
HORIZON BASED ORIENTATION ESTIMATION FOR PLANETARY SURFACE
NAVIGATION

X. Bouyssounouse, A. V. Nefian, A. Thomas, L. Edwards, M. Deans and T. Fong

NASA Ames Research Center, SGT, Stanford University

ABSTRACT

Planetary rovers navigate in extreme environments for which a
Global Positioning System (GPS) is unavailable, maps are restricted
to relatively low resolution provided by orbital imagery, and com-
pass information is often lacking due to weak or not existent mag-
netic fields. However, an accurate rover localization is particularly
important to achieve the mission success by reaching the science
targets, avoiding negative obstacles visible only in orbital maps, and
maintaining good communication connections with ground. This
paper describes a horizon solution for precise rover orientation esti-
mation. The detected horizon in imagery provided by the on board
navigation cameras is matched with the horizon rendered over the
existing terrain model. The set of rotation parameters (roll, pitch
yaw) that minimize the cost function between the two horizon curves
corresponds to the rover estimated pose.

Index Terms— autonomous navigation, localization, horizon
matching

1. INTRODUCTION

Localization of the rover and mapping of the surrounding terrain
with high precision is critical to surface operations in planetary rover
missions, particularly within subtasks such as rover traverse plan-
ning, hazard avoidance, and target approaching. Typically, planetary
rover localization on past and current NASA missions relies on te-
dious manual matching of rover camera views and orbital maps [1].
Alternatively, the location of rovers can occasionally be verified by
spacecraft imagery [2].

The system presented in this paper determines automatically the
rover orientation by matching the horizon curve detected in the lo-
cal imagery and matching it with the rendered horizon from a given
rover pose in prior 3D terrain maps. Horizon detection methods for
orientation estimation have been developed in the past for unmanned
aerial vehicle (UAV) [3], [4], [5], micro aerial vehicle (MAV) [6]
and marine applications [7]. The most successful approaches for
horizon detection are based on edge detection and selection, image
segmentation (clustering), image classification or a combination of
the above methods. Specific to the planetary surface navigation are
the unknown terrain features as seen from the rover/lander camera
orientation and resolution. This makes classification based methods
([3], [7], [8], [9], [10]) difficult to use. A direct color based sky seg-
mentation is also unreliable for images captured in various missions.
It is known for example that the sky color varies strongly between
Earth, Moon and Mars. In addition, in the presence of atmosphere,
the horizon line can be fuzzy and affected by haze or dust. These
conditions can confuse a direct edge detection and selection-based
technique ( [11], [12], [13], [14], [15]).

The horizon detection method presented in this paper is based
on a Bayesian model for the image formation related to the work de-

scribed in [16]. The model parameters are learned iteratively from
a set of apriori statistics. The image formation model unifies under
the same formulation both edge and texture-based approaches and
reduces dependencies on apriori knowledge of the terrain and atmo-
spheric conditions.

The statistical solution for horizon detection is described in Sec-
tion 2. Section 3 describes an efficient multi-scale horizon rendering
solution that is used to determine the optimal rover pose (Section 4).
Finally the experimental results and conclusions of this work are de-
scribed in Sections 5 and Section 6 respectively.

2. HORIZON DETECTION

The horizon detection method described in this paper uses low res-
olution monochrome images [17] to simulate navigation camera im-
agery in a mission analogue scenario. For the particular set of im-
ages discussed in this paper, each pixel corresponds to either a ter-
rain region or sky region. Pixels that show the rover body can be
easily masked given the known fixed camera pose with respect to
the rover body. Furthermore there is a given structure to these im-
ages which can be exploited to improve the horizon detection. As-
suming an upright camera orientation, a top to bottom scan of each
image column will have at most one transition from sky to terrain
regions. The transition pixel, if it exists, corresponds to the hori-
zon pixel in each column. In practice the transition within a column
from sky to terrain region can happen at any pixel with a differ-
ent likelihood as it will be discussed later in this section. Further-
more, in natural environments horizon pixels in consecutive columns
have small changes in row indices corresponding to a smooth hori-
zon curve. The horizon detection problem is stated as finding the
optimal global path of horizon pixels for each image column that
satisfies the horizon smoothness constraint. The image formation
model described above is represented as a Bayesian model in Fig-
ure 1. Rectangles represent discrete nodes and circles denote contin-

Fig. 1: Bayesian image formation model.

uous nodes. Shaded rectangles represent hidden nodes while clear
circles represent observations. Each pixel at location (col, row), in
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the image with H rows and W columns, is associated with an ob-
servation Ocol,row. The hidden parent node qcol,row for each obser-
vation has a binary value associated with either a “sky” or “ground”
region. The discrete hidden node Qcol is the parent node for the set
of nodes {qcol,row : row = 1 . . . H}, and its value is the column
col where the transition from sky to ground region occurs.

The observation at each pixel is a two dimensional vector con-
sisting of the image intensity at the specific pixel and the edge den-
sity. The edge density value is computed as the ratio between the
number of Sobel edges in a window centered around the pixel over
the total number of pixels in the given window.

The iterative horizon detection algorithm follows a set of steps
described in Figure 2. Each box in this flowchart will be explained

Fig. 2: Overview of horizon detection methods.

in more detail in the following steps.

Step 1. Pixel Probability Calculation.
The iterative method presented here starts with computation of ob-
servation probabilities at each pixel given the sky (s) or ground (g)
regions P (Oij |qij = s) and P (Oij |qij = g). The method is ini-
tialized with a set of statistics associated with the sky (clear sky and
cloudy subregions) and ground (well lit and shadowed subregions)
regions.

At consecutive iterations the segmented image regions are used
to re-learn the regions statistics using a random forest classifier as
shown in Figure 2.

Next steps of the algorithm will consider dependencies among
neighboring pixels.
Step 2. Image Column Probability Calculation.
The probability of a pixel in column j and row k being a horizon
pixel is computed as:

P (Oj |Qj = k) = P (Ojk|edge)×
k∏
i=1

P (Oji|qji = s)

H∏
i=k+1

P (Oji|qji = g). (1)

where Oj = O1j . . . OHj . P (Oji|qji = s) and P (Oji|qji) were
calculated in Step 1 and P (Okj |edge) is the likelihood that the pixel
belongs to an image edge.

Step 3. Image Probability Calculation and Segmentation.

The optimal path Q = Q1 . . .QW that maximizes

P (O|Q) = P (O1 . . .OW |Q1 . . .QW )

=

W∏
j

P (Oj |Qj)

W∏
j=1

P (Qj |Qj−1), (2)

is computed via the Viterbi algorithm [18] and gives the optimal se-
quence of horizon pixels that separate the sky and ground regions. In
Equation 2, O = O1 . . .OW and P (Oj |Qj) are the probabilities
calculated in Equation 1. The transition probability between horizon
pixel locations in consecutive columns filters out variations in the
horizon curve due to noise and it is calculated as:

P (Qj = k|Qj−1 = l) =

{
1
N

if |k − l| ≤ N
0 otherwise .

The value N is set based on assumptions to the horizon smoothness.
For example a large value for N allows more abrupt changes in the
horizon curve than a lower value forN . With the above formulation,
finding the horizon curve is equivalent to finding the best sequence
of Qj in Equation 2. The efficiency of the optimal path computation
is increased by considering only a subset of P (Oj |Qj) correspond-
ing to highest likelihood values. The likelihood of all observations
given the image formation model is approximated by the following
equation

P (O) ≈ max
Q

P (O,Q) = P (O|Q)P (Q) ∝ P (O|Q). (3)

If the change in likelihood at consecutive iterations falls below a
fixed threshold the iteration stop, and the final horizon curve is ob-
tained (Figure 2). Otherwise, the model parameters are retrained as
described in the next section.

Step 4. Iterative learning of region density function.
The observation vectors associated to ground and sky regions at each
iteration are used to train a random forest classifier. The output of
the classifier is used to compute the observation probabilities in the
step 1 of the next iteration. In typical planetary missions the speed
of the rover is of the order of 5-10 cm/s and the image statistics at
consecutive frames don’t change significantly. Under these condi-
tions, and in order to reduce the onboard computational complexity
the model trained on observations from previous images can be used
to initialize the iterative procedure for the current frame In our ex-
periments we use the most recent 50,000 observations collected from
past images.

3. HORIZON RENDERING

Horizon rendering starts with the generation of a synthetic view at
any given pose on the surface. This rendered view is obtained from
the orbital digital elevation model (DEM) and the rover mounted
camera intrinsic and extrinsic parameters. Finding the rendered hori-
zon is equivalent to finding the curve that segments the ground and
non-ground regions in the rendered image. The rendered horizon
is determined by topographical features ranging from the immedi-
ate vicinity of the rover to regions that can extend tens of kilome-
ters away from the camera. An accurately rendered horizon curve
requires both high resolution and high coverage DEMs. This re-
quirement leads memory limitations which are particularly impor-
tant when the processing is offloaded to a Graphical Computational
Unit (GPU) for fast rendering. To accommodate these constraints,



the terrain model is split spatially into multiple tiles at varying reso-
lutions. The synthesized image is then computed from a selection of
these tiles in the view frustum at resolutions based on camera to tile
distances which guarantee a minimum projected image pixel resolu-
tion. In our experiments we used a low-coverage (.8×.8 km), high-
resolution (1 m per post) terrain model, augmented with a large-
coverage (10×10 km) low-resolution terrain (9 m per post). A multi-
resolution representation with a resampling factor of two was chosen
to capture both high resolution details and extended coverage. Fig-
ure 3 illustrates the hillshaded terrain at a test site that combines
the low resolution high coverage with low coverage high resolution
(inside the rectangle) terrain models. This approach satisfies both

Fig. 3: Hillshaded terrain tiles at the field test site combining low
resolution high coverage and high resolution low coverage area (in-
side the rectangle).

the wide coverage and high resolution requirements for horizon ren-
dering, while accommodating the memory constraints of a typical
GPU. The rendered image is computed using standard OpenGL li-
braries, [19] and the horizon curve is computed as the boundary of
the rendered surface. Figure 4 illustrates a rendered image as seen
by camera on board the rover for a given rover pose. The red area
denotes the surface rendered by using the large coverage, low reso-
lution orbital terrain model. This area would not be visible if only
the low-coverage, high-resolution terrain were used, leading to an
incorrect horizon curve.

4. HORIZON MATCHING

Let the detected horizon be d and the rendered horizon for given
rover orientation (θ = {roll, pitch, yaw}) be r(θ). Both d and
r(θ) are vectors of size equal to image width W . The elements of
these vectors contain the row index of the horizon curve for each
column in the image. In horizon matching the goal is to determine
the optimal rover orientation θ̃ such that

θ̃ = argmin
θ

∑
i

(di − ri(θ))
2 (4)

In case the ith rendered or observed column vector contains only sky
or only ground, then this vector is considered invalid, and is omitted
from the summation. The sum of squared differences is scaled by

Fig. 4: Example of a rendered horizon image depicting both local
(gray) and wide-area (red) models.

the ratio of horizontal image points W to number of valid points.
In case the number of valid points drops below a threshold for an
image then that image is not considered for comparison. Equation 4
is solved using Gauss Newton algorithm with numerical derivatives.

5. EXPERIMENTAL RESULTS

Data used to validate the described algorithms were gathered from a
3 km traverse of a rover operating in the Basalt Hills near San Luis
reservoir, California at an average speed of 0.8 m/s. Figure 5 illus-
trates typical results for horizon detection (blue), horizon rendered
from the INS unit (black), IMU and wheel odometry (red) and hori-
zon matching (green). Note that the estimated rover pose generates
a rendered horizon line that is closer to the actual horizon line than
the horizon rendered from the INS or IMU pose. The spikes in the
black and red curves are due to unfiltered noise in the orbital DEM.
We ran two experiments to evaluate the method described in this pa-
per. First, we measured the average pixel offset between the detected
horizon line and the horizon line rendered for best rover orientation
obtained using solution in Section 4. This experiment validates the
matching technique. Figure 6 shows the average pixel offset for the
detected vs INS horizon line and compares this to the average pixel
offset for the detected vs horizon matched line, at each frame in the
trajectory.

In the second experiment we estimated the orientation accuracy
of the method including the horizon detection and matching tech-
niques. We used as ground truth the INS rendered horizon line and
assumed a set of noisy INS values as input for the horizon match-
ing method. However, note that the INS orientation is often affected
by noise to due rover movement or device inaccuracies and visual
inspection showed that our method improves almost always INS ori-
entation.

In order to reduce the effect of INS inaccuracy we used an ori-
entation input noise uniformly distributed over ±5 degrees in roll,
pitch and yaw. At this noise level we found that the algorithm would
occasionally converge to the wrong local minimum, and this issue
was mostly mitigated by using multiple restart conditions of -2.5,
0.0, +2.5 degree offsets in roll, pitch, yaw, and choosing the lowest
cost horizon line match from the resulting 27 combinations. Figure 7
illustrates the recovered pitch value (green) vs the input pitch value
(red).

Nearly all of the large horizon matched errors in roll, pitch, and
yaw were found to be due to the following conditions: high con-
trast clouds which were mistaken for part of the horizon; a camera
position with a poor view of the horizon; large nearby rocks or dirt



mounds not sufficiently large to be captured in the DEM, yet close
enough to block a portion of the horizon.

Fig. 5: Detected horizon (blue), rendered horizon from INS (black),
IMU and wheel odometry (red) poses. The green curve shows the
rendered horizon using the pose estimation method described in this
paper.
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Fig. 6: Average pixel offset magnitude for detected vs INS (red), and
detected vs horizon matching (green).

6. CONCLUSIONS

This paper describes a system for planetary rover orientation esti-
mation by matching the horizon detected in images captured by the
rover navigation camera and the horizon rendered from an existing
terrain model obtained from satellite imagery. The orientation es-
timate is obtained using Gauss Newton method that minimizes the
least square distance between the vectors describing the detected and
rendered horizon lines. The horizon rendering solution uses an effi-
cient multi-resolution large scale terrain map obtained from orbital
imagery. The horizon detection method uses a Bayesian image for-
mation model and an iterative statistical algorithm to estimate the
optimal segmentation curve between terrain and sky regions. The
results have been successfully tested in multiple environments and
illumination conditions including terrestrial analogues sites.
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Fig. 7: INS with±5◦ uniform random noise added (red), and result-
ing horizon optimized roll errors (green).
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