectory, is heated very rapidly, and is 

propelled towards the reaction chamber. 
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Figure 5. The varying macroscopic and microscopic characteristics of BNNT materials 
produced via the NRC-C synthesis process: (i) & (ii) the fibril-like morphology; (iii) & (iv) 
the cloth-like morphology; and (v) & (vi) the cotton candy-like morphology [ref. 18]. 
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Figure 6. Induction plasma torches manufactured by Tekna Plasma Systems, Inc.: (i) 
three different sized torches—model number refers to internal diameter in mm [ref. 23]; 
(ii) schematic cutaway showing interior design of a typical RF torch [ref. 24]. 

Figure 7 shows the results from thermo-fluid models employed by Tekna to calculate the 

temperature distribution within two RF torches operating under different conditions [ref. 23].  

Figure 7(i) shows a PL-50 torch operating at a power of 70 kW with a reactor pressure of 28 kPa.  

The plasma forming or central gas flow comprises 20 slpm Ar.  The reactant or sheath gas flow 

is composed of 120 slpm Ar, plus 10 slpm H2.  Figure 7(ii) shows a PL-70 torch operating at a 

power of 100 kW with a reactor pressure of 101 kPa.  The plasma forming or central gas flow 

comprises 40 slpm Ar.  The reactant or sheath gas flow is composed of 180 slpm Ar, plus 10 

slpm H2. In both scenarios, the carrier gas flow and powder feed is zero.  The peak temperature 

within the discharge zone is ~12,000 K in the proximity of the injector probe tip, and the 

temperature at the centerline of the torch nozzle is in excess of 10,000 K [ref. 23].  These bracket 

the conditions which might be expected during operation of the PN-70 Tekna torch installed in 

the LaRC radio frequency plasma spray (RFPS) facility.  Both the peak temperature in the torch 

and the plasma temperature entering the reaction chamber are expected to be comparable for this 

effort. 

In the incumbent processes at UC-B and NRC-C, the temperature at the entrance and exit of the 

reactor is critical to the transformation reactions occurring within [refs. 12 and 18].  Numerical 

modeling is a necessity in the absence of diagnostic devices that can directly measure the very 

high temperatures involved [ref. 26]. Thermocouple data gathered from exterior surfaces can be 

used as input to create vertical thermal profiles of the reaction zone.  Figure 8 shows the results 

of NRC-C modeling to calculate the temperature distribution in a BNNT reactor under specific 

synthesis conditions [refs. 27 and 28].  A schematic of a 60 kW Tekna torch mounted atop the 1 

m long reaction chamber is shown in figure 8(i) [ref. 27].  The exterior temperatures are 

monitored by type C (Tmax = 2500 K) thermocouples in the upper half of the chamber, and by 

type K (Tmax = 1500 K) in the lower half and exhaust. 

Figure 8(ii) shows the thermal profile within the reaction chamber under operating conditions 

typically used for BNNT synthesis [ref. 28].  The right hand side shows the region in the reaction 
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zone where the temperature is ≥4000 K.  The net plasma power is 35 kW with a reactor pressure 

of 93 kPa.  The gas flow rates for the carrier and central gases are 3 slpm and 30 slpm of Ar, 

respectively.  The sheath gas flow rate is 120 slpm, comprising 45 slpm Ar, 55 slpm N2, and 20 

slpm H2.  The NRC-C model reveals that the peak temperature in the torch is ~11,000 K.  Along 

the central axis, the temperature drops from ~9000 K to ~2000 K within the 1 m long reactor, 

and remains above 4000 K for the first ~40 cm.  The significance of this is that the boiling point 

of elemental B is 4200 K at atmospheric pressure, and it is effectively a vapor above this 

temperature [ref. 29].  The temperature at the bottom of the reactor is significant because the 

melting point of elemental B is 2349 K at atmospheric pressure [ref. 29].  Liquid B droplets 

solidify at this temperature and any reactions with other gaseous reactants are severely curtailed. 

 

 

Figure 7. Tekna modeling of thermal profiles within a PL-50 and PL-70 torch under 
representative operating conditions: (i) power = 70 kW, reactor pressure = 28 kPa, 
carrier = 0, central = 20 slpm Ar, sheath = 120 slpm Ar + 10 slpm H2; and (ii) power = 100 
kW, reactor pressure = 101 kPa, carrier = 0, central = 40 slpm Ar, sheath = 180 slpm 
Ar + 10 slpm H2 [ref. 23]. 

The high temperatures in the RF torch create a partially ionized gas, which comprises a mixture 

of molecules, atoms, electrons, and ions.  N2 and H2 gas can undergo complete ionization in 

plasmas, but temperatures of 12–15,000 K are required [ref. 30].  In this case, the plasma 

contains the highly reactive nitrogen and hydrogen species and dense B vapors.  It is evident that 

vaporizing BN (instead of solid B in the presence of N2 gas) may provide the correct 

stoichiometry at the onset of synthesis.  Ionization of monatomic Ar gas occurs directly (central 

gas), and diatomic N2 and H2 are dissociated into monatomic gases prior to being ionized into N 

and H radicals (sheath gas).   

 



11 

 

 

Figure 8. Thermal profiles in the NRC-C reactor: (i) exterior temperatures are monitored 
with Type C (T ≤ 2590 K) and Type K (T ≤ 1520 K) thermocouples [ref. 27]; and (ii) interior 
temperatures are calculated via numerical modeling.  The right half of the profile shows 
the region where T ≥ 4000 K [ref. 28]. 

Including H2 in the plasma forming gas composition proved critical in creating both the very 

high temperatures and the chemical environment appropriate for synthesis of large quantities of 

BNNTs.  For example, increasing the H2 content from 13 to 18 vol% caused a 30-percent 

improvement in production efficiency [ref. 27].  It is suggested that the presence of partially 

ionized H2 gas may provide an atmosphere more conducive to the formation of BNNTs by 

lowering the BN decomposition temperature and also stabilizing the decomposed BN.  Coupled 

with a controlled dual cooling rate within the extended hot zone, the net result is rapid nucleation 

and prolonged growth of BNNTs. 

NRC-C subscribes to the “root growth” mechanism [ref. 31], and the sequence of BNNT 

formation during RF synthesis is envisioned as 

 dissociation of BN into B vapor and N radicals 

 condensation of nano-sized B droplets 

 reaction between B nano-droplets and reactive N species 

 nucleation and growth of BNNTs by re-nitriding of B 
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The hypothesis is that the droplets condensing from the B vapor act as seeds for BNNT 

formation.  Subsequent interactions with reactive nitrogen radicals, such as N, N+, and N2
+, in a 

decreasing temperature gradient cause BNNT growth.  The thermal profiles set up in the reactor 

prior to introduction of feedstock govern the size of the BNNTs produced.  H2 is cited as a 

catalyst because its presence stabilizes the radicals and extends the growth regime [ref. 27. 

Figure 9 illustrates the relationship between the controlled thermal profile and a correlation with 

the reactions involved in the formation of BNNTs [refs. 27 and 28].  A detailed view of the 

thermal profile created within the reactor is shown in figure 9(i) [ref. 27].  It is evident that there 

are two distinct cooling regimes which serve separate functions.  The initial gradient stating at 

the reactor entrance and extending ~40 cm down the reactor has a cooling rate of ~105 K/s.  The 

final temperature gradient extending through the remainder of the reactor to the exit has a 

cooling rate of ~103 K/s.  Figure 9(ii) reveals that the peak temperature in the RF torch controls 

the extent of B vaporization and N2 ionization, which ultimately governs the yield of BNNTs 

[ref. 28].  The initial thermal gradient controls the size of the B droplets, which governs BNNT 

nucleation.  The final thermal gradient over the remainder of the reactor determines the longevity 

of the molten droplets, which governs BNNT growth. 

 

 

Figure 9. Location of reactions in the NRC-C chamber: (i) peak temperature and dual 
temperature gradients govern regions of vaporization, condensation and solidification of 
pure boron [ref. 27]; and (ii) dissociation of BN feedstock at T ~8000 K, formation of B 
droplets at T ~4000 K, BNNTs nucleate and grow in ~100 ms, BNNT growth ceases at T 
~2000 K [ref. 28].  
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2. Experimental Philosophy 

The prime objective is the allotropic transformation of h-BN powder into high quality BNNTs in 

an atmosphere charged with nitrogen species.  A key step in the synthesis process is the 

formation of B vapor, followed by the condensation of fine B droplets.  As mentioned, the 

liquification and vaporization temperatures for pure B metal are 2349 K and 4200 K, 

respectively [ref. 29].  Subsequent re-nitriding of the B droplets is accelerated by dissociation of 

the diatomic N2 gas at a minimum of 7500 K [ref. 27].  Increasing to even higher temperatures 

causes the monatomic N to become partially ionized (reaching completion at 12,500 K) [ref. 30].  

This event creates even more reactive species (N+ and N2
+ ions), and further promotes the 

transformation.  As a result, the sequence of critical processing temperatures associated with 

using h-BN powder feedstock may be summarized as [ref. 32] 

 3246 K; BN(solid) => BN(gas)   (sublimation) 

 3500 K; BN(solid) => B(liquid) + ½ N2(gas) (decomposition) 

 4200 K; BN(solid) => B(gas) + ½ N2(gas) (vaporization) 

 7500 K; BN(solid) => B(gas) + N(gas)  (dissociation) 

The operating parameters derived from the NRC-C work will be tailored to the LaRC reactor 

design for BNNT synthesis.  Although processing parameters for the Tekna torch should be 

directly transferable, the geometrical configuration of the NRC-C and LaRC plasma systems 

differs.  The UC-B (figure 2) and NRC-C (figure 3) reactors are vertically-mounted, long and 

narrow cylinders with a highly confined plasma plume [refs. 12 and 18].  In contrast, the 

expansive LaRC plasma chamber is a horizontally mounted, 1 m diameter by 1 m long chamber, 

as shown in figure 10.  The equipment setup normally includes a ~30 cm diameter 

rotating/translating mandrel, which is coincident with the central axis of the chamber.  The throw 

distance from the gun to the mandrel surface is ~53 cm, which will be retracted, or removed, for 

in-situ synthesis studies.  In the absence of the mandrel, the throw distance from the gun exit 

nozzle to the bottom of the chamber becomes ~112 cm.  In the NRC-C facility, the reaction zone 

is 1 m long with a steep temperature decrease over the first ~40 cm.  The dimensions of, and 

residence times in, the plasma plume in the LaRC reaction chamber are commensurate with 

those in both of the incumbent processes.  The PL-50 Tekna torches installed at UC-B and NRC-

C are 50 mm in diameter and operate at a maximum power of 60 kW [refs. 12 and 18].  The PN-

70 Tekna torch installed at LaRC is 70 mm in diameter and operates at a maximum power of 100 

kW. 

It is anticipated that the desired temperature gradient(s) can be created by utilizing the extra 

power and the broader confines of the LaRC chamber.  Figure 11 shows that the free-flight 

characteristics of the plasma plume generated may be more dynamic in nature, i.e., both 

temperature and chemistry.  Careful control of the temperature and gas composition profiles will 

be critical to the nucleation and growth of BNNTs.  In combination, the ambient pressure of the 

spray chamber and the pressure of the injected forming gases govern the dimensions and 

temperature profile of the plasma plume shown in figure 11(i).  These profiles control the heat 

cycle of the injected powder feedstock, i.e., maximum temperature, incremental cooling rates, 

and total residence time/distance.  It may also be plausible to exploit the differing configuration 

of the LaRC reactor to more readily control the BNNT aspect ratio during synthesis. 
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Figure 10. The RF plasma deposition facility at LaRC adapted for the in-situ plasma 
synthesis of BNNTs.  Processing conditions include a PN-70 Tekna torch operating at 
~100 kW, an Ar/N2/H2/He plasma gas mix, reaction chamber pressures less than 
atmosphere, and BN (or B) powder feedstock. 

As illustrated in figure 11(ii), the success of the NRC-C process hinges on creating dual 

temperature gradients and establishing the key transition at 4200 K [ref. 27].  This is the 

minimum temperature at which elemental B exists as a vapor at pressures close to atmosphere.  

The hypothesis is that the faster the cooling rate, the smaller the droplets, and the smaller the 

diameter of the BNNTs.  The subsequent slower cooling over a longer distance to 2349 K, at 

which remnant B droplets solidify, represents the period of BNNT growth.  It is theorized that 
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the extent of this zone may be used to control the length of the BNNTs.  In combination, these 

factors ultimately govern the aspect ratio of the BNNTs produced.  The red dotted line illustrates 

a scenario where the aspect ratio of the BNNTs could be enhanced by increasing the first thermal 

gradient and decreasing the second thermal gradient within the same reaction zone.  Very steep 

temperature gradients have already been achieved by radial injection of quenching gas into a RF 

plasma plume, as shown in figure 11(iii) [ref. 23].  As a consequence, a method for direct 

measurement of the plasma temperature as a function of location may prove critical to success. 

 

 

Figure 11. Controlling thermal profiles in the LaRC reaction chamber: (i) typical free-flight 
plasma plume (mandrel withdrawn); (ii) dual temperature gradients for high aspect ratio 
BNNTs, adapted from [ref. 27]; and (iii) steep gradients created by radially injected 
quench gas [ref. 23]. 

Characteristic features of the UC-B, NRC-C and LaRC activities are compared and contrasted in 

table 1.  The use of commercially-available elemental B or BN powder feedstock in all cases is a 

bonus.  Issues with the handling of ultra-fine, non-metallic particulate is negated by the UC-B 

approach.  The elimination of metallic catalysts, when compared with earlier methods will be a 

benefit to product purity.  It is evident that induction plasma techniques are efficient, as 

witnessed by the high proportion of BNNTs in the final product.  Both the UC-B and NRC-C 

facilities include narrow, cylindrical reactors with filtration systems which may be a 

disadvantage from the perspective of product handling.  The tangled nature of the bulk of the 

product may necessitate manual extraction and batch processing.  Efforts at UC-B have 

demonstrated that pure N2 alone is effective for BNNT synthesis, and H2 may not be needed as a 

catalyst.  The concomitant increase in potential production rates is very attractive.  The Achilles 

heel of the UC-B approach may be the higher reactor pressures that are currently specified.  The 

sub-atmospheric techniques of NRC-C and LaRC lead to less stringent equipment requirements, 

providing that H2 is used in low volume percentages. 

The use of relatively coarse, elemental B feedstock may be an advantage from the perspective of 

simplified processing, but there is an economic disadvantage associated.  Using 70 nm BN 

feedstock is desirable because it represents a cost-effective option ($220 per kg).  The aerosol-
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grade powder is widely used as a solid lubricant, and large quantities are readily available.  

Thermal spray operations employ 45 µm BN feedstock in limited applications, which is a more 

expensive option.  Thermal spray grade B powder, which sees very limited use, is the most 

expensive option ($2200 per kg).  These factors need to be considered during process scale-up 

because production costs will be impacted.  Any performance breakthrough must outweigh the 

fabrication costs associated with acreage structural materials [ref. 1]. 

Table 1. Characteristic features of the UC-B, NRC-C, and LaRC processes are compared 
and contrasted.  The incumbents have some common pros and cons, as well as some 
separate benefits and issues.  The LaRC approach has some projected advantages, but a 
powder feeder concern remains unresolved. 

 

 

The intent of the LaRC effort is the formation of predominantly high aspect ratio BNNTs in a 

user-friendly form for structural material applications.  As matrix reinforcing agents, uniform 

length, diameter, and defect count tend to be more important than crystallinity, number of walls, 

or chirality.  Therefore, synthesis of the low density, cotton candy-like product is the target.  In 

this macroscopic form, the opportunity to apply dry techniques for the collection, purification 

and fractionation (by aspect ratio) of BNNT product is increased.  The 100 kW RF torch, 

expansive reaction chamber, and potential elimination of filters indicate that the RFPS facility is 

amenable to the production of large quantities of high aspect ratio BNNTs, with a target yield 

comparable with the incumbent processes.  The planned inclusion of diagnostic enthalpy probe 

and dry separation methods may ultimately lead to an optimized, semi-continuous process. 
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3. Results and Discussion 

 

3.1. Synthesis 

Details concerning the internal workings of a Tekna RF torch are illustrated in figure 12 [ref. 24].  

The cut-away schematic shows the configuration of a typical high performance induction plasma 

torch mounted on a reaction chamber.  The height-adjustable, powder injection probe sits along 

the central axis of the torch.  The plasma is confined within the discharge zone by a pair of 

concentric, cylindrical tubes. These are surrounded by an assembly consisting of a non-helical 

induction coil imbedded in a phenolic torch body.  All of the components are water-cooled on 

individually-controlled circuits.  The most significant feature of the Tekna torch from an 

experimentation perspective is the gas distribution system.  The torch head delivers three distinct 

gas streams into the discharge zone, which combine to define both the plasma temperature and 

the reaction atmosphere.  Each of the gas streams can be controlled independently and may 

comprise a single gas, or a mixture of gases. 

 

 

Figure 12. A schematic showing the inner workings of RF torches manufactured by 
Tekna Plasma Systems, Inc.  The basic components of the latest iteration of the design 
are indicated.  An innovative feature is the use of non-helical induction coils [ref. 24]. 
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Figure 13 illustrates how the various inlet gases combine in the discharge zone to create the very 

hot plasma by inductive coupling [ref. 33].  The carrier gas transports solid (or liquid) reactants 

into the center of the plasma via the injection probe.  The central gas enters the torch chamber 

directly in a tangential, swirling motion between the injector probe and the inner confinement 

tube.  The gas, or mixture of gases, is the first to ionize in the induction zone, and is commonly 

referred to as the plasma-forming gas.  The sheath gas is introduced through an annulus of 

nozzles in the torch head located between the outer (ceramic) and inner (quartz) confinement 

tubes.  Creating either a vortex or columnar flow pattern, the traditional functions of this gas are 

twofold; (i), to stabilize the plasma discharge; and (ii), to protect the confinement tubes (by 

cooling) [ref. 34]. In this case, it serves the equally important function as a vehicle for inserting 

the reactant gases as a specified volumetric mixture.  For most purposes, the carrier and central 

gas streams are a low rate feed of pure Ar, and the sheath gas is a high rate feed of mixed gases 

[ref. 34].  The sheath gas mixture can contain Ar, He, H2, and/or N2, depending on plasma 

temperature and processing chemistry targets.  Careful metering of the individual inputs dictates 

the blended gas composition and ultimately governs the temperature and reactions occurring 

within the plasma. 

 

 

Figure 13. The distribution of gases emanating from the head of a typical Tekna RF torch 
are shown [ref. 33].  The individual carrier, central, and sheath gas streams blend in the 
discharge zone, where the inductively-coupled plasma is created and accelerated. 
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The methodology pioneered by NRC-C for mass production of BNNTs is best suited to the low 

pressure, high volume RFPS facility located at NASA LaRC.  In addition, both facilities employ 

a Tekna RF plasma torch, such that the operating parameters are compatible.  Although the 

NRC-C “recipe” is proprietary, detailed information has been extracted from the public domain 

[refs. 14, 27, and 28].  Chronological development of the process parameters for BNNT synthesis 

is captured in table 2 [ref. 3].  The plate power, reaction chamber pressure and feedstock 

characteristics have remained unchanged.  Evidently, NRC-C optimized these particular process 

variables during earlier efforts.  The percentages of Ar, N2, and H2 are presented as a fraction of 

the entire gas volume entering the Tekna torch.  The flow rates of pure Ar for both the carrier 

and central gases remain unchanged.  Only the sheath gas composition has been adjusted in order 

to increase the yield of BNNTs from 21% to 67%, based on a feed rate of 0.5 g/min [ref. 27].  It 

is apparent that the main difference between the early and late recipes is the H2 content, with a 

proportionate decrease in the Ar content.  Again, subscribing to the root growth mechanism, the 

H2 is believed to act as a catalyst by extending interaction between reactive nitrogen species and 

pure B droplets [ref. 31]. 

Table 2. Many of the process parameters developed by NRC-C for RF plasma synthesis 
of BNNTs were established early.  The plasma gas compositions are presented as a 
percentage of the total gas volume introduced.  Only the sheath gas has been adjusted to 
increase the yield [ref. 14]. 
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The first order of business at LaRC was to convert a system configured for metal deposition 

using Ar/He plasma gas to one suitable for in-situ synthesis using Ar/N2/H2 plasma gas.  

Preliminary experimentation assessed the performance of the facility under processing conditions 

representative of BNNT synthesis.  It was recognized that operating parameters would differ 

from NRC-C due to the equipment configuration, i.e., the higher power plasma torch and 

expansive reaction chamber.  It was surmised that gas volumes and flow rates needed to be 

higher than NRC-C for plasma stability.  It was determined that a mixture of gases, selected from 

Ar, N2, H2, and He, might be required for each of the three main inputs.  The number of gas flow 

controllers was increased to 8, allowing for 2 on the carrier gas, 2 on the central gas, and 4 on the 

sheath gas feeds.  The capacity of the individual controllers was also increased to 200 slpm to 

account for the larger 100 kW torch. 

After the extensive modifications were implemented, it was discovered that initiating and 

sustaining a N2–based plasma was not trivial in the LaRC facility.  It was established that the 

NRC-C processing conditions could be used on a percentage basis only, and the actual gas flow 

rates needed to be much higher.  It was also observed that the plasma created was unstable at 

chamber pressures above 53 kPa, and the system performed most efficiently at 33 kPa.  In 

addition, the LaRC powder feeder (PF) was designed for handling ~100 µm metal powders at 

relatively high feed rates.  The feedstock options procured for this activity comprised thermal 

spray grade (99.9% pure) ~40 μm pure B and ~30 μm BN, and less expensive aerosol lubricant 

grade (99.5% pure) ~70 nm BN.  It was recognized that very fine, low conductivity particulate is 

susceptible to high cohesion and bridging, particularly at low feed rates.  Consequently, anti-

static feed lines and rudimentary PF vibrators were installed as an initial precaution. 

Table 3 shows the variables which were adjusted during the more formal plasma synthesis trials.  

The basic parameters are plasma torch power, reaction chamber pressure, plasma gas 

composition, and precursor powder characteristics.  The process settings for the six LaRC trial 

runs are listed and compared with the two NRC-C recipes which were adopted as baselines [ref. 

14].  The difference between the NRC-C baselines stems from increasing the H2 content of the 

whole plasma gas from ~13 to ~21 vol%, which dramatically increased the yield of BNNTs [ref. 

27].  Using these chronological improvements as a guide, the varying objectives of the individual 

LaRC trials are listed below; 

 LPS263: a starting point; designed to mimic the NRC-C early recipe.  This was the first 

successful run operating with an Ar/N2/H2, instead of an Ar/He, mixture as the plasma 

gas.  

 LPS264: climbing the learning curve; designed to approach the NRC-C late recipe.  

During this run, it was established that the H2 flow rate is limited to 48 slpm.  Therefore, 

the proportion of the other gases was adjusted accordingly in order to better align with 

the NRC-C late recipe (on a percentage basis). 

 LPS265: gaining experience; designed to mimic the NRC-C late recipe.  Subsequent 

trials were designed to isolate the effect of different variables on the synthesis process. 

 LPS266: addressing PF issues; changed from thermal spray grade to aerosol grade BN 

feedstock a la NRC-C recipes.  During this run, lack of feed rate control came to the 

forefront. 
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 LPS267: incorporating He in the central gas; designed to increase plasma stability, and 

assess the potential to use higher chamber pressures. 

 LPS268: incorporating He in the central and carrier gas; designed to increase plasma 

stability, and return to thermal spray grade metallic powders to reduce PF issues. 

Figure 14 shows what the LaRC reaction chamber looks like after a typical 15-minute trial run 

and the product extracted.  Figure 14(i) shows the interior of the whole reaction chamber at the 

conclusion of one of the trial runs.  Figure 14(ii) is a close-up view of the bottom of the chamber, 

where a substrate foil was placed directly beneath the RF torch to collect product.  Figure 14(iii) 

shows the materials manually extracted from the chamber floor, the chamber walls and the 

substrate. Figure 14(iv) shows that the quantity of material produced so far is very small.  The 

macroscopic appearance of the product tends to be low density, but much denser than the cotton 

candy consistency desired.  The weight of product should be commensurate with the feed rate, 

since the desired reaction comprises a simple allotropic transformation.  Therefore, at 0.5 g/min 

for 15 minutes, there should be ~7.5 g of product.  The product yield from each trial run has been 

less than 1 g, even accounting for exhaust losses.  During most of these trials, strobing of the 

plasma plume was observed, which experience suggests is indicative of uneven powder feeding. 

Table 3. The process variables included in the LaRC synthesis trials are presented in 
sequence.  The basic parameters are plasma torch power, reaction chamber pressure, 
plasma gas composition and precursor powder characteristics.  The various processing 
conditions employed are compared with the early and late NRC-C recipes, which were 
used for guidance [ref. 14]. 
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Figure 14. Material synthesized in the LaRC facility following a 15 min trial: (i) in the 
whole chamber; (ii) on a substrate foil on the chamber floor; (iii) following extraction 
from the substrate and the chamber walls; and (iv) very small product quantities, so far. 

It is clear that clogging of the PF and the feed lines, as shown in figure 15, needs to be addressed.  

The configuration of the equipment does not lend itself to visual monitoring during a synthesis 

trial.  The PF, Model 1264 manufactured by Praxair Surface Technologies is shown in figure 

15(i).  It is not rated for transport of nano-particulate or very low feed rates.  The setup works 

well for metal deposition such as alloy Ti-6-4, which involves ~100 µm powder feedstock, and a 

~30 g/min feed rate.  Agglomeration of the powder is probably responsible for causing 

blockages, which may be occurring in the PF itself and/or the feed line leading to the RF torch, 

shown in figure 15(ii).  The anti-static feed line and crude feeder vibrators which were installed 

proved ineffective.  It is surmised that the target powder feed rate of 0.5 g/min for the 70 nm BN 

feedstock cannot be achieved with the current system.  In lieu of procuring a new PF, the LaRC 

Acoustics Branch (Rizzi et al.) has been contracted to provide a near-term fix.  Identifying the 

location of the “bottle neck” is the first objective.  A transducer generating the appropriate 

amplitude and frequency, mounted to provide localized vibration appears to be a viable solution.  

The exit nozzle of the feeder, where the feed line is attached, is an obvious location to initiate 

studies. 
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Figure 15.Diagnosing powder feeding issues within: (i) the Praxair Model 1264 powder 
feeder; and (ii) the injector probe on the Tekna torch.  The suspected problematic 
locations where the feed line exits the powder feeder, and enters the injection probe, are 
highlighted. 

NRC-C publications indicate that the feedstock is continuously fed by a KT20 twin-screw micro-

feeder, manufactured by K-Tron, Inc., Sewell, NJ [ref. 18].  Most commercially-available PFs, 

including this one, are designed for atmospheric thermal spray of coarse metal, or ceramic, 

powders.  Typical feedstock properties and requirements include high density, high flow-ability, 

low inter-particle cohesion, low bridging tendency, and high feed rates.  The characteristics of 70 

nm diameter h-BN powder are exactly the opposite, and the feed rate is low.  The requirements 

are further complicated by the need to operate in a closed, low vacuum environment.  Therefore, 

the original equipment, which was not rated for delivering nano-particulate, has been heavily 

modified by NRC-C.  Evidently, it was a time-consuming challenge to achieve accurate and 

reproducible transport of feedstock at the prescribed rate [ref. 35].  Of significance to the LaRC 

effort, not only were equipment modifications required, but also engineering of the feedstock.  

NRC-C experimented with milling, sieving, and baking procedures to a variety of powders prior 

to loading in the feeder [ref. 14].  

The smooth and reliable delivery of B or BN powder to the injector probe is critical in 

establishing steady state conditions within the reactor, and performing parametric studies to 

optimize the yield of BNNTs [ref. 35].  Efforts are currently underway to define the 

specifications for a replacement feeder system.  Fluidized bed PFs, which are often specified for 

delivering non-conducting, ultrafine particulate, were explored as an option.  However, the lack 

of accurate control at low feed rates eliminated them as a possibility.  A vibrating PF which has 
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proved effective at delivering ~70 nm BN powder is manufactured by Tekna Plasma Systems, 

Inc., as shown in figure 16(i) [ref. 36].  Details of the construction and approximate dimensions 

are shown in the schematic in figure 16(ii).  The PFR series feeder is rated for transporting 8 nm 

to 5 µm powders at rates of 0.5–40 rpm, graduated in increments of 0.1 rpm.  It is probable that a 

similar device is being employed by Tekna for their NRC-C licensed BNNT production.  The 

rotation speeds (rpm) quoted by the vendor need to be converted into mass feed rates (g/min) via 

customer calibration [ref. 36]. 

 

 

Figure 16. A vibrating powder feeder, PFR series manufactured by Tekna is compatible 
with feeding ultrafine powders at very low rates [ref. 36]: (i) image of device; and (ii) 
construction schematics.  A similar system has successfully been used to transport 70 
nm BN powder feedstock. 

Another important way to improve the process yield is to quantify the plasma characteristics and 

correlate them with equipment settings.  The large number of process variables listed in table 3 

calls for statistically designed experimentation.  However, the parametric limits have to be 

defined first for the effective application of such methodology.  It is anticipated that the 

implementation of quantitative process diagnostics can aid in this regard.  Delivery of the 

enthalpy probe system shown in figure 17, procured from Tekna Plasma Systems, Inc., is 

imminent [ref. 37].  The system measurements determine the specific enthalpy associated with a 

known amount of extracted gas.  The composition, temperature, velocity, and density of the 

plasma gas mixture are then computed from the data gathered.  Quantifying process conditions, 

as a function of position within the plasma plume, can then be related back to equipment settings. 

Subsequent correlation of thermal and compositional profiles with BNNT yield and aspect ratio 
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will be paramount during LaRC process development.  Concurrent insertion of the data compiled 

into existing models will facilitate comprehension of the synthesis process [refs. 30 and 38]. 

 

  

Figure 17. Procurement of a diagnostic enthalpy probe system, custom manufactured by 
Tekna [ref. 37]: (i) control console (center), probe assembly (right) and mass 
spectrometer (left); (ii) short (above) and long (below) options for probe installation; (iii) 
probe manipulator carriage schematic; and (iv) illustration of probe travel limits within 
the LaRC reaction chamber. 

The image in figure 17(i) shows the control console, touch screen, enthalpy probe, and mass 

spectrometer.  In contrast with other measuring devices, the operating temperature range of 

water-cooled enthalpy probes is greatly extended.  For example, plume temperatures of ~6500 K 

in Ar/H2 plasmas, and ~8000 K in Ar plasmas have been measured directly [ref. 11].  The images 
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in figure 17(ii) show the short, (a), and long, (b), enthalpy probe options for installation on the 

manipulation system.  Shown schematically in figure 17(iii), the custom-designed probe 

manipulator will enable profiling of the whole reaction chamber.  Mapping of the reactor will be 

performed during “dry runs” in order to establish equipment settings for BNNT synthesis.  This 

is because the probe disrupts the plasma flow when inserted, and the tip is easily fouled by liquid 

or solid reactants [ref. 11].  Figure 17(iv) illustrates the motion limits of probe manipulation in 

the reactor.  The assembly will be integrated through a large port on the end of the chamber, 

replacing the retractable target/substrate apparatus.  The manipulator arm can be mounted in two 

positions and both the sub-assembly and probe can be rotated to provide maximum travel [ref. 

37].  The easily-fouled assembly will be retracted during actual BNNT production operations. 

 

3.2. Analysis 

Becoming familiar with techniques compatible with analysis of BNNT materials was an integral 

part of this year’s activities.  The most commonly employed qualitative techniques are high 

resolution scanning electron microscopy (HRSEM) and Fourier transform infrared (FT-IR) 

spectroscopy.  FT-IR techniques are used to obtain an absorption or emission IR spectrum (from 

a solid, liquid, or gas) over a wide range of wavelengths using a FT to convert the raw data [ref. 

39].  The peaks on a spectrum are indicative of different atomic bonds and how the components 

of a particular sample react to light as a function of wavelength.  Both methods allow ready 

comparisons between the characteristics of the powder feedstock, as-synthesized product, 

purified materials, and reaction by-products.  A simple purification technique, adopted from 

work by Chen et al. [ref. 40], is routinely used by NRC-C to isolate BNNTs.  The data accrued 

from purified BNNT materials tend to be easier to interpret, providing the yield is sufficient. 

Figure 18 shows FT-IR spectroscopy results for RF synthesized BNNT materials.  Figure 18(i) 

shows the LaRC preliminary data (in absorbance mode), and figure 18(ii) shows the NRC-C data 

(in transmittance mode) [ref. 27].  The NRC-C data are presented such that the signatures of the 

feedstock and the typical synthesis products are separated.  FT-IR results can be presented in 

several different formats, but the prime peaks related to B-N bonds remain at the same 

wavenumbers, i.e., 815 and 1369 cm-1.  The LaRC data (blue line) are difficult to interpret based 

on the NIST standard (red line), which is also plotted [ref. 41].  Comparing with the NRC-C 

data, the presence of BNNTs in the as-synthesized product may be masked by an excess of 

reaction by-product.  This generates many spurious peaks, which are mostly associated with 

components containing –H bonds (highlighted). 

The HRSEM images in figure 19 compare the results from RF plasma synthesis trials performed 

at LaRC and NRC-C.  Figure 19(i) shows the starting BN feedstock for the LaRC trials, with a 

nominal particle size of 70 nm.  Figure 19(ii) shows the results from LPS 266, and reveals the 

product characteristics typical of the current trials.  Figure 19(iii) shows the synthesized product 

from an early NRC-C trial for comparison.  H2 was not included in the plasma forming gas 

mixture and analysis revealed the presence of no BNNTs [ref. 14].  Comparing figure 19(ii) and 

(iii) suggests that the features of the two products are very similar.  In conjunction with the FT-

IR data, there is no evidence to suggest that BNNTs have been generated during the LaRC trials 

to-date.  However, the results are encouraging, and also highlight the need for purification to 

eliminate reaction by-products for future analyses. 
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Figure 18. FT-IR spectroscopy results for BNNT synthesis products: (i) LaRC preliminary 
data (in absorbance mode), compared with BNNT standard signature [ref. 41]; and (ii) 
NRC-C data (in transmittance mode), presented so that the traces for the feedstock and 
various synthesis products are separated [ref. 27]. 

 

 

Figure 19. HRSEM images: (i) starting BN feedstock at low magnification; (ii) LPS 266 
product on a carbon grid; and (iii) NRC-C product from an early synthesis trial using no 
H2 in the plasma gas [ref. 14].  A comparison of (ii) and (iii) suggests that BNNTs were not 
formed during the current LaRC trials. 
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In the event that sufficient product is generated, purification of the as-synthesized material will 

lead to more thorough HRSEM and FT-IR analyses.  BNNTs tend to be much more thermally 

stable than the reaction by-products [refs. 27 and 28].  The post-synthesis protocol developed for 

extraction of BNNTs via thermal treatment and dissolution of reaction by-products is outlined in 

figure 20.  Thermo-gravimetric analysis (TGA) has revealed that pure BNNTs undergo zero 

weight gain to temperatures in excess of 1173 K (figure 20(i)) [ref. 27].  In the as-synthesized 

condition, both the fibril- and cloth-like BNNT materials begin to gain weight at ~873 K, figure 

20(ii) [ref. 28].  The reason for the weight gain was established by Chen et al. [ref. 40], whose 

purification protocol was adopted by NRC-C.  The formation of boron oxide (B2O3), resulting 

from oxidation of amorphous B and BN-containing particles, causes the increase.  Thus, an 

oxidizing heat treatment renders the by-products water soluble, and a simple rinse suffices for 

removal.  The earlier NRC-C publications indicate baking in air at 698 K for 3 days [ref. 27].  It 

was recognized that this was a mild oxidation condition for B, and it was intentionally used to 

minimize BNNT damage.  The later NRC-C patent suggests baking in air at a more aggressive 

923–1073 K for an unspecified duration [ref. 14].  The Chen work suggests 1073 K for 1 hour, 

followed by hot water washing and drying at 373 K is effective [ref. 40].  This will be the 

protocol adopted for the ongoing LaRC effort, since it has been shown to work well.  As 

progress is made, this might also prove to be a quick and easy method for assessing the percent 

yield of BNNTs following individual synthesis trials. 

 

 

Figure 20. NRC-C data demonstrating the thermal stability of BNNT materials via TGA 
results: (i) purified BNNT material using established protocol [ref. 27]; and (ii) 
comparison of as-synthesized and purified BNNT materials [ref. 28].  Any weight gain is 
primarily due to oxidation of untransformed B particles. 

3.3. Collection 

Another important objective of the LaRC effort is the assessment and implementation of in-line, 

dry separation techniques for the collection of “fluffy” BNNTs.  Operational safety was a 

primary consideration in all LaRC RFPS activities [ref. 42].  The self-imposed mandate was zero 

tolerance for airborne BNNT-containing materials.  The adoption of dry methods for 
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purification/collection of bulk BNNT materials could be very beneficial.  Further, if continuous, 

in-flight classification/fractionation techniques can be developed, then post-synthesis processing 

could be greatly simplified.  It may even be possible to exploit the unique configuration of the 

LaRC RFPS facility to utilize a binning process for sorting by aspect ratio. 

Both of the incumbent practices (NRC-C and UC-B) tend to produce tangled masses of fibril-, 

cloth-, and cotton candy-like materials within the reactor or filtration device [refs. 12, 15, and 

18].  Experience also indicates that the subsequent use of organic solvents for secondary sorting 

of BNNTs leads to irreversible contamination [ref. 35].  NRC-C recognizes that secondary, wet 

separation techniques are an issue and is exploring in-situ BNNT handling methods.  Figure 21(i) 

illustrates a prototype in-line, dry separation collection system which has been developed [ref. 

28].  As shown in the inset, the device is rudimentary and consists of a rotating “cold finger” 

mounted within the exhaust pipe.  Figure 21(ii) shows that the cylindrical drum accumulates 

BNNT material as it exits the synthesis reactor.  It is touted as being used for “direct fabrication 

of BNNT sheets,” as shown in figure 21(iii).  Such a process might be scalable, but it is confined 

to batch processing and has very specific application. 

 

 

Figure 21. A prototype in-line, dry separation system developed by NRC-C [ref. 28]: (i) a 
small, rotating drum mounted in the exhaust near the reactor exit; (ii) synthesis product 
collected on the drum; and (iii) peeling of BNNT sheet material from the drum. 
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In the CNT production industry, collection vessels which employ centrifugal force to 

progressively separate the product contained in effluent gases have long been touted [ref. 43].  

Cyclonic separators are alluded to in many CNT synthesis patents, but equipment specifics tend 

to be sparse.  Figure 22 shows an example of the setup developed by the Honda Motor Co. 

(Japan) [ref. 44].  Figure 22(i) shows banks of collection vessels, which employ centrifugal force 

to isolate the reaction product, and sequentially sort the particulate by weight.  Figure 22(ii) 

illustrates the dimensions pertaining to a single cyclone that are critical to performance.  The 

efficiency of cyclone separators in removing particles of varying size depends on the diameters 

of the (1) cyclone, D1, (2) particulate outlet, D2, (3) gas inlet, D3, and (4) gas outlet, D4 [ref. 45].  

The configuration of each cyclone in the series needs to be individually optimized for the whole 

system to be effective. 

 

 

Figure 22. In-line, dry separators used in commercial CNT production: (i) a series of 
cyclonic devices (highlighted) with binning capability; and (ii) dimensions critical to 
individual cyclone performance, i.e., collection efficiency for a specified powder outlet 
size range [ref. 44]. 

Cyclone technology is mature for both emission control and product recovery on multiple scales 

[ref. 45].  The examples shown in figure 23 are designed and manufactured by Advanced 

Cyclone Systems, Inc, Porto, Portugal, a recognized industry leader [ref. 46].  Large units, as 

shown in figure 23(i), have been developed for progressively more sophisticated pollution 

control, including coping with high temperature flue gases.  In the majority of applications, the 

particles extracted from the gas flow are discarded, and only recently has close attention been 

devoted to recovery of very fine particles.  An exception is the pharmaceutical industry, where 

collection of every gram of product tends to be prized [ref. 47].  As shown in figure 23(ii), small 

units have been developed for ultraclean, highly efficient recovery of products, which are of the 

most relevance to BNNT synthesis applications. 

An extensive literature search focusing on gas-solid separation technology was conducted this 

year.  Accepting that the ultimate goal is integrated collection of product at operating 

temperatures, an immediate solution for near-term handling of product was required.  As a 

consequence, specifications for collection at ambient temperature were established and 
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commercial vendors were identified.  Progress has advanced along two fronts for near-term and 

future application; 

 A conventional cyclone/pneumatic vacuum system for product collection at ambient 

temperature was designed and installed. 

 An electro-static cyclone system for product collection (fractionation) at operating 

temperatures was down-selected. 

 

 

Figure 23. Application spectrum of cyclone technology for nano-particulate collection by 
ACS, Inc.: (i) emission control—large, multiple units designed for high volume and/or 
high temperatures [ref. 46]; and (ii) product recovery—smaller, individual units designed 
for efficiency and cleanliness [ref. 47]. 

As shown in figure 24(i) and (ii), the ambient temperature system procured comprises two 

devices connected in series.  Figure 24(iii) shows the high efficiency cyclone pre-separator with 

direct bagging system, manufactured by Ruwac USA, Holyoke, MA.  The critical dimensions of 

Model 9949-E, which is rated at 2830–7080 slpm, comprise cyclone diameter = 20 cm, inlet 

diameter = 5 cm, and outlet diameter = 5 cm.  The cyclone pre-separator is driven by a 

pneumatic wet/dry vacuum system, manufactured by Tornado Industries, West Chicago, IL, 

shown in figure 24(iv).  It was recognized that an electric pump might be a source of ignition for 

ultrafine particulate.  The Dual Air Jumbo (Model 95962) system is rated at 9630 slpm and 4530 

slpm at the orifices.  This is operated in wet mode, i.e., the process effluent passes through de-

ionized water in the containment vessel.  This guarantees that no highly mobile nano-particles 

will escape to atmosphere.  Although this is far from satisfactory from the perspective of dry 

processing, the use of organic solvents is avoided. 
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Figure 24. Ruwac cyclone and Tornado pneumatic vacuum system connected in series 
for dry collection at room temperature: (i) side view of setup; (ii) overhead view of setup; 
(iii) exhaust exits chamber and enters cyclone; and (iv) exhaust exits cyclone and enters 
twin pneumatic suction pumps. 

The shortcomings of conventional cyclones for collecting nano-particulate stem from the lower 

limit of the collection range.  Purely centrifugal-type separators are most efficient in the 0.5–

1000 μm range [ref. 48].  Cyclone separators tend to suffer from poor collection efficiency when 

coping with product consisting primarily of sub-micron particles.  In contrast, electrostatic-type 

separators are effective in the 1 nm–10 μm range [ref. 48].  Standard electrostatic precipitators 

fall into three broad categories: charged plates, wires, or drums [ref. 49].  Applications primarily 

involve the separation of conducting and non-conducting particles [ref. 50].  Specialized systems 

have also been developed for dealing with large quantities of non-conductive particulate [ref. 

51].  From this perspective, wire-in-pipe systems hold the most promise for small scale, 

continuous processing.  Hybrid systems are also evolving, which include electro- or electrostatic 

cyclones, and electrostatically-assisted or -enhanced cyclonic systems [ref. 45].  Selecting from 

among commercially available, hybrid cyclonic/electrostatic systems seemed prudent for the 

operating temperature system.  One such system is already being employed in the pharmaceutical 

industry for efficient collection of nano-powders.  As shown in figure 25, Physical Sciences 

Incorporated, Andover, MA, has already demonstrated that a Recylone EH system procured from 

ACS, Inc. (Portugal) can collect 90% of particles in the 20–30 nm range [ref. 52]. 
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Figure 25. Recyclone EH, manufactured by Advanced Cyclone Systems, Inc., consists of 
a customized cyclone assisted by an electrostatic recirculator: (i) configuration of the 
apparatus [ref. 46]; (ii) image of a system installed at Physical Sciences Inc. [ref. 47]; and 
(iii), collection efficiency of a system (superior performance in the nanometer range 
highlighted) [ref. 47].
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As illustrated in figure 25(i), the Recylone EH concept involves a wire-in-pipe electrostatic 

separator that is mounted atop a conventional cyclone [ref. 47].  Process effluent is first treated 

by a conventional cyclone, and then by an electrostatic device, before being returned to the 

cyclone for further treatment.  An isolated cycle through the system might be envisioned as 

follows.  Particulate that is too fine (d < 0.5 µm) to be removed from the inlet gas flow during 

the first pass is recycled through the separator.  The partially-cleansed gas travels through the 

electrostatic recirculator in a helical pattern.  The applied field causes the particles to 

agglomerate into bundles which are big enough to be removed by the cyclone on the second 

pass.  The 1 m long by 1 m high chassis containing the apparatus installed at Physical Sciences 

Inc. is shown in figure 25(ii) [ref. 47].  Numerical optimization based on customer input dictated 

that a dual system was fabricated to satisfy the requirements.  It is considered a laboratory-scale 

system and consists of a bank of four electrostatic recirculators plumbed with twin cyclones. 

The performance of the different system configurations offered by ACS, Inc. is shown in figure 

25(iii) [ref. 47].  Attention is drawn to the yellow line which represents the Recyclone EH.  This 

system exhibits the top performance over all particle sizes and is clearly the best option for a 

collection of nano-sized particulate.  Discussions with ACS, Inc. suggest that a system very 

similar to this, custom-designed to operate at 200°C with a gas flow rate of 250 slpm, would be 

compatible with the LaRC RFPS facility [ref. 53]. The concept of using such a system for 

fractionation of BNNT materials was raised with the vendor.  The potential for the recirculated 

stream(s) to be redirected to separate collectors was introduced for future consideration. 
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4. Concluding Remarks 

 

 The project goal is to produce quality (based on purity and aspect ratio) BNNTs in 

quantities sufficient to allow the potential performance benefits of BNNT-reinforced 

metallic and/or ceramic matrix composites to be evaluated. 

 The pros and cons of high temperature processes for BNNT synthesis were identified.  

Laser ablation methods can produce high quality BNNTs, but at low production rates, so 

the focus was on RF plasma-based systems. 

 RF processing depends on plasma torch capability, plume shape and characteristics, 

chamber size, and geometry.  Experimental parameters tend to be equipment-specific and 

include reaction gas composition, chamber pressure, BNNT collection process, and 

purification methods. 

 A manageable number of experiments is required, so a diagnostic enthalpy probe system 

has been procured.  The enthalpy probe will allow characterization of plasma plume 

properties and quantitative mapping of the entire reaction zone.  This will permit the 

science of the synthesis process to be better understood.  Armed with this additional 

knowledge, optimization of BNNT quality and yield will be more readily achievable. 

 Incumbent BNNT purification methods have been analyzed and evaluated.  Wet methods 

will be avoided due to negative effect of solvents on products.  Current dry methods are 

rudimentary and provide no separation of product based on purity or aspect ratio. 

 A pneumatic-powered cyclone system has been installed that performs at room 

temperature, thereby providing a safe, near-term collection capability.  An electro-static 

cyclone system has been down-selected for product collection/fractionation at operating 

temperatures.  It is anticipated that this will provide an avenue for an in-line, continuous 

production process. 

 Six BNNT synthesis runs have been performed and measureable quantities of BNNT-

containing material have yet to be produced. 

 The inadequate performance of the current powder feeder was identified as a significant 

problem.  The system has only been used previously to deliver heavy and relatively 

coarse metallic powders to the injection probe at much higher rates.  It is surmised that 

this feeder is incapable of accurately feeding lightweight, ultrafine B or BN powders at 

prescribed lower rates.  A commercially-available powder feeder capable of properly 

feeding B powders has been identified and will be procured to resolve this issue.   

 All current problems have been identified and addressed.  Operating conditions have 

been bracketed to facilitate ongoing BNNT synthesis trials. 
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