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State-of-the-Art

• Sabatier Reactor

– CO2 + 4H2 2H2O + CH4

– Water product electrolyzed for oxygen

– Methane product vented resulting in loss 
of hydrogen reactant

– Theoretical recovery of ~54% of O2

recovered from metabolic CO2
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Sabatier Plus Post-Processing
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• ~91% O2 recovery from CO2 possible
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PPA Technology Description

• Developed by UMPQUA Research Co. 

• Methane converted to hydrogen and 
acetylene by partial pyrolysis in 
microwave generated plasma

• Targeted PPA Reaction:

2CH4 ↔ 3H2 + C2H2

• Other reactions:
CH4 Conversion to Ethane          2CH4 ↔ H2 + C2H6

CH4 Conversion to Ethylene       2CH4 ↔ 2H2 + C2H4

CH4 Conversion to Solid C        CH4 ↔ 2H2 + C(s)

CO Production                          C(s) + H2O ↔ CO + H2

CO Production                           CH4 + H2O  ↔ CO + 3H2
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Metal Hydride Hardware

• Hydrogen Components, Inc. Metal 
Hydride Canister

• LaNi4.6Sn0.4 metal hydride

• Designed for hydrogen storage 
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Electrochemical Hardware

• Electrochemical hydrogen separation

– H2 electro-oxidized to protons and electrons

– Protons are electro-reduced, recombined with 
electrons, in another chamber producing purified 
H2

• Basic technology was well developed but not 
compatible with CO

– CO would preferentially adsorb on catalytic 
electrodes and interfere with H2 oxidation

• Sustainable Innovations developed electrolyte 
materials capable of operating above 150°C CO 
thermal desorption temperature
– “Basic” and “Advanced” cell stacks delivered to MSFC
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Test Configurations

• Stand alone
– Metal hydride to verify safety

• Literature indicated other metal hydrides had potential to cause violent 
acetylene decomposition or metal-carbide formation

– Tested with gas mixture containing 7% C2H2, 1% CH4, and 92% H2

– Tested in Marshall Space Flight Center’s Component Development Area, 
usually used for rocket engine component testing
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Test Configurations
• PPA + H2 Purification

– Cell stacks integrated with 2nd Gen. PPA

– PPA operated with ultra-high purity H2 and CH4 bottles

– 1 Crew Member processing rate

– 4:1 ratio of H2:CH4

– 52 torr

– 550 W microwave power

• PPA products contained H2, C2H2, unreacted CH4, C2H4, and C2H6

• No CO

• 100 standard milliliters per minute (SmLPM) to cell stack

• Evaluated H2 product and process effluent
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Test Configurations
• Sabatier Development Unit (SDU) + PPA + H2 Purification 

• Precision Combustion, Inc. SDU integrated upstream of PPA

• SDU operated to produce 350 SmLPM CH4 with no unreacted CO2

• Methane product containing 80 mol% hydrogen

• Water vapor content dew point of 31°C

• PPA operated identically to PPA + H2 testing

• PPA products contained all previously indicated components and CO and 
H2O
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Metal Hydride Performance

• No measurable pressure or temperature difference between 
pure H2 runs and acetylene mixed gas runs

• No safety risk under expected operating conditions
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PPA effluent composition as a function of 
configuration

12



H2 separation performance comparison between Basic 
and Advanced cell stacks
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• Varied gas feed from PPA, stack temperature, inlet composition, and applied voltage

• Conditions for each data point were identical
• All recovered H2 pure within measurable limits of µGC 



Hydrogenation

• Expected similar gas mix (minus H2) leaving anode as entering

• High levels of C2H4 and C2H6 were observed with minimal or 
no C2H2

• Overall chemical equations:
– CH4 Conversion to Ethane              2CH4 ↔ H2 + C2H6

– CH4 Conversion to Ethylene               2CH4 ↔ 2H2 + C2H4

• Ethane Formation from CH4 with free radical intermediates:       
CH4 + CH4 ↔ CH3* + CH3* + H* + H*  ↔ C2H6 + H2

– CH4 forms CH3* free radicals which then recombine to form C2H6

– C2H6 is converted to C2H4 and C2H4 is converted to C2H2

– Reverse reactions also occur providing a mechanism for C2H2

hydrogenation to the other hydrocarbons



Effect of temperature on C2H2 hydrogenation, 
Advanced Cell Stack
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Acetylene conversion to methane in Advanced cell 
stack as a function of voltage and anode feed rate.
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Acetylene conversion to ethylene in Advanced cell stack 
as a function of voltage and anode feed rate.
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Acetylene conversion to ethane in Advanced cell stack 
as a function of voltage and anode feed rate.
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Effect of water vapor and CO on hydrogenation of C2H2.
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SI Cell Stack Architecture
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Sorbent Architecture
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Metal Hydride Architecture
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Conclusion

• Effective acetylene separation technology is essential for 
Sabatier + PPA architecture

• Future work:
– Reduce acetylene hydrogenation in cell stacks

– Test UMPQUA sorbent based hydrogen separation system

– Test metal hydride
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• …Questions?
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