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Discrete Abstractions of Hybrid Systems

Abstract

A hybrid system is a dynamical system with both discrete and continuous state changes. For analysis purposes,
it is often useful to abstract a system in a way that preserves the properties being analyzed while hiding the
details that are of no interest. We show that interesting classes of hybrid systems can be abstracted to purely
discrete systems while preserving all properties that are definable in temporal logic. The classes that permit
discrete abstractions fall into two categories. Either the continuous dynamics must be restricted, as is the case
for timed and rectangular hybrid systems, or the discrete dynamics must be restricted, as is the case for o-
minimal hybrid systems. In this paper, we survey and unify results from both areas.
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Discrete Abstractions of Hybrid Systems

RAJEEV ALUR, MEMBER, IEEE THOMAS A. HENZINGER MEMBER, IEEE,
GERARDO LAFFERRIEREAND GEORGE J. PAPPAS/IEMBER, IEEE

Invited Paper

A hybrid system is a dynamical system with both discrete and [53]. Their wide applicability has inspired a great deal of
continuous state changes. For analysis purposes, it is often usefulresearch from both control theory and theoretical computer
to abstract a system in a way that preserves the properties being an-geience [11, [21, [7], [91, [10], [29], [31], [52], [75].

alyzed while hiding the details that are of no interest. We show that M fthe ab tivati licati safety crit
interesting classes of hybrid systems can be abstracted to purely. any ot the above motivating applications ety cnt-

discrete systems while preserving all properties that are definable ical and require guarantees of safe operation. Consequently,
in temporal logic. The classes that permit discrete abstractions fall much research focuses on formahalysis and design

intp two caFegories. Either_ the continuous dynamics must be re- of hybrid systems. Formal analysis of hybrid systems is
strlctt_ad, asisthe case for timed and _rectangul_ar hybrid systems, Or concerned with verifying whether a hybrid system satisfies
the discrete dynamics must be restricted, as is the case for o-min- . e . .. .

imal hybrid systems. In this paper, we survey and unify results from a desired specification, like avoiding an un;afe reg|qn of
both areas. the state space. The process of formal design consists of
synthesizing controllers for hybrid systems in order to meet
a given specification. Both directions have received large
attention in the hybrid systems community, and the reader is
referred to [3], [11], [23], [25], [33], [42], [55], and [73] for

|. INTRODUCTION expositions to much of the research in the field.

Hybrid systems combine both digital and analog com-  In this paper, we are interested in the formal analysis of
ponents in a way that is useful for the analysis and design nybrid systems. The formal analysis of large-scale, hybrid
of distributed, embedded control systems. Hybrid systems SyStéms is typically a very difficult process due to the com-
have been used as mathematical models for many importanf!exity and scale of the system. This makes the useoof-
applications, such as automated highway systems [40],putat|onalor algorithmic approaches to the verification of
[50], [79], air-traffic management systems [49], [51], [74], hybrid systems very desirable, whenever possible. We are
embedded automotive controllers [12], [59], manufacturing therefore interested in developing computational procedures,
systems [64], chemical processes [28], robotics [6], [71], which, given a hybrid system and a desired property, will

real-time communication networks, and real-time circuits Verify in afinite number of steps whether the system satis-
fies the specification or not. Given a class of hybrid systems
‘H and a class of desired propertiBsa class of verification
Manuscript received October 1, 1999; revised April 14, 2000. This problems is calledlecidableif there exists a computational
work was supported by DARPA under Grant F33615-98-C-3614, by procedure that, giveanysystemH cH andanyP e P,
DARPA/NASA under Grant NAG2-1214, by DARPA under Grant . . . - . L
F33615-00-1707, by ARO MURI under Grant DAAH-04-06-1-0341, will decide in a finite number of steps wheth#r satisfies
by DARPA/ITO under the MARS program, by NSF CAREER awards P. Decidability is not an issue in the verification of purely
CCR-9501708 and CCR97-34115, and by a Sloan faculty fellowship.  — djscrete systems modeled by finite-state machines, since in
R. Alur is with the University of Pennsylvania, Philadelphia, PA e . .
19104 USA and also with the Computing Science Research Center, Bell the worst case verification can be performed by eXhaUSt|Ver

Laboratories, Lucent Technologies, Murray Hill, NJ 07974 USA (e-mail:  Searching the whole state space. However, in the case of hy-
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model checking.
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system and some desired property, one extracts a finite, dis- More specifically, in Section Il, we introduce the reader
crete system while preserving all properties of interest. This to the notion of transition systems, which should be thought
is achieved by constructing suitabfaite, and computable of as graphs with a possibly infinite number of nodes (repre-
partitions of the state space of the hybrid system. By ob- senting states) and edges (representing transitions). Desired
taining discrete abstractions that are finite and preserve prop-properties of transition systems will be expressed as formulas
erties of interest, analysis can be equivalently performed onin various temporal logics. We will review the important no-
the finite system, which requires only a finite number of tions of language equivalencies and bisimulations of transi-
steps. Checking the desired property on the abstracted systertion systems, along with temporal logic properties they pre-
should beequivalent tachecking the property on the original ~ serve, namely, LTL and CTL. In Section I, after a general
system. Only if no equivalent abstraction can be found may definition of hybrid systems, we describe the transition sys-
one be content with aufficientabstraction, where checking tems generated by our hybrid system model. This allows us
the desired property on the abstracted system is sufficient forto apply the framework of Section Il to the various classes
checking the property on the original system [20]. of hybrid systems we consider in this paper. We then imme-

In this paper, we focus omquivalent discrete abstractions  diately present some undecidability results, which provide a
of hybrid systemalong with the classes of properties they clear boundary for applying the framework of Section Il. As
preserve. We show that there are many interesting classes oé result, our search for decidable classes of hybrid systems
hybrid systems that can be abstracted by finite systems foris limited by this boundary. This forces us to consider hy-
analysis purposes. Properties about the behavior of a systenirid systems with either simple continuous dynamics (Sec-
over time are naturally expressible in temporal logics, such tion V), or simple discrete dynamics (Section V). The latter
as linear temporal logic (LTL) and computation tree logic are based on various first-order logical theories. A brief in-
(CTL) [26]. Preserving LTL properties leads to special par- troduction to first-order logic is given in Appendix A.
titions of the state space given language equivalence re-
lations, whereas CTL properties are abstractedlzymula- [I. TRANSITION SYSTEMS
tions A detailed exposition to the use of various logics in hy-
brid systems can be found in [23]. Similar concepts and con-
structions, but from a hierarchical control perspective, can be
found in [16] and [61]—[63].

There are immediate obstacles due to undecidability. For
example, in [37], it was shown that checkingachability
(whether a certain region of the state space can be reached) is
undecidable for a very simple class of hybrid systems, where
the continuous dynamics involves only variables that proceed
at two constant slopes. These results immediately imply that
more general classes of hybrid systems cannot have finite
bisimulation or language equivalence quotients. Therefore,
our search for discrete abstractions of hybrid systems is lim-
ited by this result. Given this limit, we show that hybrid sys-
tems that can be abstracted fall into two classes. In the first
class, the continuous behavior of the hybrid system must be
restricted, as in the case of timed automata [5], multirate au-
tomata [4], [58], and rectangular automata [37], [68]. In the
second class, the discrete behavior of the hybrid system must
be restricted, as in the case of order-minimal hybrid systemsp
441461 N Pre(P)={¢eQPpePq—p}  (21)

In this paper, we present in a unified way all these results, _
which collectively define a very tight boundary between de- Post(P) ={q € Q3p € Pp — q}. (22)

cidable and undecidable questions about hybrid systems. Werp e set of states that are accessible fiim two transitions

do not focus on complexity issues or the implementation ;g Post(Post(P)) and is denoted byost2(P). In general,

of these algorithms by verification tools likeRONOS[24], Posti(P) consists of the states that are accessible fFoim
CosPAN [8], UPAAL [48], and HTECH [35]. It should be i transitions.Pre?(P) is defined similarly. Then

noted that, in practice, the algorithms implemented by the

Transition systems are graph models, possibly with an in-
finite number of states or transitions.
Definition 2.1 (Transition Systems)A transition system
T=(Q, 1, —, F, Qo) consists of
* a (possibly infinite) se? of states;
« a finite alphabell of propositions;
* atransition relation-C Q x Q;
* a satisfaction relatiok=C @ x II;
* asety C @ of initial states.
A stateq; is predecessoof a state;s, andg., is asuccessor
of ¢1, writteng; — ¢ if the transition relation— contains
the pair(q1, g2). A stateq satisfiesa propositionr written
q F = if the satisfaction relatiofr contains the paifg, ).
The transition systerl” is finite if the cardinality of @ is
finite, and it is infinite otherwise. We assume that every tran-
sition system igleadlock fregthat is, for every state € Q,
there exists a staig € @ such thaty — ¢'.
A regionis a subsetP C @ of the states. The sets of
redecessor and successor stateB afe

above tools work directly on the original system and do not Pre*(P) = U Prc(P) (2.3)
construct an equivalent finite abstraction first. However, the ioN
Qeudabnlt_y results presented in th|§ paper for finite abstrac- Post™(P) = U Post’ (P) 2.4)
tions provide correctness and termination arguments for the =

algorithms implemented by the tools [37]-[39]. Therefore,
the approach described in this paper should be understood aare the set of states that dackwardandforward reachable
theoretical background underlying the implementations. from P, that is, accessible in any number of transitions. In
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particular, Post*(Q)o) is the set ofreachable statesf the An equivalence relatioa-C @ x @ on the state space

transition systerfl” and is denoted byReach(T). is proposition preservingf for all statesp, ¢ € @ and all
A problem that is of great interest for transition systems propositionsr € 11, if p ~ g andp E «, thenq E =; that
is the reachability problem. Given a propositiore 11, we is, the region[~] is a union of equivalence classes. Given a

write [#] = {¢ € Q|q F =} for the set of states that satisfy  proposition-preserving equivalence relationthe definition

. of quotient transition systeffi/.. is natural. Let) /.. denote
Problem 2.2 (Reachability Problem)Given a transition the quotient space, thatis, the set of equivalence classes. Fora

system?’ = (@, II, —, F, Qo) and a propositiomr € II, is region, we denote by?/.. the collection of all equivalence

Reach(T) N [x] # 0? classes that interseét. The transition relation—.. on the

If the propositionr encodes an undesirable or unsafe re- quotient space is defined as follows: Br, P> € Q/., we
gion of the state space, then solving reachability correspondshave P, — ., P iff there exist two stateg; € P, andg, €
to checking if the system is safe. In this paper, we are in- P; such thaty; — ¢». The satisfaction relatiok... on the
terested in computational approaches to the solution of thequotient space is defined as follows: fBre @ /.., we have
reachability problem. The following algorithm computesthe P E.. « iff there exists a state € P such thaty E .
reachable space until either a state satisfyingreached or  The quotient transition systemis théi, = (Q/., 11, —.,
no more reachable states can be added. E~, Qo/~).

1) Language Equivalences Preserve Linear Temporal
Allg.orithm 1 (Forward. Reachability) ;ropzertl?; Ihe’tije':?Q?j aGs;\t/aetr? (;f tsk;ztérqansgtmg’syiztem
|n|t!ally R = Qo; II; = {= € Illl¢g F =} be the set of propositions that
while - true —do ) i L are satisfied byg. A trajectory generated fromy is an

!f Rnfr] # 0 retumn Linsaf? end_ 'f_ ' infinite sequenceypqiq: - -- such thatgy = ¢ and for all

if  Post(R)C R retun  “safe” end if ; i € N, we haveq; — g¢i11. This trajectory defines the

Ri= RU Post(R) word I1,,I1,, II,, - - - The set of words that are defined by
end while trajectories generated fromis denoted byl.(q) and called

the languageof the stateg. The sequEQO L(q) of words

A backward reachability algorithm that starts wfeH] and that are defined by trajectories generated from initial states
checks whethePrc* ([7]) N Qo # ® can be similarly con- is denoted by.(T’) and called théanguageof the transition
structed. Such iterative algorithmic approaches to checking SystemZ".
system properties are guaranteed to terminate if the state Definition 2.3 (Language Equivalencies)et? be atran-
space of the transition system is finite, since in the worst Sition system with state space An equivalence relation ,
case they can only visit a finite number of states. If the state On( is alanguage equivalence5fif for all statesp, ¢ € @,
space is infinite, then there is, in general, no guarantee thatif 7 ~z ¢, thenL(p) = L(q).

the forward reachability algorithm will terminate withinafi- ~ Note that every language equivalence is proposition
nite number of iterations of the loop. It could continue adding Preserving. Every _Iangu_age equwalen_eg part|t|<_)r_15 the
states forever without ever reaching the target re@jdror state space and gives rise to the quotient transition system

a fixed pointR such thatPost(R) C R. In this paper, our T/~ which s called danguage equivalence quotieftT".
goal is to find classes of infinite transition systems whose The formulas of LTL are interpreted over words, and hence

analysis can be performed equivalenbutfinite transition ~ the properties expressed in LTL are preserved by language
systems. This is accomplished by constructing suitable finite €quivalence quotients.

quotients ordiscrete abstractionsf the original system in Definition 2.4 (Linear Temporal Logic [66], [54]):The
the sense that they preserve the properties of interest whileformulas of LTL are defined inductively as follows.
omitting detalil. « Propositions: Every propositionr is a formula.

In addition to reachability, the desired system specifica- e Formulas: If ¢; and ¢, are formulas, then the fol-
tion may require more detailed system properties. For ex- lowing are also formulas:

ample, one may wish to encode the requirement that a system

failure is eventually followed by a return to the normal mode

of operation. More abstractly, if the transition system visits P1 V Pa .l O ¢ 1o,

a regionP;, encoding a failure, then eventually it will reach

aregionP,, encoding normal operation. Such propertiescan The formulas of LTL are interpreted over infinite
be encoded as formulas in temporal logic [65]. Formulas of sequences of sets of propositions. Consider a word
temporal logic are thus used to formally specify properties of w = IIpII;11; - - -, where eachl; is a set of propositions.
systems, such as reachability, invariance, or response properThe satisfaction of a propositionat position: € N of word
ties. In the sequel, after defining the notion of quotient tran- w is denoted by(w, ¢) E;, « (which should not be confused
sition systems, two kinds of equivalence relatidaaguage with the satisfaction relatiofr, which tells us whether a
equivalencesand bisimulations are considered along with  state satisfies a proposition), and holdsqffe 11;. We can
two popular temporal logics, LTL and CTL, whose proper- then recursively define the semantics for any LTL formula
ties they preserve. as follows.

ALUR et al. DISCRETE ABSTRACTIONS OF HYBRID SYSTEMS 973



. (w, L) Er ¢1 \Y (7)2 if either(w, L) Er ¢1 or (w, L) Er
¢2.

* (w7 L) ':L _'(/)1 if (w7 L) '#L d)l-

* (w7 L) ':L Od)l if (w7 1 + 1) E d)l-

o (w, 1) Er ¢1lUos ifthereisa > i suchthatw, j) Fy,
¢2 and for alli < k < j, we have(w, k) Fr, ¢1.

A word w satisfiesan LTL formula¢ if (w, 0) Fr, ¢. From

— andvV, which stand for negation and disjunction, respec-
tively, we can also define conjunctiay implication=-, and
equivalence=. Thetemporal operatorg) andi/ are called
the nextand until operators. Th&)¢, formula holds for a
word IToII; 115 - - - iff the subformulag, is true for the suffix
111115 - - - The formulag,2{ ¢- intuitively expresses the prop-
erty thatg, is true untilg, becomes true. Using the next and
until operators, we can also define the following temporal
operators in LTL:

» Eventually:$op =true o,
o Always: ¢ = =$e.

Therefore,{¢ indicates thatp becomes eventually true,
whereasl¢ indicates thatp is true at all positions of a
word. The LTL formuladd$ ¢ is true for words that satisfy
infinitely often, whereas a word satisfi€d 1¢ if ¢ becomes
eventually true and then stays true forever.

A transition systen?’ satisfiesan LTL formula¢ if some
word in the languagé.(T") satisfiesy. For example, ifr is
a proposition encoding an unsafe region, then violation of
safety can be expressed@sl. Violation of the more elabo-
rate requirement that visiting regidr ] will eventually be
followed by visiting regior{:], is expressed by the formula
<>(|_|1 AN D - 71'2).

Problem 2.5 (LTL Model Checking Problem§ziven a
transition systen¥” and an LTL formulap, determine ifl’
satisfiese.

Since reachability can be expressed by an LTL formula of
the form <, it is immediate that Problem 2.2 is contained
in Problem 2.5. Given the definition of language equivalence,
the following theorem should come as no surprise.

Theorem 2.6 (Language Equivalencies Preserve LT
Properties): Let 7" be a transition system and let; be
a language equivalence @f. Then T satisfies the LTL
formula ¢ if and only if the language equivalence quotient
T/., satisfiese.

Therefore, given atransition systéand an LTL formula
¢, we can equivalently perform the model checking problem

on7/., . In general, language equivalence quotients are not

finite. If, however, we argivena finite language equivalence
guotient of a transition systeffi, then using the above the-
orem, LTL model checking can be decided for
2) Bisimulations Preserve Branching Temporal Proper-
ties: We now define a different way of partitioning the state
space along with a class of properties it preserves.
Definition 2.7 (Bisimulations [57]):LetT = (@, 11, —,
E, Qo) be a transition system. A proposition-preserving
equivalence relation-g on @ is a bisimulation ofI” if for
all statesp, ¢ € Q, if p ~p ¢, then for all stateg’ € @,
if p — ¢/, there exists a statg € @ such thayy — ¢’ and
P ~pd.

974

If ~g is abisimulation, then the quotient transition system
T/, is called abisimulation quotieniof I'. The crucial
property of bisimulations is that for every equivalence class
P € @/.,, the predecessor regidfre(P) is a union of
equivalence classes. Therefore Hf, 2, € Q/.,, then
Pre(Py) N P, is either the empty set or all af,. It is
not difficult to check that every bisimulation is a language
equivalence, but a language equivalence is not necessarily
a bisimulation.

CTL is a temporal logic, which, contrary to LTL, contains
existential quantifiers that range over trajectories.

Definition 2.8 (Computation Tree Logic [19], [69])The
formulas of CTL are defined inductively as follows.

 Propositions: Every propositionr is a formula.
» Formulas: If ¢; and ¢, are formulas, then the fol-
lowing are also formulas:

P1V P2 -1 30 30¢,

P1AUPo.

The difference between the semantics of LTL and CTL is
that LTL formulas are interpreted over words, whereas CTL
formulas are interpreted over the tree of trajectories gener-
ated from a given state of a transition system. More precisely,
the stateyy of the transition systerii’” satisfies the proposi-
tion « if go F w, as usual, and the semantics of any CTL
formula is then recursively defined as follows.

* qgo F ¢1 V ¢ ifeithergo E ¢y Or go E ¢o.

* go F =1 if go ¥ 1.

* qo F d O ¢, if there exists a statg; € @ such that
go — q1 andg; F ¢1.

* go F d0¢, if there exists a trajectoryogi gz - - - gen-
erated fromyy such that for ali > 0, we havey; F ¢ .

* g0 F ¢$13U if there exists a trajectoryoqgi g - - -
generated frong, such thaty; E ¢» for somei > 0,
and for allo < j < 4, we havey; F ¢;.

As in LTL, we can definen, =, and< from — andv.

The temporal operator3(), 30, and3¢f are calledpos-

L sibly next possibly alwaysandpossibly unti] as they refer

to the existence of a trajectory from a given state. pbs-
sibly eventuallypperatod ¢ is defined asrue 3¢{¢. Addi-
tional temporal operators, which refer to all trajectories from
a given state, can be defined as follows:

* inevitably nexty O ¢ = =3 O —¢;

* inevitably always¥ O¢p = =3 O—¢;

* inevitably eventually¥ $¢ = =30,

A transition systeni’ satisfiesa CTL formula¢ if some
initial state of 7" satisfies¢. For example, reachability can
be captured in CTL by the formuB{ M. The CTL formula
1<V Ox encodes the requirement that there is some reach-
able state from which all trajectories stay within the region
M-

Problem 2.9 (CTL Model Checking Problem§iven a
transition systen¥” and a CTL formulap, determine ifT’
satisfiese.

As in LTL model checking, Problem 2.2 is contained
in Problem 2.9. However, Problem 2.5 is incomparable
to Problem 2.9, as there are requirements which can be
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expressed in LTL but not in CTL (such as the requirement
O<¢w), and there are requirements which can be expressed
in CTL but not in LTL (such as the requiremett) vV )
[26]. The following theorem shows that bisimulations
preserve CTL properties. tion £, the continuous part of the state satisfiesdife
Theorem 2.10 (Bisimulation preserves CTL properties ferential inclusiont € F(¢, x).
[15]): LetZ be atransition system and letz be a bisimu- « Inv: V. — 2R" assigns to each locatioh € V' an
lation of 7". ThenZ’ satisfies the CTL formula if and only invariantset/nwv(£) C R™, which constrains the value
if the bisimulation quotient’/.., satisfies. of the continuous part of the state while the discrete part
Therefore, CTL model checking far can be performed is /.
equivalently oril’/.. .. Bisimulations can be computed using e R C X x X is arelation capturing discontinuous state
the following algorithm. If the algorithm terminates within changes.
a finite number of iterations of the loop, then there is a fi-  We refer to thes individual coordinates of the continuous
nite bisimulation quotient, and the algorithm returns a finite partR™ of the state space as real-valuatiables and we
partition of the state space which is the coarsest bisimulationview the continuous patt = (x4, -- -, x,) Of a state as an
(i.e., the bisimulation with the fewest equivalence classes). assignment of values to the variables.
Hybrid systems are typically represented as finite graphs
with verticesV” and edge4 defined by

* Xy C X is the set of initial states.

« I X — 2R" assigns to each staté, z) € X aset
F(¢, z) C R", which constrains the time derivative of
the continuous part of the state. Thus in discrete loca-

Algorithm 2 (Bisimulation Algorithm

[14], [41])
initially Qfe, = {[x]jr € I0}; E={, eV xV|(¢z), ¥ 2)eR
while there exist P, P ¢ @Qf., such that for somer € Inv(f) andz’ € Inu(¢)}.

< PNnPre(P)< P do ) : )

P, := PO Pre(P'); Py = P\Pre(P'); With each verteX € V, we associate aimitial set defined

Qfmp = (Qfp \{PH U{PL, Po} as
end while ;

retun Q. Init(£) = {z € Inv(£)|(¢, z) € Xo}.

With each edge = (¢, ¢') € F, we associate guard set

Therefore, in order to show that CTL model checking can defined as
be decided for a transition systef it suffices to show that
the bisimulation algorithm terminates @& and that each
step of the algorithm isomputableor effective This means
that we must be able to represent (possibly infinite) state sets
symbolically, perform Boolean operations, check emptiness, and a set-valuetesetmap
and compute the predecessor operatfon on the symbolic
representation of state sets [33].

Even though LTL and CTL are incomparable, they are
both sublogics of CTE, a more expressive temporal logic,
and of a fixed-point logic called thg-calculus[23], [26].
Bisimulations preserve not only CTL properties according
to Theorem 2.10 but also all CTland-calculus properties
[15].

Guard(c) ={z € Inv({)|((4, =), (', &) € R
for somex’ € Inv(¢)}

Reset(e, z) = {z' € Inv(£)|((4, z), (¢, z")) € R}.

Trajectories of the hybrid systerid originate at any
initial state (¢, ) € X, and consist of concatenations of
continuous flowsinddiscrete jumpsContinuous flows keep
the discrete part of the state constant, and the continuous
part evolves over time according to the differential inclu-
sionsz € F'(£, z), as long ag: remains inside the invariant
set Inv(£). If during the continuous flow it happens that
x € Guard(c) for somee = (¢, ') € FE, then the edge

In this section, we apply the framework presented in Sec- ¢ becomesenabled The state of the hybrid system may
tion Il to transition systems generated by hybrid systems. We then instantaneously jump frof, z) to any (¢, ') with
thenimmediately present various barriers for obtaining finite ;/ ¢ Reset(e, ). Then the process repeats, and the contin-
discrete abstractions for general hybrid systems by showinguous part of the state evolves according to the differential
classes of hybrid systems whose reachability problems arejnclusionsi ¢ F(¢, z). Even though Definition 3.1 places
undecidable. We start with a definition of hybrid systems.  no well-posedness conditions on the class of hybrid systems

Definition 3.1 (Hybrid Systems [3]):A hybrid systemisa  we consider, the results presented in this paper will assume
tuple H = (V, n, Xo, I, Inv, R) with the following com-  strong restrictions regarding the typesty, ¥, Inv, andR
ponents. that are permitted.

» Vs afinite set ofocations andn > 0 is a nonnegative Example 3.2:Fig. 1 is a graphical illustration of a spe-

Ill. HYBRID SYSTEMS

integer called thdimensiorof H. The state space &f
is X = V x R™. Each state thus has the foif) =),
wheref € V' is thediscretepart of the state and € R™
is thecontinuouspart.

ALUR et al. DISCRETE ABSTRACTIONS OF HYBRID SYSTEMS

cial kind of hybrid system, calledtamed automatoywhich
is a finite-state machine coupled with real-valwbock vari-
ables. This timed automaton consists of two locatiresnd
£y and two variables: and y, which always evolve iR
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under the differential equationis = 1 andy = 1. There-
fore x andy simply measure time. The initial state of the
system is(¢;, x = 0, y = 0), and the invariant sets asso-
ciated with the locationg; and/, arex < 5 andy < 10,
respectively. There are two edges, = (41, £2) ande; =
(€2, £1). The guard of; is the setr > 4 and the reset map
is R(e1, z, y) = {(10, 3)}, whereas the guard and reset of
ez arey > 9 andR(eq, z, y) = {(z, 0)}, respectively. No-
tice that the identity map on thevariable on the:; edge is

suppressed from Fig. 1. A simple reachability specification

>
n

x>4 —=> x=10 y=3

°1

y>9%
%2

y=

Fig. 1. Timed automaton.

may require that the timed automaton never enters the region

{(l2, z, y)|z > Tandy < 6}.

A. Rectangular, Multirate, and Timed Automata

Consider the spacR"™ with the variableszy, - - -, z,,.
A rectangular setis defined by a conjunction of linear
(in)equalities of the formz; ¢, where ~ is one of
<, <, =, >, >,ande € Q. For a rectangular s&, let B;
be its projection onto thé&h coordinate. Thus a rectangular
setB C R" is of the formB = By x --- x B, where each
B, is a bounded or unbounded interval.

Definition 3.3 (Rectangular Automata [37])A rectan-

~
~

gular automaton is a hybrid system that satisfies the fol-

lowing constraints.

* For every locatiorf € V, the setdnit(£) andinuv(£)
are rectangular sets.

« For every locatiorf € V, there is a rectangular s8¢
such thatF(¢, z) = B for all x € R™.

» For every edge € E, the setGuard(e) is a rectan-
gular set, and there is a rectangularBétand a subset
Je C {1, ---, n} such that for all: € R™

Resete, z) ={(z}, ---, z,) e R*|forall 1 <4 < n,
if ¢ € J° thenz) € B elsex) = x;}.

Ly

0gigl

1<y<2

y <10

Fig. 2. Rectangular automaton.

» For each edge € F, the setB¢ is a singleton set.

« For each locatiod € V, the setB* is a singleton set.
Therefore, in a multirate automaton, each variable follows
constant, rational slope, which may be different in different
locations. Multirate automata may or may not be initialized.

Definition 3.5 (Timed Automata [5]):A timed automaton
is a multirate automaton such that = {(1, 1, ---, 1)} for
each locatior € V.

Therefore, in a timed automaton, in every location each
variable follows the constant slope 1, thatds,= 1 for all
1 < 7 < n. Eachyg; is thus referred to as a clock variable.

Therefore, in a rectangular automaton, the derivative of eachNotice that timed automata are initialized by definition, be-
variable stays between two fixed bounds, which may be dif- cause the differential inclusion never changes.

ferent in different locations. This is because in each location

¢, the differential inclusions are constant and coordinate-wise B. Transition Systems of Hybrid Systems

decoupled, that isi; € Bf forall1 < i < n. With each
discrete jump across an edgethe value of a variable; is
either left unchanged (if ¢ J¢), or reset nondeterministi-
cally to a new value within some fixed, constant interi#l
(if ¢ € J°). An example of a rectangular automaton is shown
in Fig. 2.

A rectangular automaton isitialized if for every edge
e=(0)e FEandalll < ¢ < n, Resefe, z); = =,
thenF(¢', z);, = F({, z);. In other words, if after a discrete

Let H = (V, n, Xo, F, Inv, R) be a hybrid system, and
let 3 be a finite set of subsets &". The hybrid systeni{
generates a transition systefiy »» = (Q, II, —, F, Qo)
with respect taz. Set@ = X = V x R* and@Qy = X,. Set
II = V U %, that is, the propositions are the locations and
the given sets irt.. Forr € V, define(¢, z) E w iff £ =,
and forr € ¥, define(¢, =) E « iff « € =. Finally, define
—= (Uece—) U S as follows.

Discrete transitions: (¢, x)-= (¢, «’) fore = (£, #) €

jump the bounds on the derivative of a variable change, then g jff + ¢ Guard(e) andz’ € Reset(e, x).

its value must be nondeterministically reset (“reinitialized”)
within a fixed interval. The rectangular automaton of Fig. 2
is initialized.

Definition 3.4 (Multirate Automata [3]): A multirate

Continuous transitions:(£1, x1)—(£y, x2) iff £1 = £»
and there exists a reél > 0 and a differentiable curve:
[0, §] — R™ with z(0) = =1, z(§) = =, for all £ € [0, §]
we havez(t) € Inwv({y), and for allt € (0, §) we have

automaton is a rectangular automaton that satisfies theg'c(t) e F(fy, z(t)).

following constraints.

* Foreach locatiod € V, the setfnit(¢) is either empty
or a singleton set.
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The continuous transitions are time-abstract transitions
in the sense that the time it takes to reach one state from
another is ignored.
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Having defined the transition system of a hybrid system V. RESTRICTING THEFLOWS
allows us to proceed with the conceptual framework pre- _ _ o _ _
sented in Section II, and determine language equivalence and [N this section, we obtain discrete abstraction of hybrid
bisimulation quotients of hybrid systems. The next subsec- SyStems with restricted continuous dynamics. We first con-
tion presents some immediate barriers in obtaining such dis-Sider timed automata, which have finite bisimulation quo-
crete abstractions, which are finite. tients of a very intuitive structure.

C. Undecidability Barriers A. Timed and Multirate Automata

A timed automatorH is defined by a finite graptV, E),

a dimensiom, and linear inequalities of the form; ~ c¢,
wherec € Q, which define initial, invariant, and guard sets,
as well as reset maps. Even though the timed automata de-
fined in Section IlI-A allow rational constants in their defi-
nition, in this section we consider timed automata with only
integer constants. There is no loss of generality in this as-
sumption, because a finite number of rationals can always be
rescaled to integers. Furthermore, we restrict the clock vari-
ables to range over the nonnegative reals. Thereis also no loss
of generality in this assumption, because every clock variable
of a timed automaton is bounded from below by initial sets
and reset maps. Lé&t; be the largest integer that is com-
pared to in the definition off. For example, in Fig. 1, the
largest integer that is compared to is ten (in the reset map
of e;), which is also the largest integer to whighs com-
pared (in the invariant set df).

Given a nonnegative real € Rxo, let || stand for the
floor function, let[x] stand for the ceiling function, and let
(z) stand for the fractional part af; that is{z) = z — |z].

We define the following equivalence relations&®, and on
X =V x RZ,, the state space df. N
Definition 4.1 (Region Equivalence [5])Two vectors
= (z1, -, &p) andy = (y1, ---, ¥») iN RL, are region
equivalent, writtenz ~% y, if the following two conditions
are satisfied.

A variablez; is atwo-slopevariable if there exisk; , ko €
Q such that for all locationg € V, eitherF'(¢, x); = {k1}
or F(£, x); = {k2}. The rationals:; andk, are theslopes
of z;. The variablez; is aone-slopevariable ifk; = k-.
Note that a clock variable is a one slope variable with slope
k1 = ko = 1. The following theorem presents an imme-
diate obstacle in obtaining finite discrete abstractions of hy-
brid systems.

Theorem 3.6 (Undecidability of Uninitialized Multirate
Automata [37]): Consider the class of multirate automata
with n — 1 clock variables and one two slope variable with
slopesk; # k2. The reachability problem (Problem 2.2) is
undecidable for this class.

In other words, there is no computational procedure that
takes as input any multirate automatéh from the given
class, and a proposition, and determines if any trajectory
visits a state that satisfies The proof of the undecidability
result proceeds by a reduction from the halting problem for
two counter machines, and can be found in [37]. Theorem 3.6
shows that initialization is a necessary condition for decid-
ability. An additional necessary condition is provided by the
following theorem, which shows that any violation of rect-
angularity, namely, the coupling variables, also leads to un-
decidability. v

Theorem 3.7 (Undecidability of Coupling Variables in
Multirate Automata [37]): Suppose we generalize the defi-
nition of multirate automata so to permit 1) the intersection ¢ Foralll < i < n,we have either botr; | = |y;| and

of rectangular guard seGuard(c) with inequalities of the [«i] = [v:] < G, orboth[z;] > C; and[y;] > Ci.
form z; < =z, 2) the intersection of rectangular invariant * Foralll <4, j < n,if [z;] < G and[z;] < O,
setsInuv(c) with inequalities of the form; < x;, or 3) reset then(z;) < (z;) iff (y;) < (u;)-

maps of the formResct(e, z); = x;, for j # i. Consider  Two stateg#;, x1) and(¢;, x2) in X are region equivalent,
a class of multirate automata that are generalized in one of (¢1, z1) ~& ({5, z»), if both ¢; = £ andx; ~F z,.

these three ways and that hawe- 1 clock variables and Therefore, two states dff are region equivalent if they
a one-slope variable with slope # 1. The reachability — agree on the discrete parts, on the integral parts of all clock
problem (Problem 2.2) is undecidable for this class. values, and on the ordering of the fractional parts of all clock

Since the reachability problem is a special case of LTL and values. The integral parts of the clock values determine
CTL model checking, it is clear from Theorems 3.6 and 3.7 whether or not a particular clock constraint is met, whereas
that Problems 2.5 and 2.9 are also undecidable for very re-the ordering of the fractional parts determines which clock
strictive classes of hybrid systems. Consequently, it must bewill change its integral part first. For example, if two clocks
impossible to construct finite language equivalence or bisim- = andy are between 0 and 1 in a state, then an edge whose
ulation quotients for transition systeriiy; 5, whereH is a guard set is defined by the clock constraint= 1 can be
hybrid system of Theorem 3.6 or 3.7 akd= (. followed by an edge that is guarded by the clock constraint

The above negative results force us to consider hybrid sys-y = 1, depending on whether or not the current clock values
tems with either simpler discrete dynamics or simpler contin- satisfy =z < y. Furthermore, since each clock variahlg
uous dynamics, in order for the framework of Section Il to be is never compared with constants greater thanthen the
successful. In the next two sections, we survey such results,actual value ofz;, once it exceed§’;, is of no consequence
which, in conjunction with Theorems 3.6 and 3.7, define a in determining the validity of any clock constraints.
tight boundary between decidability and undecidability for ~ Example 4.2: The nature of the equivalence classes de-
model checking of hybrid systems. fined by ~F can be best understood using a planar example.

ALUR et al. DISCRETE ABSTRACTIONS OF HYBRID SYSTEMS 977



9

0 1 2 1

Fig. 3. Equivalence classes of planar region equivalence.

Consider(z;, ) € Réo with C; = 2 andC, = 1. The

8 open rcgions: e.g.

6 corner points: e.g., {(0,1)}
1 14 open line segments: e.g., {(z1,z2) | 0 < z1 = z2 < 1}
y {(.’1:1,1‘2) l O<zy <ae < 1}

sets in Corollary 4.6 does not violate the spirit of Theorem

equivalence classes are shown in Fig. 3. Note that there are3.7.

only afinite number of classes, at mest2™ 117, (2C;+2),
wheren is the number of clock variables. Thus, the number

of classes is exponential in the dimension and in the size of

clock constraints (each constafit requireslog C; bits for
representation in a clock constraint).

If we are given a finite set of rectangular sets, then we
define the region equivalence relatier}; 5, on the states of
the timed automatof just like ~%, except that the con-
stantsC; are taken to be maximal also with respect to the
constants that define the setinThe following is the main
theorem about timed automata.

Theorem 4.3 (Bisimulations of Timed Automata [5]et
H be a timed automaton, and DBtbe a finite set of rectan-
gular sets. Then the region equivalence relatifﬁ[E is a
bisimulation of the transition systefty; .

Since the region equivalence relatier}; 1, has a finite

B. Rectangular Automata

Up to this point, the restricted classes of hybrid systems
that we have presented admit finite bisimulation quotients. In
this section, we show that more general hybrid automata do
not admit finite bisimulation quotients but may admit finite
language-equivalence quotients, which are coarser quotients.

Theorem 4.7 (Language Equivalences of Initialized Rect-
angular Automata [37], [38]): Let H be an initialized rect-
angular automaton, and l&t be a finite set of rectangular
sets. Then the transition systéiw, »; has a finite language-
equivalence quotient, which can be constructed effectively.

The main idea of the proof is to convert an initialized rect-
angular automaton to an initialized multirate automaton by
replacing each variable;, which satisfies a differential in-
clusion of the formz; € [a;, b;] by two variables named!

number of equivalence classes and the corresponding quoandz¥, which satisfyi! = a; and¥ = b;, respectively. The
tient transition system can be constructed effectively, we ob- variablese! andz¥ keep track of the lower and upper bounds

tain the following corollary.
Corollary 4.4: The LTL and CTL model checking

of ;. The initial, invariant, and guard sets, as well as the reset
maps must be adjusted accordingly. For example, if the guard

problems (Problems 2.5 and 2.9) can be decided for timedset is defined by:; < 3, then it is replaced by! < 3, and

automata, provided every proposition occurring in temporal if z¥ > 3, thenz! is reset to 3. This conversion from the

formulas is either an automaton location or a rectangular set.rectangular to a multirate automaton is language preserving.
The above result was the first successful extraction of a Hence, from the finite bisimulation of the initialized multi-

finite discrete abstraction from a hybrid system and has in-
spired much research in this direction along with the devel-

rate automaton (Theorem 4.5), we can construct a finite lan-
guage equivalence of the original initialized rectangular au-

opment of verification tools. This result can be generalized tomaton.

as follows to multirate automata.
Theorem 4.5 (Bisimulations of Initialized Multirate Au-
tomata [3]): Let H be an initialized multirate automaton,

Corollary 4.8: The LTL model checking problem
(Problem 2.5) can be decided for initialized rectangular
automata, provided every proposition occurring in temporal

and let¥ be a finite set of rectangular sets. Then the transi- formulas is either an automaton location or a rectangular set.

tion systemly . has a finite bisimulation quotient, which
can be constructed effectively.

The conversion from initialized rectangular automata to
initialized multirate automata may not preserve branching

The proof of Theorem 4.5 is based on rescaling the slope properties, such as those expressible in CTL. In general, ini-

of each variable to 1, by appropriately adjusting all initial,

tialized rectangular automata do not admit finite bisimulation

invariant, and guard sets, as well as reset maps. From the reguotients.

gion equivalence of the resulting timed automaton, we obtain

a bisimulation of the initialized multirate automaton.
Corollary 4.6: The LTL and CTL model checking prob-

Theorem 4.9 (Lack of Finite Bisimulation Quotients for
Initialized Rectangular Automata [32])There exist an ini-
tialized rectangular automatdd and a finite set of rect-

lems (Problems 2.5 and 2.9) can be decided for initialized angular sets such that every bisimulation of the transition

multirate automata, provided every proposition occurring in

temporal formulas is either an automaton location or a rect-

angular set.
Notice that restricting ourselvesitatialized multirate au-

tomata in Theorem 4.5 does not violate the conditions of The-

orem 3.6, by which multirate automata that are not initialized
cannot, in general, have a finite bisimulation quotient. Simi-

systerm(l}; 5, has infinitely many equivalence classes.

In order to simplify the proof of the above theorem, we
consider a slight extension of Definition 3.3 and allow more
than one edge between a pair of locations.

Example 4.10:Consider the simple rectangular au-
tomatonH shown in Fig. 4. The automaton has only one
location £, is trivially initialized, and has two variables

larly, restricting ourselves to propositions that are rectangular and ¢, which are allowed to live on the unit square; that
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is, Inv(¢) = {(z,y) € R?|0 < z < land0 < y < 1}. Inv{l) —= y=0
Furthermore, Init({) = Inv(¢). Both =z and y
satisfy the differential inclusion:z € [1,2] and 1

¥ € [1,2]. There are two edges from to itself, ¢;
and ez, with Guard(e;) = Guard(ex) = Inuv(f).
Furthermore, Reset(e1, (z, y)) = {(z,0)} and
Reset(eq, (x,y)) = {(0, y)}; that is, e; and ey reset

y or z to 0, respectively. LeX consist of the two rectangular
sets defined by = 1 andy = 1. Then the bisimulation al-
gorithm (Algorithm 2.2) does not terminate on the transition

systeml'y, x.

The classes of hybrid systems presented in this section 2
are expressive enough to model many systems arising in
real-time communication networks, real-time circuits, as Inv(l) = x=0
well as real-time software. Timed automata allow us to o _ o
model accurate clocks, and rectangular automata allow us toE.'gs 4. Initialized ~rectangular - automaton  without  finite

. . . isimulation quotient.
model clocks with bounded drift. However, the continuous
dynamics (flows) that can captured directly by rectangular , /, // , :
automata is rather limited for control applications, and AT
generally involves approximations [36], [67]. In order to | %%% /;jjjm\\§§§ |
capture more complicated continuous dynamics directly A % Sttt N\

i TIIS Y o . BI77 7 SOV
without violating the undecidability results of Section I1I-C, 177 \\
one needs to restrict the discrete dynamics (jumps) of a 2 /f \\\l\
hybrid system. ( ! sxsxsx

(K ¥
V. RESTRICTING THEJUMPS '\ \ 'y
A lii]

Our goal in this section is to apply the framework of Sec- \\\Q\:: AN
tion Il to hybrid systems with more complicated continuous \ ‘\\‘Qj::\m—,,,,ffjf f y
behavior. However, the following example shows that, even \\\\\\:::’“‘// i
: : : o : AN AN
in the absence of discrete dynamics, the bisimulation algo- -4r S //
rithm does not terminate. NS iy / L)

. - . . =y /// /

Example 5.1: Consider the trivial hybrid system with only — — - : . ; :

one discrete locatiof and no discrete jumps, and letbe

the linear vector field oriR? Fig. 5. Bisimulation algorithm does not terminate.

21 =02 21+ 22

requires that the trajectories of the vector fi¢ld/, -) have
nice intersection properties with such sets. Since the goal

To=—x1+ 0.2 xz4.
Assume the partition oR? consists of the following three

sets (see Fig. 5):
P ={(z,0:0< 2 <4}
P, ={(z,0): -4 <z <0}
Py =R*\(P,UPR,).

The trajectories oft” are spirals moving away from the
origin. The first iteration of the algorithm partition3, into
P, = BN Pre(P) = {(z,0): 2z < 2z < 0} and
P\ Pre(Py), wherez; < 0is thex;-coordinate of the first
intersection point of the spiral throudHd, 0) with P». The
second iteration subdividds, into Ps = P, N Pre(FPy) =
{(z,0): 0 <z < 2o} and P\ Pre(Py), whereze > 0is the

is to obtain finite partitions, it will become important that
we restrict the study to classes of sets vgtbbal finiteness
properties, for example, sets with finitely many connected
components. Even though these desirable properties are
geometric in nature, they are captured by the notion of
order-minimality (o-minimality) from model theory.

A. O-Minimal Structures

In this section, we provide a brief introduction to o-min-
imal structures [77] and then use it to construct finite bisimu-
lations of certain classes of hybrid systems. A brief introduc-
tion to first-order logic can be found in the Appendix. More

x1-coordinate of the next point of intersection of the spiral
with P;. This process continues indefinitely since the spiral
intersectsP; in infinitely many points, and therefore the al-
gorithm does not terminate. In fact, the bisimilarity quotient ~ Definition 5.2 (O-Minimal Structure):A (model-the-
is not finite. oretic) structure over the reals is called o-minimal (order
From the above example, it is clear that the critical minimal) if every definable subset (with parameters) of
problem one must investigate is how the trajectories of R is a finite union of points and open intervals (possibly
F(¢, -) interact with the sets inside a single locatibiThis unbounded).

introductory material on first-order logic can be found in [27]
and [76], and the use of various logics for hybrid systems is
detailed in [23].
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Table 1
O-Minimal Structures

Structure .| Sample Definable Sets | Sample Definable Trajectories

(R, <,+,—,0,1) Polyhedral sets Linear trajectories

R, <, +,—,-,0,1) Semialgebraic sets Polynomial trajectories

(R, <,+,—-{f},0,1) Subanalytic sets Polynomial trajectories

(R <, +,—,-€%,0,1) Semialgebraic sets Exponential trajectories

(R, <, +,—,-,€e%{ f },0,1) | Subanalytic sets Exponential trajectories

For structures that exten(R, <, +, —, 0, 1), this is « for each/ € V and all edges € E, the setdnuv(¥),

equivalent to checking the above property for sets definable Init(¢), andGuard(e), and the flow ofF'(¢, -) are de-
without parameters [56]. For example, consider the subset finable in the same o-minimal structure over the reals.
of the reals defined bz € R|p(z) > 0}, wherep(z) is Note that o-minimal hybrid systems place a restriction on

some polynomial. Then, since every polynomial has a finite the discrete jumps, namely, that every time a discrete jump is
number of roots, the set where it is not negative is a finite taken, all states must be reinitialized, possibly nondetermin-
union of points and intervals. This finiteness property must jstically. Notice, however, that we do allow piecewise con-
hold for any definable set in the structude; € R|¢(z)}, stant set valued maps, which can be used to overapproximate,
even if the formulaj(x) contains quantifiers. arbitrarily closely, useful reset maps like the identity map.
The class of o-minimal structures over the reals is A more detailed analysis of set-valued maps can be found
quite rich. In [72], it was shown that the structure n[22]. This restriction on the discrete dynamics along with

(R, <, +, =~ 0,1) admits elimination of quanti-  the powerful structure of o-minimal structures, allows us to
fiers, by proposing an algorithm that given any formula in - prove the following theorem without violating the results of
(R, <, +, —, -, 0, 1) converts it to an equivalent formula  Section I1I-C. Even though the following theorem is proved

without quantifiers. This, together with an analysis of the in [44] for constant, set-valued reset maps, the proof can be
sets definable by quantifier-free formulas shows that the easijly adapted to handle piecewise constant, set-valued re-
structure is o-minimal. Tarski was also interested in ex- gets.

tending this result t¢R, <, 4, —, -, ¢*, 0, 1), where there Theorem 5.4 (Bisimulations of O-Minimal Hybrid Systems
is an additional symbol in the language for the exponential [44]): Let H be an o-minimal hybrid system, and tbe
function. While this structure does not admit elimination of g finite collection of sets definable in the same o-minimal

quantifiers, it was shown in [80] that this structure is 0-min-  structure. Then the transition systéi s; has a finite bisim-
imal. Another important extension is obtained as follows. ylation quotient.

Assume/ is a real-analytic function in a neighborhood of  Theorem 5.4 is appealing since it can capture hybrid sys-
the cube[-1, 1]* C R". Let f: R™ — R be the function  tems with more complicated continuous dynamics. To illus-

defined by _ trate the continuous behavior that can be captured, we apply
Fa) = {f(a:), if z € [-1, 1] Theorem 5.4 for each o-minimal structure of Table 1, and we
0, otherwise. provide examples of definable, o-minimal hybrid systems.
We call such functionsrestricted analytic functions (R, <, +, —, 0, 1): The definable sets in this structure

These functions are useful to describe the behavior of capture polyhedral sets whereas the definable flows capture
some periodic trajectories. For example, the functions jinear flows. In particular, it captures timed and multirate au-
sin and cos restricted to a period are sufficient to define tomata in the special case where all reset maps are constant.
closed orbits of some linear systems. In [78], the structure Timed and multirate automata, in general, allow more com-

(R, <, +, =, %, {f}, 0, 1), which is an extension of  pjicated reset maps, like the identity map, in their discrete
(R, <, +, =, - {f}, 0, 1), was shown to be o-minimal.  jumps.
Table | summarizes o-minimal structures over the reals along (R, <, +, —, -, 0, 1): In[72], it was shown thafR, <
with someexample®f sets and vector field trajectories that 4 _ . o, 1) is decidable. In fact, the decision procedure
are definable in these theories. consisted of two parts: first, an algorithm for eliminating
Based on the notion of o-minimality, the following class quantifiers, and second, an algorithm for deciding quanti-
of hybrid systems is defined. fier free formulas. Because of these results, the definable sets
Definition 5.3 (O-Minimal Hybrid Systems)A hybrid with parameters in this structure are $®mialgebraic sefs
systemH is called o-minimal if: which are defined as Boolean combinations of sets of the
« foreachd € V, F'(¢, -) is adifferential equation whose  form {z: p(z) < 0} and{x: p(x) = 0}, wherep(z) is a
flow is complete (defined for all time); polynomial. The definable flows in this structure are semi-
« for eache € FE, the reset magiteset(e, ) is a piece- algebraic. Therefore, the o-minimal hybrid systems corre-
wise constant (with finite number of pieces) but set sponding to this structure are hybrid systefiswhere all
valued map; sets and flows are semialgebraic.
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R, <, +, —, - {f}, 0, 1): In order to describe the de-
finable sets in this structure, we need the notionsashian-
alytic and subanalytic setsWe provide below an informal
definition of these notions. For precise definitions and prop-
erties, the reader is referred to [13]. We say that a subsét
R™ is semianalytic irR™ if for every z € R™ there exists a
neighborhood’ of z such thatV N S is a Boolean combina-
tion of sets of the forr{z: f(x) < 0} and{x: f(z) = 0},
where f is an analytic function o/. Roughly speaking, a
local description of a semianalytic set is analogous to that of
a semialgebraic set with analytic functions replacing polyno-
mials. A subsefS of R™ is subanalytic iR™ if it is locally
the image of a relatively compact semianalytic Satinder
an analytic map (defined dfi). A subsetS of R" is finitely
subanalytic if its image under the mapR™* — [-1, 1]?
given by

x1 Tn
p(xlv ’ xn) <m7 ’ m)
is subanalytic. The finitely subanalytic setsRfi are defin-
able in this structure.

Even though polynomial flows are definable in this struc-
ture, since the functionf are zero outside a compact set,
these functions cannot be used to define complete flows.
However, thePre operator corresponding to some periodic
flows may still be definable. Consider for example, a hy-
brid systemH whose vector fields are diagonalizable linear
vector fields with purely imaginary eigenvalues and all rel-

evant sets are definable in this structure. Since the restric-

tion of sin on [—m, =] is definable, thePre operator corre-
sponding taF' is definable. This leads to the following corol-
lary of Theorem 5.4, which generalizesR& the planar re-
sults in [17], [43], and [47].

Corollary 5.5: Let H be a hybrid system for which all rel-
evant sets (guards, invariants, initial conditions) are finitely
subanalytic and all vector fields are diagonalizable linear
vector fields with purely imaginary eigenvalues. BDébe a
finite collection of finitely subanalytic sets. Then the transi-
tion systenil’y 5 has a finite bisimulation quotient.

(R, <, +, —, -, e*, {f},0,1): This structure, which
extendgR, <, +, —, -, {f}, 0, 1) by the exponential func-
tion, besides enriching the class of definable sets, allows
us to capture new classes of definable flows. In particular,
the flows of linear vector fields with real eigenvalues are
definable. The following corollary is then an immediate
consequence of Theorem 5.4.

Corollary 5.6: Let H be a hybrid system for which all
relevant sets are finitely subanalytic and all vector fields are
of one of the following two forms:

« linear vector fields with real eigenvalues;
« diagonalizable linear vector fields with purely imagi-
nary eigenvalues.

Let X be a finite collection of finitely subanalytic sets. Then
the transition systefi; v, has a finite bisimulation quotient.
The above theorem extends the planar results in [43}to
Note that relaxations of Corollary 5.6 would allow spiraling,
linear vector fields, which are not definable in this structure.
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As was shown by Example 5.1, such systems, in general, do
not admit finite bisimulations. This shows that even though
the conditions of Theorem 5.4 are sufficient, they are very
tight sufficient conditions.

The above results are existential and show that a finite
bisimulationsexistfor the above classes of o-minimal hy-
brid systems. That means that the bisimulation algorithm
will terminate. To show decidability, we must also show that
the bisimulation algorithm is computable, which means that
there is an effective procedure to compute #e: oper-
ator. This can be achieved for various classes of o-minimal
hybrid systems by posing each step of the bisimulation al-
gorithm as a quantifier elimination problem in the structure
(R, +, —, -, <, 0, 1). The proof then consists of showing
that for semialgebraic seté C R"™, the task of computing
the preimage’re(A) under the flow of such linear systems
reduces to quantifier elimination {i®R, +, —, -, <, 0, 1) by
a sequence of definable variable substitutions, which elimi-
nate the exponential terms.

Theorem 5.7 (Hybrid Systems with Linear Differential
Equations [45]): Consider the class of o-minimal hybrid
systemH where:

» for each? € V and edges € E, the setslnu(¥),
Init(¢), andGuard(e) are semialgebraic with rational
coefficients;

o forall¢ e V, F(¢, ) = Aex, whered, € @, and

— A, is nilpotent; or

— A, is diagonalizable and has real, rational eigenvalues;
or

— Ay has purely imaginary eigenvalués, with w ra-
tional, and its real Jordan form is block diagonal with
2 x 2 blocks;

then CTL and LTL model checking for this class of hybrid
systems is decidable.

As an immediate consequence, the reachability problem is
also decidable for the above classes of hybrid systems. The-
orem 5.7 can be extended to include linear hybrid systems
where in each discrete state the dynamics are of the form
& = Ax 4+ Bu for various types of inputs.

Theorem 5.8 (Hybrid Systems with Linear Control Sys-
tems [46]): Consider the class of o-minimal hybrid system
H where:

« for each? € V and edges € F, the setslnuv(¥),
Init(¢), andGuard(e) are semialgebraic with rational
coefficients;
forall ¢ € V, F(¢, ) = Agx + Beu, whereA, €
Q™" By € Q% and

— A is nilpotent, and each entry afis a polynomial in
t; or

— A, is diagonalizable, has real rational eigenvalues, and
each entry of. is of the forme#* with x rational, and
not an eigenvalue ofi,; or

— A, has purely imaginary eigenvalues of the fofmn
with w rational, and the entries in the inputre of the
form sin(«t) or cos(wt) with « rational, andy # +w;

then CTL and LTL model checking for this class of hybrid
systemsH is decidable.
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The above results remain valid if the inputs are allowed to formula, and if¢; and¢, are formulas and: is a variable,
be rational, linear combinations of the functions of the corre- theng; A ¢, =¢1, Vx: ¢1 Or Iz: ¢1 are formulas. Exam-
sponding type: exponentials in case of real eigenvalues andples of Lz-formulas arev =z Vy: zy > 0, Jz: 2> —2 =0
sinusoidal in the case of imaginary eigenvalues. In all cases,and3w: zw? + yw + »z = 0. The occurrence of a variable
the sameaesonanceaestrictions apply on the parameters in a formula isfreeif it is not inside the scope of a quan-

anda. tifier; otherwise, it isbound For example, in the formula
Jw: zw? +yw+z = 0. 1, y, andz are free andv is bound.
VI, CONCLUSIONS We often write¢(x1, - - -, x,,) to indicate thatey, -« -, z,

are the free variables of the formufaA sentencef Ly isa

In this paper, we have considered the algorithmic formula with no free variables. The formutaY y: zy > 0
analysis of hybrid systems by the process of abstraction.is a sentence wheredsv: zw? + yw + z = 0/is not.

We have presented a unified collection of results where A (model-theoretic)structure over a setS of a lan-
finite, property-preserving abstractions of hybrid systems guage consists of a nonempty setand an interpretation
are possible. Given the known undecidability barriers, of the relations, functions, and constants. For example,
we showed that discrete abstractions of hybrid systems(R, <, +, —, -, 0, 1) and(Q, <, +, —, -, 0, 1) arestruc-

are possible when either the continuous or the discretetures of £z over R and Q, respectively, with the usual
dynamics are restricted. interpretation of all the symbols. A s& C S™ is de-

In cases where discrete abstractions wéhuivalent finable if there exists a formulaj(zxy, ---, x,) such that
properties cannot be constructed, abstractions whose propy” = {(ay, ---, a,) € S™|¢(ay, ---, a,)}. For example,
erties aresufficientto check can be useful. This approach overR, the formulaz? — 2 = 0 defines the se{\/i, —\/i}.
is taken in [18], [21], [30] [34], [60], [61], [63], [67], A set is definable with parameters it if eachc € C
and [70], where reachable sets of differential equations is a constant. For example? — = = 0 defines the set
are over- or underapproximated. This line of work often {,/r, —/7} overR, usingr as a parameter. If a language
allows us to verify instances of hybrid systems even if £ is interpreted oveR andC = R, we simply say that a set
they belong to undecidable classes. The construction ofis definable with parameters (without mentionifigy.
tight approximations along with the tradeoff between
complexity and precision is of great importance and AcCKNOWLEDGMENT
should be pursued further. Research along this direction
will expand the scope and applicability of computational
tools, like KRoNOs and HYTECH. This is needed before
they can be applied on large scale, hybrid systems with
complicated discrete and continuous dynamics.

The authors would like to thank the reviewers for their
detailed comments.
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