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Abstract
Research has shown the importance of resilience by demonstrating its significant relationship with students'
academic achievement, future workplace performance, and subjective well-being. However, few studies
distinguish among different definitions of resilience or distinct approaches of measuring resilience. Also there
is little evidence obtained from longitudinal studies involving multiple methods in assessing resilience skills.
The current study is able to overcome those limitations and make substantial progress toward the use of
resilience scales and the understanding of the predictive power of resilience.

Placing resilience into a broader context of non-cognitive skills, the author identifies four groups of definitions
of resilience and successfully places scales of resilience into the same four categories. Using information of
nearly four thousand middle school students collected longitudinally at three time points and a resilience scale
which consists of three subscales, the author explores the psychometric property of the scale, asks questions
on how resilience changes over time and examines the predictive validity of resilience on various future
outcomes.

In order to extract the true resilience variance from each of the scale and purify the scale from the wording
effect, exploratory factor analysis and confirmatory bi-factor analysis are conducted. The author is able to
obtain a single reliable factor which achieves scalar measurement invariance across time for each of the three
subscales. However, the attempt to derive a general resilience factor fails because of the low correlations
among the three subscale scores.

This paper also presents the results on the change of resilience over time and the relationship between each of
the resilience scores and the key outcomes. By fitting different types of hierarchical linear models and growth
curve models, the author finds that resilience can significantly predict students' future grade point average and
life satisfaction. The relative predictive power of different resilience scores varies by outcome.

Results reveal that resilience is a promising predictor of students' academic learning and life satisfaction. Based
on the results, the author provides recommendations for practitioners and researchers. Implications,
limitations, and future directions of research are also discussed.
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ABSTRACT 

THE ROLE OF NON-COGNITIVE SKILLS IN STUDENTS’ ACADEMIC 

PERFORMANCE AND LIFE SATISFACTION: 

A LONGITUDINAL STUDY OF RESILIENCE 

Rui Yang 

Andrew C. Porter 

Research has shown the importance of resilience by demonstrating its significant 

relationship with students’ academic achievement, future workplace performance, and 

subjective well-being. However, few studies distinguish among different definitions of 

resilience or distinct approaches of measuring resilience. Also there is little evidence 

obtained from longitudinal studies involving multiple methods in assessing resilience 

skills. The current study is able to overcome those limitations and make substantial 

progress toward the use of resilience scales and the understanding of the predictive power 

of resilience. 

Placing resilience into a broader context of non-cognitive skills, the author 

identifies four groups of definitions of resilience and successfully places scales of 

resilience into the same four categories. Using information of nearly four thousand 

middle school students collected longitudinally at three time points and a resilience scale 

which consists of three subscales, the author explores the psychometric property of the 

scale, asks questions on how resilience changes over time and examines the predictive 

validity of resilience on various future outcomes. 



 
 
 

vii 
 

 

In order to extract the true resilience variance from each of the scale and purify 

the scale from the wording effect, exploratory factor analysis and confirmatory bi-factor 

analysis are conducted. The author is able to obtain a single reliable factor which 

achieves scalar measurement invariance across time for each of the three subscales. 

However, the attempt to derive a general resilience factor fails because of the low 

correlations among the three subscale scores.  

This paper also presents the results on the change of resilience over time and the 

relationship between each of the resilience scores and the key outcomes. By fitting 

different types of hierarchical linear models and growth curve models, the author finds 

that resilience can significantly predict students’ future grade point average and life 

satisfaction. The relative predictive power of different resilience scores varies by 

outcome.  

Results reveal that resilience is a promising predictor of students’ academic 

learning and life satisfaction. Based on the results, the author provides recommendations 

for practitioners and researchers. Implications, limitations, and future directions of 

research are also discussed. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

 

Overview of Non-cognitive Skills 

Cognitive ability refers to individuals’ ability to process information, abstract, 

reason, remember and relate. Cognitive ability can be measured by an intelligence 

quotient (IQ) test. Decades of research on education has shown that students’ cognitive 

ability is predictive of their future (e.g., Deary, Strand, Smith, & Fernandes, 2007; Brody, 

1992; Whalley & Deary, 2001). It has been well established that students’ cognitive 

ability is significantly correlated with measures of academic achievement (Deary, Strand, 

Smith, & Fernandes, 2007; Bartels, Rietveld, Van Baal, & Boomsma, 2002), highest 

degree earned (Brody, 1992), employment status (Deary et al., 2004), and actual earnings 

(Whalley & Deary, 2001). Because of the belief that cognitive ability is the cornerstone 

to academic achievement and high academic achievement is the bridge to success, it is 

ubiquitous that school systems all over the world spend much resource in training 

students’ cognitive abilities—memorization, calculation, abstract and critical thinking, 

information synthesis, and understanding of written materials, etc. For example, in the 

United States, under the federal No Child Left Behind Act, students’ academic 

achievement not only determines their advancement, it also has consequences for 

teachers, principals, and schools (Darling-Hammond, 2004; Meier & Wood, 2004). In 

East Asian countries like China, Korea, and Japan, test score serves as the dominant 

factor in the college application process (Brown & Park, 2002; Bracey, 1996).  
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However, one equally, if not more, important factor that has been largely 

neglected by most educational researchers are students’ non-cognitive skills, which 

usually mean skills not directly affected by intellectual capacity. For example, character 

strength (Park, Peterson, & Seligman, 2004), soft skills (Duncan & Dunifon, 2012), 

personal skills (Bradshaw, 1985), emotional intelligence (Goleman, 2006) are all 

concepts belonging to the general non-cognitive skills category. Nevertheless, the 

dichotomy of cognitive versus non-cognitive is fundamentally flawed. As others have 

pointed out, nobody is able to name a human behavior that involves no cognitive 

processes (Bransford, Brown, & Cocking, 2000; Borghans, Duckworth, Heckman, & 

Weel, 2008). However, since the term non-cognitive has been widely adopted, the term 

will be used in this study to represent abilities or skills which are not usually captured by 

an IQ test. 

Non-cognitive skills can be placed into two clusters: intrapersonal skills and 

interpersonal skills. Intrapersonal skills refer to motivation, resilience, time management, 

self-control, self-efficacy, optimism, and emotional stability. Interpersonal skills include 

teamwork, communication, negotiation, and relationship building. An informative rubric 

is provided by Lipnevich, MacCann, and Roberts (2013). In their study, non-cognitive 

skills in education were classified into four broad categories: attitudes and beliefs (i.e., 

motivation, self-efficacy), social and emotional qualities (i.e., teamwork, self-regulation), 

habits and processes (i.e., time management, learning strategies), and personality (i.e., 

openness to experience, agreeableness).  
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Growing Popularity among Researchers 

Recently, non-cognitive skills have received increasing attention in the field of 

education and more scholars have recognized their importance (Chamorro-Premuzic & 

Furnham, 2003; Pianta et al., 2007; Burrus et al., 2011). In 2002, with the support of the 

US Department of Education and the National Education Association, the Partnership for 

21st Century Skills was founded.  In their framework, learning and innovation skills (i.e., 

creativity and cooperation), life skills (i.e., adaptability, self-direction) and cross-cultural 

skills receive a lot of emphasis. In 2006, the Conference Board, together with three other 

institutions, published a report expressing concerns that employers viewed a majority of 

high school and college graduates as inadequately prepared to become successful in the 

workforce due to a lack of essential workplace skills or soft skills (Casner-Lotto & 

Barrington, 2006). The National Research Council (Koenig, 2011), after becoming aware 

of the importance of 21st century skills, further discussed the assessment of interpersonal 

and intrapersonal skills, e.g., communication, teamwork, self-management, and time 

management. Researchers proposed to take the results of the non-cognitive skills 

assessments into account in the higher education admission process (Kyllonen, Walters, 

& Kaufman, 2005). The Organization for Economic Cooperation and Development 

(OECD) also realized the importance of non-cognitive skills and planned on testing 

collaborative problem solving skills in the next wave of the Program for International 

Student Assessment (PISA) (OECD, 2013).  

Non-cognitive skills have also been experiencing a growing popularity among 

researchers in other fields: economists, psychologists, and sociologists. Economists study 
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non-cognitive skills from the view of education production function; psychologists in 

early childhood care more about the processes shaping the development of children’s 

non-cognitive skills; industrial and organizational psychologists pay more attention to 

personality traits predicting job performance. Sociologists focus on gender and ethnicity 

gaps in non-cognitive skills. Although researchers from different disciplines pursue 

particular research questions, their studies all suggest that non-cognitive skills are critical 

to students’ success.  

Multiple institutions have conducted systematic reviews of studies devoted to 

non-cognitive skills. The Research Triangle Institute, collaborating with the Spencer 

Foundation, conducted a review of studies that had examined relationships between 

various non-cognitive skills and academic outcomes (Rosen et al., 2010). In their review, 

Rosen et al. (2010) focused on seven non-cognitive skills: motivation, effort, self-

regulated learning, self-efficacy, academic self-concept, antisocial and pro-social 

behavior, coping and resilience. The University of Chicago Consortium on Chicago 

School Research, in partnership with Lumina Foundation and Raikes Foundation, 

conducted another review where they categorized non-cognitive factors into five groups 

and provided a framework on how the groups related to academic performance as well as 

how the groups were connected to each other (Farrington et al., 2012). A third review 

was funded by the Education Endowment Foundation and the Cabinet Office and led by 

researchers from the Institute of Education at the University of London (Gutman & 

Schoon, 2013). In addition to summarizing findings related to seven non-cognitive skills 

(Self-perceptions, motivation, perseverance, self-control, metacognitive strategies, social 
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competencies, and coping), Gutman & Schoon (2013) evaluated each factor on its quality 

of measurement, malleability, and the associated strength of evidence, which provided 

helpful guidance to researchers, policy makers, and practitioners.  

 

Literature on Non-cognitive Skills 

As discussed above, non-cognitive skills have attracted researchers from diverse 

background. There is mounting evidence that non-cognitive skills are not only key to 

students’ academic achievement, their impacts are crucial throughout life. Instead of 

structuring the following short review according to the specific non-cognitive factor 

under study, the evidence is organized by outcomes area. 

On academic achievement 

Non-cognitive skills are linked to academic achievement. As mentioned above, 

Farrington et al. (2012) introduced a framework to categorize non-cognitive skills and 

manifest their connections with each other and with academic achievement. There were 

five factors in the framework: academic mindsets (e.g., believing in the value of study, 

believing that abilities can grow with effort), academic perseverance (e.g., grit, delayed 

gratification, self-control), academic behaviors (e.g., participating, doing homework, 

organizing materials), learning strategies (e.g., study skills, goal setting), and social skills 

(e.g., cooperation, empathy). They argued that academic mindsets were the most 

fundamental factor because it affected perseverance, learning strategies and social skills. 

Those three factors plus academic mindsets had an impact on academic behavior. 
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Academic behavior served as a mediating variable between the prior four factors and the 

academic achievement outcome.  

The links between different factors and academic achievement were supported by 

several studies. For example, children with good social skills were more likely to 

maintain healthy relationships with their peers and teachers, hence having more positive 

feelings about school and being more motivated toward learning (Ladd, Birch, and Buhs, 

1999). Moreover, teachers might have different expectations for students with different 

levels of non-cognitive skills, which would transfer to differentiate trajectories in students’ 

academic growth (Espinosa and Laffey, 2003; Arnold & King, 1997). Also, non-

cognitive skills like conscientiousness and emotional stability affected students’ learning 

styles and thus influencing their GPAs (Komarraju et al., 2011). On the opposite side, 

children with more behavioral problems were more likely to be inefficient in the 

classroom setting and suffered in their learnings (Duncan et al., 2007; Claessens, Duncan, 

& Engle, 2009).  

Research has demonstrated that general non-cognitive skills explain a salient 

amount of variance of students’ learning outcomes (Robbins et al., 2004; Tracey & 

Sedlacek, 1984; Campbell, Voelkl, & Donahue, 1997; Crede & Kuncel, 2008). More 

recently, Duckworth (Duckworth, 2013) showed that a measure of students’ grit 

accounted for about 4% of the variance in their GPA and students’ self-regulation skills 

successfully predicted their grade change (Duckworth, Tsukayama, & May, 2010). 

Duncan et al. (2007) revealed that attention skills significantly predicted achievement 

scores above and beyond cognitive abilities. Bowden (2013), in her analysis of the NELS 
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data, found that 12% of the black-white achievement gap could be accounted by the gap 

in their non-cognitive skills. Borghans, Meijers, & Ter Weel’s (2008) study found that 

students’ performance in cognitive tests depended significantly on non-cognitive skills, 

especially on their levels of motivation to do well on the test. MacCann, Fogarty, & 

Roberts (2012) found that time management skills were significant predictors of 

achievement. Blackwell, Trzesniewski, & Dweck (2007) studied educational 

interventions which targeted the concept of growth mindsets (the belief that talents and 

abilities can be developed through effort and persistence). They found that students with 

growth mindsets had better academic outcomes years later.  

On workforce and life outcomes 

Effects of non-cognitive skills extend far beyond academic achievement obtained 

during school years. Non-cognitive skills are related to people’s employment status, job 

performance, and success in life. Heckman & Rubinstein (2001), by comparing high 

school drop-outs who passed the General Education Development (those who passed 

would be awarded a certificate of high school equivalency) with high school graduates, 

found that the graduates, despite showing no difference in cognitive abilities with drop-

outs that passed the GED, were more successful in the labor force. In another study, 

Heckman, Stixrud, & Urzua (2006) showed that disadvantaged children who participated 

in the Perry Preschool Intervention Program, which aimed at raising the children’s 

intelligence, had better life outcomes. However, further investigation found that the 

program’s effects on students’ learning outcomes vanished very soon. What the program 

successfully improved were children’s non-cognitive abilities: personal behavior and 
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social development. Based on the findings from the two studies, Heckman, Stixrud, & 

Urzua (2006) concluded that non-cognitive skills, e.g., conscientiousness, perseverance, 

sociability, and curiosity, mattered for children’s later success in life (Heckman & 

Rubinstein, 2001; Heckman, Stixrud, & Urzua, 2006). Barrick and Mount (1991), by 

investigating the relationship between the big-five (extraversion, conscientiousness, 

agreeableness, emotional stability, openness to experience) personality factors and job 

performance, claimed that conscientiousness, agreeableness, and emotional stability were 

all positively related to job success. Their study stimulated a wave of studies examining 

the connection between the five-factor model and job performance (Baker, Victor, 

Chambers, & Halverson, 2004; Brunello & Schlotter, 2011; Abe, 2005; Poropat, 2009; 

Hough & Oswald, 2008). Blanden, Gregg, & Macmillan (2006) also established a 

significant relationship between non-cognitive skills and social-economic status. 

On subjective well-being 

Students’ academic achievement, future job performances and earnings are all 

important outcomes when it comes to evaluating the quality of education and the 

effectiveness of an educational system. However, earning high scores, degrees, and 

money are only parts of the goals. Education is believed to improve people’s well-being 

and to promote happiness, which has been ignored by many education researchers. In the 

United States, mental health and psychological well-being have been raised as issues of 

the education system (Ryff, 1989). Not all the students hold a positive attitude toward 

school and they incur all kinds of mental problems despite the development of cognitive 

skills. Similar situations prevail in other countries (Hu, 1994). While subjective well-
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being depends on a variety of factors, including income (Easterlin, 1974; Shin & Johnson, 

1978; Diener & Oishi, 2000), marriage status (Andrews & Withey, 1976; Stutzer & Frey, 

2006), health status (Campbell, 1976; Van Praag, Frijters, & Ferrer-i-Carbonell, 2003), 

and ethics (James, 2011; Frey & Stutzer, 2002), nurturing students’ non-cognitive skills 

(i.e., social skills, stress management, emotional stability) seems a promising solution to 

the problem.  

Steel, Schmidt, & Shulz (2008) demonstrated that personality variables accounted 

for 40% of the variance in subjective well-being. Singh & Jha (2012) showed that faculty 

members’ emotional intelligence was significantly related to their well-being, as 

measured by occupational stress. Other non-cognitive factors that were proven to carry 

significant correlations with well-being include emotional reactivity (Tellegen, 1985; 

Rusting & Larsen, 1998), extraversion and neuroticism (Headey & Wearing, 1992; 

DeNeve & Cooper, 1998; Lucas & Fujita, 2000), adaptation to environment (Dienier, 

Oshi, & Lucas, 2003), and striving for goals (Emmons, 1986).  

Experimental evidence 

As discussed, non-cognitive skills are believed to be updated for human beings 

because they affect external criteria (e.g., academic achievement, income) and internal 

criteria (well-being). However, most of the studies described above were correlational or 

quasi-experimental studies that did not establish causal relationships. Described below 

are interventions tested with true experimental studies.  

Those interventions aimed to improve one or more areas of non-cognitive skills. 

The focus is on examining whether the change of one or more non-cognitive factors 
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resulted in changes in outcomes.  Therefore, experimental studies which did not measure 

external criteria are not included.  

The first intervention is a mindfulness-based intervention developed to improve 

behaviors and mental health conditions through the enhancement of children’s attention 

(Semple, Lee, Rosa, & Miller, 2010). Three months after the intervention, participants 

randomized into the treatment group were found to have significantly less attention 

problems and less behavioral problems. Moreover, there was a significant reduction in 

the anxiety symptoms for the children in the treatment group who had elevated levels of 

anxiety before the intervention (Semple, Lee, Rosa, & Miller, 2010). A second 

intervention is a one-on-one mentoring program intended for 10- to 16-year-olds to 

improve their self-concept, attitudes, and pro-social skills (Grossman & Tierney, 1998). 

Grossman & Tierney (1998) found that students randomized into the treatment group 

were less likely to get involved in anti-social activities, had better relationship with their 

peers, and had modest but significant gains in GPA. Since the mentoring relationship 

might have had a positive impact on unmeasured areas as well, the improvement in 

academics could not be attributed to the enhancement of social skills. A third study was a 

meta-analysis involving 62 service learning programs and 11,837 students. The goal of 

the service learning programs was to improve students’ social skills, attitudes toward 

school, and civic engagement. Out of the 62 programs, 21 used randomized controlled 

designs. It was found that for those 21 studies, students in the treatment group had 

significant gains in their social skills and their attitudes toward school and learning, as 

well as their academic performance (Celio, Durlak, & Dymnicki, 2011). The fourth study 
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was a resilience program for children with depressive symptoms (Yu & Seligman, 2002). 

Because Yu & Seligman (2002) found that a pessimistic explanatory style significantly 

predicted depressive symptoms, the intervention focused on teaching children 

optimism—how to use more optimistic explanatory style when facing difficult situations. 

They found that children in the treatment group used the optimistic explanatory style 

significantly more than children in the control group and it mediated the prevention of 

depressive symptoms. Children in the treatment group had less depressive symptoms in 

the follow-ups. 

As discussed, accumulating evidence suggests that non-cognitive skills can be 

critical to students’ academic achievement, job performance and well-being. The current 

study focuses on one specific area of non-cognitive skills—resilience.  

 

Resilience 

Definition of resilience 

Different researchers give different definitions of resilience and each definition 

focuses on one certain aspect of resilience. The definitions of resilience can be placed 

into four groups to highlight differences and connections among the definitions. The four 

categories are the trait, the process, the coping, and the outcome. 

In the first category, resilience is defined as a set of personal characteristics. For 

example, Jacelon (1997) defines resilience as the ability to spring back in the face of 

adversity. Ahern et al. (2006) defines resilience as positive personality characteristics that 

enhance individual adaptation. Researchers in the second group define resilience as a 
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process which involves the interaction between risk factors and protective factors. For 

example, Luthar, Cicchetti, & Becker (2000, p. 543) defines resilience as “a dynamic 

process encompassing positive adaptation within the context of serious adversity”. 

Egeland, Carlson, & Sroufe (1993) also treat resilience as a capacity that develops over 

time in the context of person-environment interactions. Category two definitions, which 

consider the effects of both internal characteristics and environmental factors, can be 

viewed as a generalization of the category one trait definition. Category three definitions 

focus on the coping aspect of resilience. Coping, according to Lazarus & Folkman (1984, 

p. 141), can be defined as “constantly changing efforts to manage specific external and 

internal demands that are appraised as taxing or exceeding the resources of a person”. For 

category three, resilience can be referred to as a wide set of skills and purposeful 

strategies to cope with stress. For example, Wagnild and Young (1993) define resilience 

as effectively coping with change and misfortune and Wolchik & Sandler (1997) view 

resilience as successfully coping with stress in everyday life. Finally, in category four 

resilience is treated as an outcome. Tugade & Frederickson (2004) define resilience as the 

ability to bounce back from negative experiences. Sapienza & Mastern’s (2011) define 

resilience as at risk people achieving better than expected outcomes. Rosen et al.’s (2010) 

definition (positively adapting under stressful situation, and Martin’s (2013) definition of 

overcoming challenges and difficulties that are part of everyday life both fit this category.   

Definitions of resilience can also be distinguished one from another in terms of 

the target population. Some researchers restrict the possession of resilience to only a 

group of individuals who are at risk or are facing serious trauma or adversity. Other 
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researchers argue that resilience is a capacity to overcome challenges and difficulties that 

are part of everyday life (Martin, 2013; Wolchik & Sandler, 1997).  

In the current study, resilience is defined as how well an individual deals with 

stressful situations, challenges and setbacks. The author does not restrict resilience to a 

special group of at-risk people or require the existence of adversity as a prerequisite for 

people to show resilience. In today’s world, competition is ubiquitous; all students are 

facing a higher level of pressure than ever before. Pressure comes from various sources: 

physical changes (Steinberg, 2008), the emergence of a sense of identity (Hankins, 

Roberts & Gotlib, 1997), family crisis, the burden to do well in class, and undesirable 

interactions with peers and teachers (Lazarus & Folkman, 1984; McMahan, 2009), etc. 

Success in school and later in life requires people to effectively handle stressful situations 

and frustrations. Not all children get a chance to fight against adversity in early stages of 

their lives. However, they all face difficult circumstances and setbacks. Whether students 

overcome challenges and utilize setbacks as step-stones for improvement separates them 

from those who do not. Whether children persist or give up in challenging situations can 

cumulatively make a material difference to their learning (Boekarts, 1993; Skinner & 

Pitzer, 2012). If students fail to bounce back under pressure, it might cause problems 

related to their learning and their psychological well-being (Masten & Coatsworth, 1998; 

Tinsley & Spencer, 2010).  

Figure 1 below summarizes the relationships among different aspects of resilience. 

The hypothetical framework is not tested in this study and therefore only serves to 

illustrate the connections among different aspects of resilience. On one end of the causal 
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chain are the trait aspects (personal characteristics and beliefs) and process aspects 

(contextual and environmental factors) of resilience.  These do not directly measure 

resilience but to some degree may shape resilience through effects on more specific 

strategies and behaviors, which are the coping aspects of resilience. On the other end of 

the causal chain are the outcome aspects of resilience, which synthesize all other aspects 

of resilience and have a direct effect on outcomes. Besides the direct effect, the resilience 

outcome also moderates the relationship between stressors and outcomes, indicating that 

for students with various levels of resilience, the effects of setbacks and challenges on 

their learning and well-being can differ. The coping aspect of resilience fit the central 

position of the framework. Not only does it mediate the effects of personalities/belief and 

protective factors on the outcome, it contributes to the outcome itself.  

 

 

Figure 1: Relationship among different aspects of resilience 
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Importance of resilience 

As can be seen from the previous definition section and the later measurement 

section, resilience is affected by a variety of factors, including individuals’ personality 

characteristics, their beliefs and self-perception, their coping strategies, social skills and 

also their environmental factors (Chan, Yeh, Peng, & Yen, 2009; Rak & Patterson, 1996). 

Below I summarize the evidence on the importance of resilience according to the 

different aspects examined. Within each aspect of resilience, there is evidence on the 

relationship between resilience factors and two important outcome measures—academic 

achievement and subjective well-being.  

Based on the teacher-rated conscientiousness, agreeableness, and ego-resiliency 

of 445 ethnically diverse children, Kwok, Hughes, & Luo (2007) discovered that a latent 

construct of resilience significantly predicted students' achievement one year later 

controlling for previous achievement and IQ. Studies (Benson, 2002; Brooks, 2006; 

Henderson & Milstein, 2003) also found that strengthening the resilience of students 

could help them reach their potential and even prevent dropout.  

Unlike the above studies which directly measure people’s abilities to deal with 

stress, research also reveals traits related to resilience. For example, Gerber et al. (2013) 

studied the construct of mental toughness (the quality which determines how people 

respond to stress and challenges) and concluded that after controlling for confounds, 

baseline mental toughness predicted depressive symptoms and life satisfaction over time.  

Other traits studied by researcher include goals and aspirations (Dickson & MacLeod, 

2004), emotional intelligence (including self-control, and the ability to regulate emotions) 
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(Tugade & Frederickson, 2008; Garmezy, 1974), self-efficacy (Ehrenberg, Cox, & 

Koopman, 1991; Benard, 1991), and problem solving (Frye & Goodman, 2000), all of 

which help promote positive development of adolescents and prevent depression.  

Contextual factors also play a vital role in resilience. Studies demonstrated that a healthy 

and supportive relationship between students and their families and peers could help 

those students better deal with stress and challenges (Hamre & Pianta, 2001; Jackson & 

Warren, 2000).  

Besides the studies demonstrating the importance of the personal characteristic 

and the process aspects of resilience, there were also studies which established predictive 

relationships between the coping aspects of resilience and key outcomes (Newman et al., 

2000; Plybon et al., 2003; Crean, 2004). Newman et al. (2000), by interviewing 29 urban, 

low income and minority students who had success in academics, found a common 

characteristic was good coping strategies (e.g., be dedicated, keep up with homework, 

hang with the right people, etc.). Similar findings were obtained by Plybon et al. (2003). 

They analyzed a sample of 84 African American girls from urban families and showed 

that the use of supportive coping was significantly linked with better academic 

achievement. Successful coping skills were also related to well-being. With a sample of 

304 inner city Latino students, Crean (2004) used structural equation modeling to test the 

mediating effects of adaptive coping between social support/social conflict and students’ 

academic competence as well as psychological well-being. He found that adaptive coping 

strategies were negatively related to mental and behavioral problems.  
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As shown above, resilience research explores personalities, attitudes and beliefs, 

protective factors, and behaviors that result in positive outcomes despite the risk for 

maladjustment (Luthar, Sawyer, & Brown, 2006; Masten, 2004). However, there are 

several weaknesses in the studies mentioned above. First, researchers did not distinguish 

among different aspects of resilience and treated them all in the same way. Second, all 

the studies used only a single measure of resilience, therefore capturing only part of 

resilience. Third, most of the studies measured resilience at only one point in time and 

measured the outcomes either at the same time or at a later time point, resulting in a lack 

of ability to examine the change of resilience across time or the longitudinal effects of 

resilience on outcome measures. The current study, due to features of both the design and 

the measurement of resilience, is able to address all the weaknesses mentioned above. 

Measurement of resilience 

Before introducing the instrument used in the current study, some popular 

resilience scales that have been utilized by researchers and practitioners in recent decades 

will be reviewed. Two efforts to review and compare different resilience scales have been 

undertaken (Ahern et al., 2006; Windle, Bennett, & Noyes, 2011). Both focused on 

comparing the concurrent and predictive validity of the resilience scales while ignoring 

the theoretical foundations on how those scales were constructed.  

As discussed previously, there are four different categories of definitions of 

resilience. Those four definitions each focus on one aspect of resilience: the trait aspect, 

the process aspect, the coping aspect, and the outcome aspect. Corresponding to the four 
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aspects of resilience, there are four different approaches to measure resilience: the trait 

approach, the process approach, the coping approach, and the outcome approach.  

The trait approach is the most common one. It aims to measure personal 

characteristics that are strongly related to resilience. Usually items under such scales 

contribute to different factors affecting resilience. Connor-Davidson Resilience Scale 

(CD-RISC) (Connor & Davidson, 2003), Adolescence Resilience Scale (ARS) (Oshio et 

al., 2002), and Resilience Scale (RS) (Wagnild and Young, 1993) are all constructed 

using this approach. The second way to build a resilience scale is to focus on the 

resilience process—how the protective factors help individuals deal with pressure and 

setbacks. It has been well documented that protective resources can interact with risk 

factors to influence health-enhancing behaviors (Davey, Eaker, & Walters, 2003; Hunter, 

2001). Protective factors refer to environmental factors, for example, family bond, 

friendship, support in the community, and caring in the school. They sometimes include 

personal traits too as internal protective factors. Scales in this category include the 

Resilience Scale for Adults (RSA) (Friborg et al., 2003), the Healthy Kids Survey (HKS) 

(Hanson & Kim, 2007), the Resilience Scale for Children and Adolescents (RSCA) 

(Prince-Embury, 2005), and the Baruth Protective Factors Inventory (BPFI) (Baruth & 

Caroll, 2002). Thirdly, the coping approach to measure resilience focuses on respondents’ 

specific set of skills and purposeful strategies in response to stress and challenges. As 

discussed before, coping is defined as constantly changing efforts to manage demands 

that exceed the resources of a person (Lazarus & Folkman, 1984). Scales grouped into 

this category include the brief resilience coping scale (BRSC) (Sinclair & Wallston, 
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2004), Coping Responses Inventory—Youth Form (Moos, 1995), and the Children’s 

Coping Questionnaire (Fedorowicz, 1995). Finally, the fourth way to construct a 

resilience scale uses a more direct outcome approach. Items written by researchers here 

indicated an effect of exposure to stress. The brief resilience scale (BRS) (Smith et al., 

2008) stands for scales in this category.   

Trait Approach 

When developing the Connor-Davidson Resilience Scale (CD-RISC), Connor and 

Davidson (2003) first summarized the psychological characteristics of resilient people. 

Their summary was drawn from three different sources. The first is Kobasa (1979)’s 

work with the construct of hardiness. Connor and Davidson believed that resilient people 

tended to view change as an opportunity and they had higher levels of commitment and 

control. A second group of characteristics, including self-efficacy, close and secure 

attachment to others, and sense of humor, came from Rutter’s (1985) work. The third 

source was Lyon’s (1991) study of people recovering from trauma from which Connor 

and Davidson extracted characteristics like patience and tolerance of negative effects. 

Besides those three sources, Connor and Davidson (2003) also added two more 

characteristics—optimism and hope—resulting in a list of 18 psychological 

characteristics, on which they developed their scale. The resulting CD-RISC was made of 

25 items; the logic behind the scale was to assess resilience by measuring its 

characteristics (Richardson, 2002) instead of measuring the resilience process or the 

theory of resilience. This way of measuring resilience was based on Mrazek and 

Mrazek’s (1987) cognitive appraisal theory of resiliency, in which they assumed 
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resiliency emerged from personal characteristics and beliefs which enable people to use 

particular skills in stressful situations. Some sample items from the CD-RISC are: Able to 

adapt to change; See the humorous side of things; Best efforts no matter what; Strong 

sense of purpose; Think of self as strong person. Connor and Davidson (2003) also 

conducted a factor analysis of their resilience scale to test its construct validity. They 

found that a four-factor structure fit the data the best. The four factors were optimism, 

future orientation, belief in others, and independence, which were consistent with the 

characteristics they used to develop the items. 

A second scale applying the same approach to measure resilience is the 

Adolescence Resilience Scale (ARS) developed by Oshio et al. (2002). Similar to Connor 

and Davidson, Oshio et al. (2002) reviewed some key earlier studies (e.g., Bandura, 1989) 

and created items to reflect three psychological characteristics: novelty seeking, 

emotional regulation, and positive future orientation.  Although Oshio et al. (2002) 

believed their items would reflect a three-factor structure, they used a total score of all 

items to predict scores on several health scales. The three factor hypothesis was not tested.  

The scale includes a total of 21 items. Some illustrative items are: I seek new challenges; 

I find it bothersome to start new activities; I can stay calm in tough circumstances; I lost 

interest quickly; I have difficulty in controlling my anger; I am sure that good things will 

happen in the future; I feel positive about my future. 

A third resilience scale using the same theoretical approach was the Resilience 

Scale (RS) developed by Wagnild and Young (1993). Their conceptual foundation 

consisted of the following five characteristics: perseverance, equanimity, meaningfulness, 
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self-reliant, and existential aloneness. They tested the scale’s internal consistency, 

concurrent validity and construct validity and concluded that RS performed well under 

those criteria (Wagnild, 2009). RS included a total of 25 items. Some of the sample items 

were shown below: When I make plans I follow through them; I feel proud that I have 

accomplished things in my life; I have self-discipline; I keep interested in things; My life 

has meaning; When I’m in a difficult situation, I can usually find my way out of it. 

Process Approach 

The second approach of building a resilience scale focuses on measuring the 

protective factors which play an important role in the resilience process. Scales in this 

category assess a variety of protective resources: peer relationship, teacher support, 

parental support and expectation, etc. Besides those environmental resources, some scales 

in this category attempt to measure some personal characteristics similar to scales in the 

first category. Researchers view those characteristics as internal resources that might help 

individuals fight against setbacks and challenges.  

The Resilience Scale for Adults (RSA) is one scale belonging to this group. 

Developed by Friborg et al. (2003), RSA consists of 37 items measuring five factors that 

are assumed to have an impact on resilience. The five factors are personal competence, 

social competence, family coherence, social support, and personal structure. While 

personal competence, social competence, and personal structure measure the personal 

characteristics of individuals, the other two factors target the environmental protective 

factors of resilience.  
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The Healthy Kids Survey (HKS) (Hanson and Kim, 2007) serves as another 

example of scales in this category. It measures both the environmental resilience assets 

(i.e., caring relationships, high expectations, and meaningful participation in schools, 

home, and community) and the internal resilience assets for children (i.e., empathy, self-

efficacy, self-awareness). Illustrative items are: At my school, there is a teacher or some 

other adult who really cares about me; At home, there is a parent who always wants me 

to do my best; I can work out my problems; I feel bad when someone gets their feelings 

hurt; There is purpose to my life. 

Another scale sharing the features is the Resilience Scale for Children and 

Adolescents (RSCA) (Prince-Embury, 2005).  The scale consists of three subscales: sense 

of mastery which measures optimism, self-efficacy, and adaptability; sense of relatedness 

which measures trust, support, comfort, and tolerance; Emotional reactivity, which 

measures sensitivity, recovery, and impairment. Some sample items are: If I try hard, it 

makes a difference; If something bad happens, I can ask my parents for help; When I am 

upset, I do things that I later feel bad about; When I get upset, I stay upset for several 

days. 

The 16-item Baruth Protective Factors Inventory (BPFI) (Baruth & Caroll, 2002) 

is yet another scale in this category. BPFI measures the construct of resilience by 

assessing four primary protective factors: adaptable personality, supportive environments, 

fewer stressors, and compensating experiences. 
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Coping Approach 

The third group of scales focuses on the measurement of a specific set of skills 

and purposeful strategies to deal with stress and challenges. The Brief Resilience Coping 

Scale (BRCS) (Sinclair & Wallston, 2004) is a 4-item scale designed to measure 

tendencies to cope with stress in a highly adaptive manner (i.e., I actively look for ways to 

replace the losses I encounter in life). The Coping Responses Inventory—Youth Form 

also measures resilience from the same angle (Moos, 1990). The inventory measures four 

factors of resilience coping: problem-solving action, positive reappraisal, emotional 

discharge, and cognitive avoidance. Another scale sharing similar characteristics is the 

Children’s Coping Questionnaire (CCQ) (Fedorowicz, 1995). CCQ asks students what 

they would do in different stressful situations. The author developed items according to 3 

coping categories (approach coping, non-constructive coping, and avoidance coping) and 

each category further included 3-6 sub categories. Some illustrative items are: I try to find 

out more about what the problem is (approach coping); I let all my feelings out 

(avoidance coping); and I get mad and yell at someone (non-constructive coping).  

Outcome Approach 

Unlike all the scales discussed before which assess either personal characteristics 

or protective resources, the Brief Resilience Scale (BRS) takes a more direct approach to 

measuring resilience (Smith et al., 2008). Smith et al.’s (2008) philosophy was to develop 

a unitary scale made up of as few items as possible instead of items that try to measure 

different aspects of resilience resources (Windle, Bennett, & Noyes, 2011). Some sample 

items are: I tend to bounce back quickly after hard times; I have a hard time making it 
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through stressful events; It is hard for me to snap back when something bad happens; I 

usually come through difficult times with little trouble. 

 

Current Study 

Overview of the current study 

Data used for the current study comes from the Mission Skills Assessment (MSA) 

project, a longitudinal study aiming to measure a variety of students’ non-cognitive skills 

and to monitor their changes over time. MSA is funded by the Independent School Data 

Exchange (INDEX). INDEX is a not-for-profit organization through which member 

schools share accurate and meaningful educational and operational information in order 

to promote students’ learning and development. MSA is administered to middle school 

students (6th to 8th grade) in the participating INDEX schools. The Center for Academic 

and Workplace Readiness and Success (CAWRS) at Educational Testing Service (ETS) 

supports multiple phases of the study: design, item development, pilot testing, data 

analysis and report. MSA was initiated in the fall of 2011 with 18 independent schools 

participating in the first wave of data collection. Fourteen Schools participated in the 

second wave of data collection in spring 2012. The number of schools increased to 22 in 

fall 2012 for the third wave. A fourth wave of data collection took place in winter of 2013 

with more than 70 schools. The study features a multi-trait multi-method design, for 

which different methods (self-ratings, teacher-ratings, situational judgment tests (SJT), 

bio-data) are used to measure students’ development in six non-cognitive areas. The six 

non-cognitive skills measured are: teamwork, time management, resilience, motivation, 
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ethics, and creativity. Besides students’ non-cognitive skills, the data set includes 

demographic information (including age, gender, and ethnicity), achievement data, life 

satisfaction, mathematics and science engagement, and interests in academic areas. The 

surveys and questionnaires are administered to students and teachers online, usually in 

the middle of a semester. At the end of the semester achievement data for students is 

collected from each participating school. The current study focuses on resilience. 

Demographic data, achievement data, life satisfaction information as well as all items 

from the resilience scale are used in the study. 

Data 

A total of 22 schools and 3,882 students participated in the study. For wave one, 

there are 2078 students from 18 schools. For wave two, there are 1678 students from 14 

schools and for wave three there are 2641 students from 22 schools. Table 1 below 

summarizes the basic information. As can be seen from the table, about half of the 

participants were male and half were female. Not many students were from minority 

ethnicity groups. Ethnicity information was not collected from students in the second 

wave of data collection. For students in wave two who were also in either wave one or 

three, information from those waves were used to fill in the wave two missing ethnicity 

data. However, for those who only participated in the second wave of data collection, the 

information on their ethnicity was missing. 
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Table 1:  

Descriptive statistics of participants 

 

Figure 2 below shows the pattern of students’ participation. Grid means 

participation and blank represents absence/missing. For example, the first column 

represents the students who participated in the study since wave 1 and stayed in the study 

in all three waves of data collection. Out of all 2078 students who took the survey in the 

first wave, 1491 remained in the study through wave 2 and 852 students participated in 

all three waves. A major reason for the large attrition rate was graduation. Most of the 

students in the 8th grade graduated in the next academic year therefore becoming 

ineligible for continued participation.  

 

Figure 2: Patterns of Student Participation 

Descriptive Statistics Time 1 Time 2 Time 3

# Students 2078 1678 2641

# Schools 18 14 22

Male 0.49 0.50 0.50

White 0.72 N/A 0.63

Black 0.05 N/A 0.06

Hispanic 0.02 N/A 0.02

Asian 0.06 N/A 0.07

Other 0.14 N/A 0.21

Wave 1

Wave 2

Wave 3

# Students 852 189 639 398 84 103 1517
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Instrumentation 

The resilience scale used in this current study is made up of three subscales. All 

items in the three subscales can be viewed in later sections. The first subscale is a student 

self-report scale of thirty-six four-point likert items. The four choices are “Never or 

Rarely”, “Sometimes”, “Often”, “Usually or Always”. The self-rating subscale is 

developed using a combination of the trait approach and the outcome approach. It 

includes items measuring both the personality aspect of resilience (for example, items 

measuring self-efficacy or emotional stability) and the direct outcome of resilience. Some 

sample items are: When I try, I generally succeed; I remain calm under pressure; I get 

upset easily; I overcome challenges and setbacks; I give up easily when faced with an 

obstacle. The second scale is a teacher-report scale of eight four-point likert items. 

Similar to the self-rating subscale, it combines the trait approach and the outcome 

approach to measure resilience. Some items under this subscale are: (The student) 

remains calm under pressure; (The student) overcomes challenges and setbacks. The 

third subscale is a student-reported situational judgment test (SJT) scale of 32 four-point 

likert items. In the SJT, students were presented with a hypothetical situation and were 

asked about their responses under the situation. An example of an SJT test is presented 

below: 

You are feeling stressed about the amount of homework that you have been given 

by your teacher(s). Below are some ways that you might think, feel, or act in this 

situation, right at the time that you feel stressed-out. Rate how often you do each activity 
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when you feel stressed. How do you think, feel, or act when you are stressed from having 

too much homework to do?  

Some example items associated with this situation are: I blame myself for having 

put off my homework; I go out and buy myself something; or I try to get organized to get 

on top of my homework. All the items are on a four-point likert. The items in the SJT 

were designed to be aligned to one of the three general coping strategies: emotion-

focused coping, avoidance-focused coping, and problem-focused coping.  

Review of instrument 

In what follows, the literature is used to assess the strengths and weaknesses of 

each of the three methods to assess resilience. Not surprisingly, the assessment of 

resilience and more broadly, of non-cognitive skills remains an unsettled issue among 

researchers. Lipnevich, MacCann, & Roberts’s (2013) study provides a brief introduction 

of both traditional and novel ways for measuring non-cognitive skills. Conventional 

methods usually include self-assessment, other-ratings, bio-data, and interviews. Novel 

methods include situational judgment, day reconstruction method, implicit association 

test, forced-choice tests, and the Bayesian truth serum. Each method has its unique 

advantages and faces unique challenges regarding different criteria of psychometrically 

sound measures. Here the author focuses on the three methods applied to measure 

resilience in the current study. 

Self-ratings 

Although self-ratings have been used by people for a long time and are easy to 

design and administer, a considerable weakness to this method is the possibility of faking 
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answers (Burrus et al., 2011). Viswesvaran and Ones’ (1999) meta-analysis demonstrated 

that people could manipulate their personality scores if needed. Birkeland et al. (2006) 

showed that for selection purposes, between 20% and 40% of people faked their answers 

in personality tests. By asking job applicants to complete the same non-cognitive scale 

which they took a month ago during real job application process, Griffith, Chmielowski, 

& Yoshita (2005) found that between 30% and 50% of applicants intentionally elevated 

their scores when applying for a job. More detailed descriptions of the advantages and 

disadvantages of self-ratings can be found in Paulhus (1991) and a thorough discussion of 

response bias related to self-ratings can be found in Lucas & Baird (2006). Faking also 

poses threats to biodata measures (Schmitt & Kunce, 2002; Cullen, Sackett, & Lievens, 

2006) and interviews (Ellis, West, Ryan, & DeShon, 2002; Levashina & Campion, 2006).  

In the data set analyzed here, no high stakes are attached to the results. Thus, the 

motivation to fake answers may be small. 

Teacher-ratings 

Kenny’s (1994) work provides a comprehensive framework of interpersonal 

perception. His study demonstrated that by capturing the richness of social interaction, 

interpersonal perception enhanced the traditional measure of individual perception. 

Crandall (1976) used both self-ratings and other-ratings to measure respondents’ quality 

of life. He found the convergent validity was .33 and suggested that researchers could use 

other-ratings as validation criteria for self-ratings. Wagerman and Funder (2007) 

examined the predictive power of both self-rated and peer-rated conscientiousness. They 

found the two measures had a correlation of .39 and both of them significantly predicted 



 
 
 

30 
 

 

GPA 3 years later. But the peer-rated measure had a stronger relationship than the self-

rated measure. In another study conducted by Dalley, Bolocofsky, & Karlin (1994), both 

self-ratings and teacher-ratings were used to measure students' social competency. They 

found that on average, self-ratings were higher than teacher-ratings. It was not obvious 

which rating was consistently more valid than the other. Burrus et al. (2011) suggested 

people not make an arbitrary decision between the two because often the two methods 

each explained unique variance of the outcome variable.  

Situational judgment test 

Situational judgment test (SJT) is becoming increasingly popular in measuring 

non-cognitive constructs (Hanson & Ramos, 1996; McDaniel et al., 2001). During the 

administration of a SJT, individuals are presented with a specific situation and asked to 

select the most appropriate response from a pool of possible answers. SJTs were believed 

to reflect more complex judgment processes thus overcoming limitations to validity when 

compared with traditional assessment methods (Lipnevich, MacCann, & Roberts, 2013). 

Lievens & Coestsier (2002) showed that SJTs were able to better predict success in 

college compared with cognitive tests. Oswald et al. (2004) also demonstrated that SJTs 

were able to provide incremental validity when used in combination with standardized 

test scores. Empirical results also indicated that SJTs significantly predicted a leadership 

criterion related to the effectiveness of leadership skills and the initiative of seeking a 

leadership role. (Krokos et al., 2004) and a situational judgment test of emotion 

management was significantly related to psychological well-being (Burrus et al., 2012). 

McDaniel et al. (2001) also found that SJTs appeared to have less negative impact on 
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minorities. Moreover, SJT were less vulnerable to faking than self-ratings (Burrus et al., 

2011).  
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CHAPTER 2: RESEARCH QUESTIONS AND METHODS 

 

Research Questions 

As introduced previously, there are three resilience subscales in the study: a 

student self-rating subscale which measures resilience using the trait and the outcome 

approach, a teacher-rating subscale which also applies the trait and the outcome approach, 

and a SJT subscale which measures resilience from a coping perspective. The first 

research question is about the psychometric properties of the scale. How reliable are the 

three subscales? What is the factor structure for each of the subscales? If a subscale is 

unidimensional, is it possible to retain a single underlying factor? Or if a subscale is 

multidimensional, what do the factors represent? Is it possible to derive a composite score 

of resilience from all three subscales? Does the factor structure remain stable across time?  

After knowing the psychometric properties of the resilience measures, a second research 

question asks about change in resilience over time. If there is a single underlying factor 

for all items, how does that factor score change? If it turns out that multiple factors of 

resilience exist, how does each of the relevant scores change? Does resilience vary by 

gender and ethnicity? The third question asks about the predictive validity of the 

resilience score/scores. Is resilience a significant predictor of students’ academic 

achievement? Does resilience significantly predict students’ life satisfaction? If there are 

multiple resilience scores, which score has the strongest predicting power? The three 

research questions in the current study are summarized below: 
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1. What are the psychometric properties of the resilience scale in this study? What 

are the factor structures of the measures?  

2. How does resilience change over time? 

3. What is the relationship between respondent’s resilience and their academic 

achievement and life satisfaction? 

 

Methods 

Research question No.1 

Self-rating subscale 

Item-analysis was applied to the self-rating subscale. Item-total correlation and 

corrected alpha were calculated for each item. Two problematic items (“I seldom get 

mad”, “I determine what happens in my life”), indicated by having an item-total 

correlation outside of the .2 to .8 range or by having a corrected alpha larger than the 

overall alpha, were excluded from further analysis (Streiner & Norman, 2003).  

As discussed before, the trait approach and the outcome approach are measuring different 

aspects of resilience. One advantage of measuring resilience through personal 

characteristics is that those constructs capture the richness of factors contributing to 

resilience. One weakness is that measuring some characteristics of resilience is not equal 

to measuring resilience itself. If a score from a scale made up of trait items is found to be 

significantly related to an external criterion, it is hard to tell which of the personal 

characteristics plays the key role. In contrast, the advantage of measuring resilience 

directly through outcomes is the confidence in interpreting the result as resilience. The 
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disadvantage resides in the fact that the measure does not assess mechanisms of the 

resilience process.  

To sum up, items fitting into the outcome approach directly measure resilience 

while items belonging to the trait approach assess traits which affect resilience but are not 

resilience. Trait items capture both resilience variance and the variance unique to the trait 

but not related to resilience, e.g., irrelevant variance. One option is to discard the trait 

items. However, the trait items are the majority of items in the subscale. This threatens 

the reliability of the scale. Another approach is to use bi-factor analysis. A confirmatory 

bi-factor analysis has the ability to divide the variance of the items into a common factor 

(primary factor) and unique factors (group factors) (Chen, West, and Sousa, 2006). 

Assuming there is a general resilience factor and several group factors measuring traits 

related to resilience, a bi-factor structure makes all trait items load both on their 

respective group factors and on the primary resilience factor. For outcome items, since 

they are already directly measuring resilience, they load only on the primary resilience 

factor. By fitting such a confirmatory bi-factor analysis model, the primary resilience 

factor can pick up the variance from the items that is directly related to resilience and 

relegate the unique variance not related to resilience to the group factors. 

Before proceeding to fit a bi-factor model to the data, the factor structure was 

determined. Three methods were tried. The first method was an interview with the export 

who was involved in the development of the scale. With the expert’s help, the author was 

able to determine the source for each item. Six items were identified as directly 

measuring the outcome of resilience: “I am capable of coping with most of my problems”, 
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“I overcome challenges and setbacks”, “I am resilient”, “I give up easily when faced with 

an obstacle”, “I am easily discouraged”, and “I give up easily”. 

The second method was a Q-sort. Based on the interview and the item 

descriptions, the author created four groups representing four constructs: resilience, 

conscientiousness, self-efficacy, and emotional stability. A convenience sample of 16 

individuals (mostly students in the Graduate School of Education) participated in the Q-

sort. They were asked to sort items into the four categories. In case they felt none of the 

categories matched the item, they were allowed to put the item into an “Other” category. 

For each item, the percentages of respondents placing the items into each of the four 

categories were summarized in table 2a through table 2e below. Each table represents a 

group of items being categorized into a certain category by a majority of respondents (>= 

50%).  

Table 2a: 

Summary of Q-sort results: resilience category 

 

Item
self-

efficacy
emotional 
stability

conscien-
tiousness

resilience other
Group based on 
Expert Interview

I give up easily when faced with an 
obstacle

6% 0% 0% 88% 6% resilience

I am resilient 19% 0% 0% 81% 0% resilience

I overcome challenges and set 
backs

25% 0% 0% 75% 0% resilience

I give up easily 25% 0% 0% 75% 0% resilience

I am easily discouraged 19% 13% 0% 69% 0% resilience

I get discouraged when things go 
wrong

6% 19% 0% 69% 6% resilience

There are times when things look 
pretty bleak and hopeless to me

13% 19% 0% 56% 13% emotional stability
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Table 2b: 

Summary of Q-sort results: self-efficacy category 

 

 

 

 

 

 

 

 

 

 

 

Item
self-

efficacy
emotional 
stability

conscien-
tiousness

resilience other
Group based on 
Expert Interview

I complete tasks successfully 94% 0% 0% 6% 0% efficacy

I am confident I get the success I 
deserve in life

94% 6% 0% 0% 0% efficacy

Sometimes, I do not feel in control of 
my school work

81% 6% 0% 13% 0% efficacy

When I try, I generally succeed 81% 6% 6% 6% 0% efficacy

Overall, I am satisfied with myself 81% 19% 0% 0% 0% efficacy

I determine what will happen in my life 75% 6% 0% 19% 0% efficacy

I am filled with doubts about my 
competence

75% 13% 0% 13% 0% efficacy

I do not feel in control of my success in 
school

63% 13% 6% 19% 0% efficacy

I am capable of coping with most of my 
problems

56% 13% 0% 31% 0% resilience

Sometimes when I fail I feel worthless 50% 19% 0% 31% 0% efficacy
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Table 2c: 

Summary of Q-sort results: conscientiousness category 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item
self-

efficacy
emotional 
stability

conscien-
tiousness

resilience other
Group based on 
Expert Interview

I forget to do things 6% 6% 81% 0% 6% conscientiousness

I make careless mistakes 13% 6% 75% 0% 6% conscientiousness

I avoid responsibilities 19% 0% 63% 6% 13% conscientiousness

I am diligent 38% 0% 56% 6% 0% efficacy

I quickly lose interest in 
the tasks I start

19% 6% 50% 19% 6% grit
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Table 2d: 

Summary of Q-sort results: emotional stability category 

 

Table 2e: 

Summary of Q-sort results: items not clearly classified into any category by respondents 

 

Item
self-

efficacy
emotional 
stability

conscien-
tiousness

resilience other
Group based on 
Expert Interview

I seldom get mad 0% 94% 0% 6% 0% emotional stability

I get upset easily 0% 88% 0% 13% 0% emotional stability

I am easily frustrated 0% 81% 0% 19% 0% emotional stability

Sometimes I feel depressed 0% 81% 0% 6% 13% emotional stability

I get annoyed by people 0% 75% 0% 13% 13% emotional stability

I worry 13% 69% 0% 6% 13% emotional stability

I remain calm under 
pressure

6% 69% 0% 25% 0% emotional stability

I am relaxed 25% 63% 6% 0% 6% emotional stability

I am not easily bothered by 
things

13% 63% 0% 19% 6% emotional stability

I remain calm when I have a 
lot of homework to do

6% 63% 0% 31% 0% emotional stability

Item
self-

efficacy
emotional 
stability

conscien-
tiousness

resilience other
Group based on 
Expert Interview

I worry about school 19% 44% 6% 19% 13% emotional stability

My interests change quickly 6% 6% 25% 31% 31% grit

I react slowly 6% 19% 19% 19% 38% grit

I get stressed out easily when 
things don't go my way

0% 50% 0% 50% 0% emotional stability
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As can be seen, five out of the six items the expert helped to identify were also 

picked for the resilience category by at least 69% of the respondents. The only exception 

was “I am capable of coping with most of my problems”, for which 31% of the 

respondents identified as resilience. There were three other items categorized into 

resilience by a majority of respondents. The three items were “There are times when 

things look pretty bleak and hopeless to me”, “I get discouraged when things go wrong”, 

and “I get stressed out easily when things don't go my way”.  

While the above two methods were based on expert judgment, a third way to 

determine the factor structure was not. Because all the items were on a 4-point likert scale, 

a polychoric correlation matrix was calculated for all 34 items (2 items were excluded 

due to their low item-total correlations: “I seldom get mad”; “I determine what will 

happen in my life”). Using the polychoric correlation matrix, exploratory factor analysis 

(EFA) was conducted. Squared multiple correlations were used as the initial communality 

estimates. Minimum average partialling (MAP) (Garrido et al., 2011; Velicer, 1976) and 

the scree test of eigen values were used to determine the number of potential underlying 

factors. Varimax, Equamax, and Promax rotation were applied in sequence to obtain the 

optimal factor structure. Four criteria were used to pick the final factor structure: the 

hyper-plane count (Yates, 1987), the total number of non-salient loadings and the number 

of double loader, the closeness to a simple structure (Fabrigar et al., 1999), and the 

meaningfulness of each factor (Gadermann, Guhn, & Zumbo, 2012). According to the 

MAP and scree test results, the author fit EFA models with 1 to 5 factors.  
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A problem was detected while fitting a 2-factor model. It was found that one 

factor was made up of all the positively worded items and the other factor was made up 

of all the negatively worded items, indicating that wording/valence had a dominant effect 

on the items. Therefore EFA was not able to detect the true factor structure and neither 

was the originally planned confirmatory bi-factor analysis for the sake of extracting the 

true resilience variance. Additional work was done on the CFA stage to account for the 

valence effects. Two more factors were created. All the positively worded items loaded 

on one factor and all the negatively worded items loaded on the other factor. The 

correlations between the two newly created factors and all other group and primary 

factors were restricted to zero. The author was treating those two as error factors.  The 

hope was the two error factor would extract all the variance due to valence. Figure 3 here 

serves as an illustration of the final bi-factor structure adjusted by the error factors.  
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Figure 3: Illustration of the Final Bi-factor Model Structure 

 

Each rectangle represents an item while the pattern of the fill indicates the aspect 

of resilience the item is intended to measure (white background with black dots or lines 

means trait items and black background with white dots means outcome items). A white 

background item loads both on its respective group factor and the primary resilience 

factor and a black background item loads only on the primary resilience factor. The two 

error factors are represented by two circles on the left side with one factor underlying all 

the positively worded items and the other linked with all the negatively worded ones. 

Those two circles pick up the error variance of valence and the two group factors on the 

top left pick up the unique variance unrelated to resilience, leaving the primary resilience 

factor on the top right absorbing all the variance that is directly related to resilience.  

+

‐
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Stability

Negative wording

Efficacy Resilience

Positive wording



 
 
 

42 
 

 

Due to the inability of EFA to adjust for valence effects, two separate EFAs were 

conducted to gather more evidence on the bi-factor structure, in addition to the evidence 

obtained through the interview and the Q-sort. One EFA was done for the 12 positively 

worded items and one was done for the 22 negatively worded items. The same procedure 

and the same sets of criteria, as stated previously, were followed to determine the optimal 

factor structure. Details about the loading and the factors can be seen from table 3 below. 

The panel on the top presents the EFA results for positively worded items and the bottom 

panel contains results for negatively worded items. A 3-factor structure was the best 

fitting structure for both EFAs. The three factors in the positive group each corresponded 

with a factor in the negative group therefore items could be collapsed together under the 

same 3-factor framework. No double-loaders were detected. Four items failed to load 

significantly on any of the factors: “I am capable of coping with most of my problems”, 

“I get annoyed by people”, “I react slowly”, “I do not feel in control of my success in 

school”. Since the first item was identified by the expert as a true resilience item and it 

had a close-to-salient loading on the resilience factor, the item was kept in the bi-factor 

analysis. The other three items were excluded from further confirmatory analyses.  
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Table 3: 

Factor Loading for the Two Separate EFAs 

 

The results were compared with the results from Q-sort and results from the 

expert interview. Although the three did not agree perfectly, consistency was reached for 

a majority of the items. The final bi-factor structure was based on the separate EFA 

results except for two adjustments. First the item “I am capable of coping with most of 

my problems” was kept in the CFA despite its lack of salient loadings. Second the item “I 

am diligent” had neither the expert nor the Q-sort indicate it as resilience, it was excluded 

from further analyses. 

Efficacy Emtional Stability Resilience

remain_calm 0.06 0.57* 0.11

diligent 0.24 ‐0.05 0.45*

complete_task 0.49* ‐0.05 0.34

try_succeed 0.54* 0.01 0.27

confident_success 0.67* 0.09 0.07

satisfied 0.59* 0.19 0.04

capable_coping 0.18 0.28 0.31

overcome_setback 0.28 0.20 0.46*

resilient 0.03 0.19 0.52*

relaxed 0.18 0.58* ‐0.05

not_bothered ‐0.05 0.50* 0.05

calm_hw 0.14 0.48* 0.11

giveup_obstacle 0.10 0.02 0.77*

discouraged ‐0.01 0.29 0.63*

giveup_easily 0.11 0.04 0.82*

frustrated 0.26 0.44* 0.13

annoyed 0.33 0.35 0.01

avoid_respon 0.58* ‐0.03 0.17

forget 0.60* 0.09 0.02

careless_mistake 0.50* 0.13 0.05

lose_interest 0.62* 0.07 0.10

react_slowly 0.34 0.13 0.17

interest_change 0.44* 0.05 0.02

depressed 0.21 0.57* 0.00

worthless 0.04 0.58* 0.14

notcontrol_school 0.42* 0.33 0.05

doubts 0.20 0.42* 0.18

not_in_control 0.34 0.34 0.10

hopeless 0.30 0.54* 0.02

discouraged_wrong 0.04 0.57* 0.23

worry ‐0.05 0.71* 0.04

stressed_out 0.10 0.62* 0.04

worry_school ‐0.01 0.67* 0.01

upset 0.09 0.64* 0.12

+

‐
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After obtaining the factor structure, confirmatory bi-factor analysis was conducted 

for time 1 students. Goodness of fit statistics like Comparative Fit Index (CFI), Tucker-

Lewis Index (TLI) and Root Mean Square Error of Approximation (RMSEA) were used 

to determine model fit. According to Kline (2005), a CFI larger than .9 and a RMSEA 

less than .08 (with upper limit less than .1) signaled acceptable fit. A CFI larger than .95 

and a RMSEA less than .05 suggested close fit (Hu & Bentler, 1999). The loading and 

model fit information for the final model are presented below.  

After achieving an acceptable fit for time 1 respondents, the same model was fit 

to students at time 2 and time 3 to examine factor invariance across time. Configural 

invariance was firstly checked and based on the model fit of the configural invariance 

model, more restricted models were fit to examine metric invariance (weak invariance) 

and scalar invariance (strong invariance) across time (Brown, 2006). Configural 

invariance meant that the same factor structure held across time. Metric invariance 

indicated that not only were the factor structures the same across groups, the factor 

loadings were the same for every item across time. Scalar invariance represented the 

same factor loadings and the same item thresholds across time. A stronger case of 

invariance was established when there was no sizable difference considering the model fit 

statistics (Muthén & Asparouhov, 2002), indicated by either the non-significance of the 

chi-square difference test (Marsh & Grayson, 1994) or the minimal shift in CFI and 

RMSEA (change of CFI less than .01 and change of RMSEA less than .015) (Cheung & 

Rensvold, 2002). 
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Teacher-rating subscale 

Table 4 shows the item descriptions in the teacher-rating subscale.  

Table 4: 

Items in the Teacher-rating Subscale 

 

As mentioned before, the teacher-rating subscale was made up of trait items 

measuring emotional stability (T1, T5, T7, T8) and outcome items directly measuring 

resilience (T2, T3, T4, T6). Using the polychoric correlation matrix, EFA showed clearly 

that valence again had a dominant effect on the items. The four positively worded items 

(T1-T4) loaded on one factor while the four negatively worded items (T5-T8) loaded on 

the other factor. Two practical concerns prevented the author from fitting a similar 

confirmatory bi-factor analysis model as the one fit for the self-rating subscale. First the 

teacher-rating subscale had relative fewer items than the self-rating subscale (8 vs 36) 

therefore the model would be under-identified. Secondly, due to administrative reasons, 

more than 40% of the students at time 1 were missing their teachers’ ratings on items T5-

T7. Only the four positive items were kept and a single factor structure was fit to the data 

for the CFA without any adjustment for unrelated resilience variance. The single factor 

structure was also examined for its reliability and its invariance across time. 

Item Item Description

T1 Remains calm under pressure

T2 Overcomes challenges and setbacks

T3 Does not give up easily

T4 Is resilient

T5 Worries 

T6 Gives up easily when faced with an obstacle.

T7 Is easily discouraged.

T8 Gets upset easily
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SJT Subscale 

The SJT items were assumed to measure resilience from a coping perspective. 

There were 32 items nested within 3 hypothetical situations. The first situation was about 

homework. The other two situations were about after-school activities and testing. After 

interviewing the expert who was involved in developing the SJT subscale, it was 

determined that all the items under the three hypothetical situations were developed based 

on three general coping styles: avoidance-focused coping, emotion-focused coping, and 

problem-focused coping. EFA proved that the scale manifested a three-factor structure. 

Table 5 shows the results of the EFA and the detailed descriptions of the three situations. 

The three factors were avoidance (representing avoidance-focused coping), problem 

(representing problem-focused coping), and emotion (representing emotion-focused 

coping). All items had salient loadings except for one. That item was “I call or email 

classmates and talk through some possible questions and answers with them” and it had a 

close-to-salient loading on the problem factor. The problem factor had a -.04 correlation 

with the avoidance factor and a -.10 correlation with the emotion factor. The correlation 

between the avoidance factor and the emotion factor was .38.   
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Table 5: 

EFA Results for the SJT Subscale 

 

Situation Item Description Item Avoidance Problem Emotion

I blame myself for having put off my homework. hw1 ‐0.06 0.15 0.47*

I treat myself to a nice meal. hw2 0.68* 0.09 ‐0.11

I try to get organized to get on top of my 

homework.
hw3 ‐0.01 0.72* 0.00

I make the extra effort to get all of my 

homework done.
hw4 ‐0.09 0.70* ‐0.05

I go out and buy myself something. hw5 0.78* ‐0.08 0.06

I blame my teacher(s) for having given me too 

much homework in the first place.
hw6 ‐0.03 ‐0.37 0.44*

I go for a long walk. hw7 0.65* 0.15 0.05

I tell myself that this will never happen again. hw8 0.13 0.27 0.52*

I ask myself: How could I have let this happen to 

me?
hw9 ‐0.05 0.14 0.71*

I take control and say to myself: I can do this! hw10 0.06 0.76* 0.05

I go out with my friends. hw11 0.81* ‐0.18 ‐0.06

I convince myself: This is not really happening to 

me!
hw12 0.31 ‐0.03 0.57*

I wish that I could change what was happening 

or how I feel.
hw13 ‐0.20 ‐0.04 0.74*

I get some sleep. hw14 0.72* 0.01 ‐0.09

I blame myself for having too many activities. ac1 ‐0.05 0.05 0.46*

I treat myself to a nice meal. ac2 0.72* 0.06 ‐0.08

I try to get organized to get on top of all these 

activities.
ac3 0.07 0.73* 0.02

I make the extra effort to get all of my activities 

completed.
ac4 0.00 0.70* ‐0.01

I go out and buy myself something. ac5 0.82* ‐0.05 0.08

I blame others for having given me too many 

activities to do in the first place.
ac6 0.02 ‐0.21 0.52*

I go for a long walk. ac7 0.71* 0.12 ‐0.01

I tell myself that this will never happen again. ac8 0.15 0.16 0.58*

I take control and say to myself: I can do this! ac9 0.07 0.78* 0.09

I blame my teacher(s) for having given me too 

many tests in the first place.
em1 0.04 ‐0.33 0.49*

I go for a long walk. em2 0.71* 0.05 0.04

I try to get prepared for the test regardless. em3 ‐0.14 0.65* ‐0.03

I call or email classmates and talk through some 

possible questions and answers with them.
em4 0.14 0.30 0.12

I take control and say to myself: I can do this! em5 0.06 0.8* 0.06

I go out with my friends. em6 0.78* ‐0.21 0.03

I convince myself: This is not really happening to 

me!
em7 0.30 ‐0.05 0.63*

I wish that I could change what was happening 

or how I feel.
em8 ‐0.18 ‐0.06 0.76*

I get some sleep. em9 0.72* 0.08 ‐0.09

You are feeling stressed about the amount of homework 

that you have been given by your teacher(s). Below are 

some ways that you might think, feel, or act in this 

situation, right at the time that you feel stressed‐out. Rate 

how often you do each activity when you feel stressed. 

How do you think, feel, or act when you are stressed from 

having too much homework to do?

You are feeling very stressed about the amount of after‐

school activities that you are participating in. You seem to 

be playing too many sports, have too much homework, 

and you still need to do your chores at home. Below are 

some ways that you might think, feel, or act in this 

situation, right at the time that you feel stressed‐out. Rate 

how often you do each activity when you feel stressed‐

out. How do you think, feel, or act when you are stressed‐

out from doing too many after‐school activities?

You are feeling quite stressed about a class test that your 

teacher is giving tomorrow. You don&rsquo;t think you 

understand all the material covered and you have had to 

do a lot of other things this week, so you have not studied 

as hard as you like or normally do. Below are some ways 

that you might think, feel, or act in this situation, right at 

the time that you feel stressed‐out. Rate how often you 

would do each activity when you feel stressed‐out. How 

do you think, feel, or act when you are stressed because 

you have a test and are not as prepared for it as you 

would like?
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One potential problem the EFA failed to consider was local dependence: residuals 

for items nested under the same situation might be correlated with each other (Lee, 

Dunbar, & Frisbie, 2001). Therefore after moving to the CFA stage, a correlated trait 

correlated method confirmatory factor analysis (CTCM-CFA) model was fit to the data 

(Kenny and Kashy, 1992; Marsh, 1989; Kumar & Dillon, 1992). The three traits 

represented the three coping styles, and three methods factors represented the three 

hypothetical situations making up the structure. An illustration of the CTCM-CFA model 

can be seen in figure 4 below. 

 

Figure 4: An Illustration of CTCM-CFA Model 

 

Fit statistics showed that the CTCM-CFA model failed to converge to an 

admissible solution. One possible explanation might be that after the common variance 

was extracted from the items to the three “trait” factors, the remaining variance for items 

nested within each situation was not enough to warrant three “method” factors. Therefore 
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a correlated trait correlated uniqueness confirmatory factor analysis (CTCU-CFA) model 

was fit to the data. CTCU-CFA did not assume the existence of multiple method factors 

(Marsh & Grayson, 1995). By allowing the residuals for items under the same situation to 

correlate with each other, it could account for the violation of the assumption of local 

independence. The model is illustrated in figure 5 below.  

 

Figure 5: An Illustration of the CTCU-CFA Model 

 

The CTCU-CFA model did not fit the data either. The items associated with the 

avoidance-focused coping factor and with the emotion-focused coping factor were 

dropped. One reason was the failure to build a model that could fit all items. Another 

reason was that out of the three coping factors, problem-focused coping was a better 

reflection of students’ resilience skills. Nine items that loaded on problem-focused coping 

were retained and a single factor CFA was conducted. Once again the model did not 

perform well. Modification indices suggested that some of the residuals might be 
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correlated. Adding the correlated residuals to the model was justified because several 

items under different situations were actually duplicate items. For example, “I take 

control and say to myself: I can do this!” was an item administered to individuals three 

times, once under each situation. After accounting for the correlated residuals, the CFA 

model had a decent fit to the data and factor invariance across time was then examined. 

Details on the loadings and the fit statistics are available in the results section. 

Whole Resilience Scale 

As described above, three factors were extracted from the three-subscales. If the 

three factors shared a large amount of common variance, a higher-order confirmatory 

factor analysis model might be an ideal model to extract a second-order factor and that 

factor score could serve as an overall resilience score across all methods. However, after 

calculating the correlations among the three resilience factors, the author did not attempt 

to get a composite score across methods because the correlations among the factors were 

not high enough to derive a reliable higher-order factor. Table 6 here presents the 

correlation matrix of the three factors scores. The correlations between the teacher-rating 

resilience score and the other two scores were low: .17 and .15 respectively. 

Table 6: 

Correlation Matrix of Three Resilience Scores 

 

 

self teacher sjt

self  1.00 0.17 0.37

teacher 1.00 0.15

sjt 1.00
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Research question No.2 

For each of the three subscales, one single factor was retained as the resilience 

factor. The score of that factor was used to represent the resilience score under each 

method. In order to examine the change of resilience scores over time, scalar invariance 

needed to be achieved (Widaman & Reise, 1997; Muthén & Asparouhov, 2002). As 

detailed in the results part, scalar invariance was achieved for all of the three resilience 

factors, one for each method. Those three factor scores were treated as the response 

variables in the following models. Series of 3-level hierarchical models were built 

(Raudenbush & Bryk, 2002), where the three levels were the within-individual temporal 

level, the student level, and the school level. An unconditional model was built first to 

obtain the variance decomposition of each resilience factor score and then a model with 

gender and ethnicity added as student-level predictors were fit to explain the variance of 

the intercept and slope of resilience on the first level.  Technical details of the 3-level 

HLM can be seen below. The model allowed random effects at the individual and the 

school level for both the intercept and the slope of change.  

Level 1: Temporal Level 

  Resilience_Scoretij=π0ij+π1ijTIMEt+єtij 

Level 2: Individual Level 

  π0ij=β00j+β01j*Genderij+β02j*Ethnicityij+ξ0ij 

  π1ij=β10j+β11j*Genderij+β12j*Ethnicityij+ξ0ij 

Level 3: School Level  

  β00j=ϴ000+Ψ00j 
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  β01j=ϴ010 

  β10j=ϴ110+Ψ10j 

  β11j=ϴ200 

  β02j=ϴ020 

  β12j=ϴ120 

Research question No.3 

The third research question tackled the issue of prediction. Because of the 

relatively low correlations among the three different resilience scores, it was not 

meaningful to derive a general resilience score. Therefore it was not possible to examine 

the predictive validity of a single resilience measure and instead, all three different scores 

were used to answer the third research questions. By including all of the three scores in 

the model simultaneously, it allowed the author to compare the relative predictive power 

of the three scores. There were two groups of outcome variables. The first group of 

outcomes was academic achievement. It included student self-reported GPA, their 

mathematics and reading grades from the school, and their verbal and quantitative 

standardized test scores. The second outcome was life satisfaction. The life satisfaction 

scale was made up of 7 items. All the items were on a 6-point likert scale. Exploratory 

factor analysis based on the Pearson correlation matrix showed a two-factor structure was 

the best factor structure. The first factor was made of 5 positively worded items and the 

second factor was made of 2 negatively worded items. Since a 2-item factor was not 

reliable enough, only the first factor was retained. CFA with two factors achieved 

acceptable fit. The two-factor structure also achieved configural invariance across time. 
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Strong invariance model was also fit and was compared with the configural invariance 

model. The chi-square difference test was not significant, indicating the model achieved 

scalar invariance across time. The final scalar invariance model had an RMSEA of .052 

(with an upper limit of .059), a CFI of .985, and a TLI of .983. Table 7 summarizes the 

final loadings for the retained factor and the factor score was used as another response 

variable in the models.  

Table 7: 

Final Loadings for the Life Satisfaction Factor 

 

A total of three different kinds of models were built. The three models were 

different regarding their complexity and they each answered the third research question 

from a unique perspective.  

The first model was a 2-level hierarchical linear model using students’ resilience 

scores from time 1 to predict students’ outcomes at time 2 and time 3. Level 1 was 

student level and level 2 was school level. Pretest of the outcome was included as 

covariate and students’ demographic variables were used as controls in the model. Three 

resilience scores as well as the previous outcome measure were group mean centered at 

level one and the average scores for each school were used as level-2 predictors. This 

model provided valuable information on the magnitude and the significance of the 

Item Description Loading S.E t p

I have a good life. 0.87 0.008 113.28 <.001

My life is just right. 0.83 0.009 96.09 <.001

My life is better than most kids. 0.56 0.014 39.20 <.001

My life is going well. 0.85 0.008 103.20 <.001

I have what I want in life. 0.71 0.012 60.63 <.001
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relationship between different resilience scores and the outcomes. Below are the technical 

details of the first model.  

Level 1: Student Level 

Outcome3ij=π00j+π10jSelf_Resilience_Centered1ij+π20jTeacher_Resilience_

Centered1ij + π30jSJT_Resilience_Centered1ij +π40jGenderij + 

π50jEthnicity1ij + π60jOutcome_Centered1ij +єtij 

Level 2: School Level 

π00j=β000 + β010Self_Resilience_Mean0j +β020Teacher_Resilience_Mean0j + 

β030SJT_Resilience_Mean0j +β040Outcome_Mean0j +ξ00j 

  π10j=β100 

π20j=β200 

π30j=β300 

π40j=β400 

π50j=β500 

π60j=β600 

An unconditional model with no predictors was fit first to get the variance 

decomposition at each level and then a full model with predictors was built. Results about 

the variance components and about the coefficients estimates are available in the results 

part. 

The second model was a 3-level longitudinal growth curve model. Level 1 was 

the temporal level (occasion level within individual). Level 2 became the student level 

and level 3 was the school level. Similar as model 1, only resilience scores at time 1 were 
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used. However, unlike model 1 where only time 3 outcome was used, outcomes at all 

three time points were included here and the intercept and the slope at level 1 were 

treated as the response variables at level 2. This model not only examined the effect of 

resilience on the average outcome level, it also provided information on whether 

resilience had an impact on students’ rate of change on the outcome variable (Singer, 

1998). Resilience scores at level 2 were again group mean centered and the average 

scores for each school were grand mean centered and included as predictors at level 3. 

Technical details of the model are shown below. 

Level 1: Temporal Level 

  Outcometij=π0ij+π1ijTIMEt+єtij 

Level 2: Individual Level 

π0ij=β00j+β01j*Genderij+β02j*Ethnicityij+ β03j*Self_Resilience_Centered1ij + 

β04j*Teacher_Resilience_Centered1ij + β05j*SJT_Resilience_Centered1ij 

+ξ0ij 

π1ij=β10j+β11j*Genderij+β12j*Ethnicityij+ β13j*Self_Resilience_Centered1ij + 

β14j*Teacher_Resilience_Centered1ij + β15j*SJT_Resilience_Centered1ij 

+ξ0ij 

Level 3: School Level  

β00j=ϴ000+ ϴ001Self_Resilience_Mean1j + ϴ002Teacher_Resilience_Mean1j 

+ϴ003 SJT_Resilience_Mean1j +Ψ00j 

  β01j=ϴ010 

β02j=ϴ020 
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β03j=ϴ030 

β04j=ϴ040 

β05j=ϴ050 

β10j=ϴ100+ ϴ101Self_Resilience_Mean1j + ϴ102Teacher_Resilience_Mean1j 

+ϴ103 SJT_Resilience_Mean1j +Ψ10j 

  β11j=ϴ110 

  β12j=ϴ120 

  β13j=ϴ130 

  β14j=ϴ140 

  β15j=ϴ150 

The third model was also a longitudinal growth curve model. Similar to model 2, 

level 1 was temporal level. Level 2 was student level and level 3 was school level. The 

main difference between model 2 and model 3 was that not only the outcome at all three 

time points were used, the resilience scores at all three time points were also included. 

The resilience scores were treated as time-varying predictors and were included at level-1 

to explain the between-individual variance (McCoach & Kaniskan, 2010). Each of the 

three resilience scores was group-mean centered at level-1 and the individual mean scores 

(also group mean centered by the school mean) were included at level-2 to explain the 

between-individual variance on the intercept and the slope along with gender and 

ethnicity. School means scores were grand mean centered and used as level-3 predictors. 

Technical details of model 3 are presented below.  

Level 1: Temporal Level 
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Outcometij=π0ij+π1ijTIMEt+ π2ijSelf_Resilience_Centeredtij + 

π3ijTeacher_Resilience_Centeredtij + π4ijSJT_Resilience_Centeredtij +єtij 

Level 2: Individual Level 

π0ij=β00j+β01j*Genderij+β02j*Ethnicityij+ β03j*Self_Resilience_Mean1ij +   

β04j*Teacher_Resilience_Mean1ij + β05j*SJT_Resilience_Mean1ij +ξ0ij 

π1ij=β10j+β11j*Genderij+β12j*Ethnicityij+ β13j*Self_Resilience_Mean1ij + 

β14j*Teacher_Resilience_Mean1ij + β15j*SJT_Resilience_Mean1ij +ξ0ij 

π2ij=β20j 

π3ij=β30j 

π4ij=β40j 

Level 3: School Level  

β00j=ϴ000+ ϴ001Self_Resilience_School_Meanj+ 

ϴ001Teacher_Resilience_School_Meanj + 

ϴ001SJT_Resilience_School_Meanj +Ψ00j 

  β01j=ϴ010 

β02j=ϴ020 

β03j=ϴ030 

β04j=ϴ040 

β05j=ϴ050 

β10j=ϴ100+ ϴ101Self_Resilience_School_Meanj+ 

ϴ102Teacher_Resilience_School_Meanj + 

ϴ103SJT_Resilience_School_Meanj +Ψ10j 
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  β11j=ϴ110 

  β12j=ϴ120 

  β13j=ϴ130 

  β14j=ϴ140 

  β15j=ϴ150 

β20j=ϴ200 

β30j=ϴ300 

β40j=ϴ400 

The three groups of models examined the predictive power of resilience scores 

from different perspectives. Model 1 and model 2 used only resilience scores at time 1 to 

predict future outcomes. Model 3 used all the resilience scores at different time points. 

Model 1 predicted the outcome only at a certain time point in the future, while model 2 

and model 3 estimated both the outcome at the baseline level and the rate of change for 

the outcome. Figure 6 through figure 8 below illustrate the different features for each 

model. To simplify the graph, only one resilience variable was shown while in case there 

were three resilience variables and the school level mean predictors were ignored in the 

graphs. 

 

Figure 6: Illustration of Prediction Model 1 

Model1

Outcome1 Outcome2 Outcome3

Resilience 2Resilience 1 Resilience 3
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Figure 7: Illustration of Prediction Model 2 

 

 

Figure 8: Illustration of Prediction Model 3 

 

Another common feature model 2 and model 3 shared was that they both allowed 

random effects at the individual level and the school level. Figure 9 here shows how the 

random effects play a role in the model estimation. For the sake of brevity and clarity, the 

graph was simplified and only one individual level predictor—resilience score—was 

Model2

Outcome1 Outcome2 Outcome3

Resilience 1

SlopeIntercept

Gender Ethnicity

Model3

Outcome1 Outcome2 Outcome3

Mean 
Resilience

SlopeIntercept

Gender Ethnicity

Resilience 2Resilience 1 Resilience 3
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model allowed random effects for both intercepts and slopes at the school level. The 

dotted line indicates the linear trajectory for each individual student. Each cluster of 

dotted lines represents a group of students with either high or low level of resilience in 

the same school. The shifts in the slope and the intercept for the dotted lines from their 

respective dashed lines represent the random effects for slope and intercept at the 

individual level.  

As discussed by Shadish, Cook, & Campell (2002), three criteria had to be 

satisfied for the establishment of a causal relationship: temporal precedence, correlation, 

and ruling out of alternative explanations. The author was handicapped to establish a 

causal relationship in this study because it was not an experimental study. While the first 

two criteria were not hard to satisfy, ruling out of all alternative explanations was 

impossible.  

Assuming resilience significantly predicted the outcome in all three models, 

Model 1 and model 2 satisfied the first two criteria but was not able to rule out an 

alternative explanation of an unobserved between-individual third variable which 

affected both resilience scores and outcomes, thus weakening the causal explanation of 

the significant relationship between the resilience scores and the outcome. Model 3, by 

including the time-dependent resilience scores at the temporal level, opened the 

possibility of estimating the relationship between short-term changes in resilience scores 

and short-term changes in the outcome (Duckworth, Tsukayama, & May, 2010). If the 

level-1 resilience scores were significant, it mitigated the threats of the unobserved 

between-individual third variable explanation. Because a between-individual variable did 
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not change, it could not cause a within-individual outcome variable to change over time.  

What model 3 could not rule out was a time-dependent unobserved third variable which 

changed in sync with the resilience scores and caused the outcome to change (Duckworth, 

Tsukayama, & May, 2010). Although a significant result from model 3 was unable to 

lead the author to the causal land, it could provide stronger evidence for a possible 

existence of a causal relationship.  

Figure 10 below summarizes the three research questions and the corresponding 

methods associated with each research question. 

 

Figure 10: A Review of Research Questions and Methodology 
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CHAPTER 3: RESULTS 

 

Research Question No.1: What Are the Psychometric Properties and Factor 

Structures of the Resilience Scale? 

 

Self-rating subscale 

The final confirmatory bi-factor analysis model with two additional valence 

factors fit the data well at time 1, with an RMSEA of .047 (upper limit at .051), a CFI 

of .958, and a TLI of .947. In order to examine factor invariance across time, a multi-

group CFA was conducted and configural invariance was achieved for the primary 

resilience factor. After that, the strong invariance model was fit and the fit statistic was 

compared with those from the configural invariance model. Because the Mplus program 

used the weighted least squares means and variance adjusted (WLSMV) estimation for 

categorical variables, the chi-square statistics could not be directly compared in a chi-

square difference test (Satorra, 2000). Instead, a scaling correction was required in order 

to correctly approximate chi-square under non-normality (Muthén & Muthén, 2012). 

Using the Difftest option in Mplus, the chi-square difference test was significant. 

However, the shift in the CFI was less than -.01 and the shift in RMSEA was less 

than .015. According to Cheung & Rensvold (2002), if the above two criteria were 

satisfied, a case of measurement invariance would still be established even if the chi-

square difference test was significant. The final scalar invariance model had a CFI of .976, 
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a TLI of .975, and an RMSEA of .032. Table 8 below shows the final item loadings for 

the primary resilience factor according to the scalar invariance model. The group column 

indicates the aspect of resilience each item measures: resilience represents the items that 

are directly measuring the outcome of resilience and they only load on the primary 

resilience factor. Emotion and efficacy represent the items that are measuring related 

personal characteristics and items belonging to those two groups load both on the primary 

resilience factor and their respective group factors. 
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Table 8: 

Final loadings on the primary resilience factor of the self-rating subscale 

Group Item Description Loading S.E t p
resilience I am capable of coping with most of my problems. 0.35 0.013 26.60 <.001
resilience I overcome challenges and set backs. 0.44 0.013 35.00 <.001
resilience I am resilient. 0.25 0.014 18.05 <.001
resilience I give up easily when faced with an obstacle. 0.66 0.015 45.53 <.001
resilience I am easily discouraged. 0.75 0.012 65.12 <.001
resilience I give up easily. 0.78 0.014 53.93 <.001
efficacy I complete tasks successfully. 0.30 0.014 21.98 <.001
efficacy When I try, I generally succeed. 0.29 0.014 21.01 <.001
efficacy I am confident I get the success I deserve in life. 0.39 0.013 29.94 <.001
efficacy Overall, I am satisfied with myself. 0.53 0.013 42.26 <.001
efficacy I avoid responsibilities. 0.53 0.013 40.05 <.001
efficacy I forget to do things. 0.50 0.012 41.33 <.001
efficacy I make careless mistakes. 0.48 0.012 40.34 <.001
efficacy I quickly lose interest in the tasks I start. 0.57 0.012 47.98 <.001
efficacy My interests change quickly. 0.39 0.013 31.03 <.001
efficacy Sometimes, I do not feel in control of my school work. 0.61 0.012 51.53 <.001
emotion I remain calm under pressure. 0.32 0.013 24.40 <.001
emotion I am relaxed. 0.30 0.014 21.76 <.001
emotion I am not easily bothered by things. 0.12 0.014 8.66 <.001
emotion I remain calm when I have a lot of homework to do. 0.34 0.013 25.35 <.001
emotion I am easily frustrated. 0.61 0.011 54.99 <.001
emotion Sometimes I feel depressed. 0.69 0.013 51.65 <.001
emotion Sometimes when I fail I feel worthless. 0.65 0.013 50.41 <.001
emotion I am filled with doubts about my competence. 0.69 0.012 58.87 <.001
emotion There are times when things look pretty bleak and hopeless to me. 0.72 0.013 55.73 <.001
emotion I get discouraged when things go wrong. 0.70 0.01 66.37 <.001
emotion I worry. 0.52 0.013 38.88 <.001
emotion I get stressed out easily when things don't go my way. 0.59 0.012 50.16 <.001
emotion I worry about school. 0.53 0.014 36.95 <.001
emotion I get upset easily. 0.67 0.011 60.59 <.001
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There were several notable observations on the final loadings of the primary 

resilience factor. First, the average loading of the outcome items was .54 and the average 

loading of the trait items was .47. The result that outcome items had higher average 

loadings was expected because those items focused on measuring resilience while the 

variance of the trait items was separated between their respective trait factors and the 

resilience factor. Second, the average loading of the negatively worded items (.61) was 

higher than the positively worded items (.33), suggesting that wording had a stronger 

effect on the positively worded items compared with the negatively worded items. That 

finding was consistent with the fact that the loadings on the positive error factor were 

more significant than the loadings on the negative error factor. A more detailed 

discussion of the wording effects and methods to adjust for wording is available in the 

discussion section. Third, the item “I am resilient” had a low loading of .25, indicating it 

did not perform well. It was not expected and in fact, the author assumed that item would 

have the highest loading. One possible explanation was that middle school students did 

not fully understand what resilience meant or it could be that the question was so direct 

that the respondents did not answerer it frankly. Last, a few items in the trait group had 

high loadings on the primary resilience factors. For example, item “There are times when 

things look pretty bleak and hopeless to me” and item “I get discouraged when things go 

wrong” both had loadings greater than .70. In fact, 56% and 69% of the respondents 

participating in the Q-sort placed those items into the resilience category.  



 
 
 

67 
 

 

The primary resilience factor achieved an internal consistency of .94. The 

standard factor score for this primary resilience factor was calculated and used as a 

variable in addressing research questions 2 and 3. 

Teacher-rating subscale 

The final one-factor-four-items structure achieved an acceptable fit at time 1. 

Similar to the self-rating subscale, a configural invariance model was fit across time and 

acceptable fit was achieved. The scalar invariance model was built next, yielding an 

RMSEA of .043, a CFI of .99, and a TLI of .99. Compared with the configural invariance 

model, the scale-corrected chi-square difference test was not significant and the shift in 

both RMSEA and CFI was negligible, leading to the conclusion that strong measurement 

invariance was established for the factor structure across time. Table 9 displays the final 

loadings on the teacher-rated resilience factor based on the strong invariance model. The 

single factor had an internal consistency of .88. Standard factor scores were calculated 

according to the strong measurement invariance model. As in the self-rating subscale, the 

factor score would be used to answer subsequent research questions. 

Table 9: 

Final loadings on the resilience factor of the teacher-rating subscale 

 

 

 

Item Item Description Loading S.E t p

T1 Remains calm under pressure 0.78 0.01 77.16 <.001
T2 Overcomes challenges and setbacks 0.95 0.003 288.67 <.002
T3 Does not give up easily 0.92 0.005 184.53 <.003
T4 Is resilient 0.93 0.005 168.75 <.004
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SJT subscale 

As discussed in the methods section, only the factor of problem-focused coping 

was retained because students with higher scores on that factor were hypothesized to be 

able to deal better with stressful and challenging situations. Assuming students got lower 

scores on the emotion-focused coping factor or the avoidance-focused coping factor, it 

only indicated that they seldom used those coping strategies; it did not mean they turned 

to effective coping strategies more often. After verifying that the one-factor structure 

with correlated residuals achieved acceptable fit at time 1 and configural invariance 

across time, the strong measurement model was tested. The RMSEA was .057. The CFI 

was .99 and the TLI was .99. The scale-corrected chi-square difference test was not 

significant and the shift in CFI and RMSEA was negligible, both evidence pointing to the 

existence of scalar invariance across time. Table 10 displays the final item loadings on 

the resilience coping factor. As before, standard factor scores were calculated in each 

wave to represent the resilience score from the SJT subscale and used as a variable in 

subsequent analyses. 
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Table 10: 

Final loadings on the resilience factor of the SJT subscale 

 

 

Research Question No.2: How Does Resilience Change Over Time? 

As discussed in the method section, the resilience scores were calculated using the 

maximum a posteriori method (MAP, also known as the regression method for 

continuous items). Because all three resilience scores achieved scalar measurement 

invariance, change of the three scores across time could be assessed.  

Before presenting the results of the longitudinal growth curve models, descriptive 

statistics are shown. Table 11 summarizes the correlations across time for the three 

resilience scores. As can be seen in the three diagonal rectangles, the average correlation 

between two consecutive measures of the same resilience score was about .5, indicating 

that resilience changed differentials across students. The average correlation among the 

self-rating resilience scores and the SJT scores was higher than that of the teacher-rating 

Item Situation Item Description Loading S.E t p

HW3 Homework I try to get organized to get on top of my homework. 0.78 0.011 72.66 <.001

HW4 Homework I make the extra effort to get all of my homework done. 0.76 0.012 62.28 <.001

HW10 Homework I take control and say to myself: I can do this! 0.61 0.014 42.61 <.001

AC3
After-school 

Activity
I try to get organized to get on top of all these activities. 0.79 0.011 73.03 <.001

AC4
After-school 

Activity
I make the extra effort to get all of my activities 
completed.

0.77 0.011 66.99 <.001

AC9
After-school 

Activity
I take control and say to myself: I can do this! 0.62 0.014 43.59 <.001

EM3 Exam I try to get prepared for the test regardless. 0.69 0.015 47.25 <.001

EM5 Exam I take control and say to myself: I can do this! 0.63 0.014 45.21 <.001
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scores. The result was not surprising since typically different teachers were rating the 

same student over time. As mentioned in the methods section, the correlations between 

the teacher-rated score and the other two scores were low and it would not be meaningful 

to try to derive a composite score using a high-order factor.  

Table 11:  

Correlations among the three resilience scores across time 

 

Table 12 shows the means, minimum, maximum, and the standard deviations of 

the three subscale scores across time points. 

 

 

 

 

Self
time1

Self
time2

Self
time3

Teacher
time1

Teacher
time2

Teacher
time3

SJT 
time1

SJT 
time2

SJT 
time3

Self
time1 1.00 0.53 0.47 0.18 0.10 0.16 0.37 0.29 0.27

Self
time2 1.00 0.54 0.14 0.10 0.16 0.26 0.36 0.28

Self
time3 1.00 0.13 0.14 0.19 0.27 0.32 0.39

Teacher
time1 1.00 0.50 0.34 0.18 0.12 0.11

Teacher
time2 1.00 0.34 0.05 0.09 0.16

Teacher
time3 1.00 0.16 0.19 0.16

SJT 
time1 1.00 0.53 0.46

SJT 
time2 1.00 0.57

SJT 
time3 1.00
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Table 12: 

Descriptive statistics for the three resilience scores 

 

As can be seen from the table, the mean score for all three subscales at time 1 was 

zero; Mplus forced the factor score at time 1 to be zero in order to setup the scale for 

scalar invariance models. For self-rating subscale, the resilience score at time 2 was 

significantly lower than time 1 and time 3. The difference between the score at time 2 and 

time 3 was not significantly different. A similar pattern was observed for the SJT 

subscale. The SJT resilience score at time 2 was significantly lower than at the other time 

points while the score at time 1 was not significantly different from the score at time 3. 

The teacher-rating resilience score had a different trend. Scores at time 1 and time 2 were 

not different from each other. Neither were scores at time 2 and time 3. However, the 

score at time 3 was significantly lower than the score at time 1.  

The means testing did not account for the correlation among scores from the same 

students or among students that attended the same schools. The longitudinal growth curve 

model was able to take into account the correlations among repeated measures of the 

same individual as well as the correlations among individuals nested in the same cluster.  

Time N Min Max Mean Std Dev

1 2028 -1.16 0.84 0.000 0.31
2 1673 -1.34 0.79 -0.081 0.33
3 2614 -1.36 0.84 -0.013 0.32
1 1633 -2.15 0.85 0.000 0.68
2 893 -2.09 0.8 -0.005 0.66
3 2016 -2.16 0.84 -0.045 0.69
1 1977 -2.44 1.2 0.000 0.72
2 1672 -2.5 1.18 -0.067 0.76
3 2614 -2.44 1.18 -0.003 0.73

Self-rating 
Resilience

Teacher-rating 
Resilience

SJT 
Resilience
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Unconditional models with no predictors were fit first to get the variance 

decomposition. For the model with self-rating resilience score as the response variable, 

49% of the variance was at the temporal level, 49% of the variance was at the individual 

level, and 2% of the variance was at the school level. The SJT score shared similar 

variance components: 48% at the temporal level, 50% at the individual level, and 1% at 

the school level. For the teacher-rating score, more variance was found at the temporal 

level and less was found at the individual level: 59% and 38%, respectively. Only about 3% 

of the total variance lay at the school level.  Although relatively little variance was at the 

school level for all three dependent variables, the variance was significant in all three 

cases. 

Table 13: 

Variance decomposition for the three resilience scores 

 

Conditional models with time as the only predictor in the model were then fit. 

Random effects for both the intercept and the slope of time were allowed at the individual 

level and at the school level. After introducing time into the model, the variance of the 

intercept at both the individual and the school level remained significant. The estimate of 

time was negative and significantly different from zero for the self-rating score, 

indicating there was a downward linear trend for self-rating resilience. The variance of 

Temporal Individual School

Self-Rating 49% 49% 2%

Teacher-Rating 59% 38% 3%

SJT 48% 50% 1%
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the slope was significant at both the individual and the school level, meaning that the 

trend varied among individuals and among schools. The coefficient estimate for time was 

not significantly different from zero for both the teacher-rating score and the SJT score, 

which signaled that no linear trend existed for those two scores. Z-test results also 

showed that neither the variance of slope among individuals nor among schools was 

significant. Table 14 summarizes the random effects estimates for all three scores.  

Table 14: 

Random effect estimates for both intercept and slope in all three models 

 

Models with time as level-1 predictor and gender and ethnicity as level-2 

predictors were built next. For models with teacher-rating score and SJT score as 

response variables, only main effects were included. The variance of slope was not 

significant at the individual level therefore no attempt was made to explain that variance.  

For the model with self-rating resilience score as response, interactions between time and 

gender as well as time and ethnicity were also included to see if the two predictors could 

explain the variance of the slope.  

In the model predicting self-rated resilience, neither gender nor ethnicity was 

significant and neither of their interactions with time was significant. In the model 

Subscore

temporal individual school individual school

Self-Rating 0.047** 0.049** 0.001* 0.002** 0.0004*

Teacher-Rating 0.265** 0.180** 0.014** 0.006 0.0008

SJT 0.252** 0.265** 0.007* 0.006 0.002
Note: *significant at .05 level; **significant at .01 level

Intercept Slope
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predicting teacher-rating resilience, both gender and ethnicity were significant. Teachers 

were more likely to give higher scores to female students and Asian students compared to 

white students. The scores given to black students and other students tended to be lower 

than those given to white students. For the model with SJT resilience score as the 

dependent variable, gender was significant. Female students were more likely to rate 

themselves higher in the SJT than male students. No significant difference was detected 

among students from different ethnicity groups. Model estimates are summarized in table 

15 below. 

Table 15: 

Summary of results for fixed effects in predicting the three resilience scores 

 

 

Research Question No.3: What Is the Relationship Between Resilience and 

Outcomes Measures? 

Before presenting the various model results, it is helpful to take a look at the 

correlations among the three resilience scores and the outcomes at different time points 

Self-rated
Resilience

Teacher_rated 
Resilience

SJT
Resilience

# Observations 6173 4485 6121

Female -0.003 0.16** 0.255**

Black -0.019 -0.135** -0.028

Hispanic -0.016 -0.074 0.008

Asian -0.017 0.097* 0.025

Other -0.017 -0.07* -0.032

time -0.011** -0.004 -0.004
Note: *significant at .05 level; **significant at .01 level
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(See in table 16). Different columns in the table represent different outcome variables and 

different rows represent time measured and which resilience score at time 1. For example, 

row 2 in the table shows the correlations between the self-rated resilience score measured 

at time 1 and different outcome variables measured at time 2. As can be seen, the further 

away from time 1 an outcome was measured, usually the lower the correlation would be. 

The teacher-rated resilience score at time 1 had higher correlations with the academic 

achievement measures at different time points than the self-rated score and the SJT score. 

The self-rated score and the SJT score correlated higher with the life satisfaction measure 

compared with the teacher-rated score.  

Table 16: 

Correlation between the three resilience scores and outcomes at different time points 

 

 

Resilience Score at 
time1

Outcome 
measured at

GPA Math Reading Quantitative Verbal
Life

Satisfaction

time1 0.26 0.14 0.15 0.09 0.09 N/A

time2 0.23 0.12 0.16 0.12 0.07 0.32

time3 0.12 0.07 0.11 0.05 -0.01 0.18

time1 0.30 0.32 0.35 0.26 0.26 N/A

time2 0.31 0.33 0.31 0.20 0.24 0.06

time3 0.25 0.24 0.26 0.20 0.21 0.06

time1 0.28 0.19 0.24 0.03 0.08 N/A

time2 0.31 0.19 0.22 0.02 0.04 0.27

time3 0.28 0.12 0.19 0.02 -0.02 0.19

Self-rated
resilience

Teacher-rated 
resilience

SJT
resilience
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Model 1 results 

As discussed in the methods part, model 1 examined the relationships between 

resilience and future outcomes when controlling for prior outcomes. As usual, 

unconditional models were built first to examine the variance decomposition at the 

student level and the school level. Outcomes at time 2 and outcomes at time 3 had similar 

variance components at each level. As can be seen in table 17, for GPA, grades, and life 

satisfaction, most of the variance was at the student level. For the two standardized test 

scores, school-level variance was about 20% while the student level variance decreased a 

little bit.  

Table 17: 

Variance decomposition of outcomes at time 2 and time 3 

 

Table 18 displays the summary of R2 estimates and coefficients estimates for the 

different response variables at time 2 and table 19 summarizes the results for response 

variables at time 3. The columns represent different models with different dependent 

variables. The first two rows include the number of observations used to build the model 

and the R2 statistics at the individual level. Since the variance at the school level was 

GPA Math Reading Quantitative Verbal
Life 

Satisfaction

school 
level

4% 2% 7% 21% 19% 2%

student 
level

96% 98% 93% 79% 81% 98%

school 
level

6% 4% 4% 18% 19% 1%

student 
level

94% 96% 96% 82% 81% 99%

Outcome 
at Time 2

Outcome 
at Time 3
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relatively small compared to the individual level, the R2 at the school level were not 

shown. The other rows represent the coefficient estimates for different time 1 predictors. 

Predictors at the school level are not shown because the focus is on the student level 

predictors. Most of the resilience scores at the school level were not significant.  
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Table 18: 

Model 1: Fixed effects estimates for response variables at time 2 

 

GPA Math Reading Quantitative Verbal Life Satisfaction

# Observation 947 786 730 540 540 921

Variance explained at 
individual level

58% 52% 60% 82% 76% 14%

Pre-test of outcome 0.70*** 0.68*** 0.71*** 0.91*** 0.87*** N/A

Self Resilience 0.07 0.07 0.08 1.38 -3.53 0.76***

SJT Resilience 0.28*** 0.06** 0.04* 0.61 0.90 0.18***

Teacher Resilience 0.14** 0.12*** 0.09*** -0.25 1.70* 0.02

Male -0.02 -0.04 -0.03 1.77 0.89 0.05

Asian 0.30* 0.04 0.01 0.91 4.11 -0.37**

Black -0.15 -0.23** -0.14 -1.14 -1.96 -0.14

Hispanic -0.15 0.03 0.07 2.46 -5.89 -0.27

Other 0.07 0.02 0.02 1.50 0.00 0.10

Note: ***significant at p< .001, **significant at p< .01, *significant at p< .05 

Model 
estimates (all 

predictors were 
measured at 

time 1)
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Table 19: 

Model 1: Fixed effects estimates for response variables at time 3 

 

GPA Math Reading Quantitative Verbal
Life 

Satisfaction
Life 

Satisfaction

# Observation 543 341 343 368 368 581 480

Variance explained at 
individual level

42% 30% 52% 59% 49% 7% 31%

Pre-test of outcome 0.54*** 0.62*** 0.72*** 0.69*** 0.70*** N/A 0.52***

Self Resilience -0.07 0.00 0.02 -0.89 -3.28 0.28* -0.15

SJT Resilience 0.24** 0.07 0.04 1.97 -0.57 0.12* 0.14**

Teacher Resilience 0.23** 0.05 0.04 1.26 2.68* 0.09 0.09

Male -0.07 0.02 0.03 4.78* 0.45 0.04 0.05

Asian 0.02 0.14 0.07 3.07 6.50 -0.50*** -0.25*

Black -0.36 -0.14 -0.20 0.80 -14.73* -0.58** -0.61**

Hispanic 0.02 -0.23 0.01 -4.02 -11.75 0.22 0.26

Other -0.21 -0.11 -0.09 -0.37 1.18 -0.12 -0.16

Note: ***significant at p< .001, **significant at p< .01, *significant at p< .05 

Model 
estimates (all 

predictors were 
measured at 

time 1)
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As can be seen from the tables, for academic achievement measures, teacher-rated 

resilience and SJT resilience achieved better predictive validity than the self-rated 

resilience. SJT resilience had slightly stronger predictive power than teacher-rated 

resilience when it came to self-reported GPA. But teacher resilience was better in 

predicting math and reading grades and predicting the standard test scores. On average, 

more variance was explained for the standardized test scores compared with the other 

achievement measures.  

With regard to life satisfaction, self-rated resilience and SJT resilience were 

stronger predictors than the teacher-rated resilience. One thing worth mentioning was that 

life satisfaction was not measured at time 1, therefore the model did not include a pre-

measure of the outcome for those two models predicting life satisfaction. It also 

explained why those models had low R2 statistics compared with other models. In order 

to reduce the error variance, another model was fit with time 2 life satisfaction as a 

control variable in the model to predict time 3 life satisfaction (last column in table 19). 

After controlling for previous life satisfaction, self-rated resilience was no longer 

significant. But SJT resilience remained significant, indicating that the SJT resilience 

score could explain a significant amount of variance in addition to the variance explained 

by the pre-measure of the outcome. 

A comparison of table 18 and table 19 suggests that more variance of time 2 

outcomes was explained compared with time 3 outcomes. Predictors of time 2 outcomes 

were also more likely to be significant compared with predictors of time 3 outcomes.  
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Model 2 results 

Similar to model 1, model 2 tested the predictive power of resilience scores at 

time 1, but from a different perspective. By including the temporal level, model 2 

examined how resilience scores predicted both the overall level of outcome variables and 

the future trend of outcomes. At least three observations are required to build a 

longitudinal growth curve model (Raudenbush, 2001; Curran, Obeidat, & Losardo, 2010). 

Since life satisfaction was only measured twice, it was excluded from the response 

variables modeled here. Table 20 summarizes the random effects of the models. Variance 

decomposition was calculated based on unconditional models and the variance estimates 

for the slope of time was calculated in a longitudinal model with time as the only 

predictor.  

Table 20: 

Variance decomposition and random effects estimates for model 2 

 

 

GPA Math Reading Verbal Quantitative

Temporal Level 30% 32% 26% 15% 12%

Individual Level 64% 63% 68% 67% 67%

School Level 5% 5% 6% 18% 21%

Temporal Level 0.62* 0.13* 0.08* 116* 97*

Individual Level 1.31* 0.26* 0.21* 517* 537*

School Level 0.11* 0.02* 0.02* 136* 164*

Individual Level 0.06* 0.02* 0.003 49* 45*

School Level 0.00 0.00 0.004 7 11

Variance 
Decomposition

Random Intercept

Random Slope

Note: *significant at p< .05 level
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As can be seen from the table, most of the variance was at the individual level: 

from 63% to 68%. For GPA, math, and reading, the school-level variance was small: 5% 

to 6%. For verbal and quantitative scores, the school-level variance was around 20%. 

Based on unconditional models, the random effects at all three levels for all the models 

were significant. Based on models with time as the only predictor, the variance for the 

slope of time was significant at the individual level for four out of five models (not 

reading). None of the variances for the slope were significant at the school level. Table 

21 presents the R2 estimates at the individual level and the fixed effects estimates for 

predictors in all models. Compared to model 1 which used the pre-measure of the 

outcome as a control, this group of models explained a relatively small amount of 

variance at the individual level. 

Time was a significant predictor in models predicting GPA, math grade, and the 

quantitative test score. Female students did significantly better in reading and 

significantly worse in quantitative test than male students. With regard to ethnicity, white 

was used as the reference group. In most of the models, Black and Hispanic students did 

significantly worse than white students. Asian students did significantly better. Turning 

to the three resilience scores, self-rated resilience score was a significant predictor of the 

overall outcome level across time in all five models. SJT resilience significantly 

predicted the overall GPA, math and reading scores, but wasn’t significantly related to 

the two standardized test scores variables. Teacher resilience was significantly positively 

related with all the outcome variables regarding their overall value and most of the time 

teacher resilience possessed the strongest relationship out of the three.  



 
 
 

 
 
 

83 
 

 

Table 21: 

Summary of the fixed effects estimates for model 2 

 

GPA Math Reading Quantitative Verbal

# Observation 2780 2501 2351 1995 1992

Variance explained at individual level 27% 23% 25% 9% 6%

Time -0.06* -0.04** 0.003 0.85* 0.44

Female 0.002 0.04 0.14*** -9.81*** 0.97

Black -0.5* -0.15* -0.49*** -16.39*** -6.46*

Hispanic -0.49* -0.11 -0.27** -15.72** -18.01***

Asian 0.38** 0.18** 0.11* 11.08*** 5.98*

Other -0.07 -0.06 -0.07 -1.56 -5.27*

Self Resilience Time1 0.74*** 0.12* 0.09* 5.55* 6.14*

SJT Resilience Time1 0.34*** 0.10*** 0.1*** 0.57 1.28

Teacher Resilience Time1 0.49*** 0.27*** 0.22*** 8.37*** 8.55***

Time*Self Resilience -0.22** N/A N/A N/A N/A

Time*SJT Resilience 0.09** N/A N/A N/A N/A

Time*Teacher Resilience 0.003 N/A N/A N/A N/A

Model estimates (all 
predictors were 

measured at time 1)

Note: ***significant at p< .001, **significant at p< .01, *significant at p< .05 
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The interaction terms between each resilience score and time indicated whether 

resilience had predicted the trend of the outcome. All models with interactions were 

tested and none of the interactions were significant in the last four models, indicating that 

students with different resilience scores did not have significantly different trend with 

regard to the outcome measure. Only Self and SJT resilience scores had significant 

interactions with time when predicting GPA. Students with higher self-rated resilience 

had a higher overall GPA across time, but also experience a lower rate of increase 

compared with students with lower self-rated resilience scores. The interaction between 

SJT score and time was positive and significant, implying that students with higher SJT 

scores had a sharper incline compared to student with lower SJT scores.  

Model 3 results 

Like model 2, model 3 was a longitudinal growth curve model with three levels. 

Both overall level of the outcome and the rate of change for the outcome were modeled. 

The difference between model 2 and model 3 was that model 3 included three more time-

varying independent variables (in addition to time) at level-1. The three time-varying 

variables were the three resilience scores. At each time point, the resilience scores were 

used to predict the later outcomes for the same semester. So the level-1 variables were 

targeting at short-term predictions rather than long-term (compared with model 1 and 

model 2). The level-2 average scores in model 3 played the same role as the time 1 scores 

in model 2, explaining the variance of intercept and slope at the lowest level. Because the 

unconditional models in model 3 were the same as the ones in model 2, model 3 and 

model 2 had identical variance decomposition as well as estimates for random effects, 
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which were already summarized in table 20. Table 22 summarizes the R2 estimates for 

both the temporal level and the individual level. Because no school-level predictors were 

included in the model, the R2 at the school level was not shown. Very little temporal-

level variance was explained. The largest amount of variance was explained in the model 

predicting GPA and it was only 3.2%. 10% to 30% of the variance at the individual level 

was explained by the predictors.  

Table 22: 

Variance Explained at the temporal and the individual level 

 

Table 23 shows the fixed effect estimates for variables in different models. The 

first four rows represent the estimates of level-1 predictors: time and the three time-

varying resilience variables. The other rows represent the estimates of level-2 predictors: 

gender, ethnicity, and the mean resilience scores across time. The interactions between 

time and mean resilience scores were tested in all models. Only the GPA model had 

significant interactions. All other estimates were from main-effects-only models. 

 

GPA Math Reading Quantitative Verbal

R Square at 
Temporal Level

3.2% 0.4% 1.1% 0.5% 0.0%

R Sqaure at 
Individual Level

26.7% 25.8% 31.8% 13.2% 10.8%
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Table 23: 

Fixed effect estimates for model 3 

 

GPA Math Reading Quantitative Verbal

# Observations 3283 2794 2644 2100 2096

Time 0.01 -0.02 -0.01 0.53 0.26

Self_Resilience_Centered 0.57*** 0.06 0.01 0.2 -1.4

SJT_Resilience_Centered 0.03 0.03 0.02 0.3 0.75

Teacher_Resilience_Centered 0.04 0.01 0.02 1.5* 0.09

Female 0.05 0.04 0.13*** -8.49*** 2.14

Black -0.43*** -0.18** -0.44*** -14.04*** -6.48*

Hispanic -0.49** -0.11 -0.24** -12.92** -16.16***

Asian 0.38*** 0.18*** 0.1* 12.06*** 6.45*

Other -0.08 -0.04 -0.06 -1.88 -4.38*

Self_Resilience_Mean 0.73*** 0.12* 0.19*** 7.75** 6.86**

SJT_Resilience_Mean 0.36*** 0.1*** 0.07*** -1.25 -0.43

Teacher_Resilience_Mean 0.59*** 0.34*** 0.29*** 8.93*** 9.71***

Time*Self_Resilience_Mean -0.12 N/A N/A N/A N/A

Time*SJT_Resilience_Mean 0.07* N/A N/A N/A N/A

Time*Teacher_Resilience_Mean 0.04 N/A N/A N/A N/A

Level 1 Predictors

Level 2 Predictors

Note: ***significant at p< .001, **significant at p< .01, *significant at p< .05 
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The estimates of level-2 predictors were similar to the model 2 results. Female 

students did significantly better in reading while significantly worse in quantitative test. 

Compared with white students, black and Hispanic students did significantly worse on 

measures of academic achievement while Asian students did better. The main effects 

associated with the three resilience scores were mostly significant across different models, 

suggesting that the mean level of resilience was significantly positively related to the 

overall level of the outcomes. The teacher-rated resilience score had a stronger 

relationship, especially with standardized test scores. 

The interaction terms between time 1 and time 2 resilience scores represented the 

impact of the average resilience scores on the trend of the outcomes. The only significant 

interaction appeared in the model predicting GPA. The interaction between time and SJT 

suggested that students’ with higher SJT scores were more likely to experience larger 

increases in their GPAs compared with students with lower SJT scores.  

Focusing on the three level-1 individual-mean centered resilience scores, their estimates 

represented the short-term impact of resilience scores on the outcome variables—how the 

change of resilience scores for an individual affected the change of the outcome measures. 

As discussed in the methods section, if level-1 resilience predictors turned out to be 

significant, the author would be able to rule out the between-individual unobserved third 

variable alternative. Results in table 23 showed that level-1 self-rated resilience was 

significant in predicting GPA and the level-1 teacher-rated resilience was significant in 

predicting the quantitative test score. None of the level-1 resilience scores were 

significant in other models.    
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CHAPTER 4: DISCUSSION 

 

Conclusions 

All the three resilience measures were multidimensional in nature. After applying 

different techniques, the author was able to extract a single, reliable and stable factor to 

represent each of the three resilience scales. No single resilience score could be derived 

from the three sub-scores. A single general resilience factor derived from the three 

subscales would not be reliable because of the little common variance shared by the three 

sub-scores and therefore the attempt to derive a single score for the whole scale failed. 

All three resilience scales experienced significant changes across time, although 

the change could not be simplified as a linear trend in two of the three models. Teachers 

tended to give higher ratings to female students and also to white and Asian students. 

Female students were also more likely to rate themselves higher in SJT resilience scores. 

Neither gender nor ethnicity had a significant effect on the linear rate of change of the 

three resilience scores. 

Self-rated resilience score was not able to significantly predict any outcome in the 

long term (from half a year to a year) when prior outcomes and other resilience sores 

were controlled simultaneously. The change of self-rated resilience across time was 

related to the change of GPA measured one to two months later. SJT resilience score 

significantly predicted GPA, math grade, reading grade, and life satisfaction. Students 

with higher SJT scores were also more likely to have a better growth regarding their GPA. 

However, change of SJT resilience score across time was not able to predict the change 

of any outcome variables. Teacher-rated resilience was not related to life satisfaction but 
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it had stronger relationships with grades and standardized test scores. The change of 

teacher-rated resilience across time was able to predict the change of quantitative test 

scores.  

Resilience was significantly related to academic achievement and life satisfaction. 

Resilience scores derived from different methods tended to capture unique aspect of 

resilience, which was verified by their differentiated relationships with different 

outcomes. Self-rated resilience achieved predictive validity with GPA. SJT resilience 

score was strongly related to GPA and life satisfaction. Teacher-rated resilience had 

stronger predictive power on grades and test scores.  

Significance and Implications 

Previous studies on resilience did not attempt to place the various definitions of 

resilience into different groups according to the aspect of resilience each definition was 

targeting. Neither did they try to make connections between aspects of resilience and the 

different ways to measure resilience. The current study adds value to the field by 

examining resilience in detail and by distinguishing items of traits that were influential on 

resilience from items of outcomes that were directly measuring resilience. By applying 

the bi-factor analysis, a true resilience factor was successfully separated. That factor was 

free of the trait variance that was unique to the traits. To the author’s knowledge, none of 

the previous studies which used resilience scales made up of items under mixed methods 

tried to extract resilience-only variance. The study makes methodological contributions 

as well by illustrating an effective way to extract information from a resilience scale to a 

unidimensional factor.  
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Placing definitions and scales of resilience into four groups provides guidance for 

researchers developing resilience scales. If researchers want to measure a specific aspect 

of resilience, it is better not to use items borrowed from a mix of scales. If the goal is to 

explore what personality traits can affect resilience, a resilience scale using the trait 

approach is not able to provide a proper outcome measure because the scale itself is made 

up of trait items. A significant relationship means nothing. Scales measuring particular 

traits and a resilience scale developed by the outcome approach will fit the objective 

better. 

The categorization of definitions and scales of resilience are also helpful for 

practitioners aiming to implement interventions to improve student resilience. If the 

intervention’s goal is to build resilience through teaching children how to use better 

strategies to handle stressful situations, researchers should realize that a scale solely 

based on the coping approach is not able to examine the real impact of the intervention. It 

is only good at capturing whether the program achieves its goal in changing participants’ 

coping strategies, which can serve as a mediating variable but not the ultimate outcome. 

Instead, a scale developed using the outcome approach should be used to measure 

resilience and to provide evidence of the effectiveness of the program.  

Following the same categorization, experiments can be conducted to uncover the 

mechanism of how resilience is built. Scales measuring the trait aspect, the coping aspect, 

and the process aspect can be used for the examination of their relationships with the 

resilience defined by the outcome approach. It will provide valuable information on what 
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factor has the largest impact on the resilience outcome and thus give directions for 

building resilience interventions. 

Very few resilience studies have used more than one method to measure resilience. 

Lai & Viering (2012) and Lipnevich, MacCann, & Roberts (2013) emphasized the 

importance of collecting information from multiple sources in multiple assessment modes. 

This study is an example of administering multiple measures (subscales) of resilience to 

multiple groups of raters. It provides evidence that each method captures a unique facet 

of resilience and the common variance shared by different methods is low. The predictive 

validity of each method varies with regard to the criterion used. For example, the teacher-

rated method is better for predicting external academic criteria and the SJT method is 

better for predicting life satisfaction. The findings can help researchers better understand 

the strengths and weaknesses of each method. 

This study also features a longitudinal design, which allows the examination of 

resilience over time. The fact that all three resilience scores capture differential growth 

across students has important implications. The low correlation over time might be a sign 

of poor test-retest reliability. Since most resilience studies used a scale that was similar to 

at least one of the three subscales used in this study, if the lack of test-retest reliability is 

verified, there will be a strong impetus to develop a new measure of resilience which can 

achieve better reliability across time.  

Another possible interpretation is that resilience is subject to short-term changes 

of internal or external factors. If a student can be more/less resilient facing different tasks 
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or under different situations, it will be worth examining what situations/tasks stimulate 

individual’s resilience and what situations/tasks suppress it.  

The longitudinal feature of the data also opens the possibility of fitting more 

complex models, which have been tried rarely in prior studies of resilience. Very few 

previous studies which found a significant relationship between resilience and an 

outcome were able to rule out the explanation of an unobserved third variable. Evidence 

from this study overcomes that weakness to some extent. The results contribute to the 

literature related to the evidence of resilience’s importance and also to the general 

literature on the significance of non-cognitive skills. 

The issue of wording discovered in this study is worth researchers’ attention when 

assessing non-cognitive skills. Although wording has been rarely discussed when it 

comes to resilience scales, the effect of wording has been noticed by researchers 

investigating other scales. Originally, the introduction of negatively-worded items was to 

eliminate the acquiescence bias (Cronbach, 1946; Couch and Keniston, 1960). An 

unintended effect was inflated correlations among positively worded items and among 

negatively worded items, sometimes sufficient to yield a two-factor solution. Carmines 

and Zellar (1979), by conducting exploratory factor analysis, found that Rosenberg’s 

(1965) self-esteem scale involved two factors—with one factor made up of all the 

positively worded items and the other of all the negatively worded items. However, they 

failed to realize that the two-factor structure was due to wording and claimed that the 

self-esteem scale had two trait factors. Marsh (1996) found the scale had only one factor 
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after separating the effect due to wording, a finding replicated by Chen, Rendina-Gobioff, 

& Dedrick (2007) and DiStefano & Motl (2006).  

Wording effects have been found to inflate correlations among same-worded 

items and result in a two-factor solution in social dominance orientation (Xin & Chi, 

2010), anxiety (Motl, Conroy, & Horan, 2000), general health (Molina et al., 2014), core 

self-evaluation (Kennedy, 2007), and quality of life (Lin et al., 2014). Different methods 

under the framework of confirmatory factor analysis have been tried by researchers in 

order to reveal the true factor structure of the scales. Some researchers adjusted 

negatively worded items only and chose to include only a positive method factor due to 

superior model fit (Wu, 2008). Others made the adjustment by including both method 

factors (Lin et al., 2014; Chen et al., 2007) to test if including both led to a better solution. 

In the current study, a positive method factor only and a negative factor only was tried. 

Compared with the final bi-factor structure, the chi-square test was significant and the 

shift in both RMSEA and CFI exceeded the limit, indicating that the model with both 

method factors fit significantly better than the two alternative models. To ascertain the 

improved model fit associated with the two-method-factors model was not caused by the 

addition of random parameters (Wouters et al., 2012), the author tested five models 

where the items were randomly allocated to form two method factors. All five models 

encountered convergence problems, suggesting that the optimal fit of the final two-factor 

CFA model was not a coincidence.  

The finding that resilience scores were able to predict academic outcomes are 

worth further exploring. Perhaps schools could use information related to students’ 
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resilience to select those more likely to be successful academically. Schools might also 

use measures of resilience to identify students at risk of poor achievement in order to 

intervene at an earlier stage. The finding on the predictive power of resilience on life 

satisfaction could be valuable in similar ways. In order to use resilience scores for 

selective enrollment purposes, more studies examining the longer-term predictive power 

of resilience are needed and a scale which is more reliable across time is highly desirable.   

The finding that resilience was a significant predictor of life satisfaction but GPA 

was not is illuminating. Students with higher GPAs are not necessarily happier in life. 

But students with higher resilience are. The goal of education should not be limited to the 

pursuit of knowledge. Education should empower students to shape their own futures and 

support them in lifelong pursuit of happiness (Noddings, 2003). Strengthening children 

and adolescents’ resilience may be key to helping them reach their full potential in life 

(Henderson & Milstein, 2003).  

Limitations 

As discussed above, some features of the current study add to its strength. But like 

any study, there are limitations that bear discussion. First, the measure of resilience used 

in the study is far from perfect. For example, there was lack of theoretical support for 

scale development. There were items that did not fit the concept of resilience. Although 

confirmatory bi-factor analysis was used to mitigate these problems, the solution might 

not be as good as focusing on measuring the outcome aspect of resilience.  

The demand for innovative measures of resilience and other non-cognitive skills 

is high. The SJT subscale represents an innovative method and seems promising based on 
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the results from this study. Nevertheless, SJT scale suffers from all the common biases 

shared by self-evaluation methods. For example, since the life satisfaction outcome 

measure comes from a self-rated scale, the significant relationship between SJT resilience 

and life satisfaction might reflect the social desirability bias underlying both scales 

(Paulhus, 1991). If researchers working on the assessment of non-cognitive skills can 

move beyond traditional self-surveys, and predictive validity is still obtained, the results 

would be more impressive. 

Another limitation lies in the fact that the study has a large amount of missing 

data. Two types of missingness exist: non-participation of students and incomplete 

information on the variables. The main reason for student non-participation in wave 3 

was graduation. The main reason for student non-participation in wave 1 and 2 was either 

the student had not matriculated into middle school or the school did not participate in the 

earlier waves of data collection. The main reason for the missingness on response 

variables was that some schools did not assign grades to students in lower grade levels or 

require them to participate in the standardized test. With regard to the prediction models 

used to answer research question No.3, neither multiple imputation nor maximum 

likelihood methods were tried because both require the data to be missing at random 

(Allison, 2001). Obviously the pattern of missingness in this current study is not at 

random. Regarding the longitudinal growth curve models, 40% to 50% of the total 

observations (person-occasion data) were from students who participated in all three 

waves of data collection. The rest of the observations were contributed by students who 

participated in the study for only one or two waves. In order to examine the robustness of 
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the longitudinal growth curve models, analyses including only students who had 

participated in all three waves or who had participated in more than one wave were 

conducted and similar results were obtained.   

One more shortcoming of the study is that grade level information was available 

for only a small number of students. It was possible that students in grade 6 experienced a 

different pattern of change in resilience compared with students in grade 7 or 8. 

Therefore without the ability to include grade level in the models for research question 

No.2, the power to account for a potential significant amount of error variance was lost.  

Similar to grade level information, students’ age information was not incorporated 

into the model. One reason lay in the fact that age information was available in years but 

not months. So it could not capture the differences across the three waves of data. More 

accurate information about age would be useful in two ways. First, age could be used as a 

level-2 control variable in the longitudinal growth curve models to examine if students at 

different ages at the time of the first data collection experience different patterns of 

change with regard to resilience and outcomes. Second, age could be treated as a level-1 

time-varying predictor. Therefore in addition to modeling change across time, change can 

be modeled as students grow older. The approach would capture a more accurate picture 

of how student resilience as well as outcomes change during adolescence. 1 

Yet another limitation of the study was that only three waves of data were 

collected at the time analyses were conducted. This limited the choice of models. For 

example, only linear trend could be examined for longitudinal growth curve models. With 

                                                            
1 The author made an attempt to transform the age information into months and age was used as level-1 
time varying variable in the model. Results were very similar as presented in the previous section.  
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more waves of data, higher-order polynomial trends (i.e., quadratic trend, cubic trend) 

could be tested. Even the current linear growth curve model would benefit from more 

waves of data. Instead of using the time-varying resilience scores to predict the outcome 

collected in the same wave, the resilience scores in each wave could be linked to the 

outcome variable collected in the next wave. One more weakness of the current study 

regarding the prediction model is its inability to rule out the possibility that the significant 

relationship was the result of a reversed causal explanation—the outcome caused 

resilience to change instead of vice versa. By fitting a longitudinal growth curve model in 

which the outcome in each wave serves as the time-varying predictor for the resilience 

score from the next wave, the reversed predictive relationship alternative can be 

evaluated. 

As mentioned in the methods section, the author is handicapped to establish a 

causal relationship because the study is not an experiment. No matter how much evidence 

can be gathered, it is impossible to disqualify all the alternative explanations of a 

significant predictive relationship. Different types of validity can be tested but a causal 

relationship cannot be verified.  

Finally, there is the limitation of external validity. The sample in the study 

consists completely of independent school students. However, the demographic 

information in the participating sample is very different from a public school population 

regarding the percent of minority students and the percent of economically disadvantaged 

students. Both the measurement model and the prediction model might not fit students 
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attending public schools. Therefore generalizing the conclusions and the implications of 

the current study to a broader population of public school students may not be appropriate.  

Future Directions 

Investigating causal relationships of resilience on future outcomes is a priority for 

future work. The more we know how to build and shape resilience for children and 

adolescents, the easier we can construct scales to measure resilience accurately and 

reliably and the better we can design interventions that improve students’ resilience. We 

can further conduct experimental studies to test the effectiveness of resilience 

interventions and gather the strongest evidence on whether and to what extent resilience 

impacts student outcomes such as academic achievement.  

The SJT resilience score significantly predicted life satisfaction in this study. 

However, both the SJT resilience score and the life satisfaction score were calculated 

based on a single factor composed of only positively worded items. Perhaps the positive 

wording effect underlying both scales inflated the common variance between the two 

scores. Although there were only two negatively worded items in the original life 

satisfaction scale, a sensitivity test was conducted using resilience to predict the average 

score from the two negatively worded life satisfaction items. Two models were built 

while the three resilience scores at time 1 were put into the model to predict the score of 

the negatively worded factor at time 3. One model controlled for the factor score at time 

2 and the other did not. Contrary to previous findings, the SJT score was not significant 

in either of the two models. It could be that the factor made up of only two items was not 

reliable therefore attenuating the relationship between the response variable and the 
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predictors. But the result renders the previous finding of the strong predictive power of 

SJT score on life satisfaction suspicious. Further research is needed to determine what 

makes the SJT score a significant predictor of the life satisfaction score derived from 

positively-worded items but not from negatively-worded items. 

The finding of the low correlation between the resilience score calculated from 

the self-rating subscale and that derived from the teacher-rating subscale is worth further 

exploration. If they capture different aspects of resilience, what are those aspects? 

Interviews with students and their teachers whose ratings differ by a large amount might 

provide some insights. 

A fourth wave of data collection was finished in February of 2014. If the data 

becomes available, life satisfaction could be modeled using model 3. Moreover, three 

more longitudinal growth curve models could be fit. The first model would include a 

quadratic term at level 1 and utilize leve-2 variables to predict the intercept, the slope for 

time, and the slope for time2. The second model would examine a linear trend but the 

time-varying resilience scores from each wave would be linked to the outcomes in the 

next wave. The third model would explore the possibility of a reversed relationship where 

outcomes from each wave are used to predict the resilience scores from the next wave. 

Figure 11 through 13 are created to illustrate the three potential models. 
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Figure 11: Illustration of the first potential model 

 

 

Figure 12: Illustration of the second potential model 
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Figure 13: Illustration of the third potential model 

 

The second and third models are both lagged prediction models, representing 

competing theories explaining a potential significant relationship between resilience and 

the outcome. Each model can also be fit under a structural equation modeling framework 

(Bollen, 1998) and the fit statistics can be compared to determine which theory is 

supported by the data. A cross-lagged prediction model could also be built. By comparing 

the Chi-square statistics, the RMSEA, and the CFI between the cross-lagged model and 

each of the nested single-direction lagged models, the author can determine if the cross-

lagged model fits the data significantly better than the two less restricted models. An 

illustration of the three models can be seen in figure 14.  
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Figure 14: Illustration of SEM models 

 

 There is another advantage of using structural equation modeling. By combining 

the measurement part (CFA part) and the structural part (Prediction part), SEM can 

estimate regression coefficients after adjusting for reliability of measurement (Bollen, 

1998). If a model incorporating outcomes, demographic variables, resilience factors and 

items could be fit, the results could become a more accurate reflection of the true 

relationship between resilience and the outcomes.   

 The current study did not examine whether the same factor structure held for 

students from different gender or ethnicity groups or whether resilience worked the same 

way for students from different groups. It might be another area worth exploring. 
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