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Trace chemical contaminants produced via equipment offgassing, human metabolic 

sources, and vehicle operations are removed from the cabin atmosphere by active contamina-

tion control equipment and incidental removal by other air quality control equipment. The 

fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres 

is explored. Removal mechanisms are described and predictive mass balance techniques are 

reviewed. Results from the predictive techniques are compared to cabin air quality analysis 

results. Considerations are discussed for an integrated trace contaminant control architecture 

suitable for long duration crewed space exploration missions. 

Nomenclature 

AR = atmosphere revitalization 

BMP = micropurification unit 

CCAA = Common Cabin Air Assembly 

GAC = granular activated carbon 

ISS = International Space Station 

LSS = life support system 

TCC = trace contaminant control 

TCCS = Trace Contaminant Control Subassembly 

THC = temperature and humidity control 

VOC = volatile organic compound 

atm = atmospheres 

C = gas phase concentration, mg/m3 

°C = degrees Celsius 

g = gram 

G = bulk gas phase molar flow rate, moles/h 

h = hour 

K = equilibrium constant 

kg = kilogram 

kH(T) = Henry’s Law constant at the system temperature, atm or mole/m3-Pa 

L = liter; bulk liquid phase molar flow rate, moles/h 

M = molecular weight, gram/mole 

m3 = cubic meter 

mg = milligram 

p = partial pressure, atm 

P = cabin total pressure, atm 

Pa = Pascal 

ri = trace contaminant generation rate, mg/h 

R = universal gas constant, 82.06 cm3-atm/mole-K 

t = time, hours 

T = temperature, Kelvin 

v = volumetric flow rate, m3/h 

V = cabin volume, m3 
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x = liquid phase mole fraction, dimensionless 

y = gas phase mole fraction, dimensionless 

αi = fraction speciation in solution 

η = decimal efficiency, dimensionless 

I. Introduction 

NDERSTANDING a crewed spacecraft cabin as a unique environment must account for factors that include 

characterizing the trace contaminant load and the various removal routes that may exist. While passive trace 

contaminant control serves to minimize the load component from equipment offgassing, the human metabolic com-

ponent remains.1 The active trace contaminant control (TCC) equipment that is part of the life support system (LSS) 

is designed primarily to address the combined equipment offgassing and human metabolic load presented by Table 1 

within acceptable cabin atmospheric quality standards. The design load model presented by Table 1 has been refined 

since the late 1980s to address the primary contamination control design challenges.2-5 The active TCC equipment 

design must consider a variety of factors such as vehicle size, crew size, performance goals, and suitable process 

technologies.6 Applying functional design margin to the active TCC equipment design accommodates load compo-

nents that are difficult to quantify such as contamination released from experimental payload and vehicle system 

equipment as well as chemical use by the crew in the form of personal care products. 

Being a part of a complex, unique environment, the active TCC equipment can receive assists in removing trace 

contaminants from the cabin atmosphere via incidental contaminant removal in components within the atmosphere 

revitalization (AR) and temperature and humidity control (THC) subsystems. While the active TCC equipment design 

does not take such incidental removal into account to ensure a conservative functional capability, it does provide 

functional margin and improves the TCC equipment’s life cycle economics. Understanding the fate of trace contami-

nants between the basic TCC equipment and incidental removal routes can quantify the functional and operational 

margins for the TCC equipment. Testing on the ground as well as flight operations have yielded insight into TCC at a 

vehicle system level.7, 8 The following narrative discusses aspects of system-level TCC and presents techniques to 

quantify incidental removal to better understand TCC equipment design functional margins. 

II. Trace Contaminant Removal Mechanisms 

System-level TCC consists of primary and secondary trace contaminant removal mechanisms and equipment. The 

primary removal mechanism is provided by the TCC equipment that is specifically designed to remove trace chemical 

contaminants from the cabin atmosphere. The secondary removal mechanisms are provided by AR and THC subsys-

tem equipment and overboard atmospheric leakage. The following summarizes the primary and secondary TCC mech-

anisms. 

Table 1. Chemical load for trace contaminant control design. 

CONTAMINANT NAME GENERATION RATEb 

IUPAC COMMON 
OFFGASSING 

(mg/day-kg)a 
METABOLIC 

(mg/day-person) 

Methanol Methyl alcohol 1.3 × 10-3 0.9 

Ethanol Ethyl alcohol 7.8 × 10-3 4.3 

n-butanol Butyl alcohol 4.7 × 10-3 0.5 

Methanal Formaldehyde 4.4 × 10-6 0.4 

Ethanal Acetaldehyde 1.1 × 10-4 0.6 

Benzene Benzol 2.5 × 10-5 2.2 

Methylbenzene Toluene 2 × 10-3 0.6 

Dimethylbenzenes Xylenes 3.7 × 10-3 0.2 

Furan Divinylene oxide 1.8 × 10-6 0.3 

Dichloromethane Methylene chloride 2.2 × 10-3 0.09 

2-propanone Acetone 3.6 × 10-3 19 

Trimethylsilanol Trimethyhydroxysilane 1.7 × 10-4 0 

Hexamethylcyclotrisiloxane D3 siloxane 1.7 × 10-4 0 

Azane Ammonia 8.5 × 10-5 50 

Carbon monoxide Carbonous oxide 2 × 10-3 18 

Hydrogen Dihydrogen 5.9 × 10-6 42 

Methane Carbane 6.4 × 10-4 329 

a. Offgassing rate is for the mass of internal, non-structural equipment.  b. Supplemented by system sources as they are identified. 

U 



 

 

International Conference on Environmental Systems 
 

 

3 

A. Primary Trace Contaminant Removal Mechanisms 

Primary removal mechanisms encompass the equipment specifically designed to provide the active TCC function. 

Aboard the International Space Station (ISS), TCC equipment is located in the U.S. Segment and Russian segment. 

In the U.S. Segment, the Trace Contaminant Control Subassembly (TCCS) is located in the AR subsystem racks 

located in Node 3 and the U.S. Laboratory. The Russian micropurification unit, known by its Russian acronym БМП 

(BMP), is located in the Service Module. During nor-

mal operations, one TCCS and the BMP operate in 

tandem. 

The TCCS, shown schematically by Fig. 1, con-

sists of fixed bed containing granular activated car-

bon (GAC), a thermal catalytic oxidation reactor with 

recuperative heat exchanger, and a post-sorbent bed 

containing granular lithium hydroxide (LiOH) lo-

cated downstream of the catalytic oxidation reactor.9 

The total flow through the TCCS is 15.3 m3/h. Ap-

proximately 30% of the total flow, 4.6 m3/h, is pro-

cessed by the catalytic oxidizer and post-sorbent bed. 

The GAC used by the TCCS is specially treated with 

phosphoric acid (H3PO4) to remove ammonia (NH3) 

and also removes a broad array of volatile organic 

compounds (VOCs). Low molecular weight VOCs 

such as light alcohols and formaldehyde (CH2O) 

which are poorly removed by GAC are oxidized to 

carbon dioxide (CO2) and water vapor in the catalytic 

oxidizer. The catalytic oxidizer also oxidizes methane 

(CH4), carbon monoxide (CO), and hydrogen (H2). 

The TCCS has substantial capacity for NH3 removal 

(~250 grams) and, therefore, provides a 100% single 

pass removal efficiency for the normally expected 

NH3 load. Ground testing has characterized the TCCS 

performance for the primary design-driving com-

pounds.10 According to this testing, light alcohols, 

such as methanol, are expected to rapidly break 

through the GAC and reach saturation capacity within 

approximately one week upon installing a fresh bed. 

Therefore, the catalytic oxidizer provides the primary 

control for methanol. Ethanol reaches its saturation 

capacity in the GAC bed later but by late in the bed’s 

service life the removal occurs in the catalytic oxi-

dizer. Dichloromethane begins to reach saturation ca-

pacity after a month or two of installing a fresh GAC bed making the catalytic oxidizer the primary removal device 

for this compound. The catalytic oxidizer provides 100% removal efficiency for CH4, CO, H2, CH2O, and other light 

VOCs. The oxidation efficiency for dichloromethane in the catalytic oxidizer is ~80%. 

The BMP, shown schematically by Fig. 2., is an equipment design used aboard the Mir space station that consists 

of an expendable GAC canister, two regenerable GAC canisters, and an ambient temperature catalyst canister.11 The 

flow through the BMP is 25 m3/h which is higher than the unit used aboard Mir.12 The regenerable GAC canisters are 

exposed to a thermal-vacuum cycle approximately every 20 days. Testing to characterize the BMP’s performance was 

conducted in 1996.13, 14 This testing observed high molecular weight VOC removal efficiencies consistently in the 

range between 90% and 100% for a normal 20-day regeneration cycle. For low molecular weight compounds such as 

ethanol, acetone, and ethyl acetate, the removal efficiencies fluctuate to a greater extent during the 20-day period 

between regeneration cycles. The average removal efficiencies for ethanol, acetone, and ethyl acetate observed during 

the testing were 70%, 78%, and 88%, respectively. Formaldehyde and CO removal efficiencies were observed to be 

>90% and 100%, respectively. Compounds such as methanol and other light VOCs are expected to reach saturation 

capacity for the regenerable GAC beds over the 20-day cycle; therefore, a 50% removal efficiency is typically used 

for these compounds. Some NH3 removal by the expendable GAC canister up to 50% efficiency was observed during 

the testing. 

 
Figure 2. Simplified Russian BMP process diagram. 

 

Figure 1. Simplified U.S. TCCS process diagram. 
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B. Secondary Trace Contaminant Removal Mechanisms 

Secondary removal mechanisms are those that remove trace contaminants from the cabin atmosphere while per-

forming their primary function. The primary secondary removal mechanisms occur in the CO2 removal and humidity 

control processes. Dilution from atmospheric gas replenishment to make up for overboard leakage also contributes. 

However, compared to the primary removal rate the incidental removal via dilution is very minor and is neglected in 

cabin mass balance calculations. 

Testing has reported some net trace contaminant removal in the CO2 removal process observed as a small VOC 

concentration in the CO2 product delivered to a downstream CO2 reduction process.15, 16 The propagation from the 

process air load to the CO2 product was approximately 5% or less. Bench scale testing with acetone and methanol 

showed >90% removal by the desiccant bed with subsequent desorption during the regeneration cycle.17 This behavior 

stores the contaminants in the desiccant bed and then returns them to the cabin in a cyclic manner. Similar behavior 

was observed for these compounds as well as m-xylene during system level testing conducted in 1997.18 More recent 

testing showed a similar effect with ethanol.16 As well, observations during flight reported similar concentration dy-

namics for octafluoropropane.19 Overall, observations from both ground testing and in-flight have indicated that the 

net incidental removal of the CO2 removal processes is very low contributing no more than a 5% net efficiency for 

light VOCs. Larger VOC molecules, CH4, CO, and hydrogen (H2) are not removed via the CO2 removal process. 

Removal via absorption in humidity condensate is a significant secondary trace contaminant removal mechanism. 

In this mechanism, an equilibrium condition is approached between the contaminant concentration in the bulk process 

air and the condensed water. This equilibrium condition is described by Henry’s Law. Removal efficiencies can range 

from much less than 1% to greater than 50% depending on the nature of the compound and the condensate collection 

process conditions. This mechanism is discussed in greater detail in Section III. 

III. Incidental Removal by Humidity Control Processes 

The removal of trace chemical contaminants in air via absorption by humidity condensate is a well-recognized 

process.20 In this section, mass balance equations for a typical spacecraft condensing heat exchanger are presented.21 

As well, simplifying assumptions are summarized that allow the effectiveness of absorption in humidity condensate 

as a contamination control device to be estimated. 

A. Theory and Calculation Methods 

Henry’s Law, defined by Eq. 1, figures prominently in developing the absorption mass balance equation.22, 23 

 xTkp H                                                                                (1) 

In this equation, p is the partial pressure of the chemical contaminant in the bulk gas phase in atmospheres (atm), kH(T) 

is the Henry’s Law constant at the system tem-

perature in units of Kelvin, and x is the mole 

fraction of the contaminant in the bulk liquid 

phase. Contamination removal by a condens-

ing heat exchanger can be described by the co-

current absorption process found in Ref. 24 

and illustrated by Fig. 3. Simplifying assump-

tions for developing the mass balance equation 

for a condensing heat exchanger are the fol-

lowing: 

1) Bulk gas phase contaminant concentration is uniform. 

2) Turbulent mixing in the heat exchanger results in a gas phase interface concentration equal to the bulk con-

centration making gas phase mass transfer resistance negligible. 

3) Rapid mass transfer occurs at the gas-liquid interface which is governed by Henry’s Law. 

4) The overall process is characterized by the condensation of moisture followed by co-current absorption. 

5) Low concentration of contaminants and rapid mixing in the liquid phase makes liquid phase mass transfer 

resistance negligible. 

Equation 2 is the material balance around the condensing heat exchanger as depicted by Fig. 3. In Eq. 2, y is the gas  

LxGyLxGy  2211
                                                                       (2) 

phase mole fraction (dimensionless), x is the liquid phase mole fraction (dimensionless), G is the inlet bulk gas phase 

molar flow rate (mole/h), G is the outlet bulk gas phase molar flow rate (mole/h), L is the inlet bulk liquid phase molar 

 
Figure 3. A simplified schematic depicting the condensing heat 

exchanger mass balance.  
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flow rate (mole/h), and L is the outlet bulk liquid phase molar flow rate (mole/h). As depicted in Fig. 3, x1  0, G ≈ 

G, and L ≈ L. Making these substitutions in Eq. 2 and solving for the outlet gas phase mole fraction, y2, yields Eq. 3. 

By assuming  that  the liquid phase  mole fraction  exiting  the condensing  heat exchanger core, x2, has  achieved an 

GLxyy 212                                                                              (3) 

equilibrium condition described by Henry’s Law and defining the exiting vapor phase mole fraction, y2, as the ratio 

of partial pressure and total pressure, p/P, where p is the contaminant partial pressure and P is the total cabin pressure, 

Henry’s Law becomes the following: 

  PxTky H 22                                                                            (4) 

The simultaneous solution of Eq. 3 and Eq. 4 yields Eq. 5 which is the absorption operating curve relating the exiting 

liquid  phase mole  fraction to  the inlet gas phase mole fraction.  Equation 5  is the basis for  calculating the  removal 

  PTkGL

y
x

H
 1

2
                                                                       (5) 

efficiency for single pass contaminant removal via absorption in humidity condensate. The steps for calculating single 

pass removal efficiency based on Eq. 5 are the following: 

1) Calculate the contaminant gas phase mole fraction entering the condensing heat exchanger. In Eq. 6 Ci,1 is the 

inlet concentration in mg/m3, R is the universal gas constant of 82.06 cm3-atm/mole-K, T is the cabin temper-

ature in Kelvin, M is molecular weight in g/mole, and P is the cabin pressure of 1 atmosphere. 

  9

1,1 10 MPRTCy i
                                                                    (6) 

2) Calculate the exiting liquid phase mole fraction using Eq. 5 using the gas phase mole fraction from Eq. 6. 

3) Calculate the molar flow rate of the contaminant removed by the condensate collection rate based on the liq-

uid phase mass fraction calculated from Eq. 5 where ṁL is the condensate collection rate in kg/h. 

 1810002 Li mxn                                                                           (7) 

4) Calculate the outlet gas phase concentration, Ci,2. In Eq. 8, v is the volumetric process gas flow rate through 

the heat exchanger core in m3/h. Other terms are as they were defined in the first step. 

   vMnvCC iii 10001,2,                                                                   (8) 

5) Calculate the decimal removal efficiency, η. The concentration terms are defined in steps 1 and 4. 

  1,2,1, iii CCC                                                                          (9) 

This calculation sequence can be condensed into a single equation. In Eq. 10, ṁL is the condensate collection rate in  

 
  vTkTPm

Tm

HL

L








0045559.0

004558889.0
                                                               (10) 

kg/h, T is the condensing heat exchanger operating temperature in Kelvin, P is the cabin total pressure of 1 atm, kH(T) 

is the Henry’s Law constant in atm adjusted for the condensing heat exchanger’s operating temperature, and v is the 

process air flow rate through the condensing heat exchanger core in m3/h. It is important that the Henry’s Law constant 

be adjusted for condensing heat exchanger’s operating temperature and be in the proper units. The temperature ad-

justment is accomplished according to Eq. 11. In Eq. 11, kH is in mol/m3-Pa and T is in Kelvin. Reference 25 provides 

 
 

   

















15.298

11
1

ln

298,

TTd
kd

KHH

H

ekTk                                                       (11) 

an excellent compilation of values for kH,298K and the temperature dependence, dln(kH)/d(1/T). Equation 12 provides  

 
  83089.1

1

3/ 


PammoleH

atmH
Tk

Tk                                                         (12) 

the method for converting the Henry’s Law constant from units of mol/m3-Pa to atmospheres. The Henry’s Law con-

stant resulting from the temperature adjustment using Eq. 11 and unit conversion using Eq. 12 is used in Eq. 10 to 

calculate the single pass removal efficiency for a condensing heat exchanger. 
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B. Observed Humidity Condensate Loading versus Theoretical Expectations 

The previously-discussed technique is used to evaluate the observed humidity condensate loading to theoretical 

expectations for compounds representing the most prevalent trace contaminant functional classes observed aboard the 

ISS—alcohols, aldehydes, ketones, aromatics, and halocarbons.26 The compounds selected for evaluation—ethanol, 

acetaldehyde, acetone, m-xylene, and dichloromethane—are observed at the highest concentration in their respective 

functional class. In addition, ammonia, a TCC equipment design-driving compound is evaluated. 

Humidity condensate composition analysis results for samples collected between March 2001 and April 2010 are 

considered for all compounds at a minimum. Additional humidity condensate sample analysis results through May 

2015 are considered for ethanol. These results are paired with cabin atmosphere grab sample analysis results reported 

for samples collected within 24 to 48 hours of the humidity condensate samples. 

The theoretically expected humidity condensate loading is determined based on Eq. 5 and considers the average 

and range of the Henry’s Law constants reported in the literature. The typical condensing heat exchanger operating 

temperature for U.S. equipment is 4.4 °C and for the Russian equipment is 14 °C. Typical process air flow through 

the U.S. and Russian condensing heat exchanger cores are 339.8 m3/h and 144 m3/h, respectively. Average humidity 

condensate collection is typically 33% by U.S. condensing heat exchangers and 67% by the Russian condensing heat 

exchanger. Using an average 1.4 kg/person-day collection rate, a 6-crew total production of 8.4 kg/day is collected at 

5.63 kg/day by the Russian condensing heat exchanger unit and 2.77 kg/day by the U.S. condensing heat exchanger 

units. 

1. Compounds that are Stable in Water 

Most humidity condensate loading calculations are straightforward because most of the VOCs of interest remain 

stable in water. The range of Henry’s Law constants in the literature and adjusting for temperature are the primary 

aspects to consider.23 Table 2 summarizes values used for assessing VOC removal by absorption in humidity conden-

sate and predicted removal efficiencies using Eq. 10. Using Eq. 5 and the temperature and flow conditions summarized 

previously, the range of expected loading is obtained. Figure 4 shows the theoretical average, minimum, and maximum 

loading for ethanol, acetaldehyde, acetone, dichloromethane, and xylenes. The area between the minimum and maxi-

mum loading reflects the variation in Henry’s Law constants reported in the literature. Overall, Fig. 4 shows that the 

paired humidity condensate loading and the cabin atmosphere concentrations data points typically fall within the the-

oretical range predicted by Henry’s Law for a variety of compounds representing different chemical classes. This 

agreement indicates that it is appropriate to assume that the equilibrium condition described by Henry’s Law is 

achieved in the condensing heat exchangers. Therefore, calculating single pass removal efficiency via Eq. 10 can 

provide an accurate result. Table 3 summarizes removal efficiencies calculated using Eq. 10 for the U.S. Common 

Cabin Air Assembly (CCAA) and the Russian condensing heat exchanger assembly known by the Russian acronym 

CKB (SKV). 

Table 2. Henry’s Law constants for selected VOCs, NH3, and CO2. 

COMPOUND 

HENRY’S CONSTANT, kH* 

dln(kH)/d(1/T) 

kH at 4.4 °C 

Average Range Average Range 

(mmole/m3-Pa) (mmole/m3-Pa) (atm) (atm) 

Ethanol 1712 1100 – 2300 7116.67 0.0542 0.0404 – 0.0844 

Acetaldehyde 139 17 – 170 5811.11 0.925 0.756 – 1.81 

Acetone 258 100 – 530 5153.33 0.587 0.286 – 1.51 

Dichloromethane 3.83 2.8 – 5.7 3857.89 54.6 36.7 – 74.7 

o-Xylene 2.06 1 – 3.2 4176.70 93.7 60.3 – 193 

Ammonia 536 100 – 770 3971.43 0.380 0.264 – 2.03 

Carbon dioxide 0.348 0.31 – 0.45 2410.00 861 666 – 967 
*Constants at 298.15 K. 

Table 3. Calculated condensing heat exchanger removal efficiencies for selected VOCs. 

COMPOUND 
CCAA EFFICIENCY (%) SKV EFFICIENCY (%) 

Average Range Average Range 

Ethanol 0.796 0.513 – 1.07 2.1 1.3 – 2.8 

Acetaldehyde 0.047 0.024 – 0.058 0.114 0.058 – 0.139 

Acetone 0.074 0.029 – 0.152 0.194 0.075 – 0.398 

Dichloromethane 0.000796 0.000583 – 0.00118 0.00244 0.00179 – 0.00363 

o-Xylene 0.000464 0.000362 – 0.00116 0.0008 0.000624 – 0.00200 
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2. Compounds that Dissociate in Water 

While most compounds do not interact with water, two notable compounds—NH3 and CO2—are weak electrolytes 

which partially dissociate to ionic species. In these instances, two simultaneous equilibrium conditions exist whose 

thermodynamics are rigorously described by Edwards et al. (1978).27 The first is the equilibrium between the cabin 

concentration and the free gas in liquid solution. The second is the equilibrium between the free gas in solution and 

the ionized species. Henry’s Law describes the first equilibrium condition between the cabin concentration and the 

free gas in solution. The second condition is very strongly influenced by pH and can have an effect on the free gas in 

 

  

  
Figure. 4. Measured humidity condensate loading and cabin concentration data pairs versus Henry’s Law 

predictions of the theoretical range around the average for compounds that are stable in water. a) Ethanol 

b) Acetaldehyde c) Acetone d) Dichloromethane, and e) o-xylene. The range reflects variation in Henry’s Law 

constants reported in the literature noted by Table 2. 

a) 

b) c) 

d) e) 
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solution by affecting the mass of total inorganic dissolved species. In order to properly account for the total mass sink 

introduced by speciation of ions in solution, we seek to define expressions relating pH to the fractional amount of each 

dissolved ion at the condensate temperature. Specifically, the fraction of dissolved NH3(aq) and CO2(aq) are required 

to properly adjust Henry’s Law predictions. To this end, the mathematically simpler case for monoprotic hydrolysis 

of the weak base NH3 is first described which can then be logically followed by the more complex diprotic dissociation 

of CO2. 

In aqueous solution, absorbed NH3 acts as a weak base leading to the formation of the ammonium ion, NH4
+ as 

shown by Eq. 13. 

𝑁𝐻3(𝑎𝑞) + 𝐻2𝑂 ⇌ 𝑁𝐻4
+ + 𝑂𝐻−                                                             (13) 

The temperature-dependent equilibrium or base-hydrolysis constant, Kb, can be described by Eq. 14 wherein brackets 

indicate the molar concentration of each species in solution. 

𝐾𝑏 =
[𝑁𝐻4

+][𝑂𝐻−]

[𝑁𝐻3]
                                                                          (14) 

Definition of the formal concentration of ammonia, i.e. the initial, unequilibrated total moles of molecular ammonia 

per liter of solution, by Eq. 15 gives the required mass balance to derive the fractional speciation in solution, αi.28 

[𝐹] = [𝑁𝐻3] + [𝑁𝐻4
+]                                                                     (15) 

Rearrangement of Eq. 14 for [NH4
+] and substitution into Eq. 15 yields Eq. 16 upon simplification. 

[𝐹] =
[𝑁𝐻3][𝑂𝐻

−]+𝐾𝑏[𝑁𝐻3]

[𝑂𝐻−]
                                                                     (16) 

Dividing Eq. 16 by [NH3] yields the definition of αNH3
-1 whose inverse is shown by Eq. 17 and defines the pH depend-

ent speciation of unionized ammonia. Similarly, the fractional speciation of NH4
+ can be rigorously derived but owing 

to its monoprotic nature is conveniently found by Eq. 18 (i.e. Eq. 15 normalized by [F]). 

𝛼𝑁𝐻3 =
[𝑂𝐻−]

[𝑂𝐻−]+𝐾𝑏
                                                                          (17) 

1 = 𝛼𝑁𝐻3 + 𝛼𝑁𝐻4+                                                                          (18) 

Utilizing the relationship  between pH and pOH shown  by Eq. 19, the fractional  dissociation curves for ammonia at  

14 = 𝑝𝐻 + 𝑝𝑂𝐻                                                                           (19) 

25°C are displayed by Fig. 5 wherein Kb = 1.77 × 10-5.30 The intersection of the two curves in Fig. 5 defines the pKa 

which is approximately 9.24 at room temperature and at any pH below this value, typical for ISS condensate, NH4
+ is 

the principal species in solution. For this reason, any direct measurement of [NH3] alone will significantly underesti-

mate the total mass absorbed and at the mean ISS pH of 7.22, the error in such a measurement would be approximately 

99%. 

 

 
Figure. 5. The pH dependent theoretical fractional speciation of NH3 

and NH4
+ in water at 25°C. 
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Absorbed CO2 reacts with water to form carbonic acid, H2CO3. Carbonic acid dissociates in water to form bicar-

bonate HCO3
- and, depending on pH, carbonate CO3

2-. However, the concentration of H2CO3 is relatively small and 

is therefore often lumped within the term (and equilibrium constant) for aqueous carbon dioxide, [CO2(aq)].29 Total 

dissolved CO2 reacts to form HCO3
- in accordance with Eq. 20. 

𝐶𝑂2(𝑎𝑞) + 𝐻2𝑂 ⇌ 𝐻+ + 𝐻𝐶𝑂3
−                                                              (20) 

The temperature-dependent equilibrium or acid-dissociation constant, Ka1, can be described by Eq. 21. 

𝐾𝑎1 =
[𝐻+][𝐻𝐶𝑂3

−]

[𝐶𝑂2]
                                                                          (21) 

Likewise, HCO3
- can further dissociate to form CO3

2- in accordance with Eq. 22 to an extent given by Ka2 as shown 

by Eq. 23. 

𝐻𝐶𝑂3
− + 𝐻2𝑂 ⇌ 𝐻+ + 𝐶𝑂3

2−                                                                (22) 

𝐾𝑎2 =
[𝐻+][𝐶𝑂3

2−]

[𝐻𝐶𝑂3
−]

                                                                          (23) 

Next, [F] can be defined as the stoichiometric concentration of total dissolved inorganic carbon in the system as shown 

by Eq. 24. 

[𝐹] = [𝐶𝑂2(𝑎𝑞)] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−]                                                       (24) 

Substitutions can be made in to Eq. 24 by first rearranging Eqs. 21 and 23 for [HCO3
-] and [CO3

2-], respectively, 

followed by eliminating [HCO3
-] from Eq. 23 by successive substitution to yield Eq. 25. 

[𝐹] = [𝐶𝑂2(𝑎𝑞)] +
𝐾𝑎1[𝐶𝑂2(𝑎𝑞)]

[𝐻+]
+

𝐾𝑎1𝐾𝑎2[𝐶𝑂2(𝑎𝑞)]

[𝐻+]2
                                             (25) 

Dividing Eq. 25 by [CO2(aq)] yields the definition of αCO2
-1 whose inverse is shown by Eq. 26 and defines the pH 

dependent speciation of aqueous carbon dioxide/carbonic acid. 

𝛼𝐶𝑂2 = 1 +
[𝐻+]

𝐾𝑎1
+

[𝐻+]2

𝐾𝑎1𝐾𝑎2
=

[𝐻+]2

[𝐻+]2+𝐾𝑎1[𝐻
+]+𝐾𝑎1𝐾𝑎2

                                                (26) 

By algebraic comparison it follows that the fractional speciation of HCO3
- and CO3

2- may be defined by Eqs. 27 and 

28, respectively. 

𝛼𝐻𝐶𝑂3− =
𝐾𝑎1[𝐻

+}

[𝐻+]2+𝐾𝑎1[𝐻
+]+𝐾𝑎1𝐾𝑎2

                                                               (27) 

𝛼𝐶𝑂32− =
𝐾𝑎1𝐾𝑎2

[𝐻+]2+𝐾𝑎1[𝐻
+]+𝐾𝑎1𝐾𝑎2

                                                               (28) 

Figure 6 displays the fractional dissociation curves for CO2 at 25°C with Ka1 = 4.45 × 10-7 and Ka2 = 4.69 × 10-11. 30 

At the average observed pH of 7.22 on 

ISS, 88% of the dissolved inorganic car-

bon exists as HCO3
-. Neglecting to in-

clude this mass at equilibrium leads to a 

large deviation from Henry’s Law predic-

tions. In addition, at the upper range of ob-

served ISS pH values of 8.02, CO3
2- is 

present at less than 1% and its influence 

can therefore be ignored in our analysis. 

Accounting for dissociation and the 

effects of pH as well as temperature, an 

assessment of observed NH3 and CO2 

loading in humidity condensate illustrated 

in Fig. 7 shows excellent agreement with 

theoretical predictions. The cabin concen-

trations for NH3 were measured by the 

ANITA demonstration instrument.31 Fig-

ure 7 accounts for the range of pH that in-

fluences the aquated free gas fraction in 

addition to the variation in literature 

Henry’s Law constants. 

 
Figure. 6. The pH dependent theoretical fractional speciation of CO2 

(aq), HCO3
-, and CO3

2- in water at 25°C. 



 

 

International Conference on Environmental Systems 
 

 

10 

When calculating the total removal efficiency for compounds such as NH3 and CO2 it is necessary to recognize 

that the total removal is greater than what is predicted by Henry’s Law alone since Henry’s Law only accounts for the 

aquated free gas fraction in solution. The extent of dissociation must be considered for to determine the total removal 

and, therefore, to estimate the single pass removal efficiency. Accounting for dissociation is simple and is accom-

plished by dividing the efficiency calculated using Eq. 10 by the free gas fraction in equilibrium with the dissociated 

species as a decimal percentage. For example, the NH3 removal efficiency for the CCAA calculated by Eq. 10 for a 

condensing heat exchanger removing 0.1167 kg/h of condensate with a process air flow of 339.8 m3/h and 4.4 °C 

operating temperature is 0.12%. If the condensate pH is 7.22, then the free NH3 fraction is 0.0112. The adjusted 

removal efficiency is obtained by dividing 0.12 by 0.0112 to yield 10.7%. The calculations yields 31.5% for the 

Russian SKV unit. From these calculations, the humidity control equipment represent a significant removal capacity 

for NH3. 

 

IV. Considerations for Liquid Phase Reactions 

It is well understood that under certain process conditions such as concentration and pH, the interaction of species 

in the NH3-CO2-H2O system leads to deviation from predicted Henry’s Law equilibrium by formation of the carbamate 

ion, NH2CO2
-.32   Equation 29 displays the reaction  between NH3 and HCO3

-.  The literature is unclear regarding the 

𝑁𝐻3 +𝐻𝐶𝑂3
− ⇌ 𝑁𝐻2𝐶𝑂2

− +𝐻2𝑂                                                            (29) 

concentration magnitude at which this reaction results in a significant deviation from Henry’s Law and the single 

component phase equilibria described by non-interacting CO2 and NH3 speciation as described by Section III. For 

example, consider the work of Hales and Drewes (1979)33 wherein discrepancies one order of magnitude lower than 

theory were observed for the solubility of NH3 in water. This deviation was understood to result from co-absorption 

of atmospheric CO2. The departure from traditional theory was believed to result from forming a volatile NH3-CO2 

adduct although system pH was not monitored. This proposed “new” solubility theory was challenged by Ayers et al. 

(1985)34 who found no deviations from Henry’s Law for NH3 loadings from 75-1200 µM in the presence of atmos-

pheric CO2. Later, Hales acknowledged errors in the measured solubility depression of the original work responsible 

for the proposed adduct formation theory.35 

This is a significant result given the early work carried out at NASA by Kissinger et al. (1976)36 found enhanced 

(3.4 times) NH3 scrubbing potential for the Space Shuttle condensing heat exchanger as a result of NH3-CO2 reactions. 

The most dilute test condition (20 ppm NH3) was such that extrapolation to typical cabin atmospheric concentrations 

<1 ppm were required. It is therefore possible that in extending empirical observations into the far dilute range of 

typically observed spacecraft NH3 loadings, the regime wherein significant NH3-CO2 interactions exist was exited 

and/or extrapolation errors were introduced by the non-linear regression curves. In other words, the enhancement of 

NH3 solubility does not necessarily translate to the dilute regime which in turn has tangible implications on under-

standing the spacecraft cabin mass balance. 

In this research, two pieces of evidence suggest NH3-CO2-H2O interactions are limited to binary NH3-H2O and 

CO2-H2O reactions alone aboard the ISS. First, while circumstantial, the reported lower experimental pH range for 

  
Figure 7. Measured humidity condensate loading and cabin concentration data pairs versus Henry’s Law pre-

dictions of the theoretical range for compounds that dissociate in water.  a) Ammonia b) Carbon dioxide. The 

range reflects pH effects and the variation of Henry’s Law constants reported in the literature. 

a) b) 
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ternary interacting systems is comparatively quite high at 8.59 37 and 8.61 32. In both cases, the experimental load of 

100 mol NH3/L was much higher than the <3.5 mmol/L typically observed in humidity condensate aboard ISS. How-

ever, the ratios of NH3 to CO2 are much higher aboard ISS than in Ref. 32. A higher experimental pH is significant 

because NH3 must be present in its molecular form to interact with CO2 according to Eq. 29. The temperature-depend-

ent equilibrium constant Kc can by defined by Eq. 30 and has a value of 3.085 at 25°C which indicates carbamate 

formation is favored.38, 39 

𝐾𝑐 =
[𝑁𝐻2𝐶𝑂2

−]

[𝑁𝐻3][𝐻𝐶𝑂3
−]

                                                                           (30) 

However, at the mean observed ISS pH, the αNH3 is approximately 0.0087 at room temperature which at the measured 

condensate mass loadings limits any potential carbamate formation to the order of 10-8 mol/L. Therefore, even if 

interactions are present in the dilute regime typically observed on ISS ([NH3-N] ≈ 100 mmol/L; [CO2(aq)] ≈ 1 mmol/L) 

they are significantly limited by the system pH and trace condensate electrolyte loading. 

V. Trace Contaminant Cabin Mass Balance 

Assuming that a spacecraft cabin is a single well-mixed volume, Eq. 31 provides the mass balance for any chemical 

contaminant.40 In Eq. 31, Ci is the contaminant concentration in the cabin atmosphere in mg/m3, ri is the contaminant 

i
ii C

V

v

V

r

dt

dC 



                                                                       (31) 

generation rate in mg/h, V is the cabin free volume in m3, and Σηv is the total active removal capacity for all known 

contamination control equipment removal routes in m3/h. The solved form of this mass balance equation yields Eq. 

32. In Eq. 32, C is the contaminant concentration at time, t; Co is the contaminant concentration at time equal to zero, 

      tVvtVv

o evreCC 





 1                                                       (32) 

V is cabin volume, Σηv is the effective contaminant removal flow for all removal routes, r is the contaminant genera-

tion rate, and t is time. The rate of change for most contaminant concentrations is very slow. Therefore, Eq. 33, the 

steady state form of Eq. 32, can be used for most TCC calculations. 




v
rC


                                                                             (33) 

VI. Contaminant Generation Predicted from Cabin Mass Balance 

A general cabin trace contaminant mass balance for the ISS can be accomplished using Eq. 33 and the removal 

efficiencies described in Section II for the TCCS and BMP and Section III for the humidity control equipment. Table 

4 presents the resulting removal rates and total contaminant generation for several compounds of interest. 

Comparing the total generation in Table 4 to generation rates derived from Table 1 for a total trace contaminant 

load consisting of offgassing from 175000 kg of equipment and the metabolic production from six crewmembers 

shows close agreement for NH3 and some notable exceptions for the solvent compounds. The mass balance indicates 

an NH3 load about 5% lower than the load model. Three solvent compounds—ethanol, dichloromethane, and o-xy-

lene—have lower generation rates according to the mass balance versus the load model. 

The ethanol load calculated from Table 1 is 1.39 g/day which is 1.45 g/day lower than predicted by the ISS cabin 

mass balance. It should be noted that the load model in Table 1 does not include cleaning solvent use aboard the ISS 

which is beyond the scope of the standard TCC load model. The daily ethanol usage rate for cleaning purposes is 

controlled within the range of 1 g/day to 2 g/day. When alcohol-based cleaning solvent use is added to the Table 1 

load model, the mass balance results are consistent with the load model. 

The daily generation rates for acetone, dichloromethane, and o-xylene derived from Table 1 are 75% to 82% higher 

than the cabin mass balance indicates in Table 4. The offgassing rate component accounts for this difference. Consid-

ering that many manufacturing and cleaning processes as well as coating, paint, and adhesive formulations have moved 

away from using volatile solvents over the past two decades, this difference is understandable because the design load 

model’s context is the Shuttle and Spacelab program era when these solvents were more commonly in use. 

Overall, for the compounds of interest in Table 4, the ISS cabin mass balance indicates that the design load model 

presented by Table 1 is reasonably conservative with the exception of needing to account for the allowed daily ethanol 

wipe usage cleaning purposes. 
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Table 4. Removal rates by different devices for average an average ISS cabin concentration. 

COMPOUND 
  CABIN 

CONCENTRATION 
  (mg/m3) 

REMOVAL RATES     TOTAL 

GENERATION 
(mg/day) 

TCCS 
(mg/day) 

BMP 
(mg/day) 

CCAA 
(mg/day) 

SKV 
(mg/day) 

OTHER 
(mg/day) 

Ethanol 4 440 1680 260 290 170 2840 

Acetaldehyde 0.33 120 170 1.3 1.3 14 307 

Acetone 0.3 110 140 1.8 2 12 266 

Dichloromethane 0.12 13.2 50 0.0078 0.0101 5 68 

o-Xylene 0.16 60 90 0.0061 0.0044 10 160 

Ammonia 0.112 40 30 100 120 4.7 295 

A further examination of Table 4 yields insight on the dominant removal routes of the trace contaminants of inter-

est. As shown by Table 5, the active TCC equipment provides the primary removal. Combined, the TCCS and BMP 

are expected to remove ~93% to ~97% of the load for the aldehyde, ketone, halocarbon, and aromatic compound 

classes. Humidity control removes <<0.1% to ~1.5% for these compound classes. Approximately 19% of the more 

soluble compound load, such as ethanol, 

is removed by the humidity control 

equipment with the TCCS and BMP ac-

counting for ~75%. Other removal 

routes, such as retention in CO2 removal 

equipment and overboard leakage re-

move ~4% to ~6% of the load. 

The humidity control equipment can 

provide significant removal for com-

pounds that dissociate, interact with wa-

ter, or undergo liquid phase reactions 

such as NH3. Table 5 shows that ~73% 

of the NH3 load is removed by the hu-

midity control equipment with the TCCS 

and BMP accounting for 25%. 

The relative contribution to removal 

resulting from the mass balance compares favorably to system-level testing conducted in 1997 for the ISS Program. 

In this testing the TCC equipment removed ~45% to ~56% of the ketone, halocarbon, and aromatic classes, ~22% of 

the light alcohols, and ~23% of the NH3. The humidity control equipment removed <<1% to 1.6% of the ketone, 

halocarbon, and aromatic classes, ~12% of the light alcohols, and 55% of the NH3. The results from the cabin mass 

balance for relative removal percentages are similar in magnitude to these testing results as well as in the same order 

of precedence. Therefore, the approach to the mass balance calculation technique described herein is concluded to 

reasonably predict the fate of trace contaminants for a well-mixed cabin atmosphere that is maintained by both active 

TCC and condenser-based humidity control equipment. 

VII. Summary and Conclusions 

The theory and methodology for understanding the fate of trace contaminants in the unique environment of a 

crewed spacecraft cabin were presented and developed. The specific mass balance for co-current flow, condenser-

based humidity control equipment was presented and demonstrated to accurately correlate with the observed phase 

equilibria humidity observed from concentrations reported in closely paired humidity condensate and cabin atmos-

phere samples. The considerations for addressing contaminant dissociation in the liquid phase were presented. Obser-

vations and literature indicate that the conditions typically present in a crewed spacecraft cabin do not promote 

interaction between NH3 and CO2 in the liquid phase. The approach to an overall cabin trace contaminant mass balance 

was presented. The mass balance technique was found to accurately predict the relative contribution to trace contam-

inant removal and order of precedence for primary TCC equipment and incidental trace contaminant removal by hu-

midity control equipment for a well-mixed crewed spacecraft cabin environment. 

Table 5. Relative contribution of removal routes aboard the ISS. 

COMPOUND 

REMOVAL CONTRIBUTION 

TCCS 

(%) 

BMP 

(%) 

CCAA 

(%) 

SKV 

(%) 

OTHER 

(%) 

Ethanol 15.6 59.2 9.1 10.2 5.9 

Acetaldehyde 38.9 55.9 0.4 0.4 4.4 

Acetone 41.3 52.6 0.7 0.8 4.7 

Dichloromethane 19.3 73.4 0.01 0.01 7.3 

o-Xylene 37.5 58.2 0.004 0.003 4.2 

Ammonia 13.8 11.2 32.7 40.8 1.6 
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