

ICE-POP and the NASA Global Precipitation Measurement (GPM) Mission

Walt Petersen

GPM Deputy Project Scientist, GV NASA Marshall Space Flight Center

M. Schwaller (NASA GSFC), V. Chandrasekar (Colo. State Univ.), Manuel Vega (NASA GSFC)

KMA ICE-POP Meeting 8-11 November 2016

- Physical and direct validation of Global Precipitation Measurement (GPM) Mission satellite remote sensing retrievals in orographic snow
- NuWRF short range forecasts in complex terrain

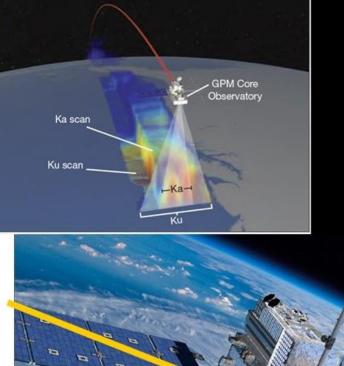
NA SA

0

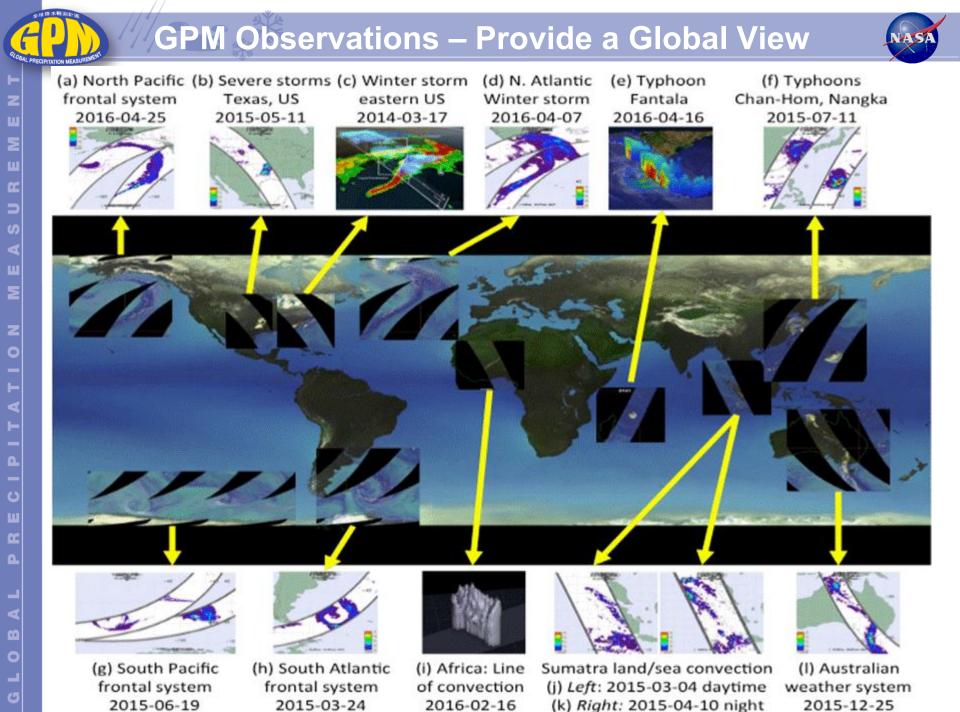
- Test/improve cloud model representation of snow microphysics and application to satellite remote sensing
- NASA Short Term Prediction and Operational Research Transition (SPoRT)- field product testing, utility
- Development of satellite-based ocean latent heat fluxes and potential impacts for nowcasting and NWP

Carries **two instruments** that can view precipitation (rain, snow, ice) in new ways; serves as a standard to calibrate measurements made from partner satellites

ČĆ.

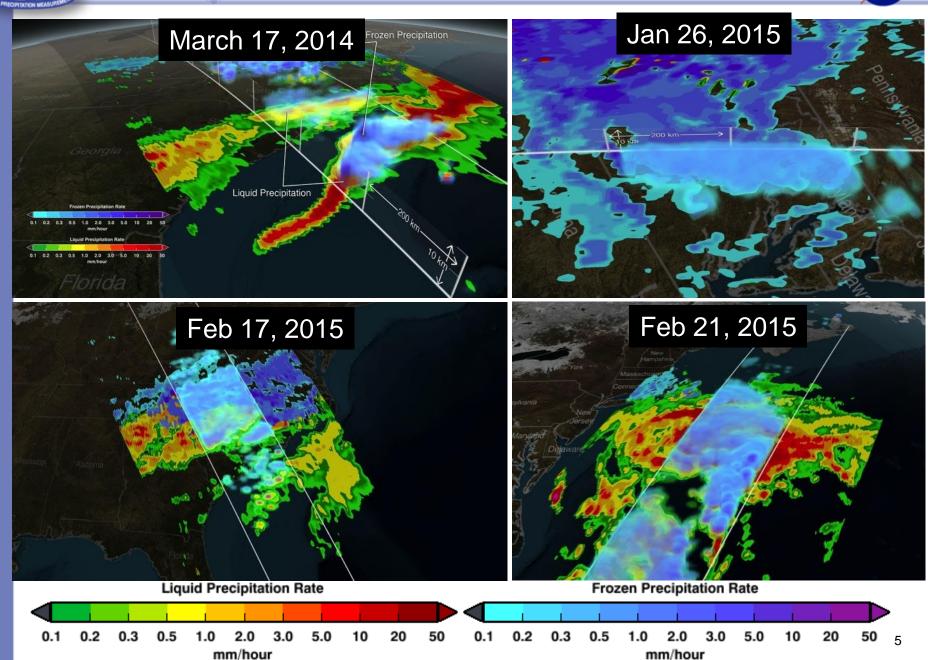

٥

GPM Microwave Imager (GMI): 10-183 GHz


13 channels that provides an integrated picture of energy emitted and scattered by precipitation

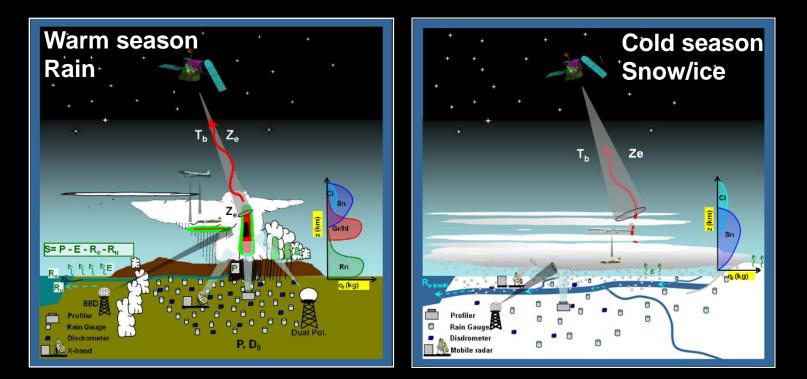
Dual-frequency Precipitation Radar (DPR): Ku-Ka bands

Two different radars with different frequencies that look at precipitation in 3-D throughout the atmospheric column

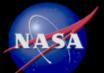


GPM Core Observatory Setting a New Standard for Precipitation Measurement From Space

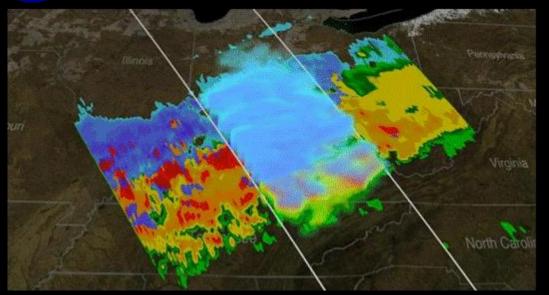
GPM Detects and Estimates Falling Snow Rates



GPM Ground Validation


ASA

Direct, Physical, and Integrated Approaches Goal: Convergence between space and ground-based measurments



 Fundamentally, GPM must produce accurate precipitation estimates over a broad range of warm <u>and cold season conditions-</u>difficult proposition!

GPM's Level 1 Requirement: Detect snow!



Winter storm with mix of liquid, freezing, frozen precipitation

GPROF and D3R delineate snow and rain..So, *we can* detect it

But not always uniformly-

Vision: Unambiguously capture physical variability and reliably estimate liquid equivalent rates over all terrain types

GPM Ground Validation (ICE-POP Field Campaign - RDP)

- Direct/physical validation of satellite-based snowfall retrieval algorithms (radar, radiometer, merged satellite algorithms) over coastline and mountains; melting layer interaction with terrain also of interest.
- Physics of snow, coupling to SWER and satellite remote sensor retrieval algorithm assumptions
- Model + Observational analyses: Movement toward level IV products leverage intensive and multi-faceted NWP component.
- Support current PMM/GPM collaboration with KMA- leverage significant international observational science/data effort.
- Cloud/precipitation model processes (liquid, mixed phase and frozen) testing and improvement in orographic natural laboratory and under satellite coverage. Builds model testing database for further remote sensing algorithm development

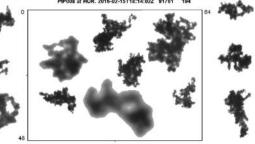
- Storm Type/Regime: Shallow, deep, synoptic, terrain-forced......
- Physical process and structure responsible for snow in the column
- Snow size distribution

œ

Z O

U

- Snow habit, density, fall speeds, liquid eq. rate, and spatial variability
- Measurement quality and limitations (sensitivity, calibration, viewing angle.... other artifacts.....)
- Determining and developing a ground "reference" for liquid equivalent snow rate measurement


Dual Frequency Dual Polarimetric Doppler Radar (D3R)

NASA

Precipitation Imaging Package (PIP) x 2

Pluvio₂ x 3

MRR x 2

Parsivel disdrometer (APU) x 3

PyeongChang Area: Instrument layout

NASA: 3 Pluvio 400 + APU (Fall 16), 2 PIP, 2 MRR (Fall 17)

			4
(YongPyeong cloud	128°40'13.65"/ 778n		0
physical observatory)			-
		Pluvio-NASA	6
		PWD-NIMS	6
Supersite 2	37°39'54.87"/	VertiX-KNU	
(Mayhill)	128°41'58.65"/ 788m	2DVD-KNU	
(waynu)	120 41 00:00 7 700	MASC-CSU	
		MRR-KNU	
		Par-KNU	-
		Par-UCLM(8)	
		POSS-KNU DEIR-KNU1	6
		Pluvio-EC1	
		Deprovemb	
Supersite 3	37°41'10.72"/	MRR-NIMS3	- 12
(Cloud Physics	128°45'32.52"/ 837m	Dec MIMCO	
Observation Site)		PIP-NASA2	
observation one;		1000-202	
		Pluvio-NIMS1	
		Vis-NIMS	6
		MWR-NIMS CLM-NIMS1	
		CSAT-NIMS	
		BYL-NIMS	
		ACOS-NIMS	
Supersite 4	37°43'13.51"/	W-band Radar(WMcGill)	
(Eohulri community	128°47'43.63"/ 209m	2DVD-NCU	
center)		MASC-EPFL	
		MRR-EC Par-EC	
		POSS-EC	
		Vis-EC	
		DFIR-KNU2	
		POSS EC3	
		Pluvio-EC2	
Supersite 5	37°50'06.41"/	MRR-INIMS4	
(O.D.Mt)	128°38'53.70"/ 271m	Par-NIMS4	
		LSND-NIMS2	
Supersite 6	37°29'40.97"/	MRR-NIMS5 Par-NIMS5	
(IMGYE)	128°51'09.92"/ 508m	LSND-NIMS3	
Supersite 7	37°39'38.98"/	MRR-NIMS2	
(SKJ)	128°40'44.10"/	Par-NIMS2	
	837m	CLM-NIMS2	
		GNS-NIMS1	
		ORG-NIMS1	
Supersite 8	37°46'14.82"/	CLM-NIMS3	
(GWNU)	128°52'00.48"/ 38m	AWS	

GNG: Gangneung radar(S-band, Operational radar/KMA) KAN: Airforces Radar(C-band)

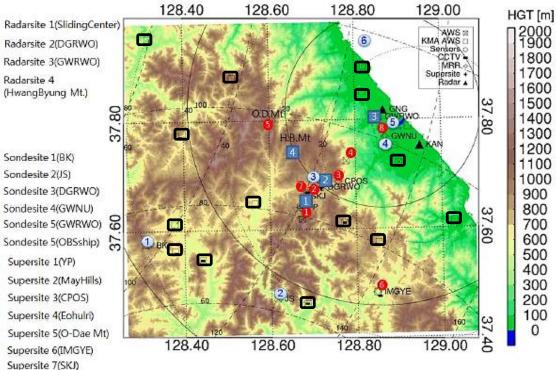
2

3

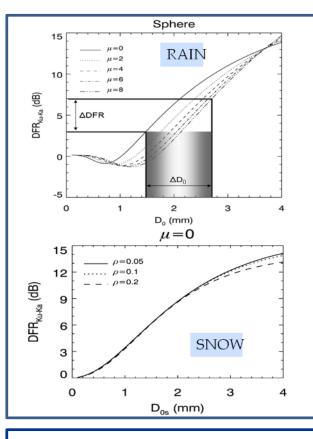
4

(1)

2


3)

4)

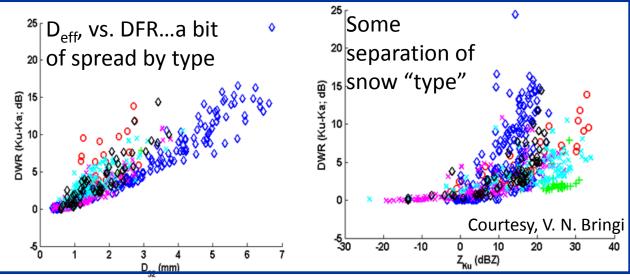

5)

6)

Supersite 8(GWNU)

Observation site name	Lat/Lon/Height	Available instruments in year
Radarsite 1 (Sliding Center)	37°39'07.62"/ 128°40'40.18"/ 922m	X-band Radar(XUCLM) Ka-Ku band Radar(D3RNASA)
Radarsite2 (DGRWO)	37°40'38.79"/ 128°43'07.86"/ 776m	K-band Radar (KMcGill) Wind Lidar(LEC) MRR-NASA Par-NASA CEM-KWA1 VIS-KMA1
Radarsite3 (GWRWO)	37°48'17.80"/ 128°51'16.93"/ 83m	X-band Radar (XEPFL) K-band Radar (KEPFL) MRR-CSU Par-CSU MWR-KMA CLM-KMA2 WPR-KMA VIS-KMA2
Radarsite 4 (H.B. Mt.)	37°45'27.20"/ 128°39'42.34"/ 1378m	X-band Radar (XKMA)

Retrieving snowfall from DPR


Lookup tables of DFR to estimate D_o

Use with Z_{Ku} to estimate N_w with μ = fixed (ambiguities in assumed ρ and μ).

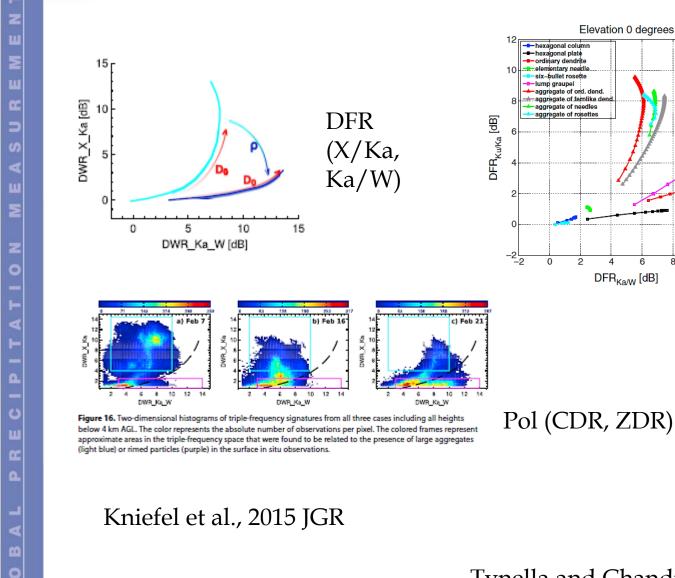
Integrate to get contents.

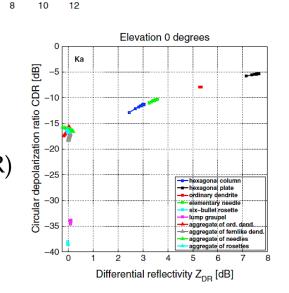
CMB additionally uses the GMI scattering to constrain total column IWP (at say, 166 GHz).

Dual-Frequency Approach tested with GV data

D3R: [Dual-Freq., Dual-Pol., Doppler Radar] (

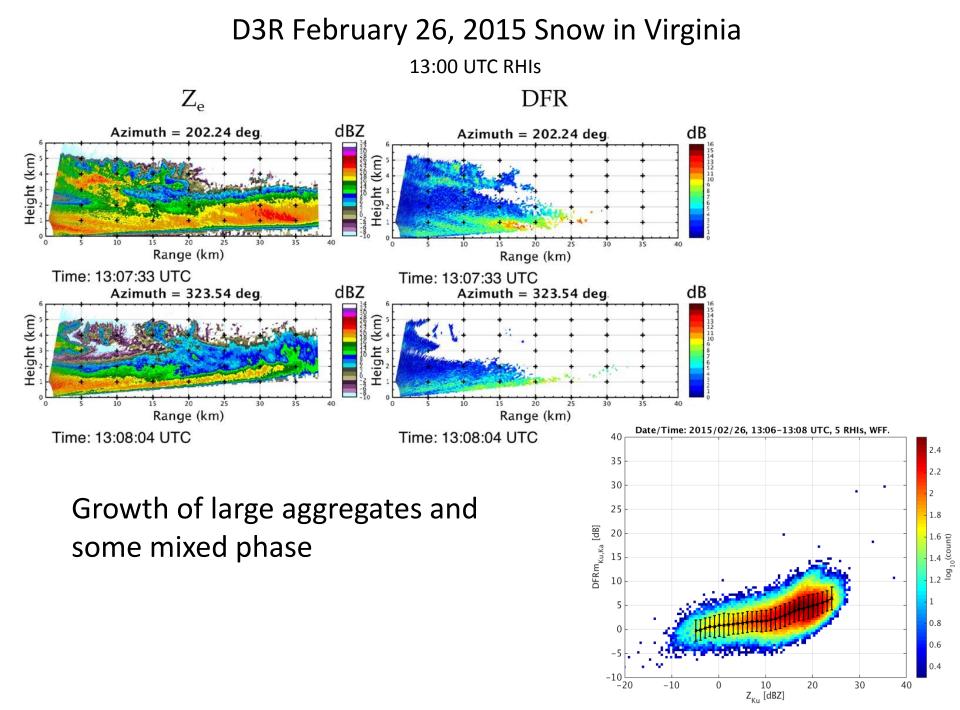
System				
Frequency	Ku- 13.91GHz ± 25MHz; Ka- 35.56GHz ± 25MHz			
Minimum detectable signal (Ku, Ka)	-8 dBZ, -2 dBZ noise equivalent at 15 km, at 150m range resolution			
Minimum operational range	450 m			
Operational range resolution	150 m (nominal)			
Maximum range	30 km			
Angular coverage	$0-360^{\circ}$ Az, $-0.5-90^{\circ}$ El (full hemisphere)			
Antenna				
Parabolic reflector –Diameter	6 ft (72 in.) (Ku), 28 in. (Ka)			
Gain	45.6 dBi (Ku), 44.3 dBi (Ka)			
HPBW	0.89° (Ku), 0.90 (Ka)			
Polarization (Ku, Ka)	Dual linear simult. and alternate (H and V)			
Maximum side-lobe level (Ku, Ka)	~ -25 dB			
Cross-polarization isolation (on axis)	< -30 dB			
Ka-Ku beam alignment	Within 0.1 degrees			
Scan capability	0-24°/s Az, 0-12°/s El			
Scan types	PPI sector, RHI, Surveillance, Vertical			
	pointing			
Transmitter / Receiver				
Transmitter Architecture	Solid State Power Amplifier Modules			
Peak Power / Duty cycle	200 W (Ku), 40 W (Ka) per H and V channel, Max duty cycle 30%			
Receiver Noise figure	4.8 (Ku), 6.3 (Ka)			
Receiver dynamic range (Ku, Ka)	~ 90 dB			
Clutter Suppression	GMAP			
Data Products				
Standard products	 Equivalent reflectivity factor (Z_h) (Ku, Ka) Doppler velocity (unambiguous: 26 m/s) 			
Dual-polarization products	- Differential reflectivity (Z_{dr}) (Ku, Ka) - Differential propagation phase (ϕ_{dp}) (Ku, Ka)			
	- Copolar correlation coefficient (ρ_{hv}^{ap}) (Ku, Ka)			
	- Linear depolarization ratio $(LDR_{b}^{"v}, LDR_{v})$			
Data format	(Ku, Ka) (in alternate mode of operation) NETCDF			


NASA



Snow Physics with Multi-Frequency Polarimetric Radar

0



DFR

(Ku/Ka,

Ka,W)

Tynella and Chandrasekar (2014, JGR)

GPM Physical Validation of Retrievals (databases, forward models etc.)

- Direct/physical validation of satellite-based snowfall retrieval algorithms over complex terrain; melting layer interaction with terrain also of interest.
- Physics of snow, retrieval algorithm assumptions and cloud model parameterizations of ice processes
- Model + Observational analyses: Movement toward level IV products leverage intensive and multi-faceted NWP component.
- Support current PMM/GPM collaboration with KMA- leverage significant international observational science/data effort.

<u>GPM GV Deployment</u>

- D3R Radar IOP 2018
- Supporting snow measurement instruments including PIP, MRR2, Parsivel, Pluvio (partial winter 2016, remainder IOP 2018)

EXTRA

Summary D3R Deployment Requirements (Current Configuration)

- Power: 208-240 V, 60 Hz, 50A (D3R does have a propane generator, requires LP gas for setup and backup operations during short power loss (2-4 hours))
- Cell communications for remote instrument monitoring, control, display (or wire/fiber hook-up), just one fixed IP address required
- On board servers/processing/storage (RAID), graphical user interface setup in remote operator location through internet connection to instrument
 - Antennas and transceiver + IF electronics boxes shipped separately from trailer
 - Towing vehicle required for transport and local set up
 - Forklift required to assemble antennas and transceiver + IF electronics boxes
 - Typically ready to operate within 1-2 days

