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Assurance Cases in Model-Driven Development
of the Pacemaker Software⋆

Eunkyoung Jee, Insup Lee, and Oleg Sokolsky

PRECISE Center
Department of Computer and Information Science

University of Pennsylvania, Philadelphia PA 19104, USA
eunkjee@seas.upenn.edu, {lee, sokolsky}@cis.upenn.edu

Abstract. We discuss the construction of an assurance case for the pace-
maker software. The software is developed following a model-based tech-
nique that combined formal modeling of the system, systematic code
generation from the formal model, and measurement of timing behavior
of the implementation. We show how the structure of the assurance case
reflects our development approach.

Keywords: assurance case, pacemaker challenge, model-driven devel-
opment, real-time software

1 Introduction

We consider the problem of developing an assurance case for the real-time car-
diac pacemaker software, representative of life-critical systems in which many
complex timing constraints are imposed. This work was motivated by the Pace-
maker Grand Challenge, the first certification challenge problem issued by the
Software Certification Consortium (SCC) [1]. Boston Scientific has released into
the public domain the system specification for a previous-generation pacemaker
to have it serve as the basis for a challenge to the formal methods community.
In [2], we proposed a safety-assured approach for the development of pacemaker
software. In this paper, we consider how the features of our development process
are reflected in the structure of the assurance case.

When we develop a real-time system, guaranteeing timing properties on its
implementation is an important but non-trivial issue. It becomes essential if
the real-time system is a safety-critical one in which violation of timing prop-
erties can result in loss of life. We focus on how to systematically implement
time-guaranteed real-time software from a given model and how to convincingly
demonstrate the safety of the software.

Several concepts and approaches can be effectively integrated to contribute
to the development of safety-assured real-time software. The model-driven de-
velopment (MDD) approach is steadily gaining popularity in the development of
embedded software. According to the MDD concept, we create a formal model
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of the real-time system, verify the model, and generate an implementation code
from it. In order to validate the result and check the timing constraints on the
implementation, we perform measurement-based timing analysis on the imple-
mentation and revise the implementation and the model according to the timing
analysis result, repeating the verification process if necessary.

Many safety critical systems, such as avionics systems and medical devices,
are subject to regulatory approval. Once the system is implemented, it is nec-
essary to present development documentation to the regulators for review. Cur-
rently, this process is lengthy and expensive. Certification costs constitute a
significant fraction of the development costs for regulated systems.

Assurance cases are currently seen to be holding a promise of both reducing
certification costs and improving the quality of certification by tying it to the
evidence. An assurance case is a documented body of evidence that provides
a convincing and valid argument that a specified set of critical claims about a
system’s properties are adequately justified for a given application in a given
environment [3]. Yet, there are few commonly accepted ways of constructing
assurance cases. There is evidence that a poorly structured assurance case can
hamper the evaluation process, rather than help it [4]. Clearly, there is no “one
size fits all” structure, and software developed through different processes is
likely to require different arguments about its safety. The case study put forth in
this paper aims to discover appropriate structures for one development approach,
namely model-driven development.

The contribution of this paper is the construction of an assurance case for
real-time software developed using a model-driven safety-assured process based
on formal modeling, rigorous code generation from the verified model, and sub-
sequent validation of the timing characteristics of the developed code. We believe
that other model-driven development frameworks will be amenable to similarly
structured assurance cases. Our ultimate goal is to arrive at an accepted assur-
ance case template that can be applied to a variety of safety-critical software-
based systems. Having such a template will simplify regulatory approval of these
systems, by making the argument easier for the evaluators to follow. While this
goal still lies ahead of us, this work can be seen as the first step in the right
direction.

The remainder of the paper is organized as follows: Section 2 explains the
background of the case study. Section 3 presents the overview of our development
process and demonstrates its application to the development of the pacemaker
software. Section 4 presents the assurance case for the pacemaker software in
its relation to the evidence generated during the development. We discuss re-
lated issues in Section 5 and present a review of previous work related to topics
addressed in this paper in Section 6. Section 7 concludes the paper.
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2 Pacemaker Operation

2.1 Heart

A human heart has four chambers: right and left atria, and right and left ven-
tricles. De-oxygenated blood from the body is collected in the right atrium and
then pumped into the lungs via the right ventricle. In the lungs, carbon dioxide
in the blood is replaced with oxygen. This oxygenated blood then passes through
the left atrium and enters the left ventricle, which pumps it out to the rest of
the body.

From an electrical point of view, the heart is a pump made up of muscle
tissue, controlled by an intrinsic electrical system. An electrical stimulus gener-
ated periodically (normally about 60-100 times per minute) by the sinus node,
located in the right atrium, travels through the conduction pathways and causes
the heart’s chambers to contract and pump out blood. The atria are stimulated
and contract shortly before the ventricles are stimulated and contract.

Under some conditions, this intrinsic cardiac system does not work properly
and the heart rate becomes overly fast or slow, or irregular. In these situations,
the body may not receive enough blood, which causes several symptoms such
as low blood pressure, weakness, and fatigue. To avoid these symptoms, a pace-
maker can be used to regulate the heartbeat [5].

2.2 Pacemaker

A cardiac pacemaker is an electronic device implanted into the body to regulate
the heart beat by delivering electrical stimuli over leads with electrodes that are
in contact with the heart. These stimuli are called paces. The pacemaker may
also detect natural cardiac stimulations, called senses. We refer to cardiac paces
and senses collectively as events.

A pacemaker must satisfy three fundamental medical requirements: the rate
at which the cardiac chambers contract must not be too high; the rate at which
the cardiac chambers contract must not be too low; the ventricles must contract
at a particular interval after the atria contract. These general requirements are
concretized by setting specific values or ranges to configurable parameters for
the pacemaker.

The pacemaker can operate in a number of modes, distinguished by which
chambers of the heart are sensed and paced, how sensed events will affect pac-
ing, and whether the pacing rate is adapted to the patient state. In this paper,
we concentrate on the VVI mode, in which the pacemaker senses only ventric-
ular contractions and performs only ventricular pacing. In this mode, pacing is
inhibited if ventricular contractions are sensed.

A pacemaker in the VVI mode operates in a timing cycle that begins with a
paced or sensed ventricular event. The basis of the timing cycle is the lower rate
interval (LRI), which is the maximum amount of time between two consecutive
events in one chamber. If the LRI elapses and no sensed event occurs since the
beginning of the cycle, a pace is delivered and the cycle is reset. At the beginning
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of each cycle, there is a ventricular refractory period (VRP), usually 200-350 ms.
Chaotic electrical activity in the heart immediately following a pace may lead
to spurious detection of sensed events that can interfere with future pacing. For
this reason, sensing is disabled during the VRP period. Once the VRP period is
over, a sensed ventricular event inhibits the pacing and resets the LRI, starting
the new timing cycle. Hysteresis pacing can be enabled in the VVI mode, when
the pacemaker will delay pacing beyond the LRI to give the heart a chance of
resuming normal operation. In that case, the timing cycle is to a larger value,
namely the hysteresis rate interval (HRI). In our implementation, hysteresis
pacing is applied after a ventricular sense is received, and disabled after sending
a pacing signal.

3 Model-Driven Development of Pacemaker Software

3.1 Overall Process

We propose a safety-assured development process for real-time software. The
proposed process follows a model-driven development approach with the em-
phasis on ensuring that the implementation satisfies timing properties that are
satisfied in the model. Fig. 1 shows the overall process.

During the requirements and design phases of the software life cycle, devel-
opers first start from formal modeling with timed automata of the real-time
software. Second, model checking is performed on the timed automata model
with respect to desired properties using a real-time model checker such as Up-
paal. We focus on safety properties, especially timing properties which require
that a certain event should happen no later than a specific delay. Given a verified
formal model, an implementation code is synthesized in the third step.

In the fourth step, we check to see if the same properties checked on the
model are still satisfied by the code running on a target platform. If some timing
properties are not satisfied by the code, we measure how much actual time
deviates from the expected. During the fourth step, we find a timing tolerance
value, ∆, through the measurement-based timing analysis. Guards in the code
are modified with this ∆ to make the code satisfy timing properties. Once it
is confirmed that the code satisfies the desired timing properties with the ∆,
changes of the code, i.e., modified guards with the ∆, are reflected to the model
in the fifth step. If the modified model still satisfies all the properties, the overall
process ends. Otherwise, the process is repeated by revising the problematic
model and the code. We describe each step with the pacemaker example in the
following subsections.

3.2 Formal Modeling

We used the Boston Scientific’s system specification for a pacemaker [6]. Be-
cause timing constraints are so prevalent in the specification of the pacemaker,
it is intuitive and straightforward to use timed automata [7] as our modeling
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Fig. 1. Overall process of a safety-assured development for a real-time pacemaker soft-
ware

language. Here we use the Uppaal tool [8] to specify a timed automata model
of the pacemaker in VVI mode.

We extracted properties to be satisfied by the VVI mode pacemaker from
the system specification. LRI, HRI, and VRP are considered the most impor-
tant timing periods which should be guaranteed by the VVI mode pacemaker.
Fig. 2 shows two automata for Ventricle and Heart, representing the controller
for ventricular pacing in the VVI mode and a heart model as the environment
for model verification, respectively. Our heart model is the most permissive en-
vironment that is ready to accept a pacing signal whenever it is sent and can
choose to deliver a sensing signal at any time.

The Ventricle automaton shown in Fig. 2(a) represents sensing signals from
the ventricle and emission of ventricular pacing signals to the heart, according
to the LRI, HRI, and VRP timing periods. Values of these intervals are captured
as parameters of the automaton.

Event channels are used to communicate between pacemaker and its en-
vironment. VPace and VSense are channels for sending pacing signals and for
receiving sensed events, respectively. A question mark after the channel name
represents input from the channel, while an exclamation mark denotes output
to the channel. The automaton has two states, WaitRI and WaitVRP, described
below.

– WaitRI: The pacemaker starts from this state (denoted by the double circle)
and waits for a ventricular sensing or pacing event. If sensing does not occur
before the RI period ends, the ventricle controller sends a pacing signal to
the heart (Transition 2) and the timer x is reset. The RI value is reset to
LRI and hp is set to false, indicating that hysteresis pacing is not used in
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(a) Ventricle controller model

(b) Heart model

Fig. 2. Uppaal model for a pacemaker in VVI mode

this case. When a ventricular sense occurs, Transition 3 is taken, where the
timer x is reset, hp is set to true and HRI is assigned to RI, which allows a
longer period to elapse before pacing . Once the ventricle is paced or sensed,
current state is changed to WaitVRP.

– WaitVRP: In this state the pacemaker waits for a VRP period to elapse. It
returns to the WaitRI state after a VRP period by setting hpenable to hp
and started to true. hpenable and started are auxiliary variables to be used
in property description for model checking. started is initially false and holds
true after the first visit of WaitVRP.

3.3 Formal Verification

We mapped the timing requirements to the following verification queries in Up-
paal. Below, A� means that the property must hold in every state along every
execution. Notation P.x denotes a variable x defined in the automaton P.

– PropDeadlock: A�(¬deadlock). This property expresses the deadlock free-
dom in the model.

– PropLRI: A�(¬Ventricle.hpenable ⇒ Ventricle.x ≤ Ventricle.LRI). When hys-
teresis pacing is disabled, the LRI period should not be exceeded between
any two pacing or sensing events.

– PropHRI: A�(Ventricle.hpenable ⇒ Ventricle.x ≤ Ventricle.HRI). When hys-
teresis pacing is enabled, the HRI period is used in place of LRI.

– PropVRP: A�(Ventricle.WaitRI∧Ventricle.started ⇒ Ventricle.x ≥ Ventricle.VRP).
Except the initial state, the pacemaker can be in the state WaitRI, where
sense signals are accepted, only after the VRP period expires.
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When we performed model checking on the model shown in Fig. 2 with the above
four properties, we confirmed that the model satisfied all these properties.

3.4 Code Generation

We implemented the pacemaker software on a hardware reference platform of
the Pacemaker Formal Method Challenge [1], which is based on a Microchip
8-bit PIC18F4520 MicroController Unit (PIC18 MCU) [9] running at 40 MHz
clock speed. We generated a single-threaded code where the timed automata
models are implemented inside a single loop. The code checks the current enabled
transitions and takes one of them in each iteration.

The code generation algorithms adapts the techniques used in the Times
tool [10] to produce code for the PIC18 MCU board. While the platform is
substantially different from the one supported by Times, the code structure is
essentially the same and we can reuse the correctness properties of the Times
algorithm.

3.5 Validation of the Generated Code

We utilized MPLAB SIM, a software simulator for PIC18 MCU in the MPLAB
Integrated Development Environment (IDE) [9] to execute the code and measure
its timing. We tested the generated code under a variety of testing scenarios
that cover all sequences of sensing and pacing events of length two that are
qualitatively different with respect to the VRP and LRI periods.

Timing analysis of the observed event sequences was used to validate the
code. An iteration of the validation cycle (see Fig. 1) was necessary to obtain
the bounds on event processing delay, update the model to reflect these delays,
repeat the verification, and re-generate the code. Testing of the re-generated code
did not reveal any violations of the timing properties. Details of the validation
process and timing analysis can be found in [2].

4 Assurance Cases

We created an assurance case to demonstrate that the implemented code is
safe to operate, with the intention of providing a guiding example of assurance
cases to be possibly used in the certification process of pacemaker software. The
assurance case went through multiple review cycles within our group until we
were satisfied that no unaddressed arguments result in significant risk to the
pacemaker software.

Fig. 3 shows the top-level goal (G1) that the pacemaker software for the
VVI mode, implemented as described in Section 3, is acceptably safe. The as-
surance case is implemented using the goal-structuring notation (GSN) [11]. It
concentrates on the pacemaker software, assuming that the hardware platform
is reliable (A1). Two context references (C1) and (C2) were added to clarify the
goal statement. The assurance case is intended to be a part of the larger case
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Fig. 3. The pacemaker assurance case - the pacemaker software is acceptably safe

that considers the overall system and makes claims about the assumptions made
here.

The element (S1) describes the strategy we are using to argue the goal (G1):
it is achieved by satisfying requirements, assuming that the designer extracted
all the important properties related to the software safety from the system spec-
ification (A2). With this strategy, the goal (G1) is converted into the goal (G2),
to show that the implementation satisfies all the desired safety properties within
acceptable timing tolerances. Context reference (C4) clarifies the meaning of
timing tolerances in this context. Arguing by following the model-driven devel-
opment approach (S2), the goal (G2) is supported by three subgoals: the model
satisfies all the desired properties (G3), the code generation process transforms
the model into the code correctly (G4), and the synthesized code satisfies all the
desired properties with timing tolerance (G5).

Fig. 4 presents the argument for goal (G3). The model (M1) is the timed
automata model of the pacemaker shown in Fig. 2. Four desired properties de-
scribed in (C5) are described in Section 3.3. Conformance of the model to each
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Fig. 4. The pacemaker assurance case - The model satisfies all the desired properties

property is argued by a separate subgoal ((G6)–(G9)), using model checking
results as evidence.

Fig. 5 argues the goal (G4). Two strategies (S4) and (S5) were used to split
the goal (G4). One of the subgoals supporting (G4) is that, in the context of
using the Times tool (C10), the code synthesis of the Times tool for the verified
model is correct (G10). Correctness arguments for the the code synthesis of the
Times tool given in [12] are used as evidence (Ev5) to support (G10). Since we
had to manually modify the code generated by the Times tool to port it on the
pacemaker platform, we have to supplement this argument with the claim that
manual modifications do not alter correctness of the code. Two subgoals, (G11)
and (G12) identify the nature of the modifications, with code review results as
evidence (Ev6), and demonstrate that they do not affect the functionality. In
the latter case, results of code validation are used as evidence (Ev7).

Fig. 6 addresses the third subgoal of (G2). It argues that the synthesized
code satisfies all the desired properties with the timing tolerance (G5). Again,
the argument is presented as a separate subgoal for each of the properties. The
deadlock freedom property (G13), which does not involve tolerances, is ensured
by the guarantees provided by the Times tool, which is used as evidence (Ev8).
The other three subgoals, (G14)–(G16), are established through the code level
checking based on the justification (J1) that a property in a form of A�(P) can
be checked in the code by checking if P is true at the end of every loop with a set
of test cases. As shown in Fig. 6 and Fig. 7, (G14), (G15), and (G16) are argued
by testing and rephrased by subgoals (G17), (G18), and (G19), respectively.
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Note that the argument structure for the claim (G16) is simpler than the
ones for (G14) and (G15) because the property PropVRP had been satisfied in
the code all the time and no alterations were made to the corresponding guards
in the code and the model. On the other hand, the properties PropLRI and
PropHRI were satisfied in the modified code which involves relaxation in the
corresponding guards (See (G17) and (G18) in Fig. 7). The context information
for the guard relaxation was described in (C11) which can be instantiated with
concrete values.

5 Discussion

Limits of the case study. We begin the construction of the assurance case with
the requirements phase of the development. In a real system, the safety argument
would also cover hazard analysis and offer claims that hazards are appropriately
mitigated by the requirements. We omitted this phase to concentrate on the
model-drive aspect of the development process. This decision also matches the
current setting of the Pacemaker challenge, which begins with the pacemaker re-
quirements by Boston Scientific. It makes sense to assume that the requirements
were properly engineered with respect to hazard.

Similarly, we assume the nominal behavior of the underlying platform. We
thus omit the questions of fault tolerance both in the development process and
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Fig. 6. The pacemaker assurance case - the code satisfies the properties

in the assurance case construction. An assurance case for a complete system will
of course have to deal with these issues.

Alternative ways to organize the assurance case. There can be alternative ways
to construct the assurance case. When an assurance case has the same or similar
structures within it, those common structures can be possibly merged and placed
in an upper level. For example, the argument structures for (G14), (G15), and
(G16) are similar and they have a common strategy “Argument by testing” as
found in (S7)–(S9). “Argument by testing” can be placed in an upper level of
(G14)–(G16), accompanied with logically consistent modifications to other parts.

Similarly, “Argument over all desired properties” are also commonly found
under (G3) in Fig. 4 and under (G5) in Fig. 6 because we used the same strategy
for arguing the property satisfaction in the code as well as by the model. It is
possible to change the overall structure of the assurance case by placing “Argu-
ment over all desired properties”, found in (S3) and (S6), above “Argument by
model-driven development” (S2) and modifying other parts consistently. Note
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that these modifications do not change the logic of the argument, but may affect
the size of the assurance case as we combine common nodes in different branches.

Alternative sources of evidence. In general, argument for a claim can vary and
be supported by different kinds of evidence. For example, in our case study we
relied on testing to establish timing properties of the generated code. If a higher
level of safety is desired, we would resort to more rigorous worst-case execution
time analysis using, for example, the aiT tool [13]. However, this change in
technology affects only one claim, and the overall structure of the assurance case
is not affected.

Ideally, when multiple alternatives can be used as evidence, we should aim
to quantify the level of assurance each alternative brings and match it against
the level of assurance required for the system. However, quantitative comparison
cannot be achieved given today’s state of the art. Even qualitative comparison
of alternatives is difficult in many cases. This is an important direction of future
work for our group.

Significance of the work. We believe that our case study is the first step towards
developing assurance case templates for systems developed through model-driven
processes. Model-drive development typically includes stages of modeling and
model verification, code generation (manual or automatic) with respect to the
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model, and validation of the generated code and the whole system. In our ap-
proach, each of these stages correspond to a separate claim (or, in general, a set
of claims) in the assurance case. This structure makes it more intuitive to follow
during the evaluation and provides a clear connection to the evidence obtained
in each phase.

6 Related Work

In [14], the authors considered a practice of using assurance cases in the devel-
opment and approval of medical devices and addressed some of the important
issues surrounding the possible adoption of assurance cases by the medical de-
vice community. It was mentioned that a set of agreed argumentation patterns
(templates) would be useful to manufacturers and reviewers. They suggested
that creating and publishing a series of FDA-approvable archetypes for different
kinds of medical devices be undertaken to ease the transition of assurance cases
into the medical device community. With the same intention as theirs, we took
a step forward by developing an argumentation template for another medical
device, the pacemaker.

The process of assurance case construction and reuse can become more sys-
tematic through documentation of reusable safety case elements as patterns. In
[15], ‘Safety Case Patterns’ for the reuse of common structures in safety case
arguments were suggested. Assurance case patterns for security have been stud-
ied [16]. Our approach to the assurance case construction presented in this paper
may lead to the development of assurance case patterns for model-driven devel-
opment.

There are other case studies for assurance cases. In [17], the authors described
an industrial application of assurance cases to the problem of ensuring that a
transition from a legacy system of the Global Positioning System (GPS) to its
replacement will not compromise mission assurance objectives. The assurance
case demonstrated to the Air Force that the transition posed no major mission
assurance concerns and this conclusion was validated by a successful transition.

7 Conclusion

We presented an approach for the construction of assurance cases for the model-
driven development of safety-critical software. As a case study, we considered
software for a cardiac pacemaker in the VVI mode. The assurance case ties
together all the evidence collected during the development process. Several sim-
plifications were applied in the process of constructing the assurance case, to
keep the size of the case study under control and to concentrate on the aspects
specific to model-driven development.

Future work includes the development of rigorous methods for the evaluation
of assurance cases. For bigger systems, we also plan to study compositional
construction of assurance cases. This will allow us to simplify certification of
component-based systems based on product-line architectures.
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