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Toward a Vocabulary of Legged Leaping

Abstract
As dynamic robot behaviors become more capable and well understood, the need arises for a wide variety of
equally capable and systematically applicable transitions between them. We use a hybrid systems framework
to characterize the dynamic transitions of a planar “legged” rigid body from rest on level ground to a fully
aerial state. The various contact conditions fit together to form a topologically regular structure, the “ground
reaction complex”. The body’s actuated dynamics excite multifarious transitions between the cells of this
complex, whose regular adjacency relations index naturally the resulting “leaps” (path sequences through the
cells from rest to free flight). We exhibit on a RHex robot some of the most interesting “words” formed by
these achievable path sequences, documenting unprecedented levels of performance and new application
possibilities that illustrate the value of understanding and expressing this vocabulary systematically.
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Toward a Vocabulary of Legged Leaping

Aaron M. Johnson and D. E. Koditschek

Abstract—As dynamic robot behaviors become more capable
and well understood, the need arises for a wide variety of
equally capable and systematically applicable transitions be-
tween them. We use a hybrid systems framework to characterize
the dynamic transitions of a planar “legged” rigid body from
rest on level ground to a fully aerial state. The various
contact conditions fit together to form a topologically regular
structure, the “ground reaction complex”. The body’s actuated
dynamics excite multifarious transitions between the cells of
this complex, whose regular adjacency relations index naturally
the resulting “leaps” (path sequences through the cells from
rest to free flight). We exhibit on a RHex robot some of
the most interesting “words” formed by these achievable path
sequences, documenting unprecedented levels of performance
and new application possibilities that illustrate the value of
understanding and expressing this vocabulary systematically.

I. INTRODUCTION

Stable steady state dynamic legged locomotion was

achieved more than two decades ago in the laboratory [1,

2], and more recently exported to real outdoor operation

over rough terrain [3, 4]. A growing body of literature

has arisen to explore the stability properties of dynamical

steady state template [5] locomotion [6–8], as well as formal

design methodologies for increasingly practical, high degree

of freedom dynamical running and walking robots [9–12].

In contrast to the maturity of steady state locomotion

research, while dynamical transition behaviors have been

formulated [13] in terms of appropriately composed steady

state constituents that can be generalized and strengthened

for locomotion in a computationally tractable manner [14],

there seems little à priori rationale for requiring that the

words of transition be spelled out only in the letters of

existing attractor basins1. In this paper we explore the

intrinsic vocabulary of a particularly simple transition: the

legged leap on a solid level substrate from a motionless

state to some desired aerial apex condition in a high energy

regime, such as the leap onto a ledge in Fig. 1.

A. Contributions and Organization of the Paper

The remainder of this section motivates the leap as a

necessary antecedent to many interesting subsequent be-

haviors of obvious utility. Next, in Section II, we review

some preliminary formal ideas concerning the central object

of study, a two legged sagittal plane hopper, and exhibit

the topological space — the “ground reaction complex” (in

This work was sponsored by the ARL/GDRS RCTA consortium.
Electrical and Systems Engineering Department, University of

Pennsylvania, 200 S. 33rd St, Philadelphia, PA 19104, USA,
{aaronjoh,kod}@seas.upenn.edu

1Although there is some tantalizing evidence to suggest that rhythmic
human transitions are indeed composed of snippets from steady state
oscillatory primitives [15].

Fig. 1: XRL [16] leaping upward onto a 73cm high table,

nearly 1.5 times its bodylength. Frames taken every 100ms

from a high speed video.

this case a simplicial tetrathedron) — over whose variously

dimensioned cells the Hamiltonian flows of its holonomically

constrained body evolve as directed by the ground reaction

forces. This cellular construction indexes in a computa-

tionally effective (“grammatical”) manner the realizable se-

quences of continuous dynamics that are physically available,

providing crucial intuition for hand-designed behaviors (as

suggested by the new capabilities we document) as well

as parameterizing the various sequences of constraints that

would be required for any automated method of behavior

generation (i.e. a learning or optimization based approach).

The value of working out the cell adjacency relations in the

ground reaction complex is the resulting catalog it affords of

all possible leaps (transitions from the rest state to the fully

aerial state). Presented in Section III, this is shown to take

the form of variously triggered hybrid dynamic transitions

between adjacent cells. These cell-labeled sequences of grad-

ually ascending dimensional flows comprise this hopper’s

vocabulary of leaps. In Section IV we document empirically

a variety of the very different terminal aerial phase conditions

that can result from these various leaps through appropriately

coordinated open loop maneuvers implemented on XRL [16],

a recent update of RHex [3]. In Section V we show how

two different instances of these leaps lead to evidently useful

behaviors heretofore unachieved by a general purpose legged

robot2: a two hop vault across a gap 20% wider than the

robot’s body length; and a high jump onto a ledge almost

50% taller than the robot is long. We conclude with some

brief remarks about implications and future work.

B. Motivation

Leaping is a key transition from rest to a variety of high

energy behaviors. It allows us to engage in nearly pure form

one of the foundational questions of robotics: how can we

program the transfer of energy in a robot’s battery or fuel

tank to its mechanical state?

2By which we mean a power-autonomous robot without specialized
jumping (e.g. [17]) or climbing (e.g. [18]) mechanisms.



When jumping onto a ledge or across a gap, sometimes

a single leap is all that is needed. However the leap can

also be used to setup a second step, as exemplified by the

behaviors documented in Section V. In this paper, the second

step will be essentially governed by the dynamics of the SLIP

template (i.e., the spring-mass hopper literally instantiated

by Raibert [1], and empirically used by all running animals

[19]), wherein the state of the SLIP system (height, forward

velocity, etc) at apex before a hop determines the reachable

set after the hop [20, 21]. Naturally the second hop can lead

to a third, and thus the leap can be a quick transition into a

high kinetic energy running gait from a seated position.

Beyond its value in reaching across obstacles and setting

up other behaviors, there are a number of tasks that may

entail a leap as an intrinsic goal. The robot may need to flip

over if it is not completely symmetric or if there are payloads

only available on one side [22]. It also may need to reach a

certain height to gain a better vantage point for its sensors.

II. HYBRID HAMILTONIAN DYNAMICS OVER THE

GROUND REACTION COMPLEX

We are concerned with a planar rigid body, b ∈ SE[2],
possessed of two massless limbs whose revolute joints θi ∈
Θi := S

1, i ∈ {1,2}, relative to the body are actuated by

the motors. The resulting five degree of freedom kinematic

system, q := (θ1,θ2,b) ∈ Q := Θ1 ×Θ2 × SE[2], is further

subject to a set of unilateral holonomic constraints, g j(q)≥
0, j ∈ I , specified by smooth maps, g j : Q → R (and an

index set, J , that we introduce below), that define the base

topological space and thereby comprise in part the “guard”

or “boundary” conditions on the dynamical flows over the

base cells. We will simplify the body contact by assuming

two contact points (“front” and “rear” along the bottom),

reducing the possible contact conditions to an enumeration

of constraint equations over the powerset of P ,

P := {pk,l ∈ R : (k, l) ∈ I := {F,R}×{B,L}}

where {F,R} indexes the “front” or “rear” location and

{B,L} indexes the “body” or “leg” terminal. It now follows

that there are 2|I | = 16 different logically possible contact

conditions yielding 16 different Lagrangian dynamical sys-

tems whose physical features we will specify below.

While compliance in the legs almost certainly helps

achieve some of the behaviors documented here, for the most

part the body will follow the rigid linkage path with the

springs acting to force the robot onto that trajectory, and

so we will assume rigid legs3. We will assume that the

actuators can deliver the greatest amount of work to the body

when they are individually doing the most work they can on

their individual motor shafts. The infinitesimal kinematics of

rigid closed kinematic chains generically accord unequally

weighted contribution to the net body wrench (see [24] for

one example). However, none of the closed chains relevant

to leaps against the simple level substrate encounter sign

changes in these weights, so actuators might “waste” energy

generating internal forces but will not impart negative work

3Though compliance can easily be added back, as in [23] and others.

to the body when they are asserting their maximum torque

in the direction of shaft travel4.

We further assume that the actuators are each capable of

and are restricted to delivering a constant torque (in either

direction) throughout their operation, which is saturated by

the motor controller current limit. This, of course, does fly in

the face of physical reality [25, 26], and power limitations

are well understood to play a critical role in fast moving

legged robot limbs [27, 28]. Fortunately, here much of the

action takes place at relatively low limb speeds, and so

there is relatively little back EMF to substantially reduce

the output torque. For similar reasons, we neglect damping

in the joints and limbs and ignore any other source of energy

loss throughout the paper.

A. The Ground Reaction Complex

In [29] a cell complex [30] was used to index all pos-

sible abstract coordination schemes that a legged machine

might undertake and in [31] this cell complex was used to

organize the possible gait transitions and recovery strategies

of a quasistatic vertical climbing robot, treating the varying

ground contact conditions experienced along the way as

mere “noise” shown to be robustly rejected by a proper

feedback implementation of the coordination controller. Here

we explore what is in some sense the opposite extreme case:

we are only interested in characterizing the possible direction

and magnitude of ground reaction forces in consequence of

different limb configurations; we are only interested in the

high energy dynamical regime; and we wish to factor out all

the inessential details of interlimb coordination.

Hence, although the kinematic system just introduced has

as many as five degrees of freedom, we now exploit the

assumption of massless limbs to introduce a coordination

assumption that will cut away the inessential dimensions

with no loss of generality regarding the ground reaction

force interactions of central focus. Namely, we will assume

when either limb is free of ground contact that there is some

“mirror law” [9], of the form θi =mi(q), i= 1,2 that the joint

actuators track exactly.

Denote by πz the projection onto the second coordinate of

some world frame representation of the body and leg contact

points5. Consider the family of constraint equations,

πzpk,l = 0 (k, l) ∈ I j ⊂ 2I

where the subscript, j, on the active-constraint set, I j,

indexes each subset of I through a Boolean string denoting

membership (or its absence) respecting the lexicographic or-

dering of I ,(FB,FL,RB,RL) so that, for example I0111 =
{FL,RB,RL}.
With this nomenclature in place we now enumerate all of

the 16 possible ground contact conditions that form the base

space on which our hybrid system is defined, grouping them

4As a motivating extension beyond the scope of the present paper, we do
document one instance in Section IV-A.2 where the compliance in the legs
allow for a novel trajectory, where this maximal torque assumption fails.

5We must cut off the “north pole” of the bodys rotational component by
always requiring πzpFB < ℓ, where ℓ is the robot’s bodylength (to ensure
each cell is truly contractible as formally required).
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Fig. 2: All possible contact states, represented as a tetrahe-

dron, showing adjacency. The interior volume and bottom

face are indicated with arrows.

into the following categories according to their common

dynamics as follows:

• One state where the body has three degrees of freedom

(3-DOF): the aerial state with no contact I0000 := {}.
• Two 2-DOF states have one end of the robot on the

ground sliding I1000,I0010.

• Two 2-DOF states have only one leg is down and there

is a 2-link open kinematic chain I0100,I0001.

• Two 1-DOF states have a leg and the opposite side of the

body down in a crank-slider configuration I0110,I1001.

• Two 1-DOF states have a leg and the body on the same

side down like a single link chain I1100, I0011.

• One 1-DOF state has both legs down in a four bar

linkage I0101.

• One 1-DOF state has the body completely on the ground

but still able to slide I1010.

• Four completely constrained states that in general the

robot will spend no time in, I1110,I1101,I1011,I0111.

• One degenerate case that is over-constrained with all

possible contacts simultaneously on the ground, I1111.

These states are illustrated in Fig. 2 arranged as a simplicial

tetrahedron, with the aerial state in the interior, the 2-DOF

states as the faces, and the 1-DOF states as the edges. The

0-DOF states are not illustrated but are the vertex points, and

the over-constrained system is not depicted as it represents

a degenerate case. Space and time constraints preclude our

formal demonstration that the definitions just introduced

yield the topological tetrahedron depicted, but it will suffice

for the reader to merely keep track of the adjacency relations

the figure implies.

B. Hamiltonian Flows

Given present space constraints, we defer to [32] our

preferred method of populating (by formal symbolic ma-

nipulation) the exact terms in appropriate local coordinates

arising in each of the 16 different Lagrangian dynamical

systems describing the distinctly different contact mechanics

associated with each GRC cell6. We simply exhibit here the

formal abstract expression from which each specific instance

can be systematically derived. Define the Lagrangian free

variable(s) as y ∈ Y (related by h : Y → Q to the state),

and thus the kinetic K : Q →R
+ and potential Φ : Q →R

+

energy7 are,

Hẏ := Dyhẏ= q̇ (1)

K(q, q̇) =
1

2
q̇TM(q)q̇ (2)

K̃(y, ẏ) :=
1

2
ẏT (HTM(h(y))H)ẏ :=

1

2
ẏT M̃(q)ẏ (3)

Φ̃(y) := Φ(h(y)) (4)

where M ∈ R
5x5 is the mass and inertia matrix. Denote by

f (t) : R → Q the flow of the corresponding Hamiltonian

dynamics. Conservation of total energy now gives a first

integral which, in the most interesting one DOF case, affords

a closed form expression for the flow of the system,

C = K+Φ; C =
1

2
ẏ2M̃(y)+ Φ̃(y) (5)

ẏ=±

√

2C−2Φ̃(y)

M̃(y)
(6)

for some constant C ∈R
+. For this analysis we will assume

that the body of the robot can slide along the ground with

minimal friction, while the leg toes have enough friction to

act as if it were pinned until it reaches the guard condition8.

C. Hybrid Dynamics

A unified formalism for the representation of hybrid

dynamical systems was worked out roughly two decades

ago [34], although the implications for Lagrangian systems

of the sort that concern us here remains an active area of

inquiry [35, 36]. While the general framework allows for

transitions between arbitrary (piecewise) smooth “patches” of

state space, our physical setting restricts transitions to occur

only between patches that bear a topological “incidence” re-

lationship. For this reason, our major focus of effort concerns

mapping out and systematically exploiting these incidence

patterns, and the more general, knotty issues associated with

hybrid systems recedes to the background.

There is a growing literature on hybrid dynamical systems

over stratified sets [37, 38], of the kind we study here

that arise from the changing degrees of freedom intrinsic

to “regrasped” rigid body manipulation by limbs or fingers

of limited physical extent. Although switches across strata

can be understood and planned at non-zero velocity [39], in

6Of course they can each be derived by classical methods (e.g. [33]) but
we prefer the consistent, notationally uniform derivations arising from a
“self-manipulation” perspective [24, 32].

7Recall that we are able to reduce the effects of the actuators’ torques
to the abstraction of a fixed potential field, by virtue of the assumptions
introduced at the beginning of this section.

8There is one exception: where the legs are fighting against each other
— in these cases the large internal force does not necessarily break this
friction assumption [24], however in this regime of maximal torque output
it will. Therefore when the motors are commanded with opposite directions,
the toes will be assumed to be in sliding friction.



this paper we are concerned with the truly dynamical regime

wherein the timing of actuation is crucial to shepherding

effectively a body’s accumulating kinetic energy through the

various transitions. As far as we can determine, the recent

literature concerned with (self-) regrasping in a high kinetic

energy regime has focused on planning, sensing and control

of the object capture [40] or self-landing [41, 42] rather

than exploring the many routes from rest toward the high

energy aerial phase as we do here. Some exceptions include

consideration of one or a few most common routes [43–45],

and one paper [46] that formulates the space of hybrid system

states into a structure, though not a simplicial complex.

In this work it has proven convenient to adopt the specific

hybrid systems formalism introduced by Guckenheimer et

al. [47]. To complete that specification we must now define

the guard conditions, g j,k, and reset maps, r j,k, that make

up the state transitions. In general the robot can transition

between any adjacent states. Adjacent states can be found

by either adding a contact (resulting in a loss of one degree

of freedom) or removing a contact (resulting in the addition

of one degree of freedom) from the current state contact set.

The full set of all possible transitions can be thought of as

the Hasse diagram of I , with generically |I | ·2|I | directed

edges, in this case 64 possible transitions.

These transitions can be categorized as: Control Triggered,

by touching a leg to the ground, as in I1010 → I1101

where the guard condition is the zero of g1010,1101 = θ1−θg
for some θg; Sometimes Control Triggered, for example

I0000 → I0100, where the guard condition is a function of

height and pitch and may be positive for all θ (i.e. the set

g−1
j,k (0) does not include any configurations at the point b);

State Triggered, but possible based on the dynamics and

initial conditions of the system, such as the takeoff condition

I0101 →I0001 as described below; Impossible, the transition

where the body lifts off the ground with no action as in

I1010 →I1000; and Undesirable, while the robot is certainly

capable of a hard landing I0000 →I1000, a behavior designer

may wish to avoid it (and furthermore such transitions may

not advance the goal of this paper, leaping). Thus the set

of transitions which we will consider (i.e. those that are

both possible and desireable) is reduced from 64 to only 18,

which are shown in Fig. 3. Note that 15 of the 16 contact

conditions remain (only I1111, the overconstrained case, has

been eliminated), but the graph of possible transitions is not

nearly as dense. Note that the resulting directed graph in

Fig. 3.b does indeed specify a formal grammar comprising all

paths initiated at the root (rest state which reach the terminus

(flight state) — a vocabulary of legged leaps.

The most interesting of these transitions is the “state

triggered” takeoff condition. Take for example the case where

both legs are on the ground (following [24]). The holonomic

constraints a : Q → R
4 that induce forces Γ ∈ T ∗Q that act

on the body give rise to the takeoff condition,

a(q)≡ 0; Da := A(q)q̇= 0 (7)

Γ = ATλ ; Fλ ≥ 0 (8)

λ = (AM−1AT )−1(AM−1(−Φ)+ ȦHẏ) (9)

I0100

I0011 I1001

I0010 I1000

I0101 I0110

I0000

I0001

I1100

I0111 I1011 I1110

I1010

I1101
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I1101

I0101 I1100

I1000 I0111

I1100

I1001

I0010

I0110

I1011 I1110

I1010

I0001I0100

I0000a) b)

Fig. 3: Logical vs allowable cell transitions over the GRC.

The constraint force magnitudes at contact, λ ∈ R
4, and the

friction matrix F ∈ R
4x2 will give the guard condition.

The reset maps [47], r j,k, taking the state vector in cell j

to the state vector in cell k, must ensure that h j(y j) = hk(yk)
(i.e. the position of the body and limbs is the same), and that

K j(y j, ẏ j)≥Kk(yk, ẏk) (i.e. no kinetic energy is gained in the

transition). While more complicated reset maps can be used,

for the present study we will assume that the velocity, q̇, after

the transition is simply the projection onto the new free twist

direction of the velocity vector before the transition, so in

the 1-DOF case, q̇k =
HT
k q̇ j
|Hk|

.

III. OPEN LOOP CONTROL OF TRANSITIONS ACROSS

THE GROUND REACTION COMPLEX

Here we limit the discussion to leaping transitions, namely

transitions that take the robot from I1010 = {FB,RB} to

I0000 = {}. The transitions directly to the two 2-DOF sys-

tems adjacent to the start (I1000 and I0010) are impossible,

so a path through one of the ends of this edge is required,

namely the robot must put down either the front or rear leg.

A. Leg Strategy

The saturated torque assumption yields a binary control

input for each leg, pushing forwards + or backwards −, and

the combined leg strategy S ∈ [+,−]× [+,−] on the robot is

then specified by an ordered pair such as (+,+).
These four distinct control inputs are each capable of

exciting a multitude of pathways through the directed graph

of Fig. 3, yielding the large variety of leaps we explore

empirically in Section IV. Furthermore, the half circle legs

imply that, for the moost part, (+,+) produces a forward

lunge, while (−,−) produces a flip. The rest of this section

will focus on (+,+) as an example of the insight afforded

by the grammar of leaps enumerated in (11) – (16), however

all four basic strategies (and a representative selection of the

varied leaps achievable by suitably coordinating their relative

timing) are documented in the experimental section.

B. Coordination Timing

Choose as a reference time the touchdown of the front leg,

and consider the relative timings of the other transitions. The



second leg will touch down at t2, which is a coordination

time, C, that can be chosen arbitrarily. More complicated

leg strategies that depart from the assumptions of Section II

may have a higher dimension coordination timing, and might

well explore a slightly richer subgraph of Fig. 3.a than the

more restricted leaping grammar we focus on in this paper.

The time of transition to the air for each leg, t1a and t2a, are

implicitly defined based on the Hamiltonian flow and the

liftoff guard condition on the hybrid dynamics, g( f (t)) = 0,

which in a deterministic world are fixed by the choice of

jumping strategy S and are a smooth function T : R→ R of

the coordination timing C,

t1a = T S
1a(C); t2a = T S

2a(C) (10)

where in this example t1a = T
(+,+)
1a (t2). A closed form for

T is not explicitly needed, but even without it some basic

properties will trivially be true, such as 0< T1a and t2 < T2a.

C. Transition Paths

Now we can write out all of the possible state transitions

for a jump, based on the set of possible cell transitions

described above. The transition path, i.e., the “leap-word”,

is an ordered list, and the set of words that are possible are

thus (with the zero time transition states suppressed, as well

as the always present initial I1010 and final I0000 states),

(I0110,I0010,I0001)⇔ t∗1a < t2 (11)

(I0110,I0101,I0001)⇔ 0< t2 < t∗1a, t1a < t2a (12)

(I0110,I0101,I0100)⇔ 0< t2 < t∗1a, t2a < t1a (13)

(I1001,I0101,I0001)⇔ t∗2a < t2 < 0, t1a < t2a (14)

(I1001,I0101,I0100)⇔ t∗2a < t2 < 0, t2a < t1a (15)

(I1001,I1000,I0001)⇔ t2 < t∗2a (16)

as shown in Fig. 3.b. Specific physical parameters may well

make some words impossible. For RHex the front leg tends to

lift off the ground first, and so the (13) word is not realizable.

Additionally there can be degenerate “double” transitions

that are quite interesting, such as the basic jump when t2 = 0.

The restriction that T1a is strictly greater than zero, and T2a
is strictly greater than t2, along with the fact that for RHex

T S
1a(0) 6= T S

2a(0)∀S, eliminates all higher order degeneracies.

IV. EXPERIMENTS

In order to explore various regions of the space of jumping

controllers, (S,C), and to test the claim that the underlying

topological construction predicts interesting behavioral con-

sequences, we have run over 100 trials sampling the space9.

Each of the four leg strategies was tested with a sampling

of coordination timing parameter values. As RHex actually

has 3 legs in the plane, in these experiments the “leading”

leg was disabled, i.e. the front leg for (+,+), middle leg for

(+,−) and (−,+), and rear leg for (−,−), but we will relax
this requirement later.

9In order to minimize the effect of battery charge level and other time
varying effects, the trial order was randomized an the batteries were never
allowed to fall below 75% of full.
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Fig. 4: Apex height (black square), displacement (red trian-

gle), and pitch (blue circle) for (+,+) jumping at various

relative leg timings.

Here we report on the height, displacement, and pitch at

apex10, with the (+,+) case highlighted in Fig. 4, and the

remaining cases shown in Fig. 5. Full data tables, including

additional measurements and higher resolution plots, are

available in [48], and the video attachment shows a selection

of behaviors. The top of Fig. 4 lists the coordination “word”,

(11) – (16), and depicts in a graphical cartoon the different

paths through the cell complex, with vertical lines marking

approximate transition points11. It is clear that depending on

what combinations of these metrics the task requires, several

different regions in this space could be useful.

The repeatability can be quantified by comparing the

results of 20 additional (+,+) jumps (listed in [48]) to a

linearly interpolated estimate based on Fig. 4. This shows

an RMS error of 4.3 mm in z, 12.4 mm in x, and 1.4◦ in φ .

But beyond demonstrating which control strategies result

in what kinds of jumps, this data clearly shows notable

changes near the boundaries between transition paths through

the cell complex. For example, the height achieved by the

(+,+) strategy has a nearly discontinuous jump just after

t2 = 0 — there is a noteworthy advantage in height to letting

the front leg start before the rear leg. A similar jump is also

present in the pitch however, which may or may not be a

good thing depending on the task.

Qualitatively, the leaping strategies are quite different.

The (+,+) strategy yields mostly a forward leap, while the

(−,−) strategy yields largely a flipping behavior, though for

t2 > 0 the robot does not quite complete the flip and instead

lands on its nose. The (+,−) strategy causes the robot to

jump more or less vertically into the air. The (−,+) strategy

10Recorded with a Vicon Motion System, http://www.vicon.com/
11Paths start at the triangle, end at the square where they transition to the

interior (aerial state), and paths outside the triangle represent the bottom
face. This data was coded by hand from high speed video of each trial.
Takeoff ambiguity is the main reason these transitions are approximate.



-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25s
-140

-120

-100

-80

-60

-40

-400

-300

-200

-100

0

250

300

350

400

450

500

z x φ

degmmmm

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25s
-50

-40

-30

-20

-10

0

50

100

150

200

250

300

160

180

200

220

240

degmmmm

-150
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25s

50

-100

0

100

200

300

400

100

200

300

400

500

degmmmm

-100

-50

0

Fig. 5: Apex height (black square), displacement (red trian-

gle), and pitch (blue circle) for (−,−), top, (+,−), middle,

and (−,+), bottom, jumping strategies at various relative leg

timings.

is mostly a flip, but had trouble for positive values of t2.

In those trials (as well as a couple for (−,−)) the front leg,

which is pushing backwards, stretched back along the ground

until it hit the middle leg support. Since the motor was at full

torque, the leg stuck to the corner of the frame for a short

time. Therefore the front leg leading jumps in this strategy

would benefit from a more subtle controller to avoid this.

A. Extensions

Here we present some anecdotal results that lie outside

the scope of this paper, however can still be informed by the

methods presented here.

1) Three Legged Jumps: RHex actually has six legs, and

not two. While it is easy to anchor the dynamics to the

sagittal plane by keeping pairs of legs together, that still

leaves three legs. Formally, the third leg will increase the

number of hybrid states though not the dimension of the

ground reaction complex (which is fixed by body dynamics).

However in rigid, non-singular cases only two legs can

actually maintain contact on the ground at a time.

However with compliance, and when operating near a

singularity (such as t2 = 0, a common occurrence on RHex)

it is possible for the three legs to be used, but it may or may

not be useful. Initial tests have shown that in the (+,+) case
the third leg can only add about 1cm to the final height. In

contrast, for the (+,−) case including the middle leg (in the

− direction) added 7cm to the apex height, or about a 30%

gain in potential energy.

2) Reversing Strategies: In a rigid system, reversing the

direction of force applied by a motor will simply bleed off

some of the energy that is already in the system. However

for the compliant half circle legs of RHex, when the leg is

moving forward and therefore on the round half of the leg,

reversing the torque12 will sometimes cause the leg to jam

and unfold, producing a novel motion. The reverse is not true

— if the leg is pushing backwards it will be on the point of

the toe, and reversing the direction will usually just lift the

leg off of the ground early, or if it did jam simply curl the

leg up and slow down the robot. A less extreme reversal has

been used in the past [49] to correct the pitch instability of

pronk, though the role of the compliant legs was not fully

understood. Note that this strategy is taking advantage of

the shape change that the compliance allows, but does not

recover any energy stored in the unfolded spring.

Since the principle motivation for leg reversal is pitch

stabilization, we have tested a hand tuned reversing strategy

on the (+,+) jump with t2 = 0, as this may be the most

used jump on RHex but does have about 15◦ of unwanted

pitch at apex (more by the time the robot lands). In these

initial tests, we have found that in fact stubbing the toe

at the end of stroke causes about 20◦ of pitch correction,

albeit at the cost of forward velocity which dropped by 18%.

Surprisingly though the stubbed toe experiments did show a

slight (2cm) gain in maximum height, which we attribute

in part the compliant leg being stretched by this behavior,

pushing the robot upwards. Overall the reversing jump had

less total energy, but the change in pitch and slight height

benefit make it a useful strategy in certain situations.

V. BEHAVIORS

This section applies the preceding catalogue of open loop

controllers to the generation of several useful behaviors.

A. Leaping Behaviors

There are many cases where the apex state after a jumping

transition is inherently useful. In order to cross a small gap,

RHex has previously been shown (but not published) to be

capable of crossing a 40cm gap (using the middle and rear

legs only). This has been extended to 50.5cm (1 body length)

using the (+,+) strategy and t2 = 0.02, a 26% increase.

The backflip has been better studied as a way to recover a

preferred orientation [22], but has always been completed

by rolling on the nose (i.e. never leaving the I1000 = {FB}
state), implying an apex height of 27cm (though this work

did not explicitly optimize for apex height). Fig. 5 documents

the (−,−) leap with t2 =−.02 achiving a 48cm apex height

(300% of standing height). Because both of these behaviors

entail leap-words virtually identical to that past work, we

attribute most of the gains to the substantially improved

hardware of the current generation robot [16].

While the backflips achieve the highest apex, they are

pitched nearly vertical at that state. Fig. 5 reveals a new leap

excited by the (+,−) strategy achieving a 23cm apex (143%

12A rapid reversal of motor torque requires well hardened electronics with
adequate flyback protection, however the electronics in RHex were designed
with this in mind [16].



Fig. 6: XRL crossing a 60cm gap. Frames taken every 100ms

from a high speed video.

of standing height) at less than 5◦ pitch. Adding the third

pair of legs yields a 30cm apex (nearly 200% of standing

height) at 17◦ pitch. To the best of our knowledge such a

near-level vertical leap has never before been elicited from

RHex and represents an immediately beneficial consequence

of enumerating the entire space of dynamic transitions.

B. Gap Crossing

A variety of compound jumping behaviors benefit signif-

icantly from the ability to select a specific initial leap. For

example, several high kinetic energy RHex gaits have rela-

tively small basins which can be very effectively “prepared”

[50] by selecting the apex state from rest via a leap [32].

However, here, we focus on compound jumps across bigger

obstacles than any single leap can afford. Specifically, a leap-

step behavior initiated by a 3 legged (+,+) leap with t2 = 0,

achieves a high, near-zero pitch apex with significant forward

velocity when a reversing strategy is used. Followed by a

simple spring-mass stride (with the SLIP parameters adjusted

by hand) [20], this leap-step crosses a gap of 60cm (almost

120% of body length), as shown in Fig. 6, representing to the

best of our knowledge a 20% gain over the farthest gap jump

previously achieved by any general purpose legged robot [4].

C. Jumping on to a Ledge

Another useful application of jumping is to gain access

to a high step or ledge. Past quasi-static work on a similar

robot has allowed the robot to access an incredible 53% of

the body length13 [51], the equivalent of a 27cm step up for

XRL. By inspecting the results in Fig. 4, it appears that a

(+,+) leaping strategy with a large t2 may be advantageous

(i.e. push with the front legs well before the rear legs), as

13This work used leg length as the scale, however we feel that under
these strategies the robot is gaining much more of an advantage from body
length than from leg length.

it reaches a significant height with some forward velocity

and a moderate pitch. A timing parameter of about t2 = 0.18

was found to be the best, and was capable of lifting the robot

onto a 27cm ledge with either a two or three legged strategy,

about the same as the best quasi-static behavior.

For a compound jump onto a ledge, a leap-step similar

to the gap crossing behavior reached a ledge of 29cm, a

slight improvement. However the previous section reveals far

higher leaps are possible, though with significant pitching.

This suggests a different compound jump whose initial leap

terminates at a vertically pitched apex that vault the legs

above a far higher ledge, with the hope of grabbing and

pulling the robot up onto it during the second stride. A (−,−)
leap with t2 = 0.06 achieves such a (nearly vertical) high apex

with some net horizontal displacement. This leap-grab, with

no modification, is indeed capable of hooking the robots legs

onto a 73cm high table, or 145% of the body length (450%

of leg length), as shown in Fig. 1.

The second stride in this compound jump, intended to pull

the robot up onto the ledge, is not easy to achieve in the

present open loop setting. Absent specialized climbing feet

[18], the robot will typically slip off even a coarse-sandpaper-

surfaced ledge, as it tries to gain purchase. Extensive tuning

(requiring well over 400 attempts) finally achieved a success-

ful stride whose properties lie beyond the scope of the present

paper (requiring leg compliance in extension — the rear legs

are nearly completely uncurled — and subtle sliding interac-

tion), yet likely is encompassed within the more general self-

manipulation framework presently under development [32].

To the best of our knowledge, this compound jump enables

to robot to climb onto a ledge higher than that achieved by

any previous general purpose legged robot, nearly doubling

the best reported prior effort (53% of body length, or 230%

of leg length [51]).

VI. CONCLUSION

We have presented the space of legged transitions from

complete rest to full flight as generated by combinatorial

mixtures of various hybrid dynamical systems indexed by

the cells of a “ground reaction complex”. The very regular

adjacency relations implied by this topological space orga-

nize these sequential mixtures in a sufficiently simple manner

as to allow the systematic (“grammatical”) generation of all

possible leaps. This enumeration affords a number of new

behaviors that significantly extend the range of terrains that

the RHex robot can negotiate. Near term future extensions

will focus on formal methods of design that exploit this

analysis more systematically and effectively than the “hand-

crafted” behaviors reported here. Moreover, we are interested

in a broader range of dynamical transitions, particularly ones

exploiting compliance, including the entirely novel prospect

of using the leg springs in extension introduced here.
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