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Turbulence models, with increasing complexity, up to triple product terms, are
applied to the flow in a rotating pipe. The rotating pipe is a challenging case for
turbulence models as it contains significant rotational and curvature effects. The
flowfield starts with the classic fully developed pipe flow, with a stationary pipe
wall. This well defined condition is then subjected to a section of pipe with a rotat-
ing wall. The rotating wall introduces a second velocity scale, and creates Reynolds
shear stresses in the radial-circumferential and circumferential-axial planes. Fur-
thermore, the wall rotation introduces a flow stabilization, and actually reduces
the turbulent kinetic energy as the flow moves along the rotating wall section. It is
shown in the present work that the Reynolds stress models are capable of predicting
significant reduction in the turbulent kinetic energy, but triple product improves
the predictions of the centerline turbulent kinetic energy, which is governed by
convection, dissipation and transport terms, as the production terms vanish on the
pipe axis.

Nomenclature

M∞ free stream Mach number
R pipe radius (reference length)

Rij Reynolds-stress tensor
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]
Reτ wall shear Reynolds number [= uτR/νw]

Sij strain rate tensor
[
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Tijk Turbulent transport tensor

[
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′
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′
k

]
U∞ free stream velocity
Vw pipe wall rotation velocity

Ωij rotation rate tensor
[
= 1

2

(
∂ui
∂xj
− ∂uj

∂xi

)]
µ molecular viscosity
µT eddy-viscosity

ν kinematic viscosity
[
= µ

ρ

]
ω specific dissipation rate

[
= ε

β∗k

]
u
′
i Favre average Cartesian velocity fluctuation components
ui Favre average Cartesian mean velocity components
ρ mass density
τw wall shear in fully developed pipe flow region
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k turbulent kinetic energy per unit mass
[
= 1

2u
′
iu
′
i

]
ε homogeneous turbulence dissipation per unit mass [= β∗kω]
a sound speed
p static pressure
r distance from pipe centerline

uτ friction velocity in fully developed inflow region (reference velocity)
[
= (τw/ρw)

1
2

]
ui instantaneous Cartesian velocity components
x axial distance, origin at spin/no-spin interface
xi Cartesian position coordinates

Subscripts

τ using fully developed region friction velocity as reference
w evaluated at the wall, r = R

I. Introduction

Accurate computational flowfield predictions are essential for both design and operation of
aerospace vehicles. As computer speeds and memory size continue to increase, Computational
Fluid Dynamics (CFD) can be used to not only predict the flowfield around simple configurations,
but also complete vehicle configurations. The advances in computer clock speed and memory
capacity have allowed the modeling of turbulent flow, at least at lower Reynolds number, using
Direct Numerical Simulations (DNS). Large Eddy Simulations (LES) continues to be developed for
application to higher Reynolds numbers, but for complex configurations, DNS or even LES are still
impractical because the grid required (in both time and space) is well beyond current computational
capabilities.

Reynolds-stress turbulence models were envisioned to overcome a number of shortcomings ev-
ident in simple Boussinesq eddy-viscosity models. Although Reynolds-stress models have had a
long history of development,1,2 they have had, until recently, limited success in actually overcom-
ing these limitations in practice. Reynolds-stress models have enjoyed a resurgence in the past few
years,2–4 with one new methodology incorporating the desired flow history effects on the Reynolds-
stress tensor in a formulation that is numerically robust.5,6 This Lag methodology allowed a further
expansion of the flow history to include triple velocity products in a bid to obtain more accurate
and complete turbulent transport predictions. This new model,7 denoted “TTR” for Turbulent
TRansport, augments the second-moment predictions of the Lag Reynolds-stress models adding
field equations for the third-order-moments. These are an attempt to fulfill the need for turbulent
transport predictions in regions of separation, where their relative importance is larger than it is
for attached flows.

The flowfield that is studied in the present paper is not a separated flowfield, but it does includes
a large central core region where the turbulent production is no longer a dominant term, and the
balance of convection, transport and dissipation govern the evolution of the turbulent kinetic energy.
This flowfield8–11 is a twist on a fully developed pipe flow - literally. A fully developed pipe flow
encounters a step change in the wall boundary condition, a rotating pipe wall. This introduces a set
of remarkable changes in the flowfield, the most striking of which is a reduction in the turbulence
levels as the flow traverses the rotating wall region.

The genesis of the present study was to find a simpler, less computationally intensive flowfield
than the Chow-Zilliac wingtip vortex12,13 which would allow evaluation of a flow with significant
rotation, but on a simple, easily simulated geometry. The rotating pipe is a more challenging
flowfield than it would appear, and it did change the formulation of the TTR model, requiring
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an adjustment of the parameter governing the simple gradient diffusion of k : σk = 0.3 (from the
original 0.2).

The simulations done here were compared with simulations done in an incompressible flow
code14 using the SST turbulence model, as the turbulence model implementation could be verified
to be identical using the Turbulence Modeling Resource15 (TMR). That comparison is ongoing,
and at this point the results are within 2% for axial velocity in the non-spinning section, and much
better for the circumferential velocity comparison for the highest spin case studied here. This
comparison between codes engendered a relatively full investigation of computational sensitivity,
the highlights of which are reported here.

II. Experiment Description/Computational Methodology

II.A. Experiment

The Zaets8,16–18 experiment is a low Mach number flowfield in a circular cross section pipe with a
radius R = 0.03 m. High pressure air is supplied to a heater upstream of the pipe which brings the
fluid to “room temperature” before it enters the pipe entrance through a contraction section. This
temperature controlled, effectively atmospheric pressure air traverses a 200R length non-spinning
circular pipe followed by a 50R section which is spinning at a wall speed of 6 m/s, 3 m/s, or 1.5 m/s
– 60%, 30%, or 15% of the nominal exit centerline axial velocity (10 m/s).

The experimental measurements were obtained with DISA hot wires, single and X-wire config-
urations, with a 1.25 mm(=0.041 R) long, 5 µm diameter sensing (and hence spatially averaging)
region for the quantities reported here. Analog signal linearizers were used, along with FM mag-
netic tape to store the signals for subsequent processing. There are measurements reported in this
dataset of spectral content, with enough spatial and temporal resolution (using a different set of
sensing hot-wires) to give estimates of the dissipation.

Rather than use the centerline velocity of the flow as the scaling velocity, which will vary with
turbulence model, the friction velocity of the non-spinning inflow section, uτ = 0.435 m/s, was
matched to the experimentally reported value for the non-spinning data. Matching this friction
velocity, or more precisely the Reynolds number based on this velocity Reτ = uτR/νw will match
the pressure gradient in that section of the pipe, and was originally thought to provide the most
unambiguous match of the experimental conditions, as each turbulence model will give very different
predictions of the centerline axial velocity after traversing fifty radii of spinning wall.

The spin rates were fixed to match the ratio of the friction velocity, uτ to the well known
experimental rotation rate, so that the rotation wall speed becomes Vw = 13.8uτ or Vw = 3.472.
The value ofReτ = uτR

νw
is reported as 875,18 and this was the Reynolds number matched for the bulk

of these simulations. Room temperature was reported as 15 ◦C-18 ◦C, and for the present paper,
288.15K = 15 ◦C was used. As will be seen from the computations, the pressure and temperature
in the pipe are essentially the lab pressure and temperature, and the pressure gradient inducing
the flow is a pressure difference that is about 0.1% of the exit pressure, a much smaller variation
than the day to day pressure variations due to weather. Though this seems like an inconsequential
difference, it translates directly into Reynolds number variation, and the magnitude of this variation
is easily ±3.5%, so the value reported for Reτ = 875 should really be Reτ = 875± 30.

The fully developed region friction velocity was not the parameter held constant in the experi-
ments, but rather the centerline axial velocity at the exit plane (x = 50R), held to roughly 10 m/s
for all spin rates. A single solution for the highest spin case (Vw = 6 m/s was obtained for the TTR
model matching the Reynolds number Re0 = u0R/νw, where u0 is the centerline axial velocity at
x = 50R. The TTR model was chosen because it matches the experimental data best of those
considered in this paper, and for that model the resulting value of Reτ = 905 at x = −10R. The
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u/uτ and k/u2τ profiles are nearly identical in the non-rotating inflow region for these two values of
Reτ . At the outflow plane, the axial and circumferential mean velocity predictions are very similar,
but the outflow k/u2τ is notably higher for the higher Reτ simulation. This implies that the use of
a single value for uτ is not strictly accurate in comparing different spin rates. At the highest spin
rates reported here, the spin rate ratio Vw/uτ differs by 3.4% between the two simulations.

At this point, the uncertainty in knowledge of the actual Reynolds number of the flowfield
from variations in atmospheric pressure should be recalled, noting that the magnitude is strikingly
similar. Without further information, this is common baseline of uncertainty in the non-dimensional
spin rates, as well as the Reynolds number of the fully developed pipe flow initial condition. The
effects of this sort of variation can be seen in the results for the high spin case, at least as far as
the solution for that turbulence model are valid.

These two Reynolds number uncertainties are not equivalent. For a fixed Reτ , increases in the
spin rate (either in Vw/u0 or Vw/uτ ) will increase the ratio of u0/uτ . This implies that for a fixed
Re0, the experimental condition, the value of Reτ in the fully developed region will be lower than
it is for the non-spinning case, with the same Re0. Given a turbulence model that reproduces the
physics exactly, matching the value of Re0 at the spin exit will match the inflow conditions exactly,
including Reτ in the fully developed region. Having an identical inflow condition for the rotating
section is necessary to be able to compare the behavior of the different turbulence models, and so
Reτ = 875 in the fully developed stationary wall region is used for all spin rates. The actual Reτ
for the different spin rates discussed in the present work are probably within the 3.5% range of the
Reτ = 875 used here.

II.B. Computation

II.B.1. Grid

(a) overset (b) patched

Figure 1: Grid slice

Full 3D simulations were used to simulate this flowfield. The domain was broken in two, with
the central core containing the axis removed and replaced by a central, essentially Cartesian, grid.
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Solutions on two versions of this grid system were compared (Fig. 1), one that had a truly Cartesian
central core, utilizing the full capabilities of the overset grid capability of OVERFLOW (Fig. 1a).
The second grid system (Fig. 1b) has a subset that is a pointwise matched grid system that could be
run without overset. The answers on these two grid systems were extremely similar, with the radial
grid sensitivity essentially identical between the two systems. The differences between solutions of
either overset choice were much smaller than the differences between two solutions of either overset
type with a change in the radial grid density. Given this non dependence on the overset choice,
the “patched” grid is used for all the results in this paper, as this grid system can be run and then
compared with a solver which does not have overset capability.

The baseline viscous wall grid is 1275 (axial) × 257 (circumferential) × 121 (wall normal). The
baseline core grid has the same axial distribution, and is 65 × 65 in the region which does not
overlap the wall normal grid. There are 4 additional planes on either side for overlap, so the final
core grid is 73 × 73 in the non-axial directions. This gives a wall normal overall grid is 154 points
from the wall to the pipe axis (121+32 points). Recall that the axial extent is over 150R, so even
though there are more that 8 times more points in the axial direction, the final axial grid spacing
is 0.4R, so even at the pipe core, the grid is non-isotropic even at the pipe core, with an average
axial grid spacing hundreds of times the wall normal/circumferential direction.

The near wall grid spacing was chosen as 20× 10−6R with the desire to have ∆y+ ≤ 0.06 when
the grid was coarsened by a factor of 4, which implies that the finest grid should have ∆y+ < 0.015.
This is based on the known sensitivity of the k−ω models19 and the axial spacing was based upon
earlier practice with incompressible models for this flowfield. Circumferential spacing was based on
having a nearly isotropic spacing in y and z in the center core grid.

II.B.2. Numerical Method

The code used in this study was a modified version of OVERFLOW 2.2k.20,21 The modifications
included the addition of Lag, Lag-Rij , and TTR models along with the high speed modifications.22

Matrix dissipation was used with smoothing parameters as recommended by earlier studies of high-
speed flows with this code22 with one critical change. Matrix dissipation23 is appropriate for these
flowfields. It combines the ability to provide accurate flowfield predictions on flows containing
high normal Mach number shocks (not seen in the flowfields of this paper), while providing a low
dissipation central difference scheme for the smooth regions of the flowfield. These flowfields have
some discontinuous boundary conditions, but are characterized by smooth solutions over most of the
problem domains. One distinct advantage of this method is the effect of the numerical dissipation
can be easily assessed, since the amount of numerical dissipation is controlled explicitly.

The critical difference in the matrix dissipation smoothing parameters used is that the eigenvalue
limiters are set to zero. The HLLC scheme, as coded in OVERFLOW,24,25 is compared with the
matrix dissipation scheme, and agrees with the modified matrix dissipation scheme on the coarser
grids where numerical dissipation is relatively large. On the baseline grid for this paper, the
difference in solutions between the standard smoothing schemes is small on the baseline grid, but
becomes appreciable on the coarser grids. For clarity, the limiters are set to zero for the results in
this paper. The ability to assess the influence of numerical dissipation with the matrix dissipation
is extremely useful in this context.

The Pulliam-Chaussee diagonal scheme,26 with variable time stepping or a constant Courant
number (CFL) and multigrid sequencing was used as the relaxation method. For this flowfield, five
levels of multigrid were used to accelerate convergence, both with grid sequencing (full multigrid
in the OVERFLOW parlance) and in converging the solution at the finest level. There was an
appreciable speedup in convergence even switching from four to five levels of multigrid for the SST
model, which was used as the testbed for assessing solution strategy. Solutions were converged
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to well over six orders of magnitude of residual reduction, and a separate check of the mass flow
constancy was done to verify convergence of the individual solutions. All of the Reynolds-stress
models as well as the TTR model would allow over ten orders of mean flow residual reduction, but
the changes in the solutions were inconsequential after obtaining a six order reduction.

The low Mach preconditioning available in OVERFLOW27 is crucial for simulations of this
experiment. The Mach number is low enough that preconditioning is required to provide accurate
solutions. If the Mach number in the pipe were increased from M = 0.03 to M = 0.2, the pressure
gradient which drives the flow would also have to increase to reach the same flow Reynolds number.
This pressure gradient then introduces a concomitant density gradient along the pipe’s length which
precludes a simple scaling of the compressible and incompressible results. The scaling would involve
something akin to Favre-averaging for comparison of the incompressible and compressible flowfields.

In general, spatial convective terms and diffusion terms were all second-order accurate. For the
modeling of the convection terms of the turbulence models, second order upwind was used on all
the Reynolds Averaged Navier Stokes RANS models with the exception of all the Spalart-Allmaras
based models. The Lag methodology does require second order accuracy (or better) since the field
equations defining the lagged turbulent variables are a balance of convection and source with no
diffusion terms by design–purely hyperbolic equations to accurately mimic the history effects so
clearly evident in turbulent flow. In the turbulent transport level equations, not all the equations
are purely hyperbolic, but they are all more driven by convection terms than standard one or two
equation models.

II.B.3. Turbulence Models

For this paper, two baseline Reynolds stress models are investigated. The first Reynolds stress
model is the original Lag-Rij model5 (referred to as the Lag-Rij(B) model in this paper), whose
equilibrium Reynolds stress assumption is the Boussinesq stress-strain assumption. The second
model Lag-Rij Reynolds-stress model is the “926(Redistribution)” model6 (hereafter referred to
simply as the Lag-Rij model, that is without the (B) modifier), reproduces the commonly accepted,
but overly simplistic, 4 : 2 : 3 normal stress ratios for the flat plate boundary layer. There are
experimental results28–32 which show the much more complex behavior of the Reynolds stresses in
flat plate boundary layers, but the adjustment of the underlying model is not attempted, the same
model as described in earlier work is retained. The triple product Lag-Tijk model33 (afterward

referred to as the TTR model) uses the more complex “926” stress-strain model as its R
(eq)
ij stress-

strain assumption, so the additional physics introduced with the turbulent transport terms are seen
comparing the Lag-Rij and Lag-Tijk models. The Lag-Tijk model has been slightly modified from
its original description (see the appendix A for the details of this model), with the only change an
increase in the σk parameter to σk = 0.3 from its original value of 0.2.

The eddy viscosity models to which these more complicated models are compared are the
Lag-νT eddy viscosity model,34 the “standard” Menter shear-stress transport (SST) model,15 and
the rotation and quadratic constitutive relation (QCR) and rotation correction modified Spalart-
Allmaras (SA) model.15,35,36 The implementation of these models is that of OVERFLOW, with
the 2.2k version coding used, and the SST model checked directly against the TMR website15 to
ensure that its implementation was consistent with what had been verified earlier.37

II.B.4. Boundary Conditions

The boundary equations for the turbulence model field equations are those enumerated in the
original paper outlining the TTR model.33 At viscous walls, k and all Rij and Tijk components
are set to zero, consistent with smooth wall conditions. ω is set to 60µ/

(
β∗ρ∆z20

)
. For boundaries
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with flow into the solution domain, k is set to a 10−6u2∞, and Rij is set to 2
3kδij . ω is chosen to

provide νT
ν = 0.1. All Tijk components are zero at far field inflow boundaries. For boundaries with

flow out of the domain, all turbulence quantities are simply extrapolated.

Pt = C1

Tt = C2

v = w = 0

u = v = w = 0, T = Tw u = 0, Vw = N ∗ Uc,
∂T
∂R = 0

p = pb

x

x = 54R

x = 50R(Measurement Station)

x = −200R x = 0

z

Figure 2: Boundary conditions and x-z plane configuration

Figure 3: Geometry
(near spin/no-spin interface)

The boundary conditions that are
imposed on the other variables for
this particular flowfield are shown in
Fig. 2. The viscous walls are bound-
ary conditions are isothermal no slip
on the upstream non-spinning sec-
tion, and adiabatic no slip on the
spinning downstream section. The
wall boundary temperature was cho-
sen to be equal to the inflow static
temperature, though it will be seen
in the results that the low Mach num-
ber of this flowfield ensures that the
temperatures are essentially constant
within the entire domain, so adiabatic
walls throughout would be equally vi-
able, and would give indistinguish-
able results. Constant total pressure
and total temperature with axial flow
(v = w = 0) is imposed at the in-
flow plane, with the static pressure
allowed to vary. Static pressure is the
only quantity imposed at at the out-
flow plane, and this value is chosen to
obtain Reτ = 875 in the fully devel-

oped stationary wall region just upstream of the spinning wall section. The back pressure choice is
slightly different for each turbulence model, depending on the pressure variation predicted in the
rotating wall section of the pipe depends on the turbulence model.

The domain simulated was chosen with an eye to allow reproduction by other flow codes, so
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the full upstream development section was simulated. The results shown in this paper are taken
from the fully developed region of the stationary pipe section. This position was chosen to be
X = −10R, as this was upstream of the disturbances created by the onset of the wall spin. Indeed,
profiles anywhere in this region are essentially identical, as this is fully developed pipe flow. The
X = −10R point was also where the computational value of uτ was determined. The downstream
domain was extended to x = 54.8R, slightly beyond the x = 50R location where the profiles are
compared with experiment, so that any boundary condition inconsistencies were eliminated from
the profile comparisons. As there is substantial turbulent kinetic energy as well as radially varying
circumferential velocity in this portion of the flowfield, a truly fixed static pressure along the back
face is not a completely consistent downstream boundary condition, but the anomalies created by
these small discrepancies are eliminated with a slightly extended domain, and will be more easily
simulated by other flow solvers.

In this paper, the convention chosen is that the solution is described for the plane y = 0. The
“1” direction is x, the axial direction. The “2” direction is y, and for the plane y = 0 is the
circumferential direction. The “3” direction is z, wall normal. The z spatial direction is called r,
which makes obvious the axisymmetric nature of the geometry. Thus the circumferential velocity
is v, and the axial Reynolds-stress is R11. The circumferential Reynolds-stress is R22, and the
wall-normal Reynolds-stress is R33.

III. Results

III.A. Overview and Solution Sensitivity

−100 0

0.9992

0.9994

0.9996

0.9998

1

1.0002

x/R

p/pi

Model

SST

SA

Lag-νT

(a) pressure

−100 0

0.9992

0.9994

0.9996

0.9998

1

1.0002

x/R

ρ/ρi

(b) density

−100 0
1

1.00002

1.00004

1.00006

1.00008

x/R

Tw/Tref

(c) temperature

Figure 4: Rotating pipe wall surface conditions - eddy viscosity models

For the nominal value of Reτ = 875, the pressure, density, and temperature on the wall of the
pipe (Fig. 4) have minuscule variation from the inlet conditions: pressure and density variations
are less than 1 part in 10,000. The temperature, whose variation over the upstream portion of
the pipe is held constant varies by less than 1 part in 100,000. One of the more intriguing aspects
of this variation is the behaviour of the density at the start of the spinning section. The steep
(albeit diminutive) rise in temperature at the interface is consistent with the increased viscous
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dissipation with the introduction of the spin, and as pressure is smooth (as it has to be) in the
converged solution, the temperature rise is matched with a corresponding density drop. Though
an interesting feature, the magnitude of these variations makes their influence on the solution
inconsequential.

−100 0
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x/R

Reτ

Model

SST

SST(∆pb)

SA-QR

Lag-νT

−20 −15 −10 −5
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870

875
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(a) Reτ Distribution
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0

0.2

0.4

0.6
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1

∆u/u

r/R

(b) Reτ sensitivity (0.7% change)

10−3 10−2
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0.2

0.4

0.6

0.8

1

∆u/u

r/R Base - Comp

X4 -R1

X4 -R2

X8 - R2

(c) Axial/Radial Grid Coarsening

Figure 5: Reτ distribution and axial velocity sensitivities (SST model) to small Reτ changes and
grid coarsening

The flowfield can be thought of as an upstream fully developed pipe flow (the non-rotating
section) which has essentially a single parameter to be matched, the value of Reτ = uτR

νw
, which is

governed by the downstream pressure choice. In the fully developed portion of the upstream section
(−80 ≤ x/R ≤ 0), the wall shear is balanced by the pressure gradient. The constancy of this wall
shear, or equivalently the pressure gradient, can be seen in Fig. 5, which shows results for three
eddy viscosity models for the same choice of the downstream static pressure. The experimental
value of this parameter in the non-spinning, fully developed pipe flow region just upstream of the
spinning section is (Reτ = 875). These solutions are close to matching the experimental Reτ ,
but do not exactly match. Since each turbulence model gives a different pressure behavior in the
spinning section, each model requires a adjustment of the downstream pressure to match the Reτ .

The inset plot in Fig. 5a shows a detail of the Reτ distribution, and the dashed lined line shows
the Reτ distribution for the SST model with the back pressure adjusted to match Reτ = 875 in the
fully developed region. The original Reτ (denoted by the solid line) is 878, a difference of 0.8% in
Reτ . The effect of this difference in the axial velocity solution for this change in Reτ is shown in
Fig. 5b, and the magnitude (≈ 0.7%) is roughly equal to the magnitude of the discrepancy in Reτ .
This implies that the Reτ must be matched relatively closely to be able to correctly distinguish
differences due to other changes, such as turbulence model choice, flux method choice, etc., even if
the actual value of this parameter is known with much less precision. An assessment of effect of a
3.5% variation in Reτ for the TTR model will be documented for the highest spin case, and this
level of variation does make a difference.

Fig. 5c shows the relative changes in the axial velocity for three different grid coarsenings.
The effect of coarsening the axial spacing by a factor of four (red line), leaving the radial spacing
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unchanged is less than .0007u(r/R), that is it is uniformly less than this fraction of the local axial
velocity, even close to the wall. By comparison, coarsening axially coarsened grid by a factor of 2
in the radial direction ( green line) results in a uniform fractional change that is (again uniformly)
less than 0.003u(r/R) of the local velocity. In other words, the effect of a single radial coarsening is
more than ten times that of a double axial coarsening. Then doing a further axial coarsening (blue
line) gives no appreciable change in the solution - the changes from the single radial coarsening still
swamps the effects of an eightfold axial coarsening. Apparently a more efficient grid for this case
would be finer radially, and coarser axially.

III.B. Non Spinning (Fully Developed) Flow
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(c) Turbulent Kinetic Energy

Figure 6: Inflow velocity and k profiles(x/R = −10)

Profiles of the fully developed region just upstream of the start of the spinning section are shown
in Fig. 6. This is in effect an initial condition for the evolution of the flow that will occur in the
rotating section of the pipe, and since it is fully developed pipe flow, it is a relatively computationally
stable condition for any of these turbulence models, in that the profiles of velocity, k , or any other
flow quantity are extremely similar at any axial location within the range −80R ≤ x ≤ −5R. The
inflow axial velocity is shown in Fig. 6a, and these are the axial velocity profiles for fully developed
pipe flow at Reτ = 875 for all of the turbulence models presented in this paper. All the models
agree with each other at this point in the flowfield, as might be expected since they were all tuned
to give similar results for flat plate flows. This is a relatively low Reynolds number flowfield, as
can be seen in the law of the wall subplot (Fig. 6b), with a minimal “log” region.

The turbulent kinetic energy profiles in the entrance region (Fig. 6c) highlights some of the
characteristics of the various Lag models. All three agree in the near wall region, with the differ-
ences between these where production vanishes near the centerline. Indeed, only at the centerline,
where production is zero, and turbulent transport is balanced only by dissipation (in the fully de-
veloped region) or by dissipation and convection (in the rotating wall region) are there appreciable
differences between the TTR model and the non-Boussinesq Lag-Rij on which it is based.
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Figure 7: Inflow normal Reynolds-stress profiles (x/R = −10)

One additional point to be taken from Fig. 6 is the second solution plotted for the TTR model,
where the Re0 = u0R/νw was matched to the experimental value, rather that matching Reτ = 875.
For the axial velocity (in either plot), the differences between the two conditions are hard to
distinguish - the differences are minute. Even the turbulent kinetic energy (non-dimensionalized by
the correct value of uτ for each simulation) shows no significant difference. In the fully developed
inflow, when non-dimensionalized by the friction velocity, the flow has a very small change for this
level of Reynolds number variation.

Another quantity that can be compared at this point is the turbulent kinetic energy, and for
the actual axial Reynolds stress models, the normal stresses R11, R22 and R33. In making this
comparison, the classic, and undoubtedly incorrect, tuning of the flat plate isotropy to produce the
4 : 2 : 3 throughout the log region for the non-Boussinesq Lag-Rij model, which is also the basis
for the TTR model should be kept in mind. The 4 : 2 : 3 ratio is not what the experiment shows
for this flow field, but the tuned anisotropy is closer to the actual anisotropies than the isotropic
assumption inherent in a Boussinesq stress-strain relationship. A comparison of the Reynolds-stress
predictions and measurement is shown in Fig. 7. The experimental anisotropies are higher than are
predicted by the model in the near wall region, but the anisotropic stress-strain relation is closer to
experiment than the Boussinesq, and the turbulent transport terms do not affect the predictions in
the near wall region where production is a dominant process. However, at the pipe centerline, where
production vanishes, the TTR model gives a better prediction than the baseline Reynolds-stress

model. Improvement in the anisotropy predictions (which is a function of the R
(eq)
ij for the bulk of

the flowfield) would presumably improve all these predictions.
Again, turning to the inherent uncertainty in the actual Reτ value in the inlet, the predictions of

the TTR model show extremely small variation for this level of Reynolds number change, as would
be expected. Both versions of TTR predictions for an Reτ variation of 3.4%, give largely the same
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profiles in Fig. 7. The differences in the R
(eq)
ij choice and the turbulent transport modifications of

the TTR are much larger than the differences induced by this level of uncertainty in Reτ .
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Figure 8: High spin rotating section flow profiles (x/R = 50, Vw/uτ = 13.8)

III.C. Rotating Wall Section - Fast Spin

In contrast to the inflow section, where there is relatively little difference between the turbulence
model predictions, the predictions in the rotating wall region are very different for different turbu-
lence models. The first set of results are for the most rapid spin reported in the Zaets,8 Vw = 6m/sec
(Vwuτ = 13.88). Where vorticity production based SST and strain based production models agree in
the inflow section, the vorticity based version gives dramatically different (and wrong) results in the
spinning section. Similarly, the non modified SA model, with QCR and rotation correction gives
dramatically wrong answers here. These dramatic fails are not shown here, it is not surprising that
they have problems with this change in conditions. What was surprising was that an unmodified
SST model actually did reasonably well. The SA modifications were designed to work better in
flows with significant rotation, and so the improvement was less more an expected result.

The eddy viscosity Lag model has not been modified to handle rotational effects, but it did
not fail as spectacularly as vorticity production based SST, or unmodified SA, but it does not
predict the dramatic stabilizing effects of this rotational flow. Perhaps unsurprisingly, all the Lag-
Rij models give better predictions than the eddy viscosity based Lag model. None of the usual
Richardson number, curvature or other corrections to the underlying models have been made in
any of the Lag based models, simply the introduction of more of the physical terms with increasing
model complexity.

Lets start the comparison with the mean flow comparisons in Fig. 8. The axial velocity pre-
dictions (Fig. 8a) of the models are much more varied than was evident at the inflow section. The
worst comparison here is the eddy viscosity Lag model, unsurprising since it has no rotation correc-
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Figure 9: High spin normal Reynolds-stress profiles (x/R = 50, Vw/uτ = 13.8)

tions in its formulation. The modified SA model gives a good prediction of the centerline velocity,
but misses the shape of the profile closer to the spinning wall. SST does a very creditable job in
predicting the axial velocity, and the Reynolds stress models do well, underpredicting the centerline
velocity in the same way they did in the inlet section. It is not clear if this is a good or bad result,
as none of the models (save the Boussinesq based Lag-Rij model) predicted the centerline velocity
at the inflow.

The circumferential velocity predictions give a different story, with the only common factor the
poor prediction by the eddy viscosity Lag model. In its defense, the unmodified SA and vorticity
based SST models give worse predictions for this case, and the better showing of the Lag model
is probably due to the fact that it’s production terms are based on the physically correct strain
formulation, and not the “wall bounded flow” cheat of substituting vorticity for strain. SST actually
gives a better circumferential velocity prediction than the Boussinesq based Lag-Rij model, but
the other Lag-Rij and TTR models give superior predictions for this mean flow velocity.

The turbulent kinetic energy profiles for the high spin case are shown in Fig. 8c. Recall that
there were modest differences in the peak k values for all the models in the non-spinning inlet
(Fig. 6c). At the end of the spinning section, there are large differences between the two Lag-Rij
models in terms of the peak value of k . The TTR and it’s sister Lag-Rij model are in relative
agreement for the peak value of k , comparing of course the solutions with the same inlet section
Reτ . Note that, in contrast with the fully developed inlet region, the k/u2τ profiles are different
for the two TTR solutions at different inlet values of Reτ . The TTR model does provide a better
match near the pipe centerline over the underlying Reynolds-stress model again. However, none of
these models does predict the full extent of the drop in k seen in the experiment.

13 of 20

American Institute of Aeronautics and Astronautics



One of the strengths of this data set is that there is a significant amount of data useful for
Reynolds-stress model development, and Fig. 9 shows a comparison of all three normal Reynolds
stresses for this case. The anisotropy is not perfectly predicted, but the general shape and relative

size of the Reynolds stress profiles is captured by the TTR model. The Lag-R
(eq)
ij model it is based

on also does a creditable job, but the TTR model improves the predictions near the pipe centerline
where turbulent transport is a more dominant term than closer to the wall.

III.D. Rotating Wall Section - Slow Spin
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Figure 10: Low spin rotating section flow profiles (x/R = 50, Vw/uτ = 3.4258)

Turning to the less rapidly spinning case in the Zaets8 experiment, Vw = 1.5m/s (Vwuτ = 3.47),
the mean flow predictions for this lower level of spin in Fig. 10 are different than seen at the higher
spin rate. The axial velocity is underpredicted by all the models, but the SA-QR model is now
furthest from experiment. The TTR model is closest to the experiment for this case, but is pretty
much in line with the other Reynolds stress and SST models. The circumferential velocity is well
predicted by either the anisotropic Reynolds stress model and the TTR (which is based upon the
same Reynolds-stress stress-strain equilibrium relation), but similar to the axial velocity results,
the SA-QR model has now moved away from the experimental results.

The k profile predictions (Fig. 10c) for the lower spin rate are also reasonably good, with the R11

predictions much better than for the turbulent kinetic energy. The TTR model again improves the
centerline prediction, but the underlying anisotropy is still less than seen in the experiment. The
turbulent transport model does seem to be moving the turbulence results in the correct direction
at the centerline, and does seem to have less of an effect near the wall. This is in line with what
was expected and the earlier results.7

The normal stress predictions for the low spin case are shown in Fig. 11. Again the models

with the non-isotropic R
(eq)
ij are much more in line with the experimental data than the Boussinesq
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Figure 11: Low spin normal Reynolds-stress profiles (x/R = 50, Vw/uτ = 3.4258)

based Lag-Rij model. Furthermore, very much like the higher spin case, the TTR model provides a
significantly better prediction of the normal stresses close to the pipe core, reducing the magnitude
of the Rij levels significantly there.

IV. Conclusions - Further Work

The TTR model improves the prediction for this flowfield over baseline Reynolds-stress model.
The turbulent transport effects are more pronounced in the regions where turbulence production
becomes less important, here the centerline of the pipe. In the wall region, the turbulent transport
terms are of less relative importance, and the underlying Reynolds stress model predictions are
recovered.

The anisotropic Reynolds-stress model produces better results than the one based on the Boussi-
nesq stress-strain relation. Even though the anisotropy is less complex than the actual anisotropy
behaviour of the turbulence is, it is an improvement over the isotropic normal stress relation.

The SST (strain production) and SA with curvature and QCR relations give better results than
SST-V (vorticity production) or the unmodified SA model, the TTR and Reynolds stress models
gives a better (and more complete) prediction of the flowfield. Even with this improved prediction,
there is room for improvement both in the Reynolds stress anisotropies and also in the k reduction
brought about by the flow rotation/curvature.

Investigation of the alter ego of this flowfield, the spinning cylinder,38,39where the rotational
effects are destabilizing, and turbulence enhancing, is ongoing, and flow invariant based versions of
the Richardson number (rotation) and curvature corrections done with earlier (ad-hoc) turbulence
model corrections8–11,40 is ongoing, and initial results are promising.
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A final, and important, thing to keep in mind is that the turbulence models evaluated in this
paper have not been tuned to match this flowfield, though the SA model which is used includes both
the QCR and rotation corrections. No explicit Richardson number/curvature or other corrections
are applied to any of the other models. The response of the models to the effects of the rotating wall
are purely those inherent in the model formulations directly. The change in the TTR model is not
really a tuning to match the flowfield, but rather an acceptance that the anti-diffusive properties
of the triple product turbulent transport terms had to be compensated for with the additional
gradient diffusion of k .

Flow invariant based versions of Richardson/curvature corrections are being evaluated, along
with fixes to the equilibrium anisotropy for the Lag-Rij and TTR models. Regardless, the addition
of the non-aligned stress-strain relation of the Lag-Rij and TTR models, as well as the turbulent
transport improvements brought in by the TTR model improve the prediction of this flow field
without these adjustments, and the improvements are not small.
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Appendix A Third-Order-Moment Turbulence Model (TTR)

This model is built on top of the preceding Lag methodology models, and the equilibrium two
equation turbulence model that is at their heart, the Wilcox 1988 k-ω model. The third-order-
moment model comes from the exact Reynolds-stress and turbulent transport equations.

∂t (Rij) + ∂k (ukRij) =−Rjk∂kUi −Rik∂kUj − ∂kTijk + ν∂k∂kRij (1)

+Πij − 2ν∂k(u
′
i)∂k(u

′
j)

∂t (Tijk) + ∂l (ulTijk) =− Tijl∂lUk − Tjkl∂lUi − Tkil∂lUj (2)

+Rij∂lRkl +Rjk∂lRil +Rki∂lRjl

+ ν∂l∂lTijk

+Πijk − ∂l(Qijkl)− εijk
where the neglected red terms are

Πij =
1

ρ

[
u′j∂i(p

′) + u′i∂j(p
′)
]

(3)

Πijk =
1

ρ

[
u′iu
′
j∂k(p

′) + u′ju
′
k∂i(p

′) + u′ku
′
i∂j(p

′)
]

(4)

Qijkl =u′iu
′
ju
′
ku
′
l (5)

εijk =2ν
(
u′i∂l(u

′
j)∂l(u

′
k) + u′j∂l(u

′
k)∂l(u

′
i) + u′k∂l(u

′
i)∂l(u

′
j)
)

(6)
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The TTR turbulence model including turbulent transport (Tijk) terms is:

∂t (ρk) + ∂l (ρulk) =ρ [RijSij − β∗kω] + ∂l ((µ+ σkµT ) ∂lk)−A4∂l (ρTiil) (7)

∂t (ρω) + ∂l (ρulω) =αρS2 − βρω2 + ∂l ((µ+ σωµT ) ∂lω) (8)

∂t (ρRij) + ∂l (ρulRij) =A0ρω
(
R

(eq)
ij −Rij

)
(9)

∂t (ρTijk) + ∂l (ρulTijk) =A0ρω
(
T
(eq)
ijk − Tijk

)
(10)

where

T
(eq)
ijk =

A2

A0ω

[
Tijl∂lUk + Tjkl∂lUi + Tkil∂lUj −Rij∂lRkl −Rjk∂lRil −Rki∂lRjl

]
+

1

A0ρω
[∂l ((µ+ σtµtE ) ∂lTijk)] (11)

µtE = ρk/ω

P = RijSij

ε = β∗ρkω

S =
√

2
(
SijSij − S2

kk/3
)

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

Most of the parameters for this model are set by the requirement to retain the equilibrium
predictions of the underlying k-ω model. The equilibrium Reynolds-stress relation is one of the three
described in earlier Reynolds-stress model work,6 denoted as the “926(Redistribution)” Equilibrium
Reynolds-stress relation. This constitutive relation is most directly related to the explicit algebraic
Reynolds-stress models.41–43 The terminology is borrowed from the paper introducing this relation,6

and contains production terms which are not the full Reynolds-stress production terms, but do yield
log layer anisotropies consistent with the classic 4:3:244 relation. These “production” terms (which
have really only redistribution terms, and none of the work terms of actual production) are

P11 = 2 (kS11/A1 + (R31 Ω31 − R12 Ω12 )) (12)

P22 = 2 (kS22/A1 + (R12 Ω12 − R23 Ω23 )) (13)

P33 = 2 (kS33/A1 + (R23 Ω23 − R31 Ω31 )) (14)

With corresponding off diagonal terms

P12 = 2kS12/A1 + (R23Ω31 − R31Ω23 + (R11 − R22 ) Ω12 ) (15)

P23 = 2kS23/A1 + (R31Ω12 − R12Ω31 + (R22 − R33 ) Ω23 ) (16)

P31 = 2kS31/A1 + (R12Ω23 − R23Ω12 + (R33 − R11 ) Ω31 ) (17)

These then provide the equilibrium Reynolds stress using Eq. 18

Rij
(eq) =

2

3
kδij −

A1

ω
(Pij −

1

3
P̄δij)

+
1

A0ρω
[∂l ((µ+ σrµT ) ∂lRij)−A3∂l (ρTijl)] (18)
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The other model parameters are:

A0 = 1.0

A1 =
5

3
A2 = 1.0

α = 0.35

β = 0.1

β∗ = 0.12

σk = 0.3

σω = 0.3

σr = 0.0

σt = 0.0

Note that even though β and β∗ have been altered from the 1988 k-ω choices, their ratio is retained
providing the same isotropic turbulence decay rate.

Two special parameter choices are used to elucidate the coupling and effect of the Tijk terms.
The first parameter choice A3 = A4 = 0 is labelled as “Uncoupled” in the flat plate results, and will
produce Reynolds-stresses identical to the original Reynolds stress models, along with the turbulent
transport terms Tijk that are consistent with those Rij predictions. The second special parameter
choice A3 = 1, A4 = 0 is labelled as “PC”(Partially Coupled), and these include the Tijk terms in
the Reynolds stress equations, but do use only the gradient transport term for the equilibrium k
equation turbulent transport. As the equations drive the predicted k toward the keq, this version
is missing the direct influence of what should be improved turbulent transport predictions for the
evolution of the turbulent kinetic energy. As neither of these choices uses the new model for the
turbulent transport in the k equation, for both of these special parameter sets σk = 0.8, the value
used with Reynolds-stress model on which the coupled model is based.

The equations set with A3 = 1, A4 = 1 is labelled as “TTR” in the figures, and these use the
triple product terms to provide part of the turbulent transport. As such, a reduced σk = 0.3 is
used (which was 0.2 in the paper introducing the model), where the other less coupled parameter
choices have σk = 0.8. The change in σk was due to experience gained in simulating the rotating
pipe case, and this change is being investigated for it’s effect on the flows in that paper. So far,
the change has not introduced any large differences in those results. This parameter choice is the
current version of the triple product turbulent transport model (TTR), and expected to be the final
model definition. A full exploration focusing on separated flowfields is planned, and that paper
will include a full comparison on a wide selection of flowfields, with an emphasis on separation and
reattachment predictions.

Appendix B Solution Sensitivity Assessment

Matching the incompressible results achieved in an incompressible solver14 proved more chal-
lenging than anticipated. As the end product of this effort was to provide a simple flowfield that
could be used as a test case for rotation/curvature corrections, eliminating discrepancies between
the simulations, and assessing sensitivity to simulation choices was necessary.

Other possible factors affecting the solution were assessed, and were all very small compared to
the radial coarsening sensitivity, with smoothing parameters for the matrix dissipation (eigenvalue
limiters set to zero), use of the HLLC upwind method, solution of the flowfield at a relative Mach
number that did not require preconditioning, solution of the flowfield at a Reynolds number higher
by a factor of 10 (with a suitably radially clustered grid which had a similar initial ∆y+ ) showed
these all these factors to be non-issues, at least with the radial grid density chosen.

The method used to obtain a solution with Reτ = 875 in the non rotating section was to obtain
successive solutions for a given downstream pressures, adjusting the downstream pressure to raise
or lower the value to match the desired Reτ = 875. An alternative method is to choose a back
pressure, then adjust the global Reynolds number parameter (REY = ρ∞u∞R

µ∞
) of OVERFLOW.

Solutions obtained by these two methods give identical results in non-dimensional coordinates for
the test case axisymmetric grids. This match of solutions gave confidence that the simulations with
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either method were providing the unique answer to the boundary value problem when expressed in
non-dimensional terms.

For the grid density chosen the centerline value in the non-rotating, fully developed pipe flow
region is u0/uτ = 21.25 for the SST model. From grid density studies for an axisymmetric version
of the grid, a grid with twice the density in both directions would give 21.56 for this value, and
with a radial density of 900 points, this becomes 21.63.

References

1Pope, Stephen B., Turbulent Flows, Cambridge University Press, 2000.
2Wilcox, David C., Turbulence Modeling for CFD , DCW Industries, Inc, 2006.
3Gerolymos, G.A., Joly, S., Mallet, M., and Vallet, I, “Reynolds-Stress Model Flow Prediction in Aircraft-Engine

Intake Double-S-Shaped Duct,” Journal of Aircraft , Vol. 47, No. 4, July-August 2010, pp. 1368–1381.
4Cecora, Rene-Daniel, Eisfeld, Bernhard, Probst, Axel, Crippa, Simone, and Radspiel, Rolf, “Differential

Reynolds Stress Modeling for Aeronautics,” AIAA Paper 2012-0465.
5Randolph Lillard, Brandon Oliver, Michael Olsen, G. A. Blaisdell, and A. S. Lyrintzis, “The LagRST Model:

a Turbulence Model for Non-Equilibrium Flows,” AIAA Paper 2012-444.
6Olsen, M. E. , Lillard, R. P., and Murman S. M., “Separation Prediction of Large Separations with Reynolds

Stress Models,” AIAA Paper 2013-2720.
7Olsen, Michael E, “Prediction of Large Separations with a Third-Order-Moment Model,” AIAA Paper 2015-

1968.
8Zaets, P., Onufriev, A., Safarov, N., and Safarov, R., “Experimental study of the behavior of the energy

spectrum in a turbulent flow in a tube rotating relative to its longitudinal axis,” Journal of Applied Mechanics and
Technical Physics, Vol. 33, No. 1, 1992, pp. 31–35.

9Kurbatskii, A. and Poroseva, S., “Modeling turbulent diffusion in a rotating cylindrical pipe flow,” International
Journal of Heat and Fluid Flow , Vol. 20, No. 3, 1999, pp. 341 – 348.

10Reich, G. and Beer, H., “Fluid flow and heat transfer in an axially rotating pipeI. Effect of rotation on turbulent
pipe flow,” International Journal of Heat and Mass Transfer , Vol. 32, No. 3, 1989, pp. 551 – 562.

11Nishibori, K., Kikuyama, K., and Murakami, M., “Laminarization of Turbulent Flow in the Inlet Region of an
Axially Rotating Pipe : Fluids Engineering,” JSME international journal , Vol. 30, No. 260, 1987, pp. 255–262.

12Chow, Jim, Zilliac, Greg, and Bradshaw, Peter, “Turbulence Measurements in the Near Field of a Wingtip
Vortex,” NASA TM 110418.

13Olsen, M. E., Lillard, R. P., and Coakley, T., “LagRST Model Predictions of a Wingtip Vortex Flowfield
(Invited),” AIAA Paper 2015-2923.

14Ashton, Neil, “Computation of Turbulent Flow in a Rotating Pipe using standard eddy-viscosity models and
an Elliptic Blending Reynolds Stress Model,” AIAA Paper 2016-XXXX, (Companion paper in session).

15Rumsey, C., “Langley Research Center Turbulence Modeling Resource,” March 2015, [Online; accessed 6-May-
2016].

16Zaets, P. G., Onufriev, A. T., Safarov, N. A., and Safarov, R. A., “Experimental study of spectra correspond-
ing to friction stress and the third statistical moments in fully developed turbulent pipe flow,” Journal of Applied
Mechanics and Technical Physics, Vol. 35, No. 6, 1994, pp. 906–910.

17Zaets, P. G., Onufriev, A. T., Pilipchuk, M. I., Safarov, N. A., and Safarov, R. A., “Experimental study of the
behavior of quadruple time correlation functions for the longitudinal velocity fluctuation in developed turbulent pipe
flow,” Journal of Applied Mechanics and Technical Physics, Vol. 37, No. 5, 1996, pp. 617–621.

18Zaets, P. G., Kurbatskii, A. F., Onufriev, A. T., Poroseva, S. V., Safarov, N. A., Safarov, R. A., and Yakovenko,
S. N., “Experimental study and mathematical simulation of the characteristics of a turbulent flow in a straight circular
pipe rotating about its longitudinal axis,” Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 2, 1998,
pp. 249–260.

19Bardina, J. E., Huang, P. G., and Coakley, T., “Turbulence Modeling Validation, Testing, and Development,”
NASA TM 110446.

20Buning, P., Jespersen, D., Pulliam, T., Klopfer, G., Chan, W., Slotnick, J., Krist, S., and Renze, K., OVER-
FLOW User’s Manual, Version 1.8s, NASA Langley Research Center, 2000.

21Pulliam, D. J. T. H. and Buning, P. G., “Recent Enhancements to OVERFLOW,” AIAA Paper 97-0664.
22Olsen, Michael E. and Prabhu, D. K., “Application of OVERFLOW to Hypersonic Perfect Gas Flowfields,”

AIAA Paper 2001-2664.

19 of 20

American Institute of Aeronautics and Astronautics



23Swanson, R. C. and Turkel, E., “On Central–Difference and Upwind Schemes,” Journal of Computational
Physics, Vol. 101, 1992, pp. 292–306.

24Nichols, R. H., Tramel, R. W., and Buning, P. G., “Evaluation of two high-order weighted essentially nonoscil-
latory schemes,” AIAA journal , Vol. 46, No. 12, 2008, pp. 3090–3102.

25Pulliam, T. H., “High order accurate finite-difference methods: as seen in OVERFLOW,” AIAA Paper 2011-
3851.

26Pulliam, T. and Chaussee, D., “A diagonal form of an implicit approximate-factorization algorithm,” Journal
of Computational Physics, Vol. 39, No. 2, 1981, pp. 347 – 363.

27Potsdam, M., Sankaran, V., and Pandya, S., chap. Unsteady Low Mach Preconditioning with Application to
Rotorcraft Flows, Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics,
Jun 2007, 0.

28Smits, A. J., McKeon, B. J., and Marusic, I., “HighReynolds Number Wall Turbulence,” Annual Review of
Fluid Mechanics, Vol. 43, No. 1, 2011, pp. 353–375.

29Hultmark, M., Vallikivi, M, Bailey, S.C.C., and Smits, A.J., “Logarithmic scaling of turbulence in smooth and
rough-wall pipe flow,” Journal of Fluid Mechanics, Vol. 728, 2013, pp. 376–395.

30Vallikivi, M, Hultmark, M., and Smits, A.J., “Turbulent boundary layer statistics at very high Reynolds
number,” Journal of Fluid Mechanics, 2014, Under Review for Publication.

31DeGraaff, David B. and Eaton, John K., “Reynolds-number scaling of the flat-plate turbulent boundary layer,”
Journal of Fluid Mechanics, Vol. 422, 2000, pp. 319–322.

32Dussauge, J.P., Smith, R.W., Smits, A.J., Fernhoz, H., Finley, P.J., and Spina, Eric F., “Turbulent Boundary
Layers in Subsonic and Supersonic Flow,” AGARDOGRAPH 335.

33Olsen, M. E., “Prediction of Separation with a Third-Order-Moment Model,” AIAA Paper 2015-1968.
34Olsen, M. E. , Lillard, R. P., and Coakley T. J., “The Lag Model Applied to High Speed Flows,” AIAA Paper

2005-101.
35Mani, M., Babcock, D., Winkler, C., and Spalart, P., chap. Predictions of a Supersonic Turbulent Flow in a

Square Duct, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, Jan 2013, 0.
36Shur, Michael L., Strelets, Michael K., Travin, Andrey K., and Spalart, Phillipe R., “Turbulence Modeling

in Rotating and Curved Channels: Assessing the Spalart-Shur Correction,” AIAA Journal , Vol. 38, No. 5, 2000,
pp. 784–792.

37Childs, Marisssa L., Pulliam, Thomas H., and Jespersen, Dennis C., “OVERFLOW Turbulence Model Resource
Verification Results,” NAS Technical Report 2014-03, NASA, June 2014, NAS Technical Report NAS-2014-03.

38Bissonnette, L. R. and Mellor, G. L., “Experiments on the behaviour of an axisymmetric turbulent boundary
layer with a sudden circumferential strain,” Journal of Fluid Mechanics, Vol. 63, 4 1974, pp. 369–413.

39Driver, D. M. and Hebbar, S. K., “Experimental study of a three-dimensional, shear-driven, turbulent boundary
layer,” AIAA Journal , Vol. 25, No. 1, Jan 1987, pp. 35–42.

40Higuchi, H. and Rubesin, M. W., “Behavior of a Turbulent Boundary Layer Subjected to Sudden Transverse
Strain,” AIAA Journal , Vol. 17, No. 9, Sep 1979, pp. 931–941.

41Pope, S., “A more general effective-viscosity hypothesis,” Journal of Fluid Mechanics, Vol. 72 (part 2), 1975,
pp. 331–340.

42Wallin, Stefan and Johansson, Arne V., “An explicit algebraic Reynolds stress model for incompressible and
compressible flows,” Journal of Fluid Mechanics, Vol. 403, 2000, pp. 89–132.

43Hellsten, Antti, New two equation Turbulence Model for Aerodynamic Applications, Ph.D. thesis, Helsinki
University of Technology, February 2004.

44Townsend, A.A., “The structure of turbulent shear flow”, Cambridge University Press, 2nd ed., 1976.

20 of 20

American Institute of Aeronautics and Astronautics


	Introduction
	Experiment Description/Computational Methodology
	Experiment
	Computation
	Grid
	Numerical Method
	Turbulence Models
	Boundary Conditions


	Results
	Overview and Solution Sensitivity
	Non Spinning (Fully Developed) Flow
	Rotating Wall Section - Fast Spin
	Rotating Wall Section - Slow Spin

	Conclusions - Further Work
	Appendices
	Appendix Third-Order-Moment Turbulence Model (TTR)
	Appendix Solution Sensitivity Assessment

