
Draft version April 13, 2016
Preprint typeset using LATEX style AASTeX6 v. 1.0

DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS

GIANTS IN REFLECTED LIGHT I: METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES

R. E. Lupu

BAER Institute / NASA Ames Research Center, Moffet Field, CA 94035, USA

M. S. Marley

NASA Ames Research Center, Moffet Field, CA 94035, USA

N. Lewis

Space Telescope Science Institute, Baltimore, MD, USA

M. Line

Univ. California at Santa Cruz, CA, USA

W. Traub

Jet Propulsion Laboratory, Pasadena, CA

K. Zahnle

NASA Ames Research Center, Moffet Field, CA 94035, USA

ABSTRACT

Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are

expected to be performed in the next decade by space-based telescopes equipped with optical wave-

length coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope

(WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science re-

turn and inform the instrument design for such future missions, and ultimately interpret the resulting

observations. Our retrieval technique employs an albedo model coupled with both a Markov chain

Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to

map the posterior distribution. This combination makes the global evidence calculation more robust

for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this

methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmo-

spheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background

gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded

in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for

the model parameters, we perform model selection to determine the significance of methane and cloud

detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After

internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and

HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane

can be determined with high accuracy, while parameters uncertainties are model-dependent.

Keywords: methods:statistical — planets and satellites:atmospheres — planets and satellites: compo-

sition — techniques:spectroscopic

1. INTRODUCTION

Space-based telescopes equipped with coronagraphic

imagers can separate light scattered by orbiting plan-

ets from that of their primary stars. The detection of

light that penetrates deeply into an atmosphere rather
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than merely skims its upper layers, as with transit meth-

ods, potentially permits more extensive and informative

characterization of atmospheric gaseous absorbers as well

as cloud and haze layers. However the interpretation of

the scattered light signal will in practice be limited by a

multitude of uncertainties beyond the basic limitations
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of data quality. Among these are the uncertain or un-

known planetary radii, masses, and cloud layers. Here,

in the first of what we plan to be a series of papers, we

present the initial development of a atmospheric retrieval

methodology that quantifies the resultant uncertainties

and clarifies the precision with which planet gravity, tem-

perature, composition, and cloud structure and other pa-

rameters can be discerned.

Direct imaging offers the possibility of characterizing

planets around nearby stars and at larger orbital dis-

tances than is possible for transit observations. Di-

rectly imaged planets are under less stellar irradiation

than traditional transit observation targets and can ei-

ther be young, warm, and self-luminous, or older and

much colder than the ones studied by transit methods.

While a multitude of space coronagraph missions have

been studied or proposed over the last two decades, the

only mission currently in development by NASA with the

capability of imaging cool giant planets in reflected light

is WFIRST.

Current estimates are that a coronagraph-equipped

WFIRST mission will be able to obtain photometry and

spectra for at least a dozen known radial velocity (RV)

planets as well as search for lower mass planets. An

example of the diversity of the known RV planets fa-

vorable for direct imaging is shown in Figure 1. This

sample was drawn from the Exoplanet Encyclopedia and

will likely increase with future discoveries from RV or

WFIRST surveys. In this figure the known M sin i, mea-

sured by RV methods, is plotted against estimated effec-

tive temperature in order to understand the phase space

of atmospheric conditions that might be expected among

these most favorable planets. The planets’ inclination

(i) will be determined form the direct imaging observa-

tions, therefore constraining their approximate masses

and, with the aid of the mass-radius relationship, their

surface gravities. Vertical color bands show the approxi-

mate ranges over which various atmospheric compounds

form clouds. While many Jupiter and Saturn-like worlds,

with ammonia clouds, are expected, some planets with

water, alkali, and even methane clouds may also be ob-

served.

The Coronagraph Instrument onboard WIFRST, in

combination with an Integral Field Spectrometer, will

provide us with images (430–970 nm) and low-resolution

(spectral resolution R ∼ 70) reflected light spectra

of gaseous planets around nearby Sun-like stars (600-

970 nm). Unlike transit spectroscopy that only probes

the top of the atmosphere to ∼ 1 mbar (e.g., Kreidberg

et al. 2014), reflected light can probe deep into the at-

mosphere of these gas giants (e.g., Marley et al. 2014),

and therefore offers a more comprehensive view of com-

positions, temperatures, and cloud layers.

Most planets in Figure 1 have equilibrium effective

Executive Summary !
We explored two aspects of the problem of characterizing cool extrasolar giant planets 
in scattered optical light with a space based coronagraph. First, for a number of the 
known radial velocity (RV) giants we computed traditional forward models of their 
atmospheric structure and clouds, given various input assumptions, and computed 
model albedo spectra. Such models have been computed before, but mostly for 
generic planets. Our new models demonstrate that we can safely expect an interesting 
diversity of planetary spectra among those planets that are favorable for direct 
detection. Second, we applied a powerful MCMC retrieval technique to synthetic noisy 
data of cool giants to better understand how well various atmospheric parameters—
particularly abundances and cloud properties—could be constrained. We believe that 
this is the first time ever such techniques have been applied to this problem. The 
process is time consuming, so only a dozen or so cases could be completed in the 
limited time available. Nevertheless the results clearly show that even at S/N ~ 5, 
scientifically interesting and valuable conclusions can be drawn about the properties of 
giant planet atmospheres from noisy spectra. Further retrieval studies are clearly 
warranted and would be valuable to help guide instrument design decisions.


An example of the diversity of the 
known RV planets favorable for 
direct imaging is shown in Figure 1. 
In this figure the known M sin i, 

measured by RV methods, is plotted against estimated effective temperature in order 
to understand the phase space of atmospheric properties that might be expected 
among the favorable planets. Vertical color bands show the approximate ranges over 
which various atmospheric compounds form clouds. The key takeaway of this figure is 
that while many Jupiter and Saturn-like worlds, with ammonia clouds, are expected, 
many planets with water, alkali, and even methane clouds may be observed. 
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Figure 1: M sin i and ranges of 
estimated Teff of a selection of 
announced RV planets that are 
favorable for direct imaging. The 
orange circle represents Jupiter while 
the green one hints at Uranus which 
actually falls below the lower axis. 
Estimated Teff computed from planet 
orbits, Jupiter’s albedo, and estimated 
internal heat flows given available 
estimates of the primary stars’ ages. 
Bands show major cloud species 
expected in various ranges of Teff. The 
existence of two of the planets shown, 
Ups And e and Eps Er i b , i s 
controversial.

Figure 1. Msin(i) and ranges of estimated Teff of a selec-

tion of announced RV planets that are favorable for direct

imaging. The orange circle represents Jupiter while the

green one hints at Uranus which actually falls below the

lower axis. Estimated Teff computed from planet orbits,

Jupiter’s albedo, and estimated internal heat flows given

available estimates of the primary stars’ ages. Bands

show major cloud species expected in various ranges of

Teff . The existence of two of the planets shown, Ups

And e and Eps Eri b, is controversial.

temperatures of ∼ 150 − 350 K. Assuming these worlds

are comparable to solar system gas giants, their 600 −
−970 nm spectra will be dominated by cloud decks of

water or ammonia and gaseous absorption by methane

and possibly water. Photochemical hazes will doubtless

be important as well. There is a long and comprehensive

history of interpretation of such spectra of solar system

planets dating back to Sato & Hansen (1979) and be-

fore. For Jupiter-like atmospheres the continuum scat-

tered flux level at these wavelengths is set by scatter-

ing from the bright clouds while Rayleigh scattering is

more important at the bluest wavelengths. The bright

continuum is punctuated by gaseous methane absorption

features of varying strengths. The relative strengths of

the various methane absorption bands, combined with

the continuum flux level set by the clouds, together con-

strain the cloud properties and methane column abun-

dance. Shortward of 600 nm, the photometric measure-

ments will give us information about the shape of the

continuum, dominated by Rayleigh, haze, and cloud scat-

tering. If both CH4 and H2O features are present in the

spectra, we can constrain the C/O ratio, value related to
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the place of planet’s formation in the circumstellar disk

(Bond et al. 2010; Helling et al. 2014; Öberg et al. 2011).

Extracting such information from low to moderate

spectral resolution data at modest signal-to-noise ratios

will be a challenge. Cloud properties and location, ab-

sorber abundances, planetary radius (and thus gravity),

and the atmospheric thermal profile will all be unknown.

While forward modeling techniques, such as Cahoy et al.

(2010) can give insight into the range of possible spectra,

extraction of cloud properties and absorber abundances

will require the application of retrieval methods to the

available data.

We aim to develop the necessary theoretical and com-

putational framework to enable such retrievals. As this

will be a complex endeavor we approach the problem in

steps. Here we present a first step in the development of

this framework, focusing on the retrieval of gross cloud

properties, atmospheric gravity, and methane mixing ra-

tio. In future papers we will add retrievals for orbital

phase, planet size, additional absorbers and atmospheric

thermal profile.

In the remainder of this paper we provide more detailed

background on reflected light spectra of giant planets,

present the conceptual model and Markov Chain Monte

Carlo retrieval method, and the results of this study. The

paper is organized as follows: Section 2 provides more

context and background to the problem. Section 3 de-

scribes our albedo code and the forward models used in

the retrievals; Section 4 describes our noise model used

to generate the input datasets; Section 5 contains the

Bayesian retrieval scheme, followed by its validation in

Section 6. Other retrieval results for more realistic spec-

tra of known gas giants are shown in Section 7, and the

conclusions are summarized in Section 8.

2. BACKGROUND

In this section we provide a brief overview to a few of

the key concepts used throughout the remainder of the

paper.

2.1. Geometric Albedo

The analysis of extrasolar planet reflection spectra

owes much to the solar system literature. However this

literature also brings its own set of conventions, not all of

which translate smoothly to the exoplanet context. For

expediency we nevertheless choose here to follow these

conventions, although we recognize that as exoplanet di-

rect imaging evolves into its own sub-field that this ter-

minology will likely evolve to shed some vestigial struc-

tures.

A foremost concept is the geometric albedo, the ratio of

light received from a planet when observed at full phase

to that which would be measured from a perfectly reflec-

tive Lambert disk of the same size as the planet. Because

	 
!!
Figure 2 shows model spectra we calculated for two of the planets shown in Figure 1. 
We find that HD 62509 b (Pollux b) is warm enough that the only likely atmospheric 
cloud condensate would be clouds of alkali species like Na2S. Conversely HD 99492c 
is cold enough that thick ammonia, and possibly even methane, clouds are expected. 
The figure compares computed albedo spectra with and without the expected clouds. 
In the main text we present additional model spectra for various other assumptions, 
including gravity and atmospheric metallicity. Results such as these highlight the 
diversity of possible spectra. Distinctive differences, diagnostic of important 
atmospheric processes, between the spectra of known planets can clearly be 
expected.

	 

The main thrust of our quick study, however, was not forward modeling but retrievals. 
We added noise to observed and model reflected light spectra of solar and extrasolar 
giant planets and then attempted to retrieve atmospheric abundances and cloud 
properties. For these initial tests we constructed a highly idealized model of a 
scattering haze overlying an opaque cloud deck. The model is only a first attempt and 
unquestionably can be improved, but it was adequate for the purposes of this quick 
study. Our goal was not so much to verify retrieval of known quantities, but rather to 
determine if consistent results for scientifically interesting quantities (abundances, 
cloud properties) could even be obtained given the likely quality of data from a space 
based coronagraph studying giant planets in reflected.
!
Using our sophisticated forward model albedo code and MCMC retrieval methods we 
explored these issues. We retrieved the model cloud properties, the atmospheric 
methane abundance, and the planet gravity, for a total of 9 parameters. We focused on 
Jupiter, Saturn, Uranus, and HD 99492c and constructed synthetic datasets with S/N = 
5, 10, and 20 and spectrometer correlation lengths of 25 and 100nm (not all 
combinations could be tested in the time available). We found that such retrieval 
methods could reliably infer methane abundances to within a factor of ten of the true 
value in most cases and could often accurately constrain cloud scattering properties, 
thus providing a clue to the cloud composition. Gravity, however, is not well 
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Figure 2: Model albedo spectra for 
two of the planets shown in Figure 
1, HD 62509b and HD 99492c. For 
each planet two model cases are 
shown, one with and one without 
the clouds expected from 
equilibrium condensation chemistry 
considerations. Absorption bands 
seen in the HD 99492c model are 
methane while Na and K features 
are also prominent in HD 62509b.

Figure 2. Model albedo spectra for two of the planets

shown in Figure 1, HD 62509b and HD 99492c. For each

planet two model cases are shown, one with and one with-

out the clouds expected from equilibrium condensation

chemistry considerations. Absorption bands seen in the

HD 99492c model are methane while Na and K features

are also prominent in HD 62509b.

the angular distribution of light scattered by a real at-

mosphere differs from that scattered by a Lambert disk,

the geometric albedo of even perfectly scattering atmo-

spheres is not unity. For a conservative, infinitely deep

Rayleigh scattering atmosphere the geometric albedo is

0.750. The fractional reflectivity measured at a star-

planet-observer angle differing from 180◦ is given by the

product of the geometric albedo and the planetary phase

function.

There are two important reasons why geometric albedo

spectra will not be directly measured for directly im-

aged planets. First, while transiting planets can be ob-

served at full phase just before they are eclipsed on the

“far” side of their orbits, directly imaged planets will

never be observed even close to full phase because they

would lie too close to the primary star to be resolved

from the star. Second, the radius of a planet will not

be directly measured, rather only the product of planet

area and reflectivity will be constrained as a function of

wavelength. Thus it is an oversimplification to discuss

geometric albedo spectra for directly imaged extrasolar

planets. Nevertheless to simplify the model development

for this work, we consider here only the planetary spec-

trum at full phase, cast as geometric albedo spectra. In

the second paper of this series (Nayak et al., in prep.) we

will explore issues arising from the phase dependence of

planetary reflectivity (see Cahoy et al. (2010)) and the

unknown planetary radius.

Figure 2 shows model geometric albedo spectra we cal-
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Retrieval Methods !

Overview 
For the retrieval tests we used two types of input data, solar system giants and model 
planets. The solar system albedo spectra are those of Karkoschka (1999). The model 
planet we used was HD 99492c. All of these objects have methane dominated optical 
reflection spectra. We did not have time to implement retrievals for warmer objects with 
water or alkali features and this would be an excellent future extension. For the model 
planet we first computed a forward 1D radiative-convective equilibrium model 
incorporating our sophisticated cloud model (Ackerman & Marley 2001). This model 
computes a self-consistent cloud with vertically varying abundances and particle sizes 
of each condensible species. We then input this model into our forward albedo model 
to produce an albedo spectrum comparable to the solar system data.
!
For each of the selected albedo spectra (Jupiter, Saturn, Uranus, and HD 99492c) we 
then modeled the instrument response to produce simulated data. The details of the 
noise model, which was developed by Roxana Lupu in collaboration with Wes Traub 
and Tom Greene, are presented in Appendix I. Note that we had originally expected to 
receive a noise model from the project. Since this ultimately was not forthcoming we 
proceeded with the development of our own model. This step took time away from 
other retrieval efforts. A key aspect of the noise model is the correlation length over 
which data from separate spectral intervals in the IFS are correlated. We considered 
two cases, 25 and 100 nm. For Jupiter we considered 3 signal-to-noise ratios, 5, 10, 
and 20, for a total of six cases. For the other planets we only considered 1 correlation 
length and S/N ratio.
!
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Figure 5: Model spectra at 
R=70 for HD 99492c at four 
metallicities, ranging from 
solar to 30x solar. With 
increasing metallicity the 
a tmosphe r i c me thane 
bands deepen and weaker 
b a n d s b e c o m e m o r e 
apparent. Thus it is crucial 
to detect multiple methane 
bands of varying strengths 
so that sufficient dynamic 
range i s ava i lab le to 
constrain a var iety of 
a tmosphe r i c me thane 
abundances.

Figure 3. Model spectra at R=70 for HD 99492c at

four metallicities, ranging from solar to 30x solar. With

increasing metallicity the atmospheric methane bands

deepen and weaker bands become more apparent. Thus

it is crucial to detect multiple methane bands of varying

strengths so that sufficient dynamic range is available to

constrain a variety of atmospheric methane abundances.

culated for two of the planets shown in Figure 1 follow-

ing the method of Cahoy et al. (2010). We find that HD

62509 b (Pollux b) is warm enough that the only likely

atmospheric cloud condensate would be clouds of alkali

species like Na2S. Conversely HD 99492 c is cold enough

that thick ammonia, and possibly even methane, clouds

are expected. The figure compares computed albedo

spectra with and without the expected clouds. Figure 3

presents additional model spectra for increasing atmo-

spheric metallicities, that can be expected given the di-

versity of extrasolar planets. The atomic abundance ra-

tios (C/H or O/H) can reveal links between the planet’s

and the host star’s compositions. More spectral varia-

tion as a function of mass, orbit, metallicity, and phase

are described in detail in Cahoy et al. (2010) and Su-

darsky et al. (2000). Distinctive differences, diagnostic

of important atmospheric processes, between the spectra

of known planets can clearly be expected. This study

explores how well an instrument like the coronagraph on

WFIRST would be able to constrain planet atmospheric

composition.

2.2. Retrieval Approaches

Our atmospheric retrieval procedure involves combin-

ing a well-tested planetary albedo code (McKay et al.

1989; Marley et al. 1999; Cahoy et al. 2010) that can take

into account multiple absorbers, cloud and Rayleigh scat-

tering, as well as arbitrary incident and observed angles,

with state-of-the-art Bayesian inference tools, namely the

Markov chain Monte Carlo (MCMC) ensemble sample

emcee (Goodman & Weare 2010; Foreman-Mackey et al.

2013) and the multimodal nested sampling algorithm

MultiNest (Feroz & Hobson 2008; Feroz et al. 2009, 2013)

that can be used interchangeably.

We believe that this is the first time ever such pow-

erful retrieval techniques have been designed to simulta-

neously measure molecular abundances and cloud prop-

erties and their correlations from scattered light spec-

tra. NEMESIS (Rodgers 2000; Irwin et al. 2008) is the

only other existing retrieval method for planetary atmo-

spheres in reflected light that has recently been applied

to exoplanet characterization (Barstow et al. 2014). By

contrast, NEMESIS uses non-linear optimal estimation

to derive the best-fit model parameters and their uncer-

tainties, and does not incorporate cloud properties in the

retrieval process.

As shown by Line et al. (2013, 2014), the Bayesian in-

ference tools are somewhat more appropriate for highly

non-gaussian posterior distributions that are expected

for future exoplanet observations, given the limited data

and complex atmospheric models. Moreover, clouds play

a significant role in the atmospheres of both gas giants

in our Solar System and the exoplanets considered as fu-

ture observing targets, given their expected effective tem-

peratures. By including simple cloud properties (optical

depth, albedo, depth in the atmosphere, etc.) as model

parameters alongside molecular abundances, we can fully

explore the degeneracies in the atmospheric structure,

given the spectrum.

For our initial retrieval tests we constructed two highly

idealized cloud models, one with a single cloud deck of ar-

bitrary opacity, and the other with a scattering haze over-

lying a completely opaque cloud layer. Such atmospheric

models are adequate for the types of planets addressed

in this paper, and unquestionably can be improved in

future work. Our goal is to determine if consistent re-

sults for scientifically interesting quantities (abundances,

cloud properties) could even be obtained using reflected

light spectra from a space based coronagraph, given the

likely modest signal-to-noise and spectral resolution.

3. FORWARD MODEL

Our spectral albedo code for giant planets was origi-

nally developed by Marley et al. (1999) and is based on

the methods of McKay et al. (1989). This code was sub-

sequently modified and improved by Cahoy et al. (2010),

who investigated the albedo variations as a function of

star-planet distance, metallicity, mass, and phase angle.

This original albedo code uses as input parameters the

exoplanet’s gravity and depth-dependent temperature,

pressure, composition, and cloud properties which are

in turn computed by a 1-D radiative-convective equi-

librium model (Marley et al. 1999; Cahoy et al. 2010).
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The atmosphere is divided in 60 layers, with the bot-

tom pressure marking the point beyond which photon

scattering is negligible. The clouds are parametrized by

wavelength-dependent optical depth τcld, single scatter-

ing albedo (ω̄cld), and scattering asymmetry factor (ḡcld),

resulting from a full Mie scattering treatment of particle

sizes predicted by a cloud model (Ackerman & Marley

2001). The single scattering albedo represents the ratio

between the amounts of scattering and total particle ex-

tinction, and the asymmetry factor, ḡcld, is a measure of

the degree of forward scattering.

To simulate a spherical planet, we cover the illumi-

nated surface of a sphere with 100 plane–parallel facets

(Cahoy et al. 2010), where each facet may have dif-

ferent incident and observed angles, µ0 = cos θ0 and

µ1 = cos θ1, where θ0 and θ1 are the angles between the

local normal vector and the star and observer, respec-

tively. Increasing the number of facets proportionally in-

creases the computing time, and only leads to a modest

increase in accuracy. In this case, the albedo code takes

about 3 s to run, which is reasonable to use in combi-

nation with an MCMC sampler. Although the general

case permits θ0 6= θ1, for the work reported here we set

θ0 = θ1 in order to compute geometric albedo, which by

definition is the reflectivity at zero phase angle. In a fu-

ture work (Nayak et al, in preparation) we will consider

observations at arbitrary phase angle.

Following the approach of Horak (1950) and Horak &

Little (1965), we use two-dimensional planetary coordi-

nates and Chebyshev-Gauss integration to integrate over

the emergent intensities and calculate the albedo spec-

tra. The radiative transfer is performed point by point

for each of the points sampling the planetary disk. The

scattering source function (Toon et al. 1989; Meador &

Weaver 1980) includes the contributions of both diffuse

and direct scattering:

S(τ, µ1) =
ω̄

4π
F0p(µ1,−µ0)e−τ/µ0

+

∫ 1

−1

ω̄

2
I(τ, µ′)p(µ1, µ

′)dµ′,
(1)

where F0 is the Solar flux at to top of the atmosphere,

normalized to 1, and p(µ1, µ2) is the scattering phase

function. The two terms on the right-hand side repre-

sent the single and multiple scattering components, re-

spectively.

We use a two-stream quadrature (Toon et al. 1989) to

solve for the diffuse, angle-independent radiation field.

This solution is then used as an approximation to the

source function, which is then back-propagated to the

top of the atmosphere, while adding the angular depen-

dence given by the scattering phase function. This is

a completely scalar approach and does not include any

polarization effects.

Based on our experience and the results of Cahoy et al.

(2010), we expect that the most relevant model param-

eters for Jupiter-like exoplanets in reflected light will

be the methane abundance, surface gravity, and cloud

properties. In a future paper we will consider other

gaseous opacity sources. The code uses the opacity for

methane in the visible following Karkoschka (1994), and

the collision-induced absorption for H2-H2, H2-He and

H2-CH4 as summarized in Freedman et al. (2008).

The total gaseous absorption optical depth is then

τabs = τCH4 + τCIA. In spite of newer methane line lists,

difficulties remain in calculating the high-energy transi-

tions of methane and Karkoschka (1994) is still the best

reference for the methane opacity in the visible, and is

used to reproduce Solar System measurements. We de-

fine τtotal = τscat + τabs, where the total optical depth to

scattering is τscat = τRay + τcloud.

Following Cahoy et al. (2010), for the direct scattering

(or single scattering term in Equation 1) we use a two-

term Heyney-Greenstein scattering phase function with

high forward scattering and moderate backscattering:

pTTHG =

(
1− ḡ2

4

)
pHG(ḡ,Θ) +

ḡ2

4
pHG(−ḡ/2,Θ), (2)

where

pHG(ḡ,Θ) =
1− ḡ2

(1 + ḡ2 − 2ḡ cos Θ)3/2
(3)

and Θ is the scattering angle, related to the planet’s

phase angle α by α = π − Θ, and ḡ is the scatter-

ing asymmetry factor associated with the scattering by

cloud particles, ḡ = ḡcld × τcld/τscat. Rayleigh scatter-

ing is calculated following Hansen & Travis (1974), with

ḡRay = 0.5, and ω̄Ray = 1. The total layer single scat-

tering albedo then becomes (ω̄RayτRay + ω̄cldτcld)/τtotal,
for every layer in the atmosphere. Further details of the

radiative-transfer modeling are described in Marley et al.

(1999); Cahoy et al. (2010).

For the multiple scattering term in Equation 1, the

diffuse scattering phase function is written as a Legen-

dre polynomial expansion, assuming azimuthal indepen-

dence:

p(µ, µ′) = 1 + 3ḡµµ′ + ḡ2(3(µµ′)2 − 1)/2, (4)

where µ and µ′ denote the scattered and incident an-

gle, respectively, and ḡ2 contains the Rayleigh scattering

contribution. In this case, for the diffuse radiation µ and

µ′ are chosen such that the right solution is obtained in

the Rayleigh limit.

For retrieval purposes, we have preserved the radiative

transfer and scattering prescription of the original albedo

code, but made large simplifications to the input param-

eters. The simplified model used in the present study
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Figure 4. Visual representation of our 1-cloud (panel A)

and 2-cloud (panel B) models. The definitions of model

parameters and their use in the albedo code are given in

Sections 3.1.1 and 3.1.2, respectively.

has constant molecular abundances throughout the at-

mosphere, with H2 and He. The pressure-temperature

profile T (P ) of the atmosphere is kept fixed in this study

since we do not expect that our spectral range of interest

(0.4− 1 µm) will contain any information for constrain-

ing it (see also Barstow et al. (2014)). The wavelength

dependence of the cloud parameters is also ignored (gray

assumption for τcld, ḡcld, and ω̄cld). The depth depen-

dence is limited to parametrizing the cloud height and

cloud top pressure, as described below.

In actuality of course the temperature-pressure profile

will vary and this will primarily affect the atmospheric

scale height. Here our variation of atmospheric gravity,

g, stands in for variations in both T (P ) and g. As we add

complexity to the model we will explore the sensitivity

of retrievals to a varying T (P ).

3.1. Cloud Models

For the purposes of atmospheric retrieval we consider

two different cloud treatments as illustrated in Figure 4.

The simpler of the two models a single cloud layer while

the more complex allows for two distinct clouds/hazes.

We describe each model in turn below.

3.1.1. 1-Cloud Model

The one cloud model is parameterized as a semi-infinite

layer with a cloud top at pressure P in the atmosphere

and characterized by the single scattering albedo ω̄, scat-

tering asymmetry factor ḡ, and the gray optical depth τ

in the top model layer in which the cloud is found. For

simplicity of notation, we have dropped the subscript

‘cld’ from the quantities ω̄cld, ḡcld, τcld, as defined in the

previous section. This structure is shown in panel A of

Figure 4.

The pressure of the cloud top is allowed to vary freely,

not exceeding the atmospheric boundaries. Our typical

input pressure-temperature profile has 60 layers dividing

the depth of the atmosphere. We find the model layer in

which this pressure level is located, jc (1 ≤ jc ≤ N), and

scale the cloud optical depth in this layer by the position

of the cloud top pressure relative to the pressure at the

bottom of the layer. The next deeper layer (j = jc + 1)

will have cloud optical depth τj = τjc×(Pj+1/Pj), where

the layer number j increases with depth in the atmo-

sphere from 0 to N and Pj denotes the pressure at the

top of layer j. The cloud optical depths in the following

layers all the way to the bottom are calculated iteratively

as τj+1 = τj × (Pj+2/Pj+1). Thus in this model τ is es-

sentially a measure of how opaque the cloud top is, and

the optical depth per unit mass is constant over the en-

tire vertical extent of the cloud. Large values of τ imply

a rapid transition from cloudless atmosphere to cloud,

whereas small values imply a more gradual increase of

cloud opacity.

The cloud single scattering albedo ω̄ and scattering

asymmetry factor ḡ are kept constant as a function of

wavelength and depth in the atmosphere, below the layer

containing the top of the cloud, e.g. ω̄j = ... = ω̄N = ω̄

for j ≥ jc. This model will be referred in what follows as

the “1-cloud model”, and is characterized by 6 param-

eters: fCH4, g, P , ω̄, ḡ, and τ , where g is the planet’s

surface gravity, to be distinguished from ḡ, and fCH4 is

the methane abundance.

3.1.2. 2-Cloud Model

Increasing complexity, we created a model appropriate
for a cloud deck overlain by a haze layer with a very sim-

ple 2 layer structure shown in panel B of Figure 4. Such a

model is roughly capable of reproducing the structure ob-

served in Solar System planets, and is a slight modifica-

tion of the model used in the classic analysis of Jupiter’s

atmosphere by Sato & Hansen (1979).

The parameters describing the lower cloud are its top

pressure P and single scattering albedo (ω̄2). Following

the same approach as in Section 3.1.1, the pressure of the

top of the bottom cloud is found in layer jc, the optical

depth below this level is scaled in the same way, except

now τ = 1, and is not variable, thus modeling the case of

a distinct cloud top. This ensures that the bottom cloud

is always optically thick, and makes it effectively act as

a reflective surface, with a reflectivity controlled by ω̄2,

and situated at a variable depth given by P .

The position of the upper cloud (or haze layer) rela-

tive to the bottom cloud is parametrized by the pres-
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sure difference between the top of the lower cloud and

the bottom of the upper cloud (dP1) and the pressure

difference between the top and the bottom of the upper

cloud (dP2). For computational convenience, these quan-

tities are defined in log space, and are related to the size

and location of the top cloud by Pbottom = 10(P−dP1)

and Ptop = 10(P−dP1−dP2), where Ptop and Pbottom are

the pressures at the top and at the bottom of the upper

cloud, respectively (see Panel B, Figure 4).

Similar to the 1-cloud approach, we find the layers in

which the top and bottom pressure of the upper cloud

are located and the corresponding fractions, or locate the

cloud in a single layer, if necessary. For all the layers be-

tween the top and the bottom, the optical depth of the

upper cloud is scaled as τj = τ × (Pj+1−Pj)/(Pbottom−
Ptop), where τ is the input variable and is wavelength-

independent. The single-scattering albedo ω̄ and asym-

metry factor ḡ are again kept constant as a function of

wavelength and for all layers between Ptop and Pbottom.

This model will be referred in what follows as the “2-

cloud model”, and is characterized by 9 parameters:

fCH4, g, P , dP1, dP2, ω̄, ḡ, τ , and ω̄2.

Note that the haze single scattering albedo is treated

as a constant with wavelength. Thus hazes that ab-

sorb preferentially in the blue, lowering the albedo in the

short-wavelength part of the spectrum, such as are com-

monly found in solar system giant planet atmospheres,

are not taken into account here. These effects become

more important below 0.5 µm, and are unlikely to af-

fect the region of interest for this study (0.6 − 1 µm).

We will address the wavelength dependence of the single

scattering albedo in future work, especially when adding

photometric points in the visible.

4. SIMULATED DATA

To simulate the direct imaging observations, we use
a generic prescription for the total signal and associ-

ated noise expected in the planet’s point spread function

(PSF). This model is sufficient for investigating the ef-

fect of data quality (as quantified by the signal-to-noise

ratio, SNR) on the size of uncertainties associated with

the atmospheric parameters and on the significance of

methane and cloud detection. We consider this to be

a sufficiently general synthetic data model, that can be

easily swapped once a specific instrument simulator be-

comes available (e.g. Robinson et al. 2016). The plots in

Figure 5 exemplify our simulated data for a Jupiter-like

planet around a Sun-like star, at a distance of 25 pc from

our Solar System, using the method detailed below.

Let the total number of counts on the detector, within

the planet’s PSF, be the sum of planet counts npl, speckle

noise counts nspec, the zodiacal light nzodi, and the total

detector background counts from all other sources. The

spectral bins are chosen such that the resolving power

R = 70 is constant across the 0.4 − 1.0 µm bandpass.

For each spectral bin, we define

signal(e−) = npl × t,

noise(e−) = [ntotal × t+ (fpp × nraw speckle × t)2]1/2,

(5)

where

ntotal(e
−/s) = [npl + nzodi + nraw speckle

+Dc ×mpix + CIC ×mpix/tframe]× ENF 2

+ (NR/G)2 ×mpix/tframe,

(6)

ntotal is the total number of counts within the planet’s

PSF, t is the total integration time, and the other quan-

tities characterize the detector background noise, with

“typical values” for an electron multiplying (EM) CCD

detector: mpix = 5 pixels, DC = 0.001 e−(pixel s)−1,

NR = 3 RMS e−(pixel frame)−1, tframe = 300 s, CIC =

0.001 e−(pixel frame)−1, ENF = 1.414, G = 1000, and

t = 14000 s. The remaining fpp quantifies the speckle

reduction efficiency and can take values roughly between

1/10 and 1/30. We use a value fpp = 1/20 in this paper.

Assuming the stellar spectrum to be a blackbody at

6000 K, and using the model geometric albedo of the

planet, we have calculated the expected number of pho-

tons in each spectral bin. This number was converted

to a count rate, using estimated count rates of npl =

0.012 e−/s, nzodi = 0.012 e−/s, nspec = 0.010 e−/s,

which contain information about the expected quantum

efficiency. The number counts coming from all contri-

butions to the total signal are shown in Figure 5, top

left panel. The observed spectrum is simulated assum-

ing that the planet and zodi counts have a Poisson dis-

tribution (per channel), while the speckle and detector

noise counts have a Gaussian distribution (Figure 5 cen-

ter left). In other words, the simulated data points are

drawn from their respective distributions.

In addition, we consider the possibility of noise correla-

tions among different spectral regions. Since the speckle

positions relative to the central star change with wave-

length, we expect that at the position of the planet in the

observed image certain wavelengths will be more affected

by speckle noise than others. In our model, we assume

that this will affect only the Gaussian-distributed counts,

which are dominated by speckle counts, and not Poisson-

distributed ones, which consist of planet and zodi counts.

Therefore, the total noise contribution of the Gaussian-

distributed counts (their distribution around the mean)

was split into 2 components, one spectrally correlated,

and one spectrally uncorrelated. The correlated noise

component was generated as a Gaussian random process

with a squared-exponential kernel and correlation length

scale of either 25 or 100 nm. These length scales are
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appropriate for our chosen spectral range and expected

spatial resolution, and the choice of a random process

reflects the existing uncertainty in the exact behavior of

the speckle noise correlation. Furthermore, we assumed

that both correlated and uncorrelated components have

equal contributions to the total scatter in the data points,

and therefore their distributions will have mean zero and

equal variance. This combination of spectrally correlated

and uncorrelated noise is shown in the top right panel of

Figure 5.

We define the signal-to-noise reference value

(SNR0=signal/noise, from Equation 5) as corre-

sponding to the integrated number of counts in a

10%-wide bandpass centered at 550 nm. Therefore, the

integration time needed to achieve a given SNR0 can

be calculated as

t(s) =
SNR2

0 × n0total

n2
0pl − (SNR0 × fpp × n0raw speckle)2

, (7)

where the index 0 denotes the fact that these values are

calculated for the 550 nm reference bandpass. We calcu-

late the integration time t0 necessary to obtain a SNR0

of 5, 10, or 20, respectively, which is then used to calcu-

late the expected number of counts and scale the signal

and noise across the entire bandpass. The final error

bars are computed individually for each simulated data

point using Equation 5. As shown in Figure 5, the re-

sulting spectrum will have a SNR < SNR0 on average,

but we will take the SNR0 as the reference value in what

follows. The values for SNR0 and speckle noise correla-

tion length as defined above serve as a parametrization

of the data space over which we perform our retrievals.

The combination of the three SNR values and two possi-

ble speckle noise correlation lengths result in 6 simulated

datasets for each planet model.
Lacking more detailed information about the instru-

ment, in the above we have assumed that the entire

bandpass is observed simultaneously and the quantum

efficiency (detector response) is constant across the band-

pass. Although these conditions will not be satisfied in

a real observation, they amount to assuming that we

can achieve the final SNR distribution with wavelength

shown in the bottom right panel of Figure 5. This is

just one of the many possible realizations of SNR vari-

ation over the bandpass, and this is likely to be unique

to each dataset, which will likely be a combination of

different observing modes. It is to be expected that the

best fit parameter values from our retrievals will depend

on the noise distribution with wavelength, as well as on

the individual random point generation for each simu-

lated dataset. A more adequate instrument simulator

will be needed to estimate the actual science return from

a future mission.

5. ATMOSPHERIC RETRIEVAL SCHEME

The allowed ranges and best fit values for the forward

model parameters, given the data, are determined using

two Bayesian posterior sampling algorithms, namely the

affine invariant ensemble Markov chain Monte Carlo sam-

pler, emcee (Goodman & Weare 2010; Foreman-Mackey

et al. 2013), and the multimodal nested sampling algo-

rithm MultiNest (Feroz & Hobson 2008; Feroz et al.

2009, 2013). These approaches permit efficient sampling

of highly correlated, non gaussian, and high-dimensional

parameter spaces, and are very readily scaleable to multi-

processor computing.

The different approaches taken by the two algorithms

in sampling the posterior parameter space can help us

avoid the pitfalls of either one. While emcee starts with

a first guess and can become trapped in a local min-

imum, MultiNest starts with a grid of points covering

the entire prior parameter space and proceeds by nar-

rowing down the maximum likelihood regions. On the

other hand, MultiNest could favor highly-peaked, multi-

modal, Gaussian-like distributions, while emcee is more

agnostic to the shape of the posterior and can reveal ad-

ditional tails and correlations. The total evidence for

any given model (the integral over the posterior distri-

bution) is automatically calculated by MultiNest as a

part of the algorithm, but requires extra steps and can

be tricky to compute for emcee. Ideally, the two methods

will converge to the same solution.

Overall, we consider the two approaches complimen-

tary, and offer greater confidence in avoiding potential

biases. Recently, Allison & Dunkley (2014) have com-

pared in detail these sampling techniques and found that

nested sampling is the most efficient while still providing

good accuracy, and the affine-invariant MCMC sampler

can be competitive when massively parallelized. They

both outperform by far traditional Metropolis-Hastings

algorithms. For completeness, we provide a brief descrip-

tion of the two posterior sampling algorithms in the Ap-

pendix.

A second component of the retrieval process consists of

model comparison, with the purpose of quantifying not

only the uncertainties in the model parameters, but also

the evidence in support of a chosen model. In this step

we can assess whether the 1-cloud or 2-cloud model pre-

sented in Section 3.1.1 and 3.1.2 offer a better representa-

tion of the data and calculate the significance associated

with the cloud or methane detection. The choice between

two competing modelsMX andMY then comes down to

comparing their probabilities by constructing the Bayes

factor

BXY =
P(MX | D)

P(MY | D)
=
ZX
ZY
P(MX)

P(MY )
, (8)

where the relevant quantities are defined in the Ap-
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pendix. Usually the last term in Equation 8 is 1 (both

models have the same probability). We use the guidelines

provided by Jeffreys (1961); Raftery (1996) for assessing

the evidence in support of model MX vs MY in terms

of Bayes factor:

2 logBXY < 0: Negative (supports MY ),

0 < 2 logBXY < 2: Inconclusive,

2 < 2 logBXY < 5: Positive,

5 < 2 logBXY < 10: Moderate,

2 logBXY > 10: Very Strong.

(9)

Since the posterior distribution in general does not

have an analytic form, the difficulty arises when attempt-

ing to compute Z for each model under consideration. In

general, the evidence evaluation from an existing MCMC

posterior is limited by the poor sampling of regions of low

likelihood. This problem can be overcome using thermo-

dynamic integration, at computational costs 10 − 100×
higher than a regular MCMC (e.g. Trotta 2008; Calder-

head & Girolami 2009). However, as long as the Bayes

factor is found within the ranges in Equation 9, the pre-

cise value of BXY is not important. In general, some

rough assumptions are made on the functional shape of

the prior and posterior distributions to be able to ap-

proximate the value of this integral. While these ap-

proximations are not very accurate, Cornish & Litten-

berg (2007) show that for high signal-to noise data (SNR

& 9) all methods converge toward the same values. In

this paper we estimate Z using three different methods:

the Schwarz-Bayes information criterion (BIC, Schwarz

1978), the Laplace approximation (Lopes & West 2004;

Cornish & Littenberg 2007), and the Numerical Lebesgue

Algorithm (NLA) described by Weinberg (2012). We re-

fer the reader to the Appendix for a summary of these

methods and relevant definitions. The scatter among the

results given by these three methods are indicative of the

reliability of these approximations for various models and

SNR regimes. In general, we observe that the values con-

verge when the evidence for a given model is very strong.

Further, these results obtained from the MCMC samples

are validated by comparison with the evidence values cal-

culated by default with the nested sampling algorithm.

5.1. Priors

The parameters retrieved for each of the cloud mod-

els are described in Sections 3.1.1 and 3.1.2. In addition

to the cloud properties, we are retrieving the methane

abundance and surface gravity. Water and alkali abun-

dances will be included as model parameters in future

work; however, for the applications considered in this pa-

per (e.g. Jupiter, Saturn), methane is the main absorber.

We define the atmospheric methane mixing ratio, fCH4,

as the volume mixing ratio of methane. Since in a giant

planet atmosphere 98% of the atmospheric constituents

are H2 and He, this uniquely defines the atmospheric

methane content. Such an approach would not be possi-

ble for a terrestrial planet of course.

We allowed gravity to vary because in the realistic case

neither the size of the planet nor the planetary mass will

be known precisely. We allowed an exceptionally large

range of gravities to be tested by the retrievals. In a

realistic case the planet mass will be known to substan-

tially better than a factor two by the orbital astrome-

try solution. From the mass radius relationship for gas

giant planets and albedo scaling arguments the radius

will likely be known to within 50%, which dominates the

gravity uncertainty. Thus for a Jupiter twin the grav-

ity (g = 25 m s−2) would plausibly be known to be

< 100 m s−2, not < 1000 m s−2 as is the constraint

placed in most of the results shown here. This turned

out to be very important as, all else being equal, a large

methane mixing ratio is required at high gravity to pro-

duce equivalent absorption band depths as a lower abun-

dance at lower gravity.

The only restriction on the vertical cloud structure (P ,

dP1, and dP2) is that it does not exceed the total ver-

tical extent of the atmosphere. The cloud albedos and

asymmetry factor are allowed to take any value between

0 and 1, while the optical depth of the upper cloud varies

between 10−3 and 103. This optical depth is also varied

in the 1-cloud model, but the lower cloud in the 2-cloud

model is assumed optically thick (see Section 3.1.2).

The pressure-temperature profile of the atmosphere is

kept constant, since there is not information in the spec-

tra at these wavelengths (0.4 − 1.0 µm) to constrain

it. We are considering replacing this fixed profile by a

parametrized one, to better account for the effect of sur-

face gravity (Line et al. 2013).

5.2. Implementation

The forward models described in Sections 3.1.1 and

3.1.2 have been coded in Fortran and converted into

a Python-callable library using f2py (now part of the

NumPy package). The retrieval scheme integrates this

library with either emcee or PyMultiNest, alternatively.

Both MCMC and nested sampling version are set up for

efficiency and can be scaled to run from a laptop to a

computer cluster. The Fortran code is also paralleliz-

able, but this does not provide a significant increase in

speed as long as the MCMC is parallelized. Our retrievals

were run on the NASA Pleiades Supercomputer, where

we highly optimized the code for the forward models, and

took advantage of the parallel nature of the algorithms

to run on up to 216 processors at the same time (one

24-core node per model parameter). The MultiNest al-

gorithm is found to converge rapidly even when run on
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just 1-2 nodes.

We have quantified the methane and cloud detections

by calculating the ratios of their respective Bayes fac-

tors, as described in Section 5. For each case (SNR and

spectral correlation length combination), a set of four dif-

ferent forward models was used: the 2-cloud model with

9 parameters (Section 3.1.2), the 1-could model with 6

parameters (Section 3.1.1), a model without clouds (the

cloud subroutines are turned off in the previous models),

and a model without methane (the methane abundance

is set to 10−20 in the previous models). Therefore, for

each planet example, we ran a set of 24 retrievals using

emcee. In addition, we performed the same retrievals

using MultiNest for the models with a spectral correla-

tion length of 25 nm mainly to cross-check the Bayesian

evidence values calculated from the MCMC chains. In

cases of good convergence, MultiNest also provided pa-

rameter constraints in agreement with emcee at a lower

computational costs.

6. RETRIEVAL VALIDATION

In order to validate our retrieval procedure, we gener-

ate albedo spectra using the 1-cloud and 2-cloud models

presented in Section 3.1.1 and 3.1.2, respectively. We

use the 1-cloud forward model to generate 2 types of

spectra: one for an optically thin cloud very deep in

the atmosphere, equivalent to a cloud-free atmosphere;

and one for an optically thick cloud at moderate height.

The third case is generated with the 2-cloud model. The

model spectra are then converted to simulated observa-

tions using the noise prescription described in Section 4.

For each of these three cases we investigate the ability

to retrieve the input model parameters, as a function

of SNR and noise correlation length. For each of the

three cases we ran retrievals using the full 1-cloud and

2-cloud models, a forward model with the clouds turned

off (referred to as “no clouds”; defaults to 0 for all ḡ, ω̄,

and τ ’s), and a forward model with negligible methane

abundance (referred to as “no methane”, fCH4= 10−20).

For convenience of notation, we will refer to these four

model retrievals as 1c, 2c, -c, and -m, where a 2c-m

notation for example would stand for “2-cloud forward

model without methane”. Each SNR and spectral noise

correlation length combination was run through the re-

trieval procedure four times to enable model comparison

and assess the significance of methane and cloud detec-

tion. Tables 1 and 2 summarize the input parameter val-

ues for each of the simulated spectra, and the confidence

intervals for each parameter obtained after running the

retrieval procedure.

6.1. Cloud-free case

We construct the albedo of a cloud-free planet using

the 1-cloud model in Section 3.1.1, where the optical

depth τ is set to 10−8 and the top pressure of the cloud

to 10 bar. The other parameters used to generate the

model spectrum are listed in Table 1. Using the noise

prescription in Section 4, we generate simulated datasets

for SNR values of 5, 10, and 20, and spectral noise cor-

relation lengths of 25 and 100 nm. The data realizations

can be seen in the left panel of Figure 8. The retrieval

is performed over the wavelength range 0.4-1.0 µm, in-

dicated by the green line in Figure 8. Figures 6 and 7

show the retrieval results. The marginal probability dis-

tributions for the model parameters are shown in the top

panel in Figure 6. The associated confidence intervals are

bounded by the 16% and 84% quantiles of the cumula-

tive probability distributions and are shown in the bot-

tom panel of the same figure. These confidence intervals

are also listed in Table 1.

We find that for a cloud-free planet both the methane

abundance fCH4 and surface gravity g are well con-

strained. The methane abundance is constrained to

within a factor of ∼ 2.6 at a SNR of 5 and within a

factor of ∼ 1.15 at a SNR of 20. The surface gravity is

constrained to within a factor of ∼ 4 at a SNR of 5 and

within a factor of ∼ 1.2 at a SNR of 20. As expected,

the cloud albedo ω̄ and scattering asymmetry factor ḡ

are not constrained, since they do not contribute to the

observed spectrum.

The 2-dimensional posterior probability distributions

shown in Figure 7 trace the changes in the parameter

constraints as the SNR increases from 5 to 20. This is

also reflected by the decrease in the size of confidence

intervals shown in the bottom panel of Figure 6. The

distributions clearly become narrower and more peaked

as the SNR increases. This projection also shows that

the pressure of the top of the cloud deck in the model is

partly correlated with the optical depth τ . A larger top

cloud pressure (deeper cloud) allows for a larger range of

optical depths. This can be intuitively understood since a

deep cloud will have little effect on the observed spectrum

even when its optical depth is larger. The range of spec-

tra obtained using parameters drawn from the posterior

probability distributions are shown by the red contours

in Figure 8. We also note the excellent agreement be-

tween the MCMC and nested sampling methods, where

the nested sampling results are shown by the black-grey

contours in Figure 7, and by the yellow lines in Figure 6.

The posterior constraints on the cloud parameters P ,

τ , ω̄, and ḡ already indicate that the spectrum does not

support the presence of an observable cloud. This is fur-

ther confirmed by the Bayesian evidence analysis. We

sample the posterior probability distributions for a set

of 4 models: 1c, 1c-m, 1c-c, and 2c, as defined above.

The pairwise Bayes factors for these models are shown in

Figure 9. Clearly, methane is detected with a high sig-

nificance even when the spectral SNR is 5 (yellow trian-
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gles). However, the presence of a cloud is not supported.

The models containing 2-clouds, 1-cloud, or no clouds

are equally able of describing the data, since even in a

multiple cloud model the optical depth of the clouds can

be very low, effectively acting as a no-cloud model. No

preference for a given cloud model in this case means that

the presence of a cloud is not necessary to explain the ob-

served spectrum. In this sense, the Bayesian evidence for

all these models should be approximately equal, and the

scatter in the Bayes factors in Figure 9 shows the poor

performance of the evidence approximations when the

significance is low. The black symbols in Figure 9 show

the Bayes factors obtained using the evidence calculated

by the nested sampling algorithm. The agreement is ex-

cellent for the high-significance methane detection, but

lays within the large scatter for the cloud-model compar-

ison.

6.2. Single-cloud case

By raising the optical depth τ to 1, and the cloud top

pressure to 0.2 bar, we can use the 1-cloud model to gen-

erate the albedo spectrum of a planet with an observable

cloud deck. The simulated observations of such a planet

are shown in the middle panel of Figure 8. The results of

this retrieval are shown in Figures 10 and 11, and in the

bottom half of Table 1. In this case the methane abun-

dance is still well constrained, although within a wider

range than for the no-cloud case, namely within a factor

of ∼ 5 for a SNR of 5 up to within a factor of ∼ 3 for a

SNR of 20. The original abundance value is well within

the predicted ranges, where the SNR=10 case with a cor-

relation length of 100 nm seems to be an outlier.

The surface gravity of the planet is no longer con-

strained in this case, but is found to be correlated with

the top cloud pressure (Figure 11). The power of the

posterior sampling lays in discovering such correlations

between model parameters. Figure 11 also shows the cor-

relation between the cloud albedo ω̄ and scattering asym-

metry factor ḡ, and between the top cloud pressure and

its optical depth. Essentially, and optically thick cloud

also constrains the cloud top pressure between ∼ 0.01

and 1 bar, while an optically thin cloud would require the

cloud top pressure to be very close to the top of the at-

mosphere. Independent constraints on the surface grav-

ity, such as provided by RV measurements would narrow

the allowed range for the cloud top pressure, which in

turn would constrain the cloud optical depth. Lacking

this information, we essentially obtain a lower limit for

the optical depth and an upper limit for the top cloud

pressure.

The other very well constrained parameter is the cloud

albedo ω̄. The confidence intervals on this parameter

are only of the order ±5% to 2% depending on the SNR

and particular noise realization. The correlation with the

scattering asymmetry factor leads to a slight asymmetry

in these confidence intervals, but the range of allowed

values is still remarkably narrow. Just like the surface

gravity, the scattering asymmetry factor ḡ is virtually

unconstrained. Similarly to the no-cloud case, there is

excellent agreement between the MCMC and nested sam-

pling results.

The high-significance cloud detection is revealed in the

Bayes factor plot in Figure 12. The Bayesian evidence is

calculated for the posterior distributions corresponding

to the models 1c, 1c-m, 1c-c, and 2c. The Bayes factors

favor the models with 1 cloud relative to the one with-

out clouds (blue circles), and the model with methane

relative to the one without (yellow triangles). The cloud

detection significance is > 10σ even when the data has

a SNR of 5, showing that the presence of a cloud deck

is required by the observations. The methane detection

significance is similar to that in Section 6.1. Similarly,

the retrieval cannot distinguish between a 1-cloud or a

2-cloud model (green stars), since a 2-cloud model can

be reduced to a 1-cloud model as the gap between the 2

cloud decks becomes small and the optical depth of the

top cloud becomes large.

6.3. Two-cloud case

The final validation case consists of a spectrum gen-

erated using the 2-cloud model in Section 3.1.2. The

input parameters for the original spectrum are listed in

Table 2, and the simulated datasets are shown in the

right panel of Figure 8. The retrieved marginal proba-

bility distributions and confidence intervals are shown in

Figure 13. In this case, the uncertainty in the methane

abundance does not shrink considerably before the SNR

reaches a value of 20. The confidence interval for fCH4

extends over a factor of ∼ 30 (∼ 60− 70 for nested sam-

pling) when the SNR is 5-10, but drops to a factor of

2 when the SNR reaches 20. Similarly to the 1-cloud

case, the surface gravity is not constrained by the data.

The multi-dimensional correlation between fCH4, P, and

g seen in Figure 14 (at SNR=10) shows the benefit in re-

ducing the allowed range in g, via RV and astrometry

measurements, which will then propagate into narrow-

ing the allowed range in P, and further in fCH4. For

a SNR=20 dataset, the uncertainties in fCH4 and P are

simultaneously reduced (Figure 14). In this case, the top

pressure of the bottom cloud (P ) is also constrained to

within a factor of ∼ 3.

In terms of cloud properties, the scattering asymme-

try factor ḡ of the upper cloud and its albedo ω̄ are

completely unconstrained, while the uncertainty for the

albedo of the lower cloud (ω̄2) is only of the order of 1%

even when the data has a SNR of 5. The MCMC al-

gorithm places an upper limit on the optical depth of

the upper cloud, which is consistent with the lack of
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constraints for the other upper cloud parameters, but

very tight constraint on the bottom cloud albedo. In-

tuitively, as seen in the previous two examples, the pa-

rameters of the upper cloud can be constrained as long

as this cloud is optically thick, while the properties of

the lower cloud (its albedo) can be determined as long

as the upper cloud is optically thin. However, especially

at lower SNR (see Figure 14), the nested sampling algo-

rithm identifies a second set of solutions, with an opti-

cally thick upper cloud, associated with a lower methane

abundance and a deeper lower cloud. This result suggests

that this degeneracy will not be broken unless the scat-

ter in the data points is greatly reduced. Aside from this

new mode identified by the nested sampling algorithm,

the two Bayesian approaches are again in excellent agree-

ment. The presence of the second mode can be further

investigated by starting the MCMC chains in this part

of the parameter space.

We have calculated the Bayes factors and compared

the models 2c, 1c, 2c-c, and 2c-m. Similar to the 1-

cloud case, the presence of methane and cloud deck are

detected at very high significance (σ > 4) even for a

dataset with a SNR of 5, as shown in Figure 15. The

results are again unable to distinguish between a 1-cloud

and a 2-cloud model, since the first is a special-case limit

of the second (green stars). However, both the 1-cloud

and the 2-cloud models are equally favored with respect

to any cloud free model (blue circles, pink triangles).

6.4. Importance of SNR and Spectral Noise Correlation

Length

We stress that the quoted significance of the detec-

tion itself has no other information on the confidence

intervals associated with the model parameters. These

confidence intervals, as well as possible correlation and

multi-modality, are clearly affected by the SNR of the

dataset. The change in the confidence intervals with SNR

is shown in Figures 6, 10, and 13. Overall, while the pres-

ence of methane is clearly detected even at a SNR of 5,

its abundance is well constrained (to within factors of 2-

3) only at a SNR of 20. At lower SNR, the uncertainty

in the methane abundance is mainly related to correla-

tions with other models parameters, such as the surface

gravity and the position of the cloud deck (P). This situa-

tion is improved in the case of a clear atmosphere, where

the methane abundance and surface gravity are simulta-

neously constrained. However, the presence of a cloud

deck is easy to confirm even at a SNR of 5 (as shown

by the Bayes factor plots). This suggests that when the

presence of clouds is indicated by early observations, an

attempt to further increase in SNR is justified in order

to constrain the methane abundance.

Our results do not indicate any influence of the spec-

tral noise correlation length on the retrieval results. The

uncertainties on the model parameters are similar (see

Figures 6, 10, and 13, and Tables 1 and 2). There

is a slight bias towards higher values for the retrieved

methane abundance in the no-cloud and 1-cloud cases,

for a spectral noise correlation length of 100 nm, but it

is not clear whether this is an effect of the noise correla-

tion length scale or of the particular noise realization in

the simulated dataset. Multiple noise realizations for a

given correlation length scale would be required to vali-

date this effect.

7. REALISTIC TEST CASES

For the retrieval tests we used two types of input

data, solar system giants and model planets. We used

the solar system albedo spectra for Jupiter and Sat-

urn from Karkoschka (1994), and a theoretical radiative-

convective equilibrium model for HD 99492 c. All of

these objects have methane dominated optical reflection

spectra. We have applied our albedo retrieval method

to a set of 24 cases, comprising 6 combinations of SNR

(5, 10, 20) and correlation lengths (25 and 100 nm), the

same as for the validation cases. The Solar System-like

planets are assumed to be at 25 pc from the Earth, while

the distance to the HD 99492 c system is 18 pc. The

retrievals use data between 0.6 and 1 µm to more closely

match the projected bandpass of WFIRST (unlike the

validation cases where we used the 0.4-1.0 µm bandpass).

For each case we run the MCMC ensemble sampler with

24 walkers per parameters, for a total of 3800 steps, and

we select the last 400 steps for determining the poste-

rior probability distributions. We also use the nested

sampling algorithm for the spectra with noise correlation

length of 25 nm. The pressure-temperature profiles are

kept fixed during the retrievals, as shown in Figures 19,

25, and 29.

7.1. HD 99492 c

We start by looking at the model planet HD 99492 c,

as the real-world example most closely resembling our

1-cloud model. HD 99492 c is thought to be a gas giant

with a mass of 0.36±0.02 MJup, and a semimajor axis of

5.4±0.1 AU, orbiting a K2V star. However, its detection

has been challenged recently due to high stellar activity

(Kane et al. 2016).

We first determined the pressure-temperature profile

for HD 99492 c by computing a 1D radiative-convective

equilibrium model with a comprehensive cloud treatment

built-in (Ackerman & Marley 2001). This code computes

a self-consistent cloud with vertically varying abundances

and particle sizes of each condensible species. This theo-

retical structure is shown in the right-hand panel in Fig-

ure 19. We then input the resulting pressure-temperature

profile into a fine-grid albedo code to produce an albedo

spectrum comparable to the solar system data. This high



Atmospheric Retrieval for Gas Giants in Reflected Light I 13

resolution spectrum is then converted to simulated data

following the prescription in Section 4, for each chosen

combination of SNR and noise correlation length.

Figure 16 shows the summary of the retrieval results

for the gas giant HD 99492 c, with the quantiles listed

in Table 3. An example for the posterior probability

distributions for the retrieval using the 2-cloud model is

shown in Figure 17. In the 2-cloud scenario, the posterior

in bi-modal, similar to that found in Section 6.3, and we

show the most important parameters for the two modes

separately in the two panels. The notable difference is

that for the mode with a low optical depth for the top

cloud (τ), the albedo of the bottom cloud (ω̄2) is very

well constrained, while for the mode with a high optical

depth for the top cloud, the albedo of the top cloud (ω̄)

is very well-constrained, to within ∼ 6%. This is easily

understood, since in the case of low optical depth we

can “see through” the top cloud, and the albedo of the

bottom cloud surface is what determines the spectrum,

while the opposite is true when the top cloud is optically

thick.

We also note that an optically thin top cloud favors a

lower methane abundance, since now we integrate over a

larger CH4 column. The position of the best fit parameter

values for each mode was marked in green to emphasize

that the best fit parameter combination is different from

the set of median values of the marginal distributions,

which are listed in Table 3. The range of spectra gener-

ated using random parameter sets from the posterior are

shown in Figure 20.

In Figure 18 we show both the covariance plot for the

retrieval using the 1-cloud model, as the more represen-

tative for the planet’s vertical structure, and the best-fit

spectra for the different models and modes. In the covari-

ance plot the blue lines show the parameter values that

are closest to the theoretical planet structure. We note

that this 1-cloud retrieval solution resembles the high-τ

mode of the 2-cloud posterior, only with a tighter cor-

relation between P and g. In this case we find a lower

bound for the pressure of the cloud surface, but a lack

of constraints for g. Similar to the validation case, we

can see that a tighter prior in g would translate into bet-

ter limits on P (via correlation), and a narrower allowed

range for fCH4. The best-fit spectra reveal the complete

degeneracy of these solutions (red, blue and yellow lines

overlapping). The differences between the retrieved and

original spectra (black line) are due to a more compre-

hensive treatment of gas and cloud opacities in the orig-

inal model. Additional constraints placed by available

photometric points shortward of 0.6 µm will be investi-

gated in future work.

The degeneracy between the best-fit solution given by

the 2-cloud and 1-cloud models is also apparent in Fig-

ure 19, where the two cloud decks in the left panel over-

lap, within the error bars, and basically occupy the same

vertical regions as the 1-cloud deck in the middle panel.

This plot suggests that for a planet like HD 99492 c

our simple cloud model can only provide a lower bound

on the pressure at the top of the cloud deck (i.e. up-

per bound to the height in the atmosphere above the

planet’s surface) and an upper bound on the methane

abundance (i.e. the methane abundance is inversely cor-

related to the cloud top pressure, such that the total

CH4 column is constant). Independent priors on the top

cloud pressure (from equilibrium structure) and surface

gravity (from radius and mass measurements) would help

mitigate these uncertainties. We note a similar bias to-

ward high fCH4 values in the case of Saturn below, which

could be due to some deficiencies in our simplified cloud

model and will be investigated in future work.

As before, we show the Bayes factors between different

model choices in Figure 21. The presence of methane and

a cloud deck is confirmed at very high significance. The

2-cloud model is more disfavored relative to the 1-cloud

model, likely due to the presence of additional unneces-

sary parameters.

7.2. Jupiter

Arguably, a Jupiter-like planet is the closest real-world

case to our 2-cloud forward model. We have simulated

data for a Jupiter-like planet at 25 pc from the Sun using

the spectra from Karkoschka (1994). The results of our

retrievals are shown in Figure 22. This plot shows that

the parameters that are best constrained by the data are

fCH4, P , and ω̄2. We note the narrowing of the distribu-

tions and therefore the tightening of the constraints for

SNR=20 (red lines), also shown by the size of the con-

fidence intervals in the bottom plot. The derived CH4

abundance is consistent with the generally adopted value

of (2.37±0.57)×10−3 (or -2.625 in log) in Jupiter (Wong

et al. 2004). Also, the derived single scattering albedo of

the lower cloud, ω̄2, matches the observed value of 0.997

(e.g., Sato & Hansen 1979). The mean vales of these pa-

rameters are sensitive to the particular noise realization

of each simulated dataset. Unconstrained parameters are

g and ḡ, and an upper limit is derived for τ , showing that

the upper cloud is likely optically thin. The confidence

intervals are summarized in Table 4, and the range in

spectra allowed by the posterior samples are shown in

Figure 20.

Although the MCMC algorithm strongly favors a

single-mode posterior with an optically thin upper cloud,

the nested sampling algorithm identifies two posterior

modes, the second one having an optically think upper

cloud. This is reflected by the large confidence intervals

shown in Figure 22 (yellow). The second, high optical

depth mode, becomes favored by the nested sampling

algorithm at SNR=20. Figure 23 shows posterior co-
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variance plots for some selected parameters for SNR=20,

and noise correlation length 25 nm Jupiter data, using

both the 2-cloud and 1-cloud models. The blue lines

indicate the parameter values that correspond to cur-

rently adopted values for Jupiter (fCH4 = 2.37 × 10−3

and g = 24.79 m s−2). It is apparent that the nested

sampling (gray contours) favors a solution that best re-

sembles the 1-cloud model, with a deep, optically thick

cloud and unphysically low gravity. The correlations

at the top of left panel in Figure 23 show that a nar-

rower allowed range in g for known RV planets both con-

strain the methane abundance to match the real value

and strongly disfavor the second, optically thick mode.

The spectra corresponding to these best-fit solutions are

shown in Figure 24. This plot shows that the spectra

are degenerate relative to these solutions at wavelengths

between 0.6 and 1 µm, but physical arguments can be

made to eliminate certain solutions. We note the need

for wavelength-dependent continuum opacity, especially

for using photometry data shortward of 0.6 µm.

The Jupiter cloud structure, as retrieved by our 2-cloud

and 1-cloud models is compared to the theoretical ver-

tical structure for Jupiter in Figure 25. The cloud and

haze layers shown in the right panel of Figure 25 approxi-

mately match the positions described elsewhere in the lit-

erature (e.g., Simon-Miller et al. 2001; Sato et al. 2013).

The hazes are likely to have a wavelength-dependent con-

tinuum opacity, unlike our simple cloud model, and our

notation was chosen to emphasize that the upper haze

layer is likely absorbing and the lower haze/cloud layer

is likely bright (reflective) at the wavelengths relevant in

our study. We note that the upper cloud roughly matches

the position of a hydrocarbon haze in the upper layers of

the atmosphere, and the lower cloud deck overlaps with

the bright haze and ammonia/water ice clouds in the

deeper atmosphere. This deep cloud is also identified

by the 1-cloud model retrieval, but without the opac-

ity contribution of the upper haze/cloud, the retrieved

suface gravity of the planet would be unphysical.

The significance of the cloud and methane detection is

shown in the middle panel of Figure 21. The methane

is detected at high significance for all SNR, while the

cloud detection becomes very strong only when SNR>10.

Due to the degeneracy of the solutions (see Figure 24),

the Bayes factor does not favor the 2-cloud vs. the 1-

cloud model except at very high signal-to-noise. How-

ever, based on the previous arguments related to the sur-

face gravity, it is reasonable to select the 2-cloud model

in this case, and we expect a more clear distinction to ap-

pear once independent constraints on the surface gravity

are provided.

We conclude that the two-layer cloud model is nec-

essary for Jupiter, constraining the methane abundance

to within factors of ∼ 20 at SNR=5 and factors of ∼ 3

at SNR=20, possibly much better when tighter limits

on the surface gravity are available. The single scatter-

ing albedo of the lower cloud is constrained within 0.5%

even at the lowest SNR. This gives us an indication for

the composition of the lower cloud, since particles with

high reflectivity are necessary to explain the large value

of ω̄2.

7.3. Saturn

Our third and final case study is Saturn, which falls

between HD 99492 c and Jupiter in terms of retrieval

results. We use again data from Karkoschka (1994) to

generate simulated observations using the method in Sec-

tion 4. The summary plots for the retrieval results are

shown in Figure 26, with the confidence intervals listed

in Table 5. The posterior distribution for the 2-cloud

retrieval is now clearly bi-modal, with one mode corre-

sponding to a low optical depth for the upper cloud, and

the other to an optically thick upper cloud. The large

confidence intervals plotted in the bottom panel of Fig-

ure 26 are due to this bi-modality. The range of the pos-

sible spectra with parameters drawn from the posterior

are shown in the right panel of Figure 20.

For clarity, the two modes have been separated and

the covariances of the most relevant parameters shown

in Figure 27 (middle and right panels). In the left panel

of Figure 27 we show the retrieved posterior distribution

for the 1-cloud forward model, with the blue lines indi-

cated the parameter values that correspond to the cur-

rently known properties of Saturn (fCH4 = 4.5 × 10−3

and g = 10.44 m s−2). The green lines in the middle and

right panels show the best fit solutions for each of the

two modes. As seen in the case of HD 99492 c, the mode

with low optical depth constrains the albedo of the lower

cloud (ω̄2), while the optically thick mode constrains the

albedo of the upper cloud (ω̄). However, in contrast

to HD 99492 c, the 1-cloud retrieval mostly resembles

the low optical depth mode of the 2-cloud retrieval. In

this case, the reflecting surface (P ) is found relatively

high (10−3 − 1 bar), with a position correlated with the

methane abundance and g. The 1-cloud model also con-

strains the optical depth within a relatively narrow range

of ∼ 0.1 − 1. The surface gravity g is unconstrained by

both the 1-cloud and 2-cloud retrievals, but independent

constraints would translate into narrower confidence in-

tervals for both P and fCH4, as in the cases described

above, especially considering the low optical depth mode.

A more peaked distribution for fCH4 is only obtained for

the 2-cloud mode of low optical depth (right panel), while

in the other two cases only lower limits can be inferred.

The methane abundance is overall consistent with mea-

sured values, but biased towards higher values in the high

optical depth mode, because the entire cloud structure is

then obscuring most of the atmosphere.
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Figure 28 shows the complete degeneracy between the

1-cloud retrieved solution and the two modes of the 2-

cloud retrieval. Photometry shortward of 0.6 µm could

be helpful for constraining haze properties. Based on

these data, we cannot distinguish between the two pos-

sible modes, and the presence of the second cloud is not

required. The retrieved cloud structure using the 1-cloud

and 2-cloud models is presented in Figure 29 and com-

pared with the structure derived from the literature in

the right panel (e.g., Roman et al. 2013). The lack of

evidence for a second cloud is also suggested by the over-

lap of the 2-cloud structure in the left panel, similar to

the situation for HD 99492 c. By contrast, the cloud

optical depth is low in this case, and therefore the tran-

sition from a clear atmosphere to cloud-obscured is very

gradual. Overall, the retrieved cloud structure strongly

overlaps with the theoretical structure, and all solutions

are consistent with highly reflective layers present in the

atmosphere. This is supported by the Bayes factors in

the right panel of Figure 21, where both methane and

a cloud layer are detected with high significance for all

SNR. The evidence for the second cloud is inconclusive,

since these solutions are degenerate. We suggest that

some evidence is provided by the tighter distribution in

Figure 27, right panel vs. left panel, and a more relevant

Bayes factor calculation would be between the 1-cloud

model and each of the two modes of the 2-cloud model

separately.

8. SUMMARY AND CONCLUSIONS

We have used a Bayesian retrieval method to quan-

tify the confidence intervals on the atmospheric methane

abundance and cloud structure of extrasolar giant plan-

ets, using a simple atmospheric model with either 1

or 2 cloud decks. The results show that the model-

ing framework can be further refined and optimized to

address realistic planets. Notably, we are trying to re-

produce complex atmospheric structures by using simple

1-dimensional model approximations and low signal-to-

noise, integrated light data. Nevertheless we find that

reflected light spectra of the quality expected from a

space based direct imaging exoplanet mission is suffi-

cient to place interesting constraints on important plan-

etary atmosphere characteristics, particularly methane

mixing ratio and, in some cases, cloud albedo. In par-

ticular, the presence of clouds and/or methane absorp-

tion is detected at high significance even for a SNR of

5. However, a low SNR value will only give us such sim-

ple assessments, while a higher SNR is needed to deter-

mine accurate abundances and extracting useful informa-

tion about mass-metallicity relationships. The retrieval

methods presented are powerful for determining correla-

tions among parameters and identifying which ones are

unconstrained by the data. In this case demonstrating

the value in the synthetic datasets, even at low signal to

noise ratios.

We found that our retrieval methods could reliably in-

fer methane abundances to within factors of ten of the

true value in most cases and could often accurately con-

strain cloud scattering properties, thus providing a clue

to the cloud composition. Gravity, however, is not well

constrained by optical spectra in the presence of clouds.

Observing planets with known masses therefore removes

an important source of uncertainty and allows much

greater precision in the inference of atmospheric abun-

dances. Furthermore, cases in which the cloud model

was inadequate are readily apparent in the retrieval out-

put. This prompted us to calculate the Bayesian evidence

for a set of models for each simulated spectrum. This

is a method to quantify the significance associated with

the methane and cloud detection, and the assumed cloud

model (1-cloud vs. 2-cloud) in each case. Although time-

consuming, this is a very powerful test that will become

a necessity for interpreting future observations, as the

complexity of our model atmospheres and understanding

of planetary diversity is increasing. Our preliminary ap-

plications on realistic planets show that it is worthwhile

to investigate different vertical cloud structures, such as

the 1-cloud vs. the 2-cloud models. This can help us

address degeneracies and identify unnecessary parame-

ters. In summary, our first study on the characterization

of extrasolar giant planets in reflected light found that

retrieval methods using simple, gray cloud models can

be applied to optical spectra of exoplanets to retrieve

molecular abundances and cloud properties. We found

that generally the retrieval results are equally sensitive

to the particular noise realization as to the chosen spec-

tral correlation length.

8.1. Ongoing and Future Work

For this initial study we made a number of simplifi-

cations to the analysis to make our task tractable and

obtain a first look at parameter correlations. However fu-

ture work should address these simplifications and their

roles in the fidelity of the retrievals. Foremost among

those that should be explored include: planetary ra-

dius uncertainty, thermal profile uncertainty, and or-

bital phase uncertainty. The second paper in this series

(Nayak et al, in preparation), will address the radius and

phase uncertainties. In addition the retrieval of more at-

mospheric abundances should be explored, particularly

water and alkali gasses. We will also investigate the

possibility of adopting a somewhat more general cloud

model.
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Figure 5. In each set, the panels are as follows: Top left expected count rates from all different sources: planet red,

zodi- cyan, speckle-green, detector noise blue and yellow (to small to see). The total count rate is shown in black.

Middle left total number of counts after calculating the integration time needed to get a SNR of 5. The model counts

are solid lines, and the simulated data are stars. Top right correlated and un-correlated noise contributions. These are

added-in when generating the red star data points in the middle-left panel. Middle right simulated data converted to

photon rate, after background subtraction (cyan), compared to the input model (black). Bottom left simulated data

converted back to geometric albedo, after division by the stellar spectrum (cyan), vs actual albedo of Jupiter (red).

Bottom right SNR of the simulated data in each wavelength bin. The nominal SNR (5) corresponds to a 10% band

around 550 nm.
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Figure 6. Upper: 1-D marginal likelihood distributions for the six parameters in the 1-cloud model (1c) for the cloud-

free case in Section 6.1. The SNR values are color-coded, with black, green, and red for SNR 5, 10, and 20, respectively.

The thin solid histograms show the distributions corresponding to a noise correlation length of 25 nm, and the thick

semi-transparent ones for a noise correlation length of 100 nm. Lower: Confidence intervals for the model parameters

retrieved using MCMC. The color coding matches the upper panel, the yellow lines show the 1σ intervals from the

nested sampling retrievals, and the blue horizontal line show the input parameter value in the original albedo model.

The 2 spectral correlation lengths are in labeled in the left/right parts of the plots. These values are also summarized

in Table 1. Note that the confidence intervals are calculated from the distribution quantiles, and do not reflect possible

upper/lower limits or unconstrained parameters that can be seen in the histograms.
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cloud-free case 
SNR = 10 

corr.len. = 25 nm

cloud-free case 
SNR = 20 

corr.len. = 25 nm

Figure 7. 2-D marginal posterior probability distributions for SNR=5, 10 and 20, and spectral noise correlation length

of 25 nm, for the cloud free case in Section 6.1, using the 1c forward model. Since the ḡ and ω̄ parameters are

unconstrained in this case, we only plot the remaining ones. The red color map corresponds to distributions obtained

using the MCMC algorithm, and the black/gray contours to nested sampling. The teal lines show the real solution.
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Figure 8. Simulated data and best fit spectra for the cloud free case in Section 6.1 (left) and the single cloud case in

Section 6.2 (middle), using the 1c forward model, and for the for the 2-cloud case in Section 6.3 (right), using the 2c

forward model. The data correspond to SNR=5, 10, 20, from top to bottom and a spectral correlation noise of 25

nm. The results for a correlation length of 100 nm are similar. The solid and semi-transparent red regions represent

1− σ and 2− σ intervals, respectively. These intervals represent the standard deviation a set of 500 spectra generated

using random samples from the converged MCMC distribution. The blue line represents the median of this set. The
retrieval was performed over the 0.4− 1.0 µm region, as indicated by the green vertical line.
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Figure 9. Bayes factors and associated significance levels,

as defined in Section A.1, for the cloud free case in Sec-

tion 6.1. The vertical shading grades follow the intervals

defined in Equation 9. The yellow triangles correspond

to the ratios Z1c/Z1c−m, the blue circles to Z1c/Z1c−c,

and the green stars to Z1c/Z2c. The colored symbols

represent the results derived from the MCMC samples,

with the solid color corresponding to a noise correlation

length of 25 nm, and the semi-transparent to a noise

correlation length of 100 nm. For comparison, the black

symbols use the evidence values provided by the nested

sampling algorithm for the cases with a noise correlation

length of 25 nm. The symbols correspond to the same

Bayes factors shown in color. The values calculated us-

ing nested sampling have associated error bars, but too

small in general to see on this plot.



20

4.
0

3.
2

2.
4

1.
6

0.
8

0.
0

0.0

0.5

1.0

1.5

2.0

2.5
log(fCH4)

0.
8

0.
0

0.
8

1.
6

0.0

0.5

1.0

1.5

log(g) (m s−2)

3.
0

1.
5

0.
0

1.
5

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

log(P) (bar)

0.
80

0.
84

0.
88

0.
92

0.
96

1.
00

0
5

10
15
20
25
30

ω

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

g

4 2 0 2
0.0

0.1

0.2

0.3

0.4

log(τ)

51020 5 10 20
SNR

4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

CL=25nm   CL=100nm
log(fCH4)

51020 5 10 20
SNR

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

CL=25nm   CL=100nm
log(g) (m s−2)

51020 5 10 20
SNR

4

3

2

1

0

1 CL=25nm   CL=100nm
log(P) (bar)

51020 5 10 20
SNR

0.80

0.85

0.90

0.95

1.00

1.05
CL=25nm   CL=100nm

ω

51020 5 10 20
SNR

0.0

0.2

0.4

0.6

0.8

1.0 CL=25nm   CL=100nm
g

51020 5 10 20
SNR

4
3
2
1
0
1
2
3
4

CL=25nm   CL=100nm
log(τ)

Figure 10. Same as Figure 6, for the 1-cloud case in Section 6.2.
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1-cloud case 
SNR = 10 

corr.len. = 25 nm

Figure 11. Sample 2-D marginal posterior probability

distributions for SNR=10 and spectral noise correlation

length of 25 nm, for the single cloud case in Section 6.2,

using the 1c forward model. The red color map corre-

sponds to distributions obtained using the MCMC algo-

rithm, and the black/gray contours to nested sampling.

The teal lines show the real solution.
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Figure 12. Same as Figure 9, for the 1-cloud case in Sec-

tion 6.2. In this case, there is no ambiguity in model

selection with a cloud clearly detected at ∼ 20σ signif-

icance even when the SNR of the input data is only 5.
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Figure 13. Similar to Figure 6, for the 2-cloud case in Section 6.3. The parameters correspond the the 2-cloud

model (2c) in Section 3.1.2. The 1σ intervals obtained using nested sampling can be affected by possible bi-modal

distributions (see also Figure 14).

2-cloud case 
SNR = 10 

corr.len. = 25 nm

2-cloud case 
SNR = 20 

corr.len. = 25 nm

Figure 14. Sample 2-D marginal posterior probability distributions for SNR=10 and 20, and spectral noise correlation

length of 25 nm, for the 2-cloud case in Section 6.3, using the 2c forward model. The red color map corresponds to

distributions obtained using the MCMC algorithm, and the black/gray contours to nested sampling. The teal lines

show the real solution.
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Figure 15. Similar plot to Figure 9, for the 2-cloud case

in Section 6.3. The color scheme has been modified to

emphasize the case where a 2-cloud structure is assumed

as default. The orange triangles correspond to the ra-

tios Z2c/Z2c−m, the blue circles to Z2c/Z2c−c, the pink

triangles to Z1c/Z1c−c, and the green stars to Z2c/Z1c.

As in the previous examples, the methane and cloud are

clearly detected even with a SNR=5 dataset.
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Figure 16. Same as Figure 13, for the HD 99492 c model in Section 7.1. In a realistic scenario, the “true” parameters

values would not be known, and therefore are not shown.

2-cloud retrieval 
high-τ posterior

2-cloud retrieval 
low-τ posterior

Figure 17. 2-D marginal posterior distributions for HD 99492 c (SNR=20, CL=25 nm), using a 2-cloud model. The

full posterior is bi-modal, with a second, low optical depth mode better identified by the nested sampling algorithm

(gray contours). For clarity, we plot the two modes separately, the high optical depth on the left, and the low optical

depth on the right. The bright green lines mark the position of the best fit solution for each mode.

1-cloud 
retrieval

Figure 18. Best-fit spectra and 2-D marginal posterior distributions for HD 99492 c (SNR=20, CL=25 nm), using

a 1-cloud model. The 2-cloud best fit parameters for the two modes are indicated in green in Figure 17. The blue

lines on the left plot show the 1-cloud parameter values that best match the “theoretical model” on the right panel in

Figure 19.
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Figure 19. Cloud structure for gas giant HD 99492 c, as

retrieved using the 2-cloud model (left), and the 1-cloud

model (right). The semi-transparent regions are asso-

ciated with the error bars for the cloud top (bottom)

pressures, and the labeling follows the convention in Fig-

ure 4. In the left panel, the positions of the cloud layers

have been offset for clarity, with the gray regions over-

lapping to emphasize the fact the both Ptop and Pbottom
refer to the same cloud deck, while the blue regions cor-

respond to the second cloud deck defined in Figure 4.

The theoretical structure is shown in the right panel,

with the region occupied by the cloud calculated using

the radiative-convective equilibrium code. The pressure-

temperature profile calculated by this code and kept fixed

in the retrievals is shown in red in all three panels. The

theoretical and retrieved CH4 abundance is shown at the

top
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Figure 20. Simulated data and best fit spectra for HD 99492 c (left), Jupiter (middle), Saturn (right), using the 2c

forward model. The data correspond to SNR=5, 10, 20, from top to bottom and a spectral correlation noise of 25 nm.

Same conventions as in Figure 8. The retrieval was performed over the 0.6− 1.0 µm region, as indicated by the green

vertical line.
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Figure 21. Same as Figure 15, for the applications in Section 7. The plots correspond to HD 99492 c, Jupiter, and

Saturn , from left to right. As in the previous examples, the methane and cloud are clearly detected even with a

SNR=5 dataset.
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Figure 22. Same as Figure 16, for the Jupiter albedo in Section 7.2.
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Jupiter 
2-cloud retrieval

Jupiter 
1-cloud retrieval

Figure 23. 2-D marginal posterior distributions for Jupiter (SNR=20, CL=25 nm), using a 2-cloud model (left) and

a 1-cloud model (right). The two posterior sampling methods lock onto different modes, one with low optical depth

(MCMC, red colormap), and the other with high optical depth (nested sampling, gray contours). The best-fir solution

for each method is shown in Figure 24. The blue lines on the left plot show the 1-cloud parameter values that best

match the “theoretical model” on the right panel in Figure 25 (e.g. known values for g and fCH4).
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Figure 24. Best-fit spectra for Jupiter (SNR=20,

CL=25 nm), retrieved using the 2-cloud and 1-cloud

models. The legend indicates that the low optical depth

fit is favored by the MCMC method, while the high op-

tical depth fit is favored by nested sampling (see also

Figure 23). The vertical green line indicates that the re-

trieval is performed only on data between 0.6 and 1 µm.
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Figure 25. Cloud structure for Jupiter, as retrieved using

the 2-cloud model (left), and the 1-cloud model (right).

The conventions are described in the Figure 19 cap-

tion. The theoretical structure is shown in the right

panel, with the cloud structure closely resembling avail-

able literature (e.g., Simon-Miller et al. 2001; Sato et al.

2013). The pressure-temperature profile is approximated

as purely radiative in the top layes of the atmosphere

(dashed line).
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Figure 26. Same as Figure 16, for the Saturn albedo in Section 7.3.
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Figure 27. 2-D marginal posterior distributions for Saturn (SNR=20, CL=25 nm), using a 1-cloud model (left) and

a 2-cloud model (middle and right). The posterior for the 2-cloud model is bi-modal, and the two modes are shown

separately, for clarity. The bright green lines mark the position of the best fit solution for each mode (corresponding

to the spectra in Figure 28), while the blue lines on the left plot show the 1-cloud parameter values that best match

the “theoretical model” on the right panel in Figure 29 (e.g. known values for g and fCH4).
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Figure 28. Best-fit spectra for Saturn (SNR=20,

CL=25 nm), retrieved using the 2-cloud and 1-cloud

models. The 2-cloud posterior is bimodal, with the low

optical depth and high optical depth best fit solutions

shown separately (see also Figure 27).
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Figure 29. Cloud structure for Saturn, as retrieved using

the 2-cloud model (left), and the 1-cloud model (right).

The conventions are described in the Figure 19 and 25

captions. The theoretical structure is shown in the right

panel, with the cloud structure closely resembling avail-

able literature (e.g., Roman et al. 2013).
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Table 1. Retrieval verification results for the 1-cloud model.

Parameter Original SNR=5 SNR=10 SNR = 20

Value CLa=25nm CL=100nm CL=25nm CL=100nm CL=25nm CL=100nm

Cloud-free case

log(fCH4) -3.31 −3.22+0.19
−0.22 −2.92+0.18

−0.24 −3.42+0.11
−0.11 −3.20+0.09

−0.10 −3.27+0.03
−0.03 −3.20+0.03

−0.03

(−3.21+0.18
−0.20)b (−3.42+0.10

−0.10) (−3.27+0.03
−0.03)

log(g) (m s−2) 0.86 0.84+0.21
−0.39 0.95+0.22

−0.39 0.90+0.16
−0.22 0.63+0.28

−0.26 0.85+0.03
−0.04 0.89+0.03

−0.03

(0.82+0.22
−0.42) (0.93+0.11

−0.21) (0.86+0.03
−0.04)

log(P ) (bar) 1.00 −0.71+1.74
−2.32 −0.53+1.61

−2.34 −0.67+1.82
−2.47 −1.15+1.94

−2.18 −0.53+1.55
−2.27 −0.46+1.51

−2.08

(−0.60+1.53
−2.32) (−0.83+1.89

−2.41) (−0.45+1.46
−2.14)

ω̄ 0.50 0.51+0.33
−0.32 0.57+0.31

−0.37 0.57+0.34
−0.36 0.45+0.34

−0.31 0.52+0.36
−0.35 0.53+0.35

−0.36

(0.51+0.32
−0.33) (0.57+0.31

−0.37) (0.53+0.32
−0.34)

ḡ 0.50 0.49+0.36
−0.35 0.47+0.36

−0.31 0.41+0.35
−0.30 0.59+0.30

−0.37 0.48+0.35
−0.31 0.50+0.36

−0.34

(0.50+0.33
−0.32) (0.35+0.38

−0.24) (0.50+0.33
−0.32)

log(τ) -8.00 −7.01+2.74
−2.01 −6.81+3.24

−2.19 −4.81+3.44
−2.73 −4.34+2.65

−2.32 −7.35+2.53
−1.76 −7.64+2.58

−1.69

(−7.04+2.92
−1.93) (−5.58+3.56

−2.49) (−7.51+2.49
−1.64)

1-Cloud case

log(fCH4) -3.31 −3.54+0.38
−0.31 −3.47+0.39

−0.32 −3.27+0.21
−0.22 −1.42+0.88

−0.82 −3.31+0.17
−0.22 −2.73+0.21

−0.27

(−3.52+0.34
−0.32) (−3.25+0.23

−0.20) (−3.13+0.12
−0.11)

log(g) (m s−2) 0.86 0.39+0.85
−0.90 0.19+0.97

−0.81 0.36+0.91
−0.90 1.08+0.64

−1.04 0.05+0.50
−0.62 1.31+0.54

−1.47

(0.38+0.88
−0.82) (0.41+0.90

−0.91) (0.01+0.67
−0.65)

log(P ) (bar) -0.70 −1.72+1.36
−1.89 −1.46+1.14

−1.13 −1.79+1.40
−1.52 −3.29+1.22

−0.75 −2.03+1.02
−1.20 −0.85+0.84

−1.42

(−1.80+1.51
−1.73) (−1.82+1.33

−1.54) (−2.63+0.98
−1.01)

ω̄ 0.96 0.90+0.04
−0.05 0.90+0.03

−0.05 0.92+0.03
−0.03 0.92+0.03

−0.03 0.95+0.02
−0.03 0.94+0.02

−0.04

(0.90+0.04
−0.04) (0.91+0.03

−0.03) (0.92+0.03
−0.03)

ḡ 0.85 0.27+0.38
−0.19 0.35+0.33

−0.24 0.29+0.39
−0.20 0.27+0.39

−0.19 0.69+0.24
−0.33 0.52+0.31

−0.35

(0.28+0.38
−0.20) (0.26+0.33

−0.18) (0.33+0.29
−0.23)

log(τ) 0.00 −1.31+2.89
−2.20 0.07+1.85

−2.13 −0.36+2.36
−2.31 −1.18+2.43

−1.23 −0.83+2.49
−1.44 0.73+1.61

−1.38

(−1.40+3.09
−2.05) (−0.48+2.38

−2.33) (−1.45+0.63
−1.18)

aCL here is a shorthand notation for the spectral noise correlation length.
bNumbers in parentheses show the nested sampling results.
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Table 2. Retrieval verification results for the 2-cloud model.

Parameter Original SNR=5 SNR=10 SNR = 20

Value CL=25nm CL=100nm CL=25nm CL=100nm CL=25nm CL=100nm

log(fCH4) -2.74 −1.95+0.88
−0.67 −2.54+0.96

−0.53 −1.79+0.85
−0.65 −1.90+0.86

−0.60 −2.66+0.14
−0.19 −2.65+0.14

−0.17

(−1.35+0.89
−0.95) (−1.37+0.92

−0.86) (−2.65+0.15
−0.21)

log(g) (m s−2) 1.39 1.22+0.55
−0.70 1.21+0.56

−0.70 1.19+0.54
−0.66 1.28+0.53

−0.68 1.71+0.22
−0.44 1.62+0.27

−0.39

(1.12+0.60
−0.72) (1.07+0.63

−0.69) (1.65+0.24
−0.56)

log(P ) (bar) -0.15 −1.25+0.84
−1.04 −0.39+0.54

−0.89 −1.25+0.70
−0.86 −1.23+0.78

−0.90 0.06+0.15
−0.32 −0.04+0.20

−0.27

(−0.72+1.12
−1.07) (−0.90+1.08

−0.85) (−0.07+0.20
−0.37)

dP1 (bar) 0.54 0.82+1.05
−0.60 1.21+1.22

−0.85 0.83+1.03
−0.60 0.87+1.05

−0.63 1.45+1.23
−1.05 1.44+1.36

−0.99

(0.87+0.97
−0.62) (0.87+0.95

−0.60) (1.04+1.38
−0.74)

dP2 (bar) 0.12 0.89+1.13
−0.66 1.09+1.12

−0.78 0.76+1.02
−0.57 0.83+0.91

−0.60 1.28+1.24
−0.88 1.11+1.28

−0.81

(1.04+1.25
−0.75) (0.84+0.94

−0.58) (1.49+1.27
−1.00)

ω̄ 0.85 0.56+0.32
−0.39 0.62+0.30

−0.42 0.56+0.31
−0.38 0.54+0.34

−0.37 0.68+0.23
−0.38 0.69+0.20

−0.35

(0.95+0.03
−0.59) (0.80+0.18

−0.54) (0.46+0.33
−0.30)

ḡ 0.85 0.48+0.35
−0.31 0.54+0.32

−0.35 0.55+0.30
−0.34 0.47+0.34

−0.31 0.60+0.30
−0.40 0.60+0.27

−0.37

(0.39+0.38
−0.27) (0.42+0.37

−0.29) (0.55+0.29
−0.35)

log(τ) -0.30 −1.85+0.82
−0.79 −1.67+1.00

−0.88 −2.06+0.78
−0.65 −1.99+0.81

−0.73 −1.02+0.33
−0.70 −1.00+0.45

−1.04

(−0.63+2.18
−1.70) (−1.43+2.92

−1.08) (−1.01+0.28
−0.60)

ω̄2 0.997 0.987+0.004
−0.003 0.991+0.005

−0.003 0.989+0.002
−0.001 0.988+0.003

−0.001 0.993+0.003
−0.003 0.993+0.005

−0.003

(0.984+0.005
−0.638) (0.989+0.002

−0.564) (0.995+0.003
−0.004)

Table 3. Retrieval results for HD 99492 c.

Parameter SNR=5 SNR=10 SNR = 20

CL=25nm CL=100nm CL=25nm CL=100nm CL=25nm CL=100nm

log(fCH4) −1.76+1.20
−1.29 −1.68+0.98

−1.12 −1.37+0.92
−1.00 −1.24+0.86

−1.09 −1.13+0.69
−0.73 −1.25+0.75

−0.80

(−1.85+1.18
−1.18) (−1.48+0.96

−0.95) (−1.14+0.72
−0.94)

log(g) (m s−2) 0.55+0.92
−1.01 0.52+0.99

−0.97 0.41+1.05
−0.85 0.52+0.93

−0.91 0.51+1.02
−0.86 0.44+0.93

−0.87

(1.51+0.97
−0.95) (1.56+0.95

−1.02) (1.71+0.88
−1.10)

log(P ) (bar) 0.02+1.13
−1.42 0.08+1.10

−1.42 −0.12+1.24
−1.43 0.11+1.06

−1.46 −0.09+1.13
−1.51 −0.09+1.26

−1.50

(0.00+1.05
−1.22) (−0.38+1.28

−1.22) (−0.41+1.24
−1.18)

dP1 (bar) 1.30+1.35
−0.98 1.26+1.44

−0.94 1.38+1.33
−0.98 1.58+1.52

−1.19 1.60+1.26
−1.07 1.59+1.54

−1.17

(1.03+1.19
−0.72) (1.02+1.12

−0.71) (1.15+1.20
−0.80)

dP2 (bar) 1.24+1.25
−0.93 1.33+1.43

−0.95 0.79+0.96
−0.56 0.79+0.83

−0.53 0.63+0.88
−0.44 0.58+0.64

−0.41

(1.28+1.47
−0.89) (0.91+1.08

−0.62) (0.83+0.85
−0.55)

ω̄ 0.91+0.04
−0.04 0.91+0.04

−0.04 0.91+0.03
−0.04 0.90+0.03

−0.04 0.92+0.02
−0.03 0.92+0.02

−0.03

(0.89+0.05
−0.49) (0.88+0.05

−0.50) (0.87+0.06
−0.46)

ḡ 0.31+0.40
−0.23 0.35+0.41

−0.25 0.30+0.36
−0.23 0.35+0.35

−0.24 0.46+0.27
−0.25 0.42+0.29

−0.22

(0.36+0.37
−0.25) (0.38+0.36

−0.26) (0.38+0.33
−0.26)

log(τ) 1.49+0.95
−1.02 1.27+1.10

−1.14 2.00+0.70
−0.88 1.98+0.75

−0.95 2.18+0.59
−0.89 2.14+0.60

−0.90

(0.77+1.38
−3.59) (0.77+1.56

−3.75) (1.10+1.35
−4.19)

ω̄2 0.592+0.354
−0.382 0.644+0.307

−0.441 0.558+0.348
−0.391 0.562+0.313

−0.358 0.596+0.293
−0.386 0.542+0.343

−0.382

(0.880+0.083
−0.580) (0.956+0.006

−0.623) (0.878+0.078
−0.559)
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Table 4. Retrieval results for Jupiter.

Parameter SNR=5 SNR=10 SNR = 20

CL=25nm CL=100nm CL=25nm CL=100nm CL=25nm CL=100nm

log(fCH4) −1.15+0.74
−0.87 −1.91+1.13

−0.91 −1.95+1.14
−0.83 −1.70+0.88

−0.81 −2.80+0.48
−0.35 −2.60+0.61

−0.52

(−1.10+0.72
−0.89) (−1.42+0.96

−1.13) (−3.25+0.14
−0.11)

log(g) (m s−2) 1.63+0.86
−1.04 1.62+0.88

−1.01 1.74+0.87
−1.08 1.83+0.79

−1.19 0.76+0.90
−0.62 1.00+1.19

−0.78

(1.26+1.07
−0.87) (1.01+1.03

−0.70) (0.09+0.13
−0.06)

log(P ) (bar) −0.71+0.67
−0.86 −0.52+0.56

−0.92 −0.67+0.62
−0.86 −0.74+0.71

−0.83 −0.79+0.53
−0.30 −0.78+0.70

−0.31

(−0.37+0.76
−0.93) (0.19+0.59

−0.94) (0.35+0.24
−0.18)

dP1 (bar) 1.06+1.23
−0.77 1.13+1.32

−0.82 0.95+1.15
−0.65 1.01+1.16

−0.72 0.62+0.99
−0.46 1.00+1.20

−0.75

(0.87+1.04
−0.63) (0.67+0.86

−0.48) (0.90+0.25
−0.24)

dP2 (bar) 0.93+1.09
−0.67 0.88+1.30

−0.66 1.00+1.23
−0.70 1.05+1.07

−0.77 0.43+0.71
−0.27 0.83+1.13

−0.57

(1.11+1.31
−0.78) (2.55+1.14

−1.43) (0.28+0.31
−0.17)

ω̄ 0.60+0.29
−0.39 0.55+0.32

−0.36 0.67+0.26
−0.43 0.58+0.30

−0.35 0.84+0.11
−0.33 0.61+0.29

−0.27

(0.79+0.21
−0.51) (0.99+0.00

−0.15) (1.00+0.00
−0.00)

ḡ 0.52+0.34
−0.36 0.50+0.33

−0.36 0.53+0.35
−0.37 0.49+0.34

−0.33 0.88+0.11
−0.48 0.56+0.33

−0.33

(0.46+0.34
−0.32) (0.32+0.37

−0.23) (0.26+0.29
−0.18)

log(τ) −2.04+0.81
−0.64 −2.12+0.78

−0.60 −1.59+1.08
−0.93 −2.08+0.75

−0.63 −1.12+0.62
−0.95 −1.83+0.78

−0.72

(−1.48+3.22
−1.05) (1.16+0.81

−2.11) (0.71+0.18
−0.11)

ω̄2 0.997+0.002
−0.002 0.995+0.002

−0.002 0.993+0.004
−0.002 0.995+0.002

−0.001 0.995+0.001
−0.001 0.993+0.002

−0.001

(0.996+0.002
−0.494) (0.645+0.348

−0.435) (0.379+0.313
−0.254)

Table 5. Retrieval results for Saturn.

Parameter SNR=5 SNR=10 SNR = 20

CL=25nm CL=100nm CL=25nm CL=100nm CL=25nm CL=100nm

log(fCH4) −1.15+0.83
−0.99 −1.20+0.85

−1.00 −1.14+0.77
−0.76 −1.10+0.69

−0.86 −1.29+0.73
−0.63 −1.37+0.83

−0.83

(−1.26+0.81
−0.90) (−1.13+0.72

−0.77) (−1.08+0.70
−0.77)

log(g) (m s−2) 1.24+1.18
−0.86 1.13+1.11

−0.82 1.43+1.00
−0.98 1.07+1.14

−0.72 1.18+1.14
−0.80 1.14+1.23

−0.84

(1.33+1.09
−0.90) (1.34+1.01

−0.88) (1.27+1.04
−0.83)

log(P ) (bar) 0.12+1.51
−1.70 0.19+1.53

−1.86 −0.32+2.03
−1.37 0.60+1.23

−1.90 −0.37+2.11
−1.21 −0.19+1.75

−1.49

(−0.34+2.00
−1.35) (0.63+1.20

−2.07) (−0.81+2.31
−1.26)

dP1 (bar) 1.20+1.32
−0.85 1.22+1.23

−0.88 1.18+1.28
−0.81 1.31+1.16

−0.97 1.21+1.24
−0.90 1.22+1.23

−0.85

(1.27+1.31
−0.88) (1.21+1.19

−0.80) (1.25+1.17
−0.82)

dP2 (bar) 0.99+1.43
−0.68 1.22+1.68

−0.90 2.08+1.85
−1.46 1.47+1.60

−0.98 1.75+0.96
−0.91 1.32+0.94

−0.70

(1.47+1.78
−1.00) (2.79+1.96

−1.79) (1.82+0.96
−1.13)

ω̄ 1.00+0.00
−0.36 0.99+0.01

−0.25 1.00+0.00
−0.25 1.00+0.00

−0.06 1.00+0.00
−0.05 1.00+0.00

−0.08

(0.97+0.03
−0.59) (1.00+0.00

−0.41) (0.92+0.08
−0.54)

ḡ 0.39+0.36
−0.27 0.39+0.34

−0.27 0.55+0.30
−0.38 0.46+0.35

−0.31 0.67+0.25
−0.41 0.67+0.22

−0.46

(0.45+0.32
−0.30) (0.41+0.32

−0.27) (0.48+0.29
−0.30)

log(τ) 1.49+1.01
−3.77 1.28+1.30

−3.41 1.20+1.09
−3.33 1.80+0.88

−3.38 1.28+1.05
−2.83 1.42+1.04

−3.56

(−0.94+3.28
−1.50) (1.46+0.89

−3.35) (−1.08+3.31
−1.14)

ω̄2 0.812+0.186
−0.552 0.806+0.188

−0.507 0.946+0.052
−0.593 0.610+0.386

−0.405 0.968+0.029
−0.598 0.949+0.048

−0.449

(0.996+0.003
−0.658) (0.712+0.285

−0.500) (0.996+0.001
−0.608)
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APPENDIX

A. APPENDIX

In Bayesian inference, the allowed ranges of model parameters are given by the posterior probability distribution of

the parameter vector θ,

P(θ) =
L(θ)π(θ)

Z
, (A1)

where P(θ) ≡ Pr(θ | D,M), L(θ) ≡ Pr(D | θ,M) is the likelihood, π(θ) ≡ Pr(θ | M) is the prior on model

parameters, and Z ≡ Pr(D | M) is the Bayesian evidence. Here D andM denote the data and the model, respectively.

Normalization of the posterior distribution requires that

Z =

∫
L(θ)π(θ)dθ. (A2)

The calculation of Z is not necessary for parameter estimation, and best-fit parameter values with associated

confidence intervals are obtained from the un-normalized P(θ). In general, the posterior P(θ) is difficult or impossible

to calculate analytically, and in practice the shape of this distribution is approximated by taking a large number

of samples. The methods described below are optimized to sample more efficiently the regions of parameter space

where L(θ) is large, such that a good approximation of P(θ) is obtained with a minimum number of samples. The

Bayesian evidence Z is by definition model-dependent, and provides the information necessary for model selection.

The evaluation of this multi-dimensional integral is also often difficult, and addressed by various approximations

(Section A.1).

A.1. Model selection

In Bayesian inference, the probability associated with a given model M, given the data, is defined as P(M | D) =

P(D | M)P(M) = ZP(M). In our calculations of Bayesian evidence we have employed the approximations described

below.

In the Laplace-Metropolis approximation (Lopes & West 2004), Z is computed using the covariance matrix C of

the posterior, or the minimum volume ellipsoid enclosing the posterior distribution

Z ' Lmax(θ)(2π)n/2
√

detC, (A3)

where n is the dimension of the parameter space, and Lmax(θ) is the maximum likelihood value. This approximation

clearly breaks down when the posterior is multi-modal.

The BIC estimate is a result obtained in the asymptotic limit for distributions in the exponential family, and gives

the largest penalty to models with a large number of parameters. In this approximation

lnZ ' lnLmax(θ)− n

2
lnND, (A4)

where ND is the number of data points. In most cases, this offers a simple, order-of magnitude estimate for Z.

Finally, the NLA computes the evidence using the equality

1

Z
=

∫
P(θ)

L(θ)
dθ

=

∫ YN

Y0

M(Y )dY +M(Y0)Y0,

(A5)

where the last term contains a Lebesgue integral with Y = L(θ)−1 and measure M(y)

M(y) =

∫
Y (θ)>y

P(θ)dθ. (A6)
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This conversion to a Lebesgue integral has the clear advantage of replacing the n-dimensional integral by a 1-

dimensional one. This approach is also used by the nested sampling algorithm (Section A.3) where Z is computed

as

Z =

∫ 1

0

L(X)dX; X(λ) =

∫
L(θ)>λ

π(θ)dθ. (A7)

Since the final MCMC sample is distributed as the posterior probability P(θ), in Equation A5, M can be ap-

proximated as M(Yi) ≈ 1
N

∑N
j=1 1Yj>Yi

for each Li, where 1 is the indicator function. With this approximation we

have

Z ≈

 1

N

∑
j

1

Lj

−1

, (A8)

which is also known as the harmonic mean estimator (HME). This disadvantages of this estimator are well known in

the literature (e.g., Raftery et al. 2007; Calderhead & Girolami 2009). Due to the presence of 1/Lj terms this method

is unstable for very small likelihood values that dominate the sum. The proposed solution is to restrict the integration

space only to well-sampled regions of high likelihood. Therefore this method suffers from problems intrinsic to MCMC

sampling. In addition, Calderhead & Girolami (2009) show that even in well-behaved scenarios, the HME can produce

biased (lower) results. To avoid these issues, the nested sampled approach (Equation A7) is the preferred alternative

to thermodynamic integration.

The BXY factor can also be estimated directly using the reverse jump MCMC (e.g., Lopes & West 2004), or the

Savage-Dickie density ratio (e.g., Trotta 2007). The reverse jump MCMC is essentially a chain moving between

different models, and can be either slow to converge or inaccurate for a small number of samples. The last method

can provide high accuracy for nested models, as long as the parameter priors are separable, which is not generally true

for our atmospheric models.

To draw the analogy with the frequentist approach, the Bayes factor for nested models can be shown to satisfy the

relation (Trotta 2008; Sellke et al. 2001)

BXY ≤ −
1

ep ln p
, (A9)

where e = exp(1), and p is the p-value. Equivalently, this probability can be expressed as the number of standard

deviations from the mean xσ, assuming a Gaussian distribution, p = erf(x/
√

2). This upper bound is the significance

σ value we refer to in our model comparison examples.

A.2. Markov chain Monte Carlo

MCMC methods are widely used in investigating multi-dimensional, non-gaussian and highly correlated posteriors,

since they don’t require any a priori assumption about the shape of the posterior probability distribution. The most

common form is the Metropolis-Hastigs algorithm, where the chain is created as a random walk towards the region

of maximum likelihood. Each sample is generated from a proposal distribution centered on the current point, and

accepted with a probability pr = min(1,L(θ′)/L(θ)). If the new sample is rejected, the position of the chain remains

unchanged. The chain is initialized by a first guess θ0, and after a burn-in period reaches a stationary state where

the sample distribution reflects the shape of the posterior (more samples are drawn from high-likelihood regions). The

un-normalized posterior distribution is simply the histograms of all the MCMC samples after the burn-in stage, and

the marginal probability distributions for all parameters can be derived from it. Although much more efficient than

just a simple Monte Carlo technique, MCMC still has a series of drawbacks: the convergence is not easily testable and

can require a very large number of samples; due to its Markov chain nature, it is not easily parallelizable in this form;

can be sensitive to the initial guess and get stuck in local minima; sample correlation can affect the final distribution.

The affine-invariant MCMC ensemble sampler proposed by Goodman & Weare (2010) solves some of these problems.

In this paper we use the version of this algorithm emcee implemented in Python by Foreman-Mackey et al. (2013)1.

This algorithm uses multiple chains, or “walkers” run in parallel for a faster exploration of the parameter space. The

K chains are initialized in a n-dimensional Gaussian distribution around the initial guess. At each step, the position

1 http://dan.iel.fm/emcee/

http://dan.iel.fm/emcee/
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of a given walker Wi is determined by randomly choosing a different walker from the set Wj and generating the new

position Wj + Z(Wi −Wj), with Z is distributed as

Z ∼ 1√
z
, for z ∈

[
1

a
, a

]
and 0 otherwise, (A10)

where a = 2 is the scale parameter. This new position is accepted with the probability pr =

min(1, ZK−1L(θ′i)/L(θi)). Alternate sets of walkers can be updated in parallel, greatly enhancing computing time.

This method produces more independent (uncorrelated) samples than the traditional MCMC. Essentially, with a few

hundred walkers each iteration can be considered a snapshot of the full posterior, after the burn-in time. The multiple

walkers can also more easily spread out to explore the parameter space, such that a large number of iterations is not

necessary. We adopted this method for speed, reliability, and ease of implementation for retrieving model parame-

ters. However, it does not provide a direct estimate of Z and we have to resort to the approximations presented in

Section A.1.

A.3. Multimodal nested sampling

The multimodal nested sampling method was devised by Skilling (2004), further refined by Shaw et al. (2007); Feroz

& Hobson (2008), and implemented into the MultiNest package by Feroz et al. (2009)2, with an easy-to-use Python

wrapper (Buchner et al. 2014)3. It was initially designed as a tool for more reliable Bayesian evidence calculation,

but was also found to provide low-noise estimates of the posterior distribution, and thus constraints on the model

parameters.

Nested sampling starts with N “live points” uniformly spaced across the entice initial prior volume, mapped into a

unit hypercube. At every iteration i, the “live points” with the lowest likelihood value Li are iteratively replaced by

requiring that new ones have L > Li. In order to ensure that last condition is satisfied, the iso-likelihood contour is

approximated by a set of (possibly overlapping) ellipsoids containing the active points, and new samples are drawn

from within this new volume until one is found that satisfies L′ > Li. This new point then replaces the one with Li
in the set of active points. The volume occupied by the points with Li > Li−1 at iteration i is a random variable

that can be approximated by its expectation value as lnXi ≈ −(i ±
√
i)/N (Feroz & Hobson 2008) and used in the

evaluation of the Bayesian evidence Z as a 1-dimensional integral (Equation A7):

Z =

M∑
i=1

Liwi + L̄XM , (A11)

where the last term represents the contribution of the current set of active points, and wi are the weights for the

trapezoidal rule wi = 1
2 (Xi−1 −Xi+1).

The error in Z is estimated (Skilling 2004) as
√
H/N , where

H ≈
M∑
i=1

Liwi
Z

ln
Li
Z
, (A12)

and M is the number of iterations. The posterior distribution is approximated by the total set of active and discarded

points and their weights pi = Liwi/Z, where wi = XM/N for the active points. The mean and covariance of the

parameters are then

θ̄ =

M+N∑
i=1

piθi, (A13)

C =

M+N∑
i=1

pi(θi − θ̄)(θi − θ̄)T , (A14)

In addition to providing the Bayesian evidence as a by-product, MultiNest also employs a well-defined convergence

criterion that can significantly reduce the number of required posterior samples, and therefore the running time.

Convergence is achieved when the estimated change in likelihood ∆Zi = max(Li)Xi is less than a user-specified

2 https://ccpforge.cse.rl.ac.uk/gf/project/multinest/ 3 https://github.com/JohannesBuchner/PyMultiNest

https://ccpforge.cse.rl.ac.uk/gf/project/multinest/
https://github.com/JohannesBuchner/PyMultiNest
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tolerance. Generally, the number of likelihood evaluations until convergence grows exponentially with the number of

dimensions of the parameter space. This makes the algorithm unfeasible for a large number of dimensions (& 10).

However, at avery step new samples can be drawn in parallel, significantly increasing computational speed. In practice,

we find that MultiNest can be run for a much shorter time than emcee to converge, mainly because emcee does not

have a self-stopping criterion and is left to run long enough to cover the entire parameter space and obtain sufficient

independent samples. Similar to MCMC, in some cases the acceptance rate is low for MultiNest, and therefore

convergence is also slow.
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