
Essential SpaceWire Hardware Capabilities for a
Robust Network

Session: SpaceWire Networks and Protocols, Short Paper

Michael Birmingham
GOES-R Embedded Software Engineer

NASA Goddard Space Flight Center
Denver, CO USA

mike.j.birmingham@lmco.com

Alexander Krimchansky
GOES-R Mission Systems Manager
NASA Goddard Space Flight Center

Greenbelt, MD USA
alexander.krimchansky@nasa.gov

William Anderson
GOES-R Flight Data System Lead Engineer

NASA Goddard Space Flight Center
Greenbelt, MD USA

william.h.anderson@nasa.gov

Matthew Lombardi
GOES-R Simulation and Test Engineer

Lockheed Martin
Denver, CO USA

matthew.s.lombardi@lmco.com

Abstract— The Geostationary Operational Environmental

Satellite R-Series Program (GOES-R) mission is a joint program
between National Oceanic & Atmospheric Administration
(NOAA) and National Aeronautics & Space Administration
(NASA) Goddard Space Flight Center (GSFC). GOES-R project
selected SpaceWire as the best solution to satisfy the desire for
simple and flexible instrument to spacecraft command and
telemetry communications. GOES-R development and
integration is complete and the observatory is scheduled for
launch October 2016.

The spacecraft design was required to support redundant
SpaceWire links for each instrument side, as well as to route the
fewest number of connections through a Slip Ring Assembly
necessary to support Solar pointing instruments. The final design
utilized two different router designs.

The SpaceWire standard alone does not ensure the most
practical or reliable network. On GOES-R a few key hardware
capabilities were identified that merit serious consideration for
future designs. Primarily these capabilities address persistent
port stalls and the prevention of receive buffer overflows.
Workarounds were necessary to overcome shortcomings that
could be avoided in future designs if they utilize the capabilities,
discussed in this paper, above and beyond the requirements of
the SpaceWire standard.

I. INTRODUCTION
This paper seeks to describe some of the pitfalls

encountered during the design and integration of major
components for the Geostationary Operational Environmental
Satellite-R Series (GOES-R) program [1]. An awareness of
those pitfalls may prevent a similar experience in future
designs.

The GOES-R spacecraft uses European Cooperation for
Space Standardization (ECSS) SpaceWire [2] for the transfer

of sensor, telemetry, ancillary, command, time code, and time
synchronization information between instruments and the
spacecraft. Capabilities beyond those specified in the standard
are offered in the interest of providing a more robust system.

This paper describes four instances where considerable
effort was expended to avoid or mitigate problems concerning
persistent port stall, receive buffer overflow, pipeline side-
effects, and a situation where buffer depth configuration of a
node exposed a router defect that locked out further transfers.
This specific configuration can be avoided given the details in
that section.

A. Background Information
GOES-R uses Reliable Data Delivery Protocol (GRDDP

[3]) which specifies that Reset packets are transmitted at that
channel’s transmit timeout rate from the time that the channel
is placed into an Enabled state, until an Acknowledge packet is
received. The transmit timeout is specified in an instrument
Interface Control Document (ICD), and is on the order of
100ms for the instruments described in this paper. During
instrument power-on, the spacecraft will begin transmitting
Reset packets (9 bytes in length) to the instrument at a 100ms
rate until the instrument responds.

The spacecraft transition to Enabled state is delayed from
the application of instrument power to coincide with the point
at which the instrument enters Run Mode, and is able to
process GRDDP messages. If the instrument indeed enters Run
Mode at about the expected time, few Reset packets will be
transmitted. Problems may arise, however, if there is a problem
with either the instrument or the link.

GOES-R also specifies that instruments shall transition to a
Safe Mode if time ticks or time-of-day messages are absent for
10 consecutive seconds.

https://ntrs.nasa.gov/search.jsp?R=20160012696 2019-08-29T17:23:08+00:00Zbrought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/76423915?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:mike.j.birmingham@lmco.com
mailto:mike.j.birmingham@lmco.com
mailto:William.h.anderson@nasa.gov
mailto:william.h.anderson@nasa.gov

I. PERSISTENT PORT STALL PREVENTION
The first capability to be discussed is a mechanism to

prevent an indefinite network stall. This is especially important
when routers are employed between nodes. The need will be
illustrated in the following sections by way of an example.

A. Routing example
The following is a simplified example of a real-world

condition encountered on GOES-R during instrument emulator
integration. Router 1 in the following example is implemented
as a Goddard Space Flight Center (GSFC) developed core [4]
which is part of the BAE Systems SpaceWire ASIC [5]. Router
2 is an Aeroflex 4-port router [6].

Details such as Lookup Tables (LUTs), registers, arbiters
and other router components are not included since it assumed
that the reader has a working knowledge of those mechanisms.

B. Initial Condition
In Figure 1 above, Router 1 has port transmit timeout

capabilities, while Router 2 does not. Router 2 Port 3 is in
disconnect due to an instrument or cable failure, and cannot
reconnect. This condition may be present prior to instrument
power-on or may occur during operation.

R2P1 is Router 2 Packet 1; it is 192 bytes including the End
of Packet marker (EOP) and its destination is Port 3. No part of
Packet 1 has been transmitted yet, in this example.

R2P2 is Router 2 Packet 2; it is 58 bytes including the EOP
and will be routed to Port 4 (not shown).

R2P3 is the leading portion of Packet 3, while R1P3 is the
trailing portion of Packet 3. Packet 3 is 234 bytes in total,
including the EOP.

R1P4 is the final packet to be queued up for Router 1, but
neither the length nor the EOP is indicated because it is not
relevant for this example.

C. Stall Condition
R2P1 will not be delivered due to the disconnect condition

on Router 2 Port 3. Since R2P1 exceeds the size of Port 3’s
transmit (Tx) First In First Out memory (FIFO), it will block
Port 1’s arbiter. The trailing portion of Packet 1 and all of
Packet 2 will occupy all but 6 bytes of Port 1’s Receive (Rx)
FIFO. The remaining free space on Router 2’s Port 1 Rx FIFO
will be filled with the leading 6 bytes of Packet 3.

D. Timeout Condition
Router 1 Port 2 has not completed transmitting Packet 3

within the programmed timeout limit, and disconnects Port 2.
Pursuant to ECSS error recovery specifications, Router 1 will
spill the trailing 228 bytes of Packet 3. Router 2 will not
append an EEP to partial packet 3 because there is no space in
the receive buffer.

E. Link Recovery
Both Router 1 and Router 2 will issue NULL characters in

an attempt to re-establish the link. Assuming Router 1 Port 2
Rx FIFO (not shown) has at least 8 bytes free, it will also issue
one or more Flow Control Token (FCT) characters. Router 2,
on the other hand, will not issue an FCT because there are no
bytes free in its Rx FIFO.

The ECSS standard does not have a remedy for this
situation. It is assumed that there are no hard link errors, and
that eventually data will flow through Router 2 Port 3. If the
failure is not recoverable with an instrument power cycle (if it
can even be identified by the host system) then the failure will
persist ad infinitum.

F. GOES-R Configuration
On GOES-R, only the first router in the chain is capable of

disconnect on a transmit timeout, and it is not on a per-port
basis; the timeout applied to all ports equally. The routers
downstream (Aeroflex 4-port routers) of that router had no
transmit timeout capability. The indefinite stall cannot be
avoided unless all routers have the transmit timeout capability.

Router 2 does not have port timeoutRouter 1 has port timeout

128x9b
Tx FIFO

128x9b
Rx FIFO Port-3Port-1

R2P2
57B, Port 4EO

P

64x9b
Tx FIFO Port-2 X

R1P3
227BEO

P

EO
P

R1P4 R2P3
6B

R2P1
191B, Port 3

X

 Figure 1 Example Routers and Packets for Transmit Timeout Discussion

G. GOES-R Stall Consequences
The perpetual stall means that all instruments downstream

of Router 2 Port 1 will be unable to communicate. Instrument
telemetry will not be acknowledged, and instruments will no
longer receive commands, time messages or time ticks. Within
10 seconds instruments fall into Safe Mode. All GOES-R
GRDDP transmit channels to those instruments close and
numerous error events result. Unless the condition was present
during the power-on process, there is no way of knowing
which port of which router was in disconnect.

H. GOES-R Recovery Method
The GOES-R recovery method begins by powering off all

instruments downstream of Router 1 port 2. A hard reset is then
required of the routers downstream of Router 1 (there are four
on GOES-R). Each hard reset clears the FIFOs and all router
registers are returned to default values. The reset does not
affect the LUT contents. Next, the registers have to be re-
configured for each router. As each instrument is powered up,
their router port status is examined. If not in Run State, the
instrument is swapped to the redundant side.

I. Recommended Design Solution
On any network involving one or more nodes, a

programmable transmit timeout feature on every router port in
the chain is essential to preventing a perpetual stall somewhere
in the chain. Of course the timeout must apply to any packet
that stalls the transmitter, even if the port is in disconnect and
no part of the packet has been sent. The ECSS standard
specifies only that a partial packet be spilled when the link
error is reported (transition to disconnect).

The transmit timeout feature on all routers will clear the
stall but as long as the point of origin continues transmitting
packets to the node in disconnect then the behavior repeats
indefinitely. Best practice would be to check port status prior to
and following instrument power-on, as well as periodic
monitoring.

There may be considerable packet jitter with this solution,
caused by the timeout that must expire before a packet is
spilled. When using GRDDP, the port timeout setting must be
much less than the shortest re-transmit timeout, since Reset
packets have priority over all but Ack packets and Reset
packets will likely be prevalent in this situation.

II. RECEIVE BUFFER OVERFLOW PREVENTION
The next capability to be discussed is a mechanism to

prevent receive buffer overflow. The ECSS standard does not
limit the length of data packets, but practical applications
should limit the size of packets, as does the GRDDP protocol.
On GOES-R, each instrument also had constraints on the size
of packets that were to be transmitted or received, which were
equal to or less than what the protocol allowed.

The ECSS standard assumes that FCT messaging will
prevent receive buffer overflow (section 8.3). In reality, receive
FIFO overflow is prevented, but not necessarily receive
buffers. Rx FIFOs are the domain of hardware and credit
counts and FCT transmit is the purview of that lower level of
the system. The practical problem is that the receive front end
may have no idea of the size of the buffer in system memory.
FCTs are issued when there is room in the FIFO, without
consideration for the size of the host system buffer allocated
for data transfer from the FIFO.

A. Packet Overflow
Receive buffers on link end points have high and low

memory limits, whether that memory is statically or
dynamically allocated, and whether a linked list is contiguous
or scattered in physical memory. Receive buffer overflow is
very damaging, so a high-availability system should seek to
avoid that situation with a hardware mechanism of some sort.
The host system may be removed from the receive front end by
several layers complicating the connection between receive
FIFO and receive buffer. The complexity of the chain may be
inadequate to prevent receive buffer overflow or to avoid an
intricate recovery.

B. GOES-R Spacecraft Receive Buffer Chain
The BAE SpaceWire ASIC is used in the GOES-R

spacecraft to interface to the instruments, and Figure 2
illustrates the Application Specific Integrated Circuit (ASIC)
cores involved in transferring incoming telemetry to system
Static Random Access Memory (SRAM).

The Rx FIFO is connected to a Receive Interface (RIF),
which controls a Direct Memory Access (DMA) engine to
transfer data through the On-Chip Bus (OCB), to a Memory
Controller (MEMCTL) which ultimately writes the packet into
system SRAM.

Working from left to right in the Figure 2 example, there
are 5 equally sized memory regions, MR1 through MR5, in
SRAM. Each region has been sized to accommodate the
maximum packet expected to be received. In this example, the
memory is contiguous for two of the regions but is otherwise
scattered. Incoming packets will be written first to MR1, then
MR2 and so on, with MR5 linking back to MR1.

In typical producer-consumer fashion, each region would
not be overwritten until consumed by the host system. Simple
linked-list buffers should not be employed if there’s any
possibility of overwriting a buffer until it has been completely
consumed. A non-linked list of descriptors, albeit with host
software intervention, can be fashioned into a scatter-gather
controller.

On the BAE SpaceWire ASIC, a receive descriptor is
constructed by the host software to point to the target buffer in
SRAM, by address and by length. The address of that
descriptor is written to a RIF register and the RIF starts the
process, which terminates when either the specified buffer
length is reached or an end-of-packet marker is received. This

SRAM

Rx FIFORIF

O
C

B

MR1
MR2

MR3

MR4
MR5

DMAMEM
CTL

Figure 2 Example Receive Buffer Chain

effectively prevents the designated receive buffer from
overflow but does not terminate or spill the packet. Remaining
packet data will consume additional buffers until an end of
packet marker is received, complicating recovery.

C. Programmable Per-Port Maximum Packet Length
On GOES-R, the GSFC-designed router core embedded

within the BAE SpaceWire ASIC includes an additional
feature to prevent overflow on receive, and to prevent a stall
due to blabbering transmit; a maximum packet length feature.
This feature, if enabled, will disconnect the link and append an
Error End of Packet (EEP) to any packet that exceeds the
programmable maximum length. This will of course also spill
the remainder of the errant packet. With the BAE SpaceWire
ASIC, the limit applies to all ports, but ideally each port would
have separate limits. The other router used on GOES-R, the
Aeroflex 4-port router, has no such feature.

III. RECEIVE BUFFER DEPTH & ROUTER DEFECT
Receive FIFO depth of a router may be configurable within

a soft core for an FPGA. During development, pipeline side-
effects should be taken into consideration to avoid potential
stalls and data dropout. Router defects may exist which may
cause a stall which will only clear when the receive buffer
depth is adequate to compensate for the defect.

A. Logic Value vs. On-The-Wire Value
The value of a transmitter’s credit count may be different in

the logic of a transmit block then the value on the wire due to
pipeline delays, synchronization delays and logic delays. A
receive FIFO configured to a depth of only 16 bytes, and with a
one byte pipeline delay, may initially transmit 2 FCT’s, but not
issue a successive FCT until 9 bytes are transmitted to it, and
remain one byte delayed thereafter.

The transmitter may also have logic delays that cause its
internal credit count to fall behind the value on-the-wire.

B. Router Transmit Block Defect
The Aeroflex 4-port router designed into GOES-R had a

latent defect that was not exposed until integration testing with
an instrument that had configured a receive FIFO depth of only
16 bytes. When the router’s internal credit count transitioned to
zero on the same cycle that an FCT was received, the router
would stall due to the defect. The router would resume
transmission when another FCT was received.

C. Indefinite Stall Condition
Although the router could break the stall when yet another

FCT was received, the instrument configuration prevented
further FCT transmit due to the shallow receive buffer depth,
combined with the receive pipeline delay, causing the stall to
last indefinitely.

D. GOES-R Stall Resolution
To avoid a reconfiguration of the instrument’s FPGA, the

transmit speed through the router was slowed to avoid the stall
condition, which occurred only when the internal credit count
transitioned to zero on the same clock as when an FCT was

received. By slowing the transmit clock, the router’s internal
logic no longer lagged behind the on-the-wire value.
Subsequent builds of the instrument did incorporate a deeper
buffer to further mitigate the problem.

IV. PIPELINING PITFALLS
Pipeline stages were in part responsible for the problem

described above, and is the main culprit in another issue
encountered with GOES-R.

To avoid buffer overrun a producer-consumer buffering
model was employed by the GOES-R spacecraft. Unlike
linked-list operation, there is a time gap (latency) from DMA
completion until the RIF is programmed with the next receive
buffer. The bug, described below, was never observed when in
linked-list mode.

A. Problem Description
 Under nominal telemetry conditions a receive buffer was

made available via the RIF (see Figure 2 above) prior to filling
the Rx FIFO. Telemetry bursts, however, would exhaust the
supply of receive buffers in SRAM until the downlink
(consumer) could catch up. On occasion, the Rx FIFO and a 4-
byte pipleline stage (not shown) would fill before a newly-
freed buffer could be assigned to accept the packet via the RIF.
Data did not overflow from the Rx FIFO because credit count
depletion would stall the packet. There was a bug, however, in
the pipeline stage that could drop those leading 4 bytes from
the incoming packet. The GRDDP CRC would match, but half
of the GRDDP header would be missing from the receive
buffer. Several methods were utilized to address the bug.

B. GRDDP Transmit Retry
The GRDDP retry mechanism, for normal data packets,

assures that those cropped packets will be retried, since header
checks fail and the packets would not be acknowledged.
Network traffic is increased, however, and dropouts of urgent
message packets are possible since they are not retried.

C. Buffer Utilization
There wasn’t enough physical memory to allow linked-list

operation, but all remaining SRAM was dedicated for receive
buffers, which helped quite a bit, but was not enough. Another
technique considered was to dynamically utilize the allocated
receive buffer space vs. a ring of fixed-size buffers. With this
method, the start address for the next packet would depend on
the size of the current packet, rounded up per DMA constraints.
Pending on downlink transfer completion could be reduced or
eliminated given the increase in number of buffers. While a
sound idea, it was more complex, and would lead to additional
processing latency.

D. Processing Delay Reduction
The assignment of a buffer freed by the downlink to the

RIF had been a function of the main processing loop. By
moving that function to an ISR context the mechanism behaved
more like a linked-list. The addition of this latency reduction
proved a sufficient workaround.

CONCLUSION
Real-world systems may be vulnerable to serious faults that

can result even when there is no apparent violation of the
ECSS standard. Additional capabilities are required of routers
and nodes to avoid these pitfalls. All components in a system
must be thoroughly researched, including the experience
gained with those components by others.

REFERENCES
[1] A. Krimchansky, W. Anderson, C. Bearer, “The Geostationary

Operational Satellite R Series SpaceWire Based Data System
Architecture”, NASA Goddard Space Flight Center, 2010

[2] European Cooperation for Space Standardization, ECSS-E-50-
12A, “SpaceWire – Links, Nodes, Routers and Networks”, 2003

[3] NASA Goddard Space Flight Center GOES-R Project "GOES-R
Reliable Data Delivery Protocol", 417‐R‐RTP‐0050
Version 2.1, 2008

[4] L. Haynes, G. Rakow, “BAE SYSTEMS SpaceWire Router
Specification: 4 Port, 2 External Interface”, 2005

[5] J. Marshall, S. Santee, M. Hanley, J. Robertson, D. Stanley,
“Leveraging SpaceWire Network Prototyping to Create Flexible
SpaceWire Components and Support Software”, 2011

[6] Aeroflex, “UT200SpW4RTR 4-Port SpaceWire Router
Preliminary Datasheet”, 2013

	I. Introduction
	A. Background Information

	I. Persistent port Stall Prevention
	A. Routing example
	B. Initial Condition
	C. Stall Condition
	D. Timeout Condition
	E. Link Recovery
	F. GOES-R Configuration
	G. GOES-R Stall Consequences
	H. GOES-R Recovery Method
	I. Recommended Design Solution

	II. Receive buffer overflow prevention
	A. Packet Overflow
	B. GOES-R Spacecraft Receive Buffer Chain
	C. Programmable Per-Port Maximum Packet Length

	III. Receive Buffer Depth & Router Defect
	A. Logic Value vs. On-The-Wire Value
	B. Router Transmit Block Defect
	C. Indefinite Stall Condition
	D. GOES-R Stall Resolution

	IV. PIPELINING PITFALLS
	A. Problem Description
	B. GRDDP Transmit Retry
	C. Buffer Utilization
	D. Processing Delay Reduction

	Conclusion
	References

