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This work investigates novel approaches to probabilistic damage diagnosis that utilize
surrogate modeling and high performance computing (HPC) to achieve substantial com-
putational speedup. Motivated by Digital Twin, a structural health management (SHM)
paradigm that integrates vehicle-specific characteristics with continual in-situ damage di-
agnosis and prognosis, the methods studied herein yield near real-time damage assessments
that could enable monitoring of a vehicle’s health while it is operating (i.e. online SHM).
High-fidelity modeling and uncertainty quantification (UQ), both critical to Digital Twin,
are incorporated using finite element method simulations and Bayesian inference, respec-
tively. The crux of the proposed Bayesian diagnosis methods, however, is the reformulation
of the numerical sampling algorithms (e.g. Markov chain Monte Carlo) used to generate the
resulting probabilistic damage estimates. To this end, three distinct methods are demon-
strated for rapid sampling that utilize surrogate modeling and exploit various degrees of
parallelism for leveraging HPC. The accuracy and computational efficiency of the methods
are compared on the problem of strain-based crack identification in thin plates. While
each approach has inherent problem-specific strengths and weaknesses, all approaches are
shown to provide accurate probabilistic damage diagnoses and several orders of magnitude
computational speedup relative to a baseline Bayesian diagnosis implementation.

I. Introduction

Digital Twin is a structural health management (SHM) paradigm that integrates vehicle-specific char-
acteristics including as-built components and as-experienced loading with continual in-situ damage diagno-
sis and prognosis. The framework places a strong emphasis on high-fidelity, physics-based simulation for
modeling complex components and requires rigorous, end-to-end uncertainty quantification (UQ) to enable
probabilistic forecasts of a vehicle’s reliability into the future. Since Digital Twin aims to continually monitor
a vehicle while in service and operating (i.e., online SHM), the foundational software it is built on must
also be computationally efficient. While normal operating conditions necessitate feedback on the order of
minutes, cases of unexpected, discrete damage events require near real-time damage diagnosis and prognosis
in order to adjust the current mission parameters accordingly. Since incorporating UQ in a framework that
relies on physics-based simulation can be computationally prohibitive, delivering high-fidelity, probabilistic
assessments with such a high degree of efficiency is extremely challenging.

In terms of the damage diagnosis capability of SHM, a common approach to integrate UQ is to first
pose the analysis as an inverse problem (model-based diagnosis') and apply Bayesian statistics to form a
probabilistic solution.? Here, the inverse problem is to estimate parameters characterizing damage in a
structural component given measurement data from sensors describing its mechanical response (e.g. strain,
vibrations, etc.). The Bayesian solution to the inverse problem (i.e., the diagnosis) is then a probability
distribution of the damage parameters that is based on a computational model’s predicted response in the
presence of damage. The resulting probability distribution can rarely be evaluated analytically, so numerical
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sampling algorithms (e.g., Markov chain Monte Carlo (MCMC)?3) must be employed to generate sample-
based, probabilistic estimates of the damage parameters.

With respect to a deterministic approach to model-based damage diagnosis, the Bayesian approach has
the significant advantage of recovering a fully probabilistic description of likely damage states rather than
simply a point estimate with no regard for inherent uncertainties. Furthermore, when the model used is
a high-fidelity simulation (e.g., a finite element (FE) model), probabilistic diagnosis of arbitrarily complex
components with various damage types can be enabled. The drawback of such an approach, however, is the
substantial computation overhead associated with obtaining solutions using MCMC sampling. This is both
due to potentially slow convergence behavior (i.e., requiring a huge number of samples to accurately resolve
the underlying probability distribution) and the need to run a new FE simulation for each sample drawn. For
example, if a FE model takes minutes or hours to evaluate, a Bayesian MCMC approach requiring thousands
of samples that utilizes a FE model would take days or weeks to complete, making its use for rapid, online
damage diagnosis infeasible.

To alleviate this computational burden, advanced MCMC methods have been developed to improve the
convergence rate of the sampling process.*” Another common approach is to replace the original physics-
based model with a computationally efficient surrogate model using probabilistic spectral methods,® reduced-
order modeling,” ' or machine learning algorithms.'* This technique requires the offline pre-computation
and storage of an input-output pair dataset from the original computational model to train a surrogate
model for use during online sampling. The development of accelerated Bayesian approaches that combine
both advanced MCMC methods and surrogate modeling, however, remains relatively limited for model-based
SHM applications.'?!3 Furthermore, due to the inherent dependence between subsequent samples drawn
with MCMC (i.e., the Markov property), there have been few successful attempts'* to parallelize these
algorithms and take advantage of high performance computing (HPC) capabilities.

Motivated by online SHM with Digital Twin, this study explores new numerical sampling approaches
that utilize surrogate modeling and HPC to enable probabilistic damage diagnoses in near real time. In
particular, three distinct methods for rapid sampling that exploit various degrees of parallelism are studied
to speed up Bayesian model-based diagnosis, each relying on a precomputed training dataset to avoid the
online evaluation of the original FE model. While the proposed approaches are generally applicable to many
model-based diagnosis problems, they are demonstrated on the problem of strain-based crack identification
in thin plates. Here, simulated strain data from a limited number of locations on the plate are used for both
probabilistic damage localization (crack location estimates) as well as full characterization (crack location,
size, and orientation estimates). The tradeoffs between each method in terms of accuracy, efficiency, and
parallel scalability are discussed and demonstrated. While the strengths and weaknesses of each are illus-
trated, all approaches are shown to produce accurate probabilistic damage diagnoses in just a fraction of the
computation time of a baseline Bayesian implementation using serial MCMC (i.e., on one processor) and
FE simulations.

The remainder of the paper is organized as follows. First, a formulation is provided in the following
section that begins with a brief background on Bayesian model-based diagnosis and is followed by individual
subsections devoted to each of the three sampling approaches studied herein. Next, results from the strain-
based crack characterization examples are presented, illustrating the effectiveness of each sampling approach
with respect to one another as well as a baseline Bayesian implementation. Finally, the findings of the study
are summarized in the conclusion section.

II. Formulation

In this section, the proposed rapid sampling algorithms for near real-time probabilistic damage diagnosis
are presented. First, a brief overview of model-based diagnosis is provided, including a probabilistic solution
approach that covers Bayesian inference and Markov chain Monte Carlo (MCMC) sampling. Then, individual
subsections are devoted to each of the proposed sampling algorithms to accelerate/replace traditional MCMC
with surrogate modeling and high performance computing (HPC).
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A. Background
1. Model-Based Diagnosis

Damage diagnosis methods operate under the assumption that the mechanical response of a structural
component is altered in the presence of damage. To this end, the goal of diagnosis methods is to use
measured response data d°® € R™ to detect if damage is present and then ideally estimate some parameters
c € RY that characterize the damage (location, size, etc.). Model-based approaches to diagnosis require a
model of the structural component capable of predicting the mechanical response for a given set of damage
parameters

M(c) =y € R™, (1)

where y ~ d°P® for a damage estimate c that effectively characterizes the true damage. Here, it is assumed
that M encompasses properly calibrated boundary conditions, material properties, etc. and postprocessing
to extract predicted responses in y that correspond to the time/location of the measurements d°bs.

In the context of model-based diagnosis, M is referred to as the forward model while the diagnosis problem
of using d°P* to infer c is the associated inverse problem. A typical deterministic approach to solving this
inverse problem is to first pose an error metric between the measured response data and corresponding model
response

Qle,d*™) = [ld5™ — My(o)|?, (2)
i=1

where M;(c) = y;. Then, gradient-based or global optimization algorithms are employed to find the damage
parameters that minimize Equation (2) to produce the so-called least squares estimator

cl¥ = argmin Q(c, d°). (3)

The primary drawback of such deterministic approaches for model-based diagnosis is that only a point
estimate of the damage is produced with no regard to uncertainty inherent in the measurement data (noise,
sparsity, etc.).

2. Bayesian Inference

The Bayesian inference approach to model-based diagnosis reformulates the inverse problem as one of de-
ducing a probability distribution of the unknown damage parameters, ¢, conditional on the observed mea-
surement data d°. This distribution, p(c|d°), known as the posterior distribution, is given according to
Bayes’ Theorem:!®

p(c|[d®™) oc p(d°|e)p(c), (4)
integrating any knowledge about the damage prior to the measurement in the prior distribution, p(c), with
the information from the data, d°®®, through the likelihood function, p(d°”*|c). While the prior distribution
can be a powerful tool for applying an analyst’s insight about likely damage states for a component, a non-
informative prior (e.g., uniform probability) is chosen in this work as to not bias the results. On the other
hand, the likelihood function in this work takes the form

1 1 «
PN = Gz (‘202 >l - Mi<c>n2)
i=1

~ exp (-2; (c, dObS)) , (5)

where this expression is the direct result of the following assumed relationship between the measured and

computed responses:
d?™ = M,(c) +6;, 6; ~ Normal(0,0). (6)

That is, the measurement data are polluted with errors, §;, that are treated as a sequence of independent,
identically distributed (i.i.d.) samples drawn from a zero-mean Gaussian (Normal) distribution with variance
o? (interpreted as the noise level). Note that this exposition was intentionally kept brief and only used as
a means to facilitate the succeeding formulations, the interested reader can consult the references regarding
Bayesian inverse problems? ® and its application to damage diagnosis'3 for more details.
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3. Markov Chain Monte Carlo (MCMC)

The solution of the model-based diagnosis problem as the posterior probability distribution in Equation (4)
is not of practical importance on its own since it can rarely be evaluated analytically. MCMC? is arguably
the most effective and common approach to explore the posterior distribution to form probabilistic damage
estimates with a Bayesian inference approach. The goal of MCMC is to generate a collection of N damage
parameter samples from the posterior probability distribution

{c(j)}j-\[:1 where ¢ ~ p(c|d®?), (7)

which can then be used to construct empirical probability distributions, credibility intervals, and moment
estimates for C. Algorithm 1 summarizes the most basic form of MCMC, the Metropolis algorithm:3

Algorithm 1 Metropolis MCMC
Initialize c¢(®)
for j=1:N do
Sample u ~ Uniform(0, 1)
Sample c* ~ g(c*|cU~D)
. *| jobs
if u < A(c*,cU~Y) = min{1, %} then

cli) = ¢*
else
cl) = -1
end if
end for

Here, the method simply draws a trial sample, ¢*, at each iteration from a proposal distribution, g(c* \c(jfl)),
and then decides whether to accept or reject this sample based on the acceptance probability, A(c*, c(jfl)).
The Metropolis algorithm assumes that the proposal distribution is symmetric, where a common choice is a
Gaussian distribution centered at the previous sample

q(c*|c¥ =) = Normal(cV 1, %,), (8)

where X, is the user-specified covariance matrix. Algorithm 1 with Equation (8) constructs a Markov chain
that, by design, is guaranteed to have a stationary distribution that reflects the true posterior distribution
in Equation (4).

B. Methods for Rapid Sampling

While the Bayesian model-based diagnosis approach discussed in Section A provides an effective means of
generating probabilistic damage estimates, it generally incurs a significant computational overhead making
it impractical for online SHM. This computational expense is primarily attributed to the MCMC sampling
process (Algorithm 1) detailed in the previous section. Here, the posterior probability distribution must
be evaluated to determine the acceptance probability, A, for every sample drawn, so the computational
model, M, must also be executed at each iteration. Since generally N ~ O(10% — 10°) samples are needed
for convergence with MCMC, utilizing even a modestly complex model yields intractable analysis times.
Furthermore, since there is an explicit dependence on the previous sample drawn at each iteration through
the acceptance probability, parallelizing MCMC algorithms to leverage high performance computing (HPC)
can be challenging.

In this section, three sampling methods are formulated to provide substantial computational speedup
for probabilistic diagnosis (by rapidly evaluating Equation (7)), each utilizing surrogate modeling and HPC.
Surrogate modeling relies on the offline pre-computation and storage of input-output pair datasets from the
original model so that the posterior probability distribution can be rapidly evaluated during online sampling.
Here, a set of T damage parameter arrays {c(k)}z=1 is first selected. Then, the model response corresponding
to all m measurements are computed and stored for each damage state,

MP = Mi(e®™), k=1,..,T (9)
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for i = 1,...,m. The result is the following T x (d + m) input-output dataset
8§ ={e™ M MY (10)

Each sampling method to follow differs in how the input-output data, S, is utilized and in the resulting
approach to leveraging HPC. The first approach replaces each model predicted response, M;, with indi-
vidual, pre-trained surrogate models and employs a parallel MCMC algorithm!# that allows the models to
be partitioned across processors for sampling. The second approach constructs a surrogate model for the
error function, Q(c,d°"), on-the-fly to facilitate subsequent rapid MCMC sampling. The third approach
discretizes the posterior probability distribution function, p(c|d°"), to enable completely parallel direct
sampling. The following subsections describe each of the three approaches in more detail.

1. Method 1: MCMC with Model Surrogates

The first sampling method adopts an existing approach!'" 13 of replacing the original computational model
itself with surrogate models and then explores the use of an emerging parallel MCMC algorithm'# to take
advantage of HPC. From a machine learning perspective, S (Equation (10)) is the training data and a
variety of off-the-shelf regression and interpolation algorithms can be utilized to directly infer the input-
output mappings. Specifically, a surrogate model that maps a new damage state, ¢(*), to the resulting
sensor response is generated offline for each individual measurement

M e 5 MW fori=1,...m, (11)

resulting in a suite of independent surrogate models, {/\72};’;1 Then, during online damage diagnosis, the
posterior distribution can be efficiently sampled with MCMC using an approximate form of the likelihood
(Equation (5)) that relies on these surrogate models

p(d°™c; {Mz}) X exp (%; Z | doPs — ]\Zl(c)”2> . (12)

Since Mvz can generally be evaluated much faster than the original model M, significant computational
speedup can be obtained with this technique alone.!?

To leverage HPC for additional speedup with this approach, multiple independent chains of MCMC can
simply be run on separate computer processors in parallel. While this straightforward parallelization will be
used as a baseline method for comparison in this study, a more sophisticated parallel MCMC algorithm'*
will be the primary focus for its potential efficiency and scalability benefits. The algorithm, which enables
asymptotically exact and parallel MCMC, was developed for (and has been traditionally applied to) MCMC
for big data applications where it is difficult to store and analyze all data observations on one processor. The
method allows the data to be randomly partitioned among machines and independent MCMC chains to be
run on only subsets of the data in parallel, resulting in improved scalability when utilizing many processors.
The crux of the method is the utilization of special combination algorithms to merge samples from each
machine in a manner that is provably asymptotically exact from the full-data probability distribution. More
details of the approach can be found in the original paper.'4

To the authors’ knowledge, this is the first application of this parallel MCMC method to damage diagnosis
or surrogate model-based inverse problems in general. While the diagnosis application tested later in this
paper uses a relatively small amount of measurement data (far from necessitating a big data method), there
is potential benefit due to the independent /individualized surrogate modeling strategy used (Equation (11)).

Since there is a one-to-one correspondence between each sensor measurement, d>, and surrogate model Mvi,
partitioning the measurement data across processors effectively partitions the surrogate models as well. This
strategy can provide significant computational savings for applications with large amounts of sensor data or
when the regression/interpolation algorithm used for surrogate modeling is memory and/or computationally

intensive.

2. Method 2: MCMC with Error Function Surrogate

Rather than construct individual surrogate models for each sensor response offline, the second sampling
method builds a single surrogate model for the error function, Q(c,d°), on-the-fly after receiving measure-
ment data but prior to sampling. In this case, the dataset S is used to first evaluate Equation (2) to generate
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new training data describing the input-output relationship between damage parameters and errors
Q = {c™; QWY_,, (13)

where Q%) = Q(c(k)7d°bs). Using this dataset Q, regression or interpolation can be used to construct a
mapping directly from new damage parameters c¢*) to the resulting error

Q:c® = QM. (14)

Then, the following approximate likelihood function can be formed using the error function surrogate model

@) o exp (g Qle.a™)). (15)

allowing for rapid MCMC sampling of the posterior distribution without the evaluation of models or surro-
gates for sensor values themselves. To leverage HPC with this method, the simple parallel MCMC approach
of running several independent chains on separate processors will be used.

The benefit of the error function surrogate method is that there is a single surrogate model to evaluate
for each sample drawn using MCMC rather than a suite of models for each sensor prediction, resulting in a
speedup proportional to m during sampling. The disadvantage of the approach is that the surrogate model
for error, @@, must now be constructed online, after receiving measurement data for diagnosis. Thus, there
is an additional initial computational overhead for generating the new training data, Q (which can be done
in parallel), as well as fitting a regression/interpolation algorithm to these data to generate the surrogate.
Another more subtle issue is that surrogate verification is more difficult in this case compared with the more
standard model surrogate approach in the previous section. Generating surrogates for the model-predicted
sensor values is done offline rather than online and therefore time can be taken beforehand to verify the
accuracy and effectiveness of the approximate surrogate models versus the original model predictions. This
same verification process cannot be carried out with the error surrogate approach, necessitating the future
development of a priori error estimates/bounds for the approach.

3. Method 3: Direct Probability Discretization & Sampling

Instead of relying on traditional MCMC sampling with an inherently limited degree of parallelism, the third
sampling approach uses the stored training data (Equation (10)) to discretize and sample the posterior
distribution directly in parallel. To this end, a discretization of the probability distribution is assumed such
that the parameter space is divided into grid cells with centroids coinciding with the input training dataset
{c(k)}g:1 from S (i.e. nearest neighbor cells). Using the training dataset, a normalized posterior probability
value can be computed at each grid point. Then, under the assumption of uniform probability within each
nearest neighbor cell, samples can be generated uniformly from each cell in proportion to its normalized
probability value.

This procedure for direct discretization and sampling of the posterior distribution is described in Al-
gorithm 2 below. Here, the evaluation of the posterior probability values for each grid point utilizes the

Algorithm 2 Direct Sampling

for each grid point ¢*) do
P = ple®)]d) = exp (=5 S, [ — MP2)
end for
po = Y p(k)
for each grid point ¢*) do
ﬁ(k) — p(k)/psum
N®) = 5(k) « N
Generate N*) random points uniformly from the nearest neighbor cell of ¢(*)
end for

precomputed and stored model values Mgk) from Equation (10). Note also that since a uniform training
grid is used in this study, the nearest neighbor cells are simply hypercubes centered on the training data,
but the approach could be extended to the case of nonuniform grids as well. It can be seen from Algorithm
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2 that the approach is highly amenable to parallel computing with all normalized probabilities being com-
puted independent of one another. The normalized probabilities are then used to compute p*"™ using an
efficient parallel sum reduction routine before communicating this value to all the processors. Thereafter,
if N samples are needed from the posterior distribution and P processors are used, each processor simply
generates N/P samples in parallel. The procedure can be implemented on a CPU with mulitple cores and
also on a graphics processing unit (GPU) device.

The direct sampling approach has the advantage of being highly parallel with the potential of enabling
tremendous computational speedup over a MCMC-based sampling approach. If the training grid used is fine
enough, the method is also expected to produce a distribution that closely approximates the actual posterior
distribution. Similar to the error surrogate MCMC approach, verifying the accuracy of direct sampling is not
as straightforward as the model surrogates approach where models can be trained/verified before diagnosis
takes place. While the approach will be shown empirically to yield highly accurate damage estimates in
the results to follow, development of an a priori approach for verification of the method is worthy of future
study.

ITI. Results

A. Application - Strain-Based Crack Characterization

While the damage diagnosis algorithms presented in Section II are general with respect to the measurement
data, d°®®, model, M, and damage description, ¢, they are demonstrated here on the specific problem of
strain-based crack characterization in thin plates. A diagram illustrating this application can be seen in
Figure 1. Here, the damage is characterized by four parameters defining the location, size, and orientation of
a straight crack in the plate: ¢ = [z, y, a, 0]. The measurement data, de°Ps, used to infer these crack parameters
are m strain observations throughout the domain. The model, M, is a linear elastic FE simulation using the
Scalable Implementation of Finite Elements by NASA (ScIFEN)!¢ parallel FE code. The implementation
of surrogate models and MCMC sampling for the three damage diagnosis algorithms was carried out in
Python.”
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Figure 1. Diagram of the problem domain and damage parameterization considered for the strain-based crack
characterization application.

The measurement data, d°", for the succeeding examples were generated by inserting a target damage,
c'f into the finite element model, storing strains at predetermined sensor locations, and adding random
noise according to Equation (6) to simulate sensor errors. Here, the noise level o was selected such that there
was approximately 15% sensor error with respect to the measurement in each case. The plate geometry had a
width (w) of 96mm, height (h) of 215mm, and thickness of 5mm. The Poisson ratio was 0.3 and the applied
displacement (Au) was 1.0mm (the Young’s Modulus was arbitrary since the quantity of interest was strain).
Two separate diagnosis examples are considered: 1) damage localization - estimating the location of the crack
only (c = [z,y]) and 2) damage characterization - estimating the location, size, and orientation of the crack
(c = [z,9,a,0]). The accuracy and computational efficiency of the three sampling approaches formulated
in Section IT are compared on these two examples for varying numbers of measurements (m), training data
sizes (T - Equation (10)), and number of samples drawn (N). The results for damage localization and

7 of 15

American Institute of Aeronautics and Astronautics



characterization are provided in the remaining subsections after a brief comparison of different surrogate
modeling algorithms.

B. Surrogate Model Comparison

In this section, a brief comparison of the surrogate modeling algorithms considered in this work is provided.
Recall that the MCMC with model surrogates approach (Section II.B.1) requires pre-trained/stored surrogate
models for each sensor value (Equation (11)) using interpolation or regression methods. Therefore, several
algorithms can be tested offline before damage diagnosis is performed to identify the most accurate and
fastest technique for surrogate modeling. Three algorithms were tested here, Gaussian process and K-
nearest neighbors regression from the scikit-learn Python module'® and multilinear interpolation from
the SciPy module.!® For brevity, only the results for the damage localization surrogate models (mapping
damage location to predicted sensor values) are shown while a similar analysis was conducted for damage
characterization as well.

Training datasets (Equation (10)) of different sizes (T' = {200, 800, 1800, 3200, 5000, 7200, 9800} ) were first
generated using FE simulations. A testing dataset of 1000 randomly drawn crack locations and the resulting
predicted strains at the sensor locations was also generated for evaluating surrogate model accuracy. The
three algorithms were then used to train surrogate models for each training dataset and generate predictions
on the testing dataset, calculating the error versus the original FE solution. The results of this comparison
are shown in Figure 2. Figure 2(a) shows the median relative error while Figures 2(b) and 2(c) compare the
training and prediction times for the different models tested, respectively.
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Figure 2. Performance comparison of three different surrogate modeling algorithms in terms of a) relative
error, b) training time, and c) prediction time.

Accuracy and prediction time are most important for the effectiveness of the model surrogates sampling
approach, and it is clear from Figure 2 that the linear interpolation algorithm is most accurate and efficient
in this particular application. Note that the average FE solution time was approximately 40 seconds and is
depicted in Figure 2(c) for comparison. Here, the substantial computational speedup that surrogate modeling
provides is evident as all three methods deliver several orders of magnitude improvement in prediction
time. While offline training time has less performance impact for online analysis, it can be seen that
training the Gaussian process algorithm can be prohibitively expensive for larger datasets and so it was only
considered for training data sizes up to T = 5000. Training time is critical, however, for the error surrogate
sampling approach (Section I1.B.2) where the surrogate model must be constructed on-the-fly during damage
diagnosis. In this case, the nearest neighbor algorithm was chosen based on its significantly faster training
times and comparative accuracy. Note that the nearest neighbor algorithm was also used for the damage
characterization example, as it shows the best scaling with problem dimension and training dataset size.

C. Damage Localization

The sampling algorithms presented in Section II were first compared on a damage localization example.
Here, the location of a crack (¢ = [z,y]) was estimated using simulated strain data assuming a known crack
length and orientation. The performance of the methods was studied for different numbers of measurements
(m = {12,24,48,100,200}) and training grid sizes (T' = {200, 1800, 3200, 5000,9800}) as well as in serial
(on 1 computer core) and in parallel (between 2-4 cores) on a quad-core 2.4GHz AMD Opteron processor.
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In order to evaluate the accuracy of the methods, a reference solution was obtained for each number of
measurements considered by generating 10,000 samples from the posterior p(c|d°P®) using serial MCMC
with the original FE simulation. Treating this collection of samples as the ground truth for each case, the
accuracy of the samples drawn with the three proposed methods was evaluated using the multidimensional
Kolmogorov-Smirnov (KS) test.?%

First, an example of the probabilistic damage localization solutions generated with each method is shown
in Figure 3 for the case of m = 100 measurements and 7" = 5000 training data executed on P = 4 processors.
Here, the probability density of the crack location is shown for a) the reference solution, b) MCMC with
model surrogates, ¢) MCMC with an error surrogate, and d) direct probability sampling. The computation
time to generate each solution was approximately a) 4.5 days, b) 8.4 seconds, ¢) 2.7 seconds, and d) 0.3
seconds. While the approximate probability distributions show generally good agreement with the reference
distribution, the model surrogates approach is noticeably less accurate in comparison to the error surrogate
and direct sampling approaches.
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Figure 3. Crack location probability contours for m = 100 measurements: a) reference solution using serial
MCMC and FE simulation and approximate solutions using b) MCMC with model surrogates, c) MCMC with
an error surrogate, and d) direct probability sampling.

A more comprehensive assessment of each sampling algorithm’s performance for damage localization can
be seen in Figure 4. Here, the error (as evaluated using the KS test) and computation time are illustrated for
each proposed approach and compared with a naive parallelization method (Model Surrogates (Baseline))
that entails independent MCMC chains of duplicated model surrogates across each computer core. Figure
4(a) compares the performance of each method for different numbers of measurements (m) for fixed training
data size (T = 5000) and number of processors (P = 4). Figure 4(b) provides a comparison for varying
training data sizes (T') for a fixed number of measurements (m = 48) and number of processors (P = 4).
Finally, Figure 4(c) demonstrates the scaling of each method for different numbers of processors (P) while
holding the number of measurements (m = 48) and training data sizes (T = 5000) constant.

From Figure 4(a), it is clear that the direct sampling approach is significantly more efficient than the other
two proposed sampling methods and the baseline implementation for each different number of measurements
considered. Furthermore, the accuracy of direct sampling is comparable or better than each of the other

9 of 15

American Institute of Aeronautics and Astronautics



0.5 0.5
Model Surrogates *, m =12 Model Surrogates T =200
O (Baseline) * m =24 o (Baseline) T = 1800
0.4 Model Surrogates m = 48 0.4 Model Surrogates T = 3200
W (Partitioned) % |m=100 % (Partitioned) T = 5000
[0 Error Surrogate * m = 200 O Error Surrogate T = 9800
= 0.3 /A Direct Sampling = 0.3 /A Direct Sampling
o o
£ £ * %
o2 LIPS o2 *k
A [ ] [ ]
01 At o’ 0.1 N m e,
A, U ° 7'y [ S o0
0.0 0.0
1077 10° 10" 102 107 10° 107 102
Computation Time (sec) Computation Time (sec)
(a) (b)
0.5
Model Surrogates P=1
O (Baseline) P=2
0.4 Model Surrogates P=3
”* (Partitioned) P=4
O Error Surrogate *
= 03 /A Direct Sampling
<
o2 * *x
0.1
aa w [ S
0.0
107 10° 107 102

Computation Time (sec)

(©)

Figure 4. Performance comparison of the proposed sampling methods for the damage localization example
for (a) different numbers of measurements (with 7"= 5000 and P = 4), (b) different training dataset sizes (with
m =48 and P = 4) and c) different number of processors (with m =48 and T = 5000).

methods. Another observation is that the computation time for direct sampling and error surrogate sampling
are less sensitive to the number of measurements used in comparison with the model surrogates approach.
This is due to the fact that a surrogate is trained and evaluated for each individual measurement in the
latter approach and therefore the complexity of the method scales linearly with m. While it can be seen that
the proposed partitioned parallel approach for model surrogates sampling provides significant computational
speedup over the baseline approach, it also incurs a noticeable penalty in terms of accuracy. This source of
error will be discussed further in the next section.

Figure 4(b) demonstrates the effect of training data size on the performance of each sampling method. The
plot illustrates that direct sampling results in the most efficient solutions with accuracy that is comparable
or better than the other methods for varying training dataset sizes. As T increases, there is generally an
increase in computation time and decrease in error for each method, which is expected as the resolution
of the training grid is increased. The computation time for the model surrogates (both partitioned and
baseline) approach shows the most significant dependence on training data size. Again, partitioning the
model surrogates across processors results in a significant efficiency increase at the expense of accuracy.

Finally, the scalability of each approach for different numbers of processors is illustrated in Figure 4(c).
The partitioned model surrogates and error surrogate approaches appear to enable the best scalability in
the sense that the decrease in computation time is most significant as processors are added in comparison
to the other approaches. The partitioned model surrogates approach achieves better scalability with respect
to the baseline approach since the number of surrogates that must be evaluated on each processor during
sampling is decreased by a factor of P. However, it can be seen that the accuracy is negatively impacted
for increasing P since less data will be present on each processor, resulting in less information from which
to infer the damage during sampling. Note that the performance for the baseline and partitioned model
surrogates approach coincide for P = 1 since the methods only differ in how they are parallelized (P > 1),
so these markers coincide in Figure 4(c). With respect to the reference implementation with serial MCMC
and FE simulation that took over four days to perform damage localization here, each of the proposed
sampling approaches provide tremendous computational speedup with a relatively high degree of accuracy.
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In particular, the model surrogates, error surrogate, and direct sampling approaches provide O(10%), O(10°),
and O(10°) computational speedup, respectively.

D. Damage Characterization

The performance of the proposed sampling methods is now illustrated for general crack characterization where
simulated strain data were used to infer the location, size, and orientation of a crack in the domain (¢ =
[,y,a,0]). The performance of each sampling method is compared for different numbers of measurements
(m = {12,24,48,100}) and different training data sizes (T = {10143,19712,39780}), where a substantial
increase in grid size is necessary to accommodate the increased dimension of the unknown parameters
(d = 4). Each method was again executed on between P = 1 and P = 4 processors and reference solutions
were obtained using serial MCMC with FE simulation, drawing 10,000 samples for each approach. For this
example, the evaluation of the KS score for the approximate samples was not feasible since the computational
cost increases exponentially with dimension so qualitative comparisons against the reference solution were
used instead. An efficient and scalable implementation of the KS score computation is an area of continuing
research to rigorously study the sampling method accuracy for higher dimensions.

Figure 5 provides a qualitative assessment of the accuracy of each sampling method versus the reference
solution for damage characterization. Here, the cumulative distribution functions (CDF's) for each unknown
crack parameter are shown for each sampling method and the reference implementation for the particular
case of m = 48 measurements and T = 19712 training data points executed on P = 2 processors. The
computation time required to produce these results was 4.5 days for the reference implementation with
serial MCMC and FE simulation, 44.2 seconds for the model surrogates MCMC approach, 4.5 seconds for
the error surrogate MCMC approach, and 0.4 seconds for direct probability sampling. While each method
provides substantial computational speedup, Figure 5 shows that they also provide accurate and comparable
approximations to the probability distribution of the unknown parameters as well. Note that while only one
set of solutions are provided here for brevity, similar qualitative trends in accuracy were seen for different
parameter combinations as compared with the damage localization results in Figure 4. Here, decreasing the
number of measurements and training dataset size generally increased errors slightly for all the methods,
while varying the processors only affected the partitioned model surrogates approach, where the accuracy
decreased with increasing number of processors. Future research will seek to provide more quantitative
assessments of errors for the higher dimensional damage characterization case.

Figure 6 represents a more in depth look at the performance of the sampling methods, comparing their
computation times against the naive parallelization approach with model surrogates as a baseline. Figure
6(a) plots computation time as a function of the number of measurements (m) for a fixed training data size
(T = 19712) and number of processors (P = 4). Figure 6(b) shows computation time as a function of training
dataset size (T') for a fixed number of measurements (m = 48) and number of processors (P = 4). In Figure
6(c), the normalized computation time is shown (normalized by the time for P = 1) as a function of the
number of processors used to demonstrate the scalability of the methods for a fixed number of measurements
(m = 48) and training data size (T' = 19712). Overall, it can be seen that direct probability sampling is
the most efficient by a substantial margin, followed by the error surrogate MCMC approach, and then the
model surrogates MCMC approach. The approach consistently yields damage estimates in under one second
irrespective of the parameter {m,T, P} being varied. It is also observed that utilizing the parallel MCMC
approach,'® that partitions model surrogates across processors, provides significant computational speedup
over the baseline approach.

Figure 6(a) demonstrates the dependency of computation times on the number of measurements used
for each approach. It can be seen that the model surrogates approach displays a solution time roughly
proportional to the number of measurements since a surrogate model is trained /evaluated for each individual
sensor value. On the other hand, the number of measurements in the range tested here display a negligible
impact on the error surrogate MCMC approach and direct probability sampling. Similarly, the size of the
training dataset used shows little effect on the computation time for each sampling method, as seen in
Figure 6(b). This lack of sensitivity is primarily due to the efficient scaling of the prediction times with
training dataset size (Figure 2(c)) for the nearest neighbor regression algorithm, which was used for the
model surrogates and error surrogate approaches in this example. It is also likely that the relatively small
range in training dataset sizes considered in this example contributes to the apparent lack of sensitivity in
computation times.

Finally, Figure 6(c) demonstrates the scalability of each approach by showing the impact of the number of
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processors used on the resulting normalized computation time. While the direct sampling approach yields the
fastest computation times by far, it also shows the smallest dependence on increasing processor count. Here,
given the efficiency observed on just one processor, it is likely that the training dataset size and number of
measurements needs to be increased significantly before parallel performance gains can outweigh the inherent
communication overheads with the approach. While the remaining approaches generally show a performance
increase when using more processors, the partitioned model surrogates MCMC approach demonstrates the
best scalability as the computation time consistently improves with each added processor. This indicates
that this method has the potential to benefit applications where there is a large amount of measurement
data and access to adequate HPC resources.

E. Discussion

Some general observations and comparisons of the three proposed sampling methods will now be made in ref-
erence to the formulations and performance results from the preceding sections. First, there is an assumption
made with each method that the pre-computed/stored training dataset (Equation (10)) is large/extensive
enough to facilitate accurate approximations during diagnosis without additional evaluations of the original
model, M. This may not be feasible in cases where the unknown damage, ¢, has a high dimension, when
these parameters take a wide range of values or are unbounded, or when M is too computationally inten-
sive. It can be argued, however, that damage diagnosis is particularly well-suited for this type of approach
since typically the dimension of ¢ will necessarily be low since sensor measurements will not be sensitive
to higher order descriptions of damage (e.g. inferring crack curvature versus crack length). Furthermore,
the parameters describing damage will generally have well-defined bounds (e.g. the damage must lie within
the component geometry) that can be readily discretized. Finally, the generation of the training dataset is
done offline and can be done completely in parallel, fully utilizing available HPC resources to alleviate the
computational expense.

While it may be feasible to generate an adequate training dataset for the proposed diagnosis methods,
knowing beforehand how large it must be to be considered adequate can be more challenging. For the case
of the MCMC approach with model surrogates (Section II.B.1), it is straightforward to perform an offline
verification study between the surrogate models and the original model. More input/output pairs from
the original model can continually be added to the training dataset until a prescribed accuracy has been
obtained, along the lines of Figure 2(a). However, since both the MCMC with an error surrogate approach
(Section II.B.2) and direct probability sampling (Section II.B.3) utilize the training dataset in an online
manner after measurement data have been obtained, this same type of offline verification is not possible.
While the methods demonstrated a high degree of accuracy in the diagnosis examples presented here, a
systematic method to estimate or bound the error in the recovered probability distribution a priori will be
a worthwhile topic for future work.

Despite the potential difficulty with offline verification of its accuracy, the direct probability sampling
method is the one approach studied here that may enable real time damage diagnosis in its current state.
The approach consistently yielded solution times that were well below one second for all test cases in
both the damage localization and damage characterization examples considered here, showing potential
for time-critical discrete damage event applications. In comparison to the other methods, direct sampling
provided six orders of magnitude computational speedup over the reference serial MCMC implementation
with FE simulations and was over two orders of magnitude faster than the baseline model surrogates parallel
approach. The straightforward, brute force-nature of the approach also circumvents many of the traditional
complications associated with MCMC algorithms, including generating an appropriate initial guess, tuning
the proposal distribution parameters, fully resolving multimodal distributions, and assessing convergence.
As this style of algorithm is amenable to parallel computing, the migration of the method to use GPU
computing will be explored in future work as well.

Finally, the performance of the parallel MCMC algorithm'# for the model surrogates approach is worthy
of discussion. It was demonstrated that the method yields more efficient and scalable damage diagnosis
estimates relative to the simple baseline parallel approach, but generally at the expense of accuracy. The
errors observed here can be mainly attributed to two causes. First, the algorithm was originally designed
for big data problems involving so many measurements/observations that they may not all fit on a single
machine. Damage diagnosis applications will generally have relatively fewer measurements, and the results
presented herein showed that the accuracy generally degraded as the number of measurements decreased
and number of processors used increased. In these cases, it is likely that some or all processors may have
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too few measurement data points to generate accurate estimates of the damage parameters. This inaccuracy
could potentially be improved by developing heuristics for partitioning the sensor data appropriately among
processors in cases of sparse measurements or by estimating lower limits on the number of measurement data
points needed on each processor. The second source of errors observed with the parallel model surrogates
MCMC approach was the choice of combination algorithm used in this study. The original work proposed
three combination algorithms for creating a final collection of samples from the full-data distribution based
off each processor’s samples and the crudest, but most efficient, of these algorithms was used in this work.
Future work will examine the efficiency /accuracy tradeoffs of each of the combination algorithms for damage
diagnosis applications.

IV. Conclusion

Motivated by the Digital Twin structural health management concept, this study presented new ap-
proaches to enable high fidelity, probabilistic damage diagnosis in near real time. While the foundation of
these methods is based on finite element modeling, Bayesian inference, and surrogate modeling, the focus
was on reformulating traditional numerical sampling algorithms to leverage high performance computing to
gain substantial computational speedup. To this end, three distinct methods for accelerating sampling were
proposed and compared on the application of strain-based crack characterization. The accuracy, computa-
tional efficiency, and scalability of the methods were illustrated for two examples of damage localization and
damage characterization.

While each parallel approach demonstrated several orders of magnitude improvement in computational
efficiency over a sequential Bayesian approach with finite element simulation, the particular strengths and
weaknesses of each approach were illustrated and discussed. In particular, the direct probability discretization
and sampling approach was the fastest method on the examples tested, consistently yielding probabilistic
diagnosis estimates in well under one second, and retained a high degree of accuracy with respect to reference
solutions. To this end, the approach shows potential for enabling time-critical diagnosis for discrete damage
events for online SHM frameworks like Digital Twin. The difficulty of the direct sampling method with
respect to a more conventional model surrogates-based MCMC approach, however, is the absence of a
straightforward means of verifying/estimating the accuracy of the approximation a priori. Thus, formulating
error bounds and studying the convergence properties of the approach with respect to the size of the available
training dataset is a worthwhile area of future research.
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