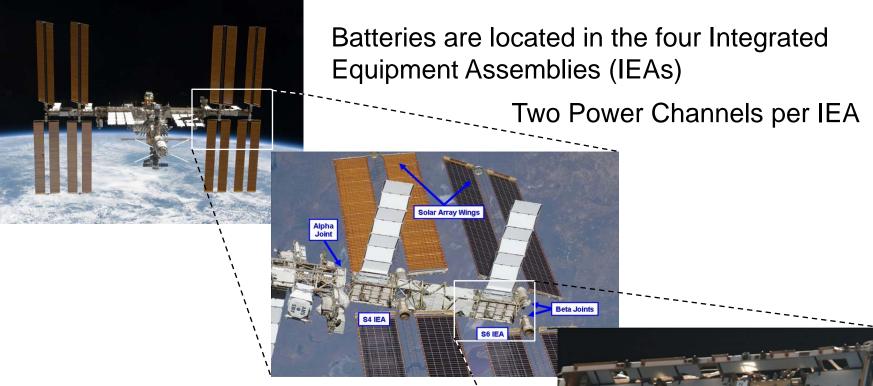
https://ntrs.nasa.gov/search.jsp?R=20160012048 2019-08-29T17:31:37+00:00Z

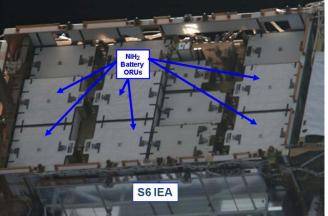
International Space Station Lithium-Ion Battery

Penni J. Dalton, NASA Glenn Research Center Sonia Balcer, Aerojet Rocketdyne

- Configuration of Existing ISS Electric Power System
- Timeline of Li-Ion Battery Development
- Battery Design Drivers
- Technical Definition Studies
- Cell Selection
- Safety Features

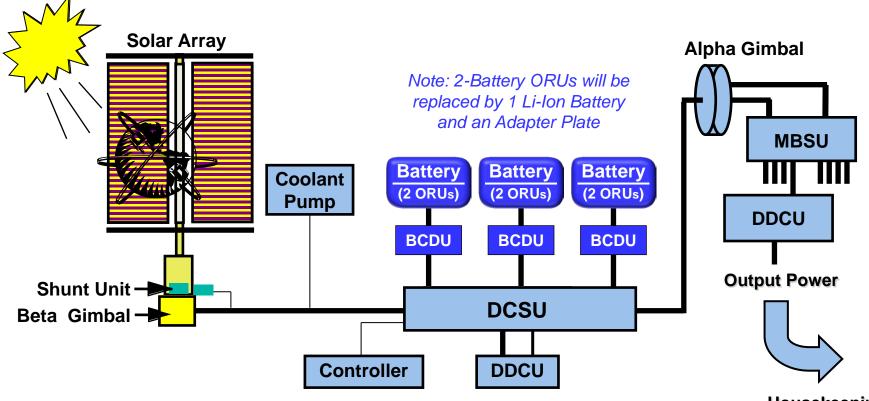


- Final Flight Adapter Plate and Battery Design
- Battery Charge Control and Low Earth Orbit (LEO) Cycle Test Data
- Current Status


ISS Configuration - Battery Locations

Six Ni-H₂ Orbital Replacement Units (ORUs) per channel – 48 total

One Li-Ion and one Adapter Plate to replace two Ni-H₂ – 24 total Li-Ion batteries

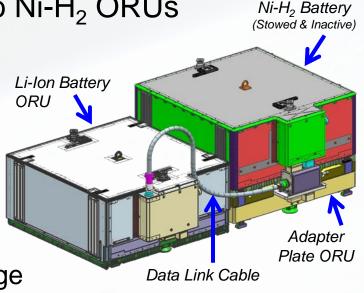


ISS Configuration - EPS Schematic

Electrical Power Channel – 1 of 8

Housekeeping & Payloads

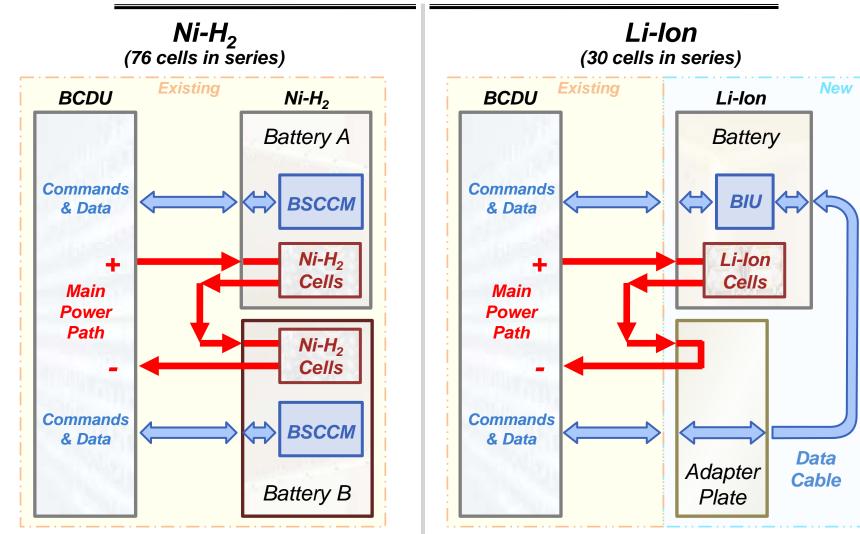
EPS:: Electric Power System BCDU: Battery Charge / Discharge Unit DCSU: DC Switching Unit DDCU: DC-to-DC Converter Unit MBSU: Main Bus Switching Units


- 2009-2010 Preliminary risk and feasibility studies
- December 2011 ISS Program Authority To Proceed with design, development and the fabrication of 27 Li- Ion ORUs and 25 on-orbit Adapter Plate ORUs
- Jan-Jun 2012 Cell Safety Testing and Cell Qualification
- July 2012 Final cell down-select
- December 2012 System Preliminary
 Design Review
- November 2013 System Critical Design Review

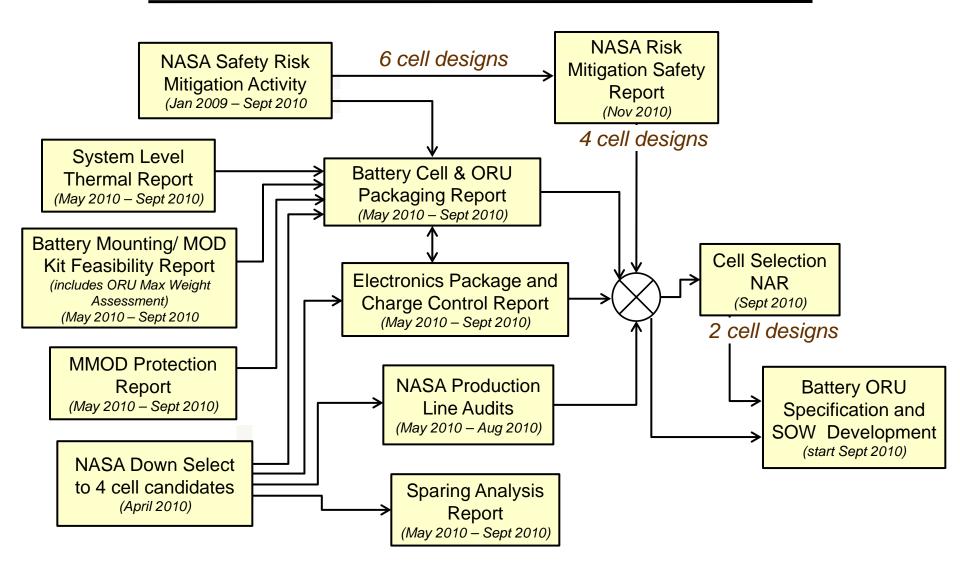
• March 2016 - First flight Li-Ion battery delivered to Kennedy Space Center for shipment to Tanegashima, Japan

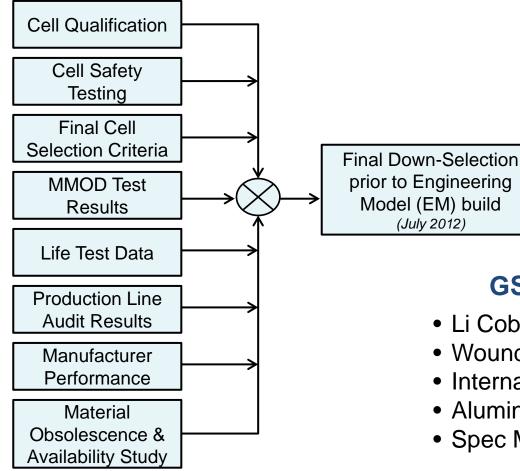
ISS Li-Ion Battery Key Design Drivers

- One Li-Ion battery ORU replaces two Ni-H₂ ORUs
- Launch on Japanese HTV
- Six year battery storage life requirement
- Ten year/60,000 cycle life target (minimum 48 A-hr capacity at end of life)
 - ORU will have cell balancing circuitry
 - ORU will have adjustable End of Charge Voltage (EOCV)
- Maximum battery ORU weight ~430 lbs
- Non-operating temperature range (Launch to Activation): -40 to +60 °C
- No changes to existing IEA interfaces and hardware
 - Use existing mounting, attachment, electrical and data connectors
 - Use existing Charge/Discharge Units and Thermal control systems



ISS Upgrade to Li-Ion

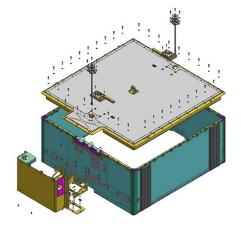


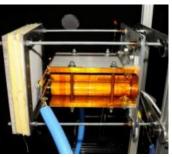

ISS Li-Ion Technical Definition Studies

 Two designs taken through qualification, with down-selection made prior to EM build

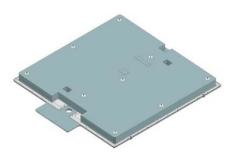
GS Yuasa 134 A-hr cells

- Li Cobalt Oxide / Carbon Graphite
- Wound elliptical prismatic electrode
- Internal Fusible link
- Aluminum Case, 50 x 130 x 263 mm
- Spec Mass: 3530 grams (~7.8 lb)


Battery-Level Safety Features

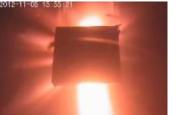

- Two independent controls vs. thermal runaway (two fault tolerant)
- Voltage and temperature monitoring of all 30 cells
- Circuit protection/fault isolation at the individual cell level for both high/low voltage and high temperature
- Physical separation between cell pairs and 10 packs
 - Thermal radiant barriers between cell pairs
- Controlled direction of cell vents prevent damage to cold plate, adjacent cells and IEA hardware
 - ORU pressure relief/flame trap to prevent ORU overpressurization but contain flame in the event of a cell vent
- MMOD shielding in ORU and empty ORU slot
- Dead face device to remove power from output connector during ground or EVA handling
- Non propagation of failures beyond Battery ORU

Safety Features - MMOD Shielding

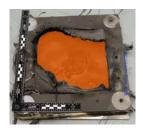


MMOD test setup

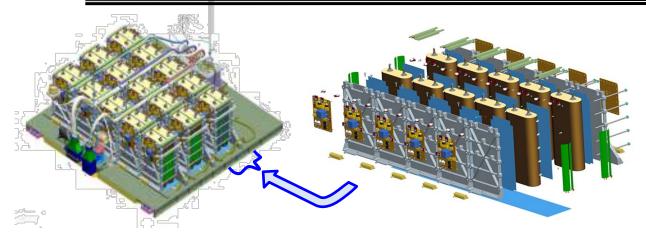
Ballistic Limit Testing



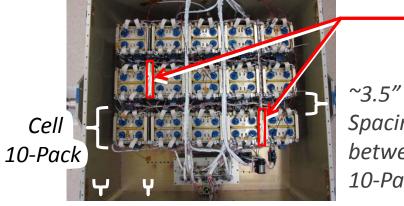
MMOD Shield



Over Match - Penetration testing 10 mm 2017-T4 Aluminum Sphere @ 6.86 km/s


Overcharge Containment Testing

Note: Existing Ni-H₂ does not have MMOD (Micro-Meteoroid Orbital Debris) protection



Safety Features - Radiant Heat Barriers

ORU Layout – three Cell "10-Packs" and 12 Radiant Barriers

~1" Spacing

between Cells

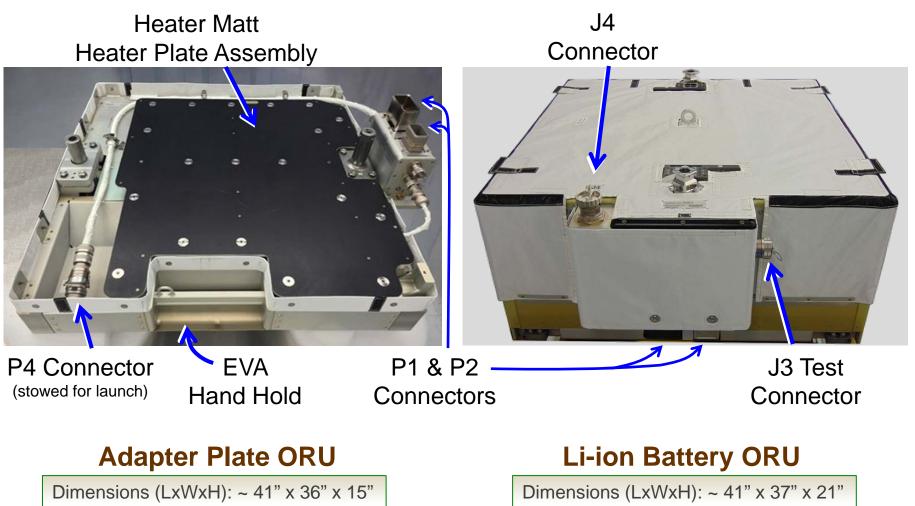
~2"

Spacing

Spacing between 10-Packs

Radiant Heat Barrier (12 per ORU)

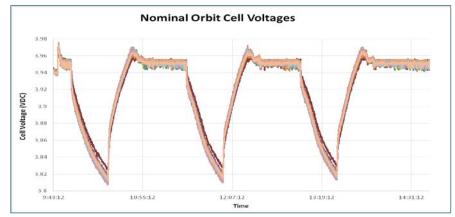
- Higher margin against thermal runaway propagation
- One barrier between each cell pair
- Reflects 787 reach-back safety additions

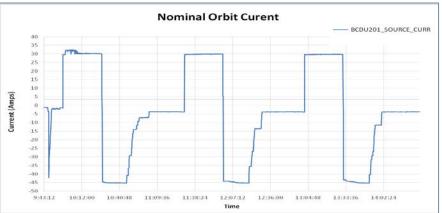

Cell-Level Safety Features and Controls

- Manufacturing Process controls include 100% materials screening and chemical analysis plus annual configuration/production line audits
- Acceptance testing of 100% of cells
- Simulated LEO life cycle testing in 2% of cells in each lot
- For 1% of cells in each lot, 100 cycles at 100% DOD are performed, followed by DPA
- Cell vent before burst and directional vent away from base plate and adjacent cells
- Individual cell fusing (internal fusible link)
- Shutdown separators between electrode windings
- Case neutral and electrically insulated from ORU structure

ISS Li-Ion ORUs

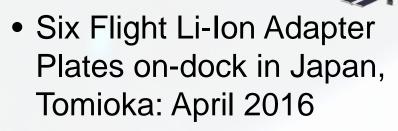
Spec Weight: 85 Lbs Spec Weight: 435 Lbs




ISS Li-Ion Charge Control and Cycling

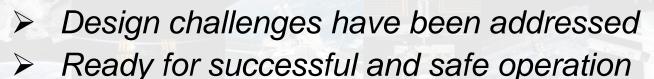
- Li-Ion charge current profile based on cell voltages
- Cell bypass/balancing at EOCV every orbit
- EOCV is ground command-able

Charge Current Profile		
	Highest of the Cell Terminal Voltages	Charge Current
Point 1	EOCV + 19mV	55
Point 2	EOCV + 19mV	49
Point 3	EOCV + 18mV	44
Point 4	EOCV + 17mV	39
Point 5	EOCV + 16mV	36
Point 6	EOCV + 15mV	33
Point 7	EOCV + 14mV	30
Point 8	EOCV + 13mV	26
Point 9	EOCV + 12mV	22
Point 10	EOCV + 11mV	19
Point 11	EOCV + 10mV	16
Point 12	EOCV + 9mV	13
Point 13	EOCV + 8mV	10
Point 14	EOCV + 7mV	7
Point 15	EOCV + 6mV	4
Point 16	not applicable	1



ISS Li-Ion Flight Battery Status

- Six Flight Li-Ion Batteries on-dock in Japan, Tanegashima: May 2016
- Final charge to 4.1 V: May-June 2016
- Launch on HTV: NET October 2016
 - Each IEA will have three Li-Ion ORUs and three Ni-H₂ ORUs (not electrically connected) stored on top of three On-Orbit Adapter Plate ORUs
- Installation and start-up on ISS: October 2016



- Thermal runaway propagation testing is scheduled for May 2016 at White Sands Test Facility
- Six Li-Ion Batteries and six Adapter Plates launch in 2017, 2018, 2019 to provide a full complement on ISS

Acknowledgments

Thank you to Tim North of Boeing Corporation for key contributions to this work