Contrast Leakage as Function of Telescope Motion

Mark T. Stahl, H. Philip Stahl,

Stuart B. Shaklan,
Jet Propulsion Laboratory
California Institute of Technology
Executive Summary

- Improving model methodology to investigate radial and azimuthal contrast leakage associated with telescope Wavefront Error (WFE) Stability.

Wavefront Change over Time

- Goal is to develop methodology for deriving specification.

Caveats

- Monochromatic
- Simple model
- Band limited 4th order Sinc\(^2\) mask
Matlab Model

Simplified integrated model:

- Telescope Aperture: can be monolithic or segmented
- Single Stage Coronagraph: can be linear \(1-\text{sinc}^2(x) \times \text{sinc}^2(y)\) or radial \(1-\text{sinc}^2(r)\) or coronagraph provided by STScI or others.
Integrated Model – Pupil Function

Pupil Function models the telescope

$$\text{Pupil}(x,y) = \text{Aper}(x,y) \times \text{Phase}(x,y) = A(x,y)e^{-i\Phi(x,y)}$$

Aperture Mask

- Can model Monolithic or Segmented Aperture
- Segments are Hexagonal
- Outer Aperture can be Hex Segment Boundary or Circle
- Hex segmentation pattern is 1, 2, … to 6 Rings.
- Can also do Central Circular Obscuration and ‘cross’ spiders

Phase defines telescope Wavefront Error

- Global Alignment: Despace (Power and Spherical), Decenter (Coma), Backplane Bending, Mount Errors, etc.
- Segment Rigid Body: Piston, Tip/Tilt
Input Phase Functions: Global Errors

PM to SM Despace: Power and Spherical

PM to SM Decenter: Coma & Tilt

PM Backplane bending

PM Mount: Trefoil
Input Phase Functions: Segment Errors

Segment Rigid Body Motion: Pistion and Tip/Tilt

Segment Decenter or Bending: Astigmatism

Segment Thermal Drift: Power

Segment Mount: Trefoil
Phase Function Perturbations

Three temporal Phase Function cases are modeled:

- Static
- Periodic
- Random

Static models contrast leakage for a fix amplitude of each wavefront error.

Periodic models contrast leakage for a wavefront error that varies sinusoidally between +/- peak amplitude values. This case represents periodic vibration such as rocking mode of a secondary mirror tower or of a primary mirror segment that is uncorrected (either no active control of active control is slow).

Random models motion that is not corrected by an assumed active control system.
Model Output

The model calculates Contrast Leakage:

- Photometric Noise – time and spatial averaged radial
- Systematic Noise – azimuthal varying error

We are following the definitions and methodology published by:

Photometric Noise

Photometric Noise is the time and spatial averaged radial component of the dark hole speckles. Photometric Noise is rotationally symmetric and cannot be confused for a planet. Assuming that the planet is $10E^{-10}$ contrast, Photometric Noise Contrast Leakage may be as large as $10E^{-10}$ contrast for a SNR = 1.
Systematic Noise

Systematic Noise is the component of the dark hole speckles that varies spatially after subtraction of the time-averaged radial component. This noise component can be confused for a planet. For a planet with 10^{-10} contrast, systematic noise should be no larger than 20×10^{-11} contrast.
Annular ROI from 1.5 to 2.5 λ/D

Photometric Noise

λ/D

-10

-5

0

5

10

-10

-5

0

5

10

-6

-8

-10

-12

-14

-16

λ/D
Sensitivity Analysis

Input pupil WFE:
 • Single Static Realization
 • Average 50 Sinusoidal Realizations
 • Average 50 Random Realizations

Quantify Contrast Leakage over ROI:
 • Average Radial
 • Azimuthal

Plot Contrast Leakage vs. Aberration Amplitude
Periodic Noise in Segmented Telescope

![Graph with data points and error bars indicating periodic noise in segmented telescope with different aberrations and noise contributions.](image)

- Segment Tip/Tilt
- Segment Power
- Segment Astigmatism
- Segment Trefoil
- Global Bend About X
- Global Power
- Global Spherical
- Global Seidel Coma
- Global Zernike Coma
Summary for Periodic Noise in Segmented Telescope

<table>
<thead>
<tr>
<th>Segments</th>
<th>Aberration</th>
<th>WFE (nm) for 10E-10 Photometric Noise</th>
<th>WFE (nm) for 20E-11 Systematic Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tip / Tilt</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>3.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Astigmatism</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Trefoil</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Global</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Spherical</td>
<td>9</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Seidel Coma</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Zernike Coma</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>Back Plane/Mount</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bend About X</td>
<td>70</td>
<td>15</td>
</tr>
</tbody>
</table>
Conclusions

Developed methodology for calculating Photometric and Systematic Contrast Leakage Noise

Will use Leakage Sensitivity to define Telescope Mechanical Motion Tolerances.