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ABSTRACT 

 

The rainflow method is used for counting fatigue cycles from a stress response time history, 

where the fatigue cycles are stress-reversals.  The rainflow method allows the application of 

Palmgren-Miner's rule in order to assess the fatigue life of a structure subject to complex 

loading.    The fatigue damage may also be calculated from a stress response power spectral 

density (PSD) using the semi-empirical Dirlik, Single Moment, Zhao-Baker and other 

spectral methods.  These methods effectively assume that the PSD has a corresponding time 

history which is stationary with a normal distribution. This paper shows how the probability 

density function for rainflow stress cycles can be extracted from each of the spectral methods.  

This extraction allows for the application of the MIL-HDBK-5J fatigue coefficients in the 

cumulative damage summation.   A numerical example is given in this paper for the stress 

response of a beam undergoing random base excitation, where the excitation is applied 

separately by a time history and by its corresponding PSD.  The fatigue calculation is 

performed in the time domain, as well as in the frequency domain via the modified spectral 

methods.  The result comparison shows that the modified spectral methods give comparable 

results to the time domain rainflow counting method. 

 

1. INTRODUCTION 

 

The material S-N curve is required for the fatigue calculation in either the time or frequency 

domain. The S-N curve for a given material expresses the threshold stress level for a given 

number of cycles.  Fatigue failure occurs if the threshold is exceeded, but a safety margin 

may be applied for conservatism.  This approach is straightforward for the idealized case of a 

steady sinusoidal response.  But rainflow cycle counting [1] is needed for the case of a 

complex response.  The Palmgren-Miners cumulative damage method can be used for time-

varying stress cases, such as random oscillations. A simple way to represent S-N Curves is a 

straight line in log-log format, called a Basquin curve, which is defined by two coefficients, 

the fatigue strength coefficient and the fatigue exponent.  The Dirlik and other spectral 

methods [2] assume a Basquin curve for their respective cumulative damage calculations.  

Note that this approach does not account for the stress ratio in equation (1) or an endurance 
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limit. But documents such as [3] give equivalent equations for S-N curves with up to four 

coefficients via the following formulas.  The material-dependent coefficients are A, B, C, and 

P.  Note that C is the endurance limit and is zero for some materials. 
  

2. S-N CURVE EQUATION 
 

The stress ratio R is 

 

       maxmin S/SR                                                                                                          (1) 

minS and maxS are the respective minimum and maximum stresses in a particular stress cycle.  

The stress magnitude is equal to both maxS and the absolute value of minS  for R = -1, which 

represents fully reversed stress cycles. Note that R in equation (1) is calculated separately for 

each rainflow cycle for a time domain damage analysis.  A constant value of R = -1 can be 

used for the spectral damage calculation, which effectively shifts the stress range of each 

cycle so that its stress midpoint is zero.   Any discrepancy between the damage between the 

time and spectral methods is at least partially due to the R values.  The equivalent stress eqS  

is given in [3] by  

    Pmaxeq R1SS                                                                                                  (2) 

The equivalent stress is not a true peak-to-peak range.  Neither is it an amplitude stress 

(range/2).  Rather it is a stress metric which weighs the contributions of the tension and 

compression components for the purpose of the S-N curve equation. The critical number of 

cycles i,fN  for a given stress level is 

 )CS(logBANlog i,eqi,f                                                                                      (3) 

 )CS(logBA^10N i,eqi,f                                                                                    (4) 

 

The coefficients A, B, C and P vary by material and are given in [3].   

 

3. DIRLIK METHOD 

 
The Dirlik histogram formula n(S) for stress cycles ranges is 

)S(pT)S(n dkp                                                                                                   (5) 

        where 

p  is the expected peak rate 

T is the duration 

S is the stress cycle range (peak-to-peak) 



Note that the expected peak rate p  is                                                                                                               

24p mm                                                                                                                (6) 

 

The jth spectral moment jm  for a PSD is 

 

   



0

j
j df)f(Gfm                                                                                                        (7)  

        where 

f is frequency 

G(f) is the one-sided PSD 

 

The Dirlik equation is based on the weighted sum of the exponential Gaussian, Rayleigh and 

exponential probability distributions. The continuous probability function  )S(Zpdk  prior to 

normalization is 
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The coefficients and variables are                      
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Now transform  )S(Zpdk  into the corresponding digital probability function idk,p . 
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where q is the total number of stress range bins                                                                                           

The Dirlik cumulative damage equation DDK is  

   i

q

1i

1
i,eqi,dkpDK Z)CS(logBA^10pTD  



                                                      (10)                                                                            

Equation (9) effectively integrates the stress range histogram. 
 

4. NARROWBAND BASED METHODS 

 

 4.1  Narrowband Method 

 
The following methods are taken from [2].  The narrowband histogram formula n(S) for stress cycles 

ranges is   

))S(Z(pT)S(n nb0  
                                                                                                      (11) 

The rate of zero up-crossings 
0  can be estimated as 

 

020 mm                                                                                                                           (12) 
 

The narrowband spectral method is derived using only the Rayleigh term from equation (6). 
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The narrowband cumulative damage equation for the narrowband case DNB is  

 

   i

q
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where q is the total number of stress range bins                                                                                                                                                             
 

 4.2  Single-Moment Method 
 

The Larsen-Lutes, single-moment damage DLL is    
  

NBLLL DD                                                                                                              (15)      

                                                 

  



The scale factor L  is 
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Note that the   2/m
m/2M term is evaluated using  j = 2/m  in equation (7).   m

S  is the RMS stress  

raised to the fatigue exponent. 

 
 4.3  Alpha 0.75 Method 
  

The Benasciutti & Tovo 
75.0

  damage DAL is    

  

NBAL DD                                                                                                              (17)      
                                                 

The scale factor   is 
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5. BEAM BENDING EXAMPLE 

 

Again, Dirlik and other spectral methods assume a Basquin curve for their respective 

cumulative damage calculations.  The Palmgren-Miners calculation is effectively embedded 

in the final form of their respective equation. The key is to extract the rainflow stress-cycles 

histogram from the spectral method of interest.   The histogram can then be divided into a 

series of bars with a center stress for the base and the number of cycles for the height.  A 

large number of bins is recommended.   The number in the following example is 400. 
 

 

 

 

 

 

Fig. 1.   Fixed-Fixed Beam Subjected to Base Excitation 
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The beam properties are shown in Table 1.  The natural frequencies for the first five modes 

are given in Table 2, as calculated using the method in [4].  The fundamental bending mode 

is shown in Fig. 2. 

 

 

Table 1.  Beam Properties 

Material Aluminum 7075-T6 

Length 28 inches 

Cross Section Solid Cylinder 

Diameter 0.5 inches 

Amplification Factor Q=10 for all modes 
 

 

Table 2.  Natural Frequencies 

Mode 

Natural 

Frequency 

(Hz) 

Effective 

Modal Mass 

Percent  

1 111.5 69.0 

2 307.5 0 

3 602.8 13.2 

4 996.4 0 

5 1488 5.4 

   
 

 

 
 

Fig. 2.  Fundamental Bending Mode, 111.5 Hz 
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Power Spectral Density 

Frequency 

(Hz) 

Accel 

(G^2/Hz) 

20 0.63 

80 2.52 

350 2.52 

2000 0.44 

 

Fig. 3.  NAVMAT P-9492 PSD + 18 dB 

 

The base input is the NAVMAT P-9492 PSD + 18 dB for 610 seconds, as shown in Fig. 3.  A 

time history is synthesized to meet this specification via [5] as shown in Fig. 4. The PSD and 

time history are applied separately as base excitation to the beam.  The stress response for the 

PSD is shown in Fig. 5.  The time domain response is given in Fig. 6, as analyzed using [6]. 

The highest stress occurs at each of the beam’s boundaries.  Calculate the bending stress at 

the left boundary.  Then perform a cumulative damage analysis separately for the PSD and 

time history inputs. A classical modal solution is used for a continuous beam using Matlab 

scripts using the formulas in [6] and [7]. 
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Fig. 4.  Time History Synthesis 

 

 

Fig. 5.  Stress Response PSD 
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     Fig. 6.  Stress Response Time History, without Stress Concentration Factor 

 

Assume a stress concentration factor of 2.5 at the beam’s left boundary for conservatism.  

The stress concentration factor is not included in the response plots, but is applied to the 

fatigue calculations.    The damage results are given in Table 3. 

Table 3.  Damage Results, Al 7075-T6, SCF=2.5 

Analysis Damage Rate (1/sec) 

Dirlik Spectral  0.00030 

Single Moment Spectral 0.00028 

Alpha 0.75 Spectral 0.00032 

Rainflow Time Domain 0.00033 

 

Now repeat the example for Al 6061-T6 with a stress concentration factor of 1.5.  The results 

are shown in Table 4. 

Table 4.  Damage Results, 6061-T6, SCF=1.5 

Analysis Damage Rate (1/sec) 

Dirlik  Spectral  0.00018 

Single Moment Spectral 0.00017 

Alpha 0.75 Spectral 0.00019 

Rainflow Time Domain 0.00020 
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For simplicity the two alloys were assumed to have the same elastic modulus, Possion’s ratio 

and mass density.  Thus the same bending stress time history and PSD could be used for each 

case.  But the fatigue stress equations differ.  Also note that Al 7075-T6 has an endurance 

limit, but Al 6061-T6 does not. Note that the total number of rainflow cycles in the time 

domain was 250,284 for each case. 

6. CONCLUSIONS 

 

The spectral and time domain methods gave similar results for each material in the examples.  

Further cases should run by varying the amplification factor, boundary conditions, base input, 

etc.  In addition, the full array of spectral methods in [8] should be converted for use with the 

MIL-HDBK-5J S-N curves coefficients for a given material.  Again, this requires extraction 

of their histogram functions.  Further attention is needed to determine the sensitivity of each 

spectral method to the stress ratio R. 
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