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Single-Ion Anisotropy, Crystal-Field Effects, Spin Reorientation
Transitions, and Spin Waves in R2CuO4 (R=Nd, Pr, and Sm)

Abstract
We report a detailed study of single-ion anisotropy and crystal-field effects in rare-earth cuprates R2CuO4
(R=Nd, Pr, and Sm). It is found that most of the magnetic properties are mainly due to the coupling between
the copper and rare-earth magnetic subsystem which exhibits a large single-ion anisotropy. This anisotropy
prefers ordering of rare-earth moments along [100] for R=Pr and Nd and along [001] for R=Sm. Combined
with a pseudodipolar interaction arising from the anisotropy of the R-Cu exchange, we can explain the
magnetic structures of these materials. The spin reorientation transitions in Nd2CuO4 can be explained in
terms of a competition between various interplanar interactions which arises because of the rapid temperature
dependence of the Nd moment below about 100 K. Finally we introduce a simple two-dimensional model for
the Nd spin-wave spectrum. For zero wave vector, this model gives two optical modes involving Cu spins
whose temperature-dependent energies agree with experimental results and an acoustic mode whose energy is
predicted to be of order √(2k4Δ)≈5μeV, where k4 is the fourfold in-plane anisotropy constant and Δ is the Nd
doublet splitting.
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We report a detailed study of single-ion anisotropy and crystal-field effects in rare-earth cupratesR2CuO4

(R5Nd, Pr, and Sm!. It is found that most of the magnetic properties are mainly due to the coupling between
the copper and rare-earth magnetic subsystem which exhibits a large single-ion anisotropy. This anisotropy
prefers ordering of rare-earth moments along@100# for R5Pr and Nd and along@001# for R5Sm. Combined
with a pseudodipolar interaction arising from the anisotropy of theR-Cu exchange, we can explain the
magnetic structures of these materials. The spin reorientation transitions in Nd2CuO4 can be explained in
terms of a competition between various interplanar interactions which arises because of the rapid temperature
dependence of the Nd moment below about 100 K. Finally we introduce a simple two-dimensional model for
the Nd spin-wave spectrum. For zero wave vector, this model gives two optical modes involving Cu spins
whose temperature-dependent energies agree with experimental results and an acoustic mode whose energy is
predicted to be of orderA2k4D'5meV, wherek4 is the fourfold in-plane anisotropy constant andD is the Nd
doublet splitting.@S0163-1829~97!04525-6#

I. INTRODUCTION

Magnetic interactions in rare-earth (R) cuprateR2CuO4

~RCO! systems have been the subject of extensive study1–9

for various reasons. First and foremost theR cuprates~which
become superconducting under electron doping! have a sim-
pler structure than the hole-doped superconducting cuprates.
In particular,R2CuO4 crystallizes in the tetragonal structure

2

known as theT8 phase in which there are no apical O ions.
Hence CuO sheets form a planar square lattice. However, it
has been observed that for too small or too large rare-earth
ions, theT8 phase is not stable, as evident from the distorted
structure of Gd2CuO4.

3,4 Pr2CuO4 ~PCO! is at the limit of
the T8 phase: the next compound with a lighterR,
La2CuO4 ~LCO!, crystallizes not in theT8 phase, but in-
stead in the more compressedT-phase, where the out-of-
plane oxygens move to apical positions.5 In this phase there
is an orthorhombic distortion10 which allows the existence of
a weak Dzialoshinskii-Moriya interaction, which gives rise
to weak ferromagnetism.11 Besides the direct structural evi-
dence from x-ray4 and neutron diffraction,6 the absence of
weak ferromagnetism in theR2CuO4 system

4 with R5Nd,
Pr, Sm, etc. is clear evidence for the absence of any distor-
tion away from tetragonal symmetry. Second, rare-earth cu-
prates exhibit novel magnetic properties involving both the
Cu andR subsystems. In the case of Ce-doped Sm2CuO4

~SCO!, coexisting rare-earth magnetism and superconductiv-
ity has also been observed.7 Therefore the nature of magnetic
interactions which determine the three-dimensional~3D!
magnetic structure and the correlation between rare-earth
magnetism and superconductivity are both of fundamental
importance.

We start by giving a brief overview of some of the mag-
netic properties of theRCO systems. An extensive study of
neutron, specific heat, magnetization measurements, Raman,
and many more experiments have led to the following con-
clusions. First of all, many magnetic properties of the Cu
subsystem inRCO are the same as those in LCO.8 In par-
ticular, one has~1! very strong Cu-Cu exchange in the CuO
plane, and~2! very small Cu-Cu interplane exchange inter-
actions. As a consequence~3! the antiferromagnetic~AFM!
long-range ordering of Cu spins is characteristic of a 2D
Heisenberg antiferromagnet with weak anisotropies and in-
terplanar couplings which lead to a Ne´el temperature,TN , in
the range 250–320 K.9 The fact that these features remain
the same in theRCO family indicates that the presence of the
R subsystem does not significantly modify the properties of
the Cu subsystem. For example, the anisotropy of the spin-
1/2 Cu subsystem can obviously not be attributed to a single-
ion mechanism. Theoretical efforts, culminating in the work
of Refs. 12 and 13 have shown that this anisotropy can be
understood as arising from a small anisotropy in the ex-
change tensor due to a mechanism involving the combined
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effects of Coulomb exchange and spin-orbit coupling. We
assume that the CuO planes are not very different inRCO
than in the tetragonal cuprate Sr2CuCl2O2 ~SCCO! which
has noR ions, so that the anisotropy of the Cu-Cu exchange
is the same in theRCO systems as in SCCO.14,15

However, there are several important differences in the
magnetism and 3D spin structure of rare-earth cuprates and
other cuprates without a magnetic rare-earth ion, such as
LCO,8 and SCCO.14,15 Among these differences are the fol-
lowing. ~1! Although it is now understood that theR ions
exhibit magnetic moments that are mainly induced by the
exchange field of the Cu ions,6 the role of theR-R interac-
tions is less well quantified.~2! Unlike LCO and SCCO, in
RCO the Cu spins prefer a noncollinear arrangement16

~which we will describe in detail below!. Although it seems
clear that this noncollinear structure is due to the presence of
the R ions, the detailed analysis of the energetics of these
noncollinear structures on the basis of a microscopic model
has not yet been given.~3! In particular, the sequence of spin
reorientation phase transitions in Nd2CuO4 ~NCO!6 ~and the
absence of such reorientations in PCO! has not been ex-
plained in terms of a microscopic model.~4! The spin-wave
spectrum observed in NCO~Refs. 17–19! has not yet been
obtained from a microscopic model which is consistent with
the lowest temperature spin structure and which also cor-
rectly accounts for the temperature dependence of the Cu
modes at zero wave vector.

There have been several theoretical efforts to understand
these properties. An attempt to explain some of these mag-
netic properties is that of Yablonsky.20 He developed a
theory for the magnetic structure of NCO based on the sym-
metry of the system. He concluded that the noncollinear spin
structure was stabilized by biquadratic interactions. Recently
some of the present authors have developed a theory21 in
which the various anisotropic magnetic interactions in the
cuprates can be given a microscopic explanation. From these
interactions it was possible to have a global understanding of
the 3D spin structure of various layered magnetic systems
but the magnetic structure of NCO remained unexplained.
The spin-wave spectrum of NCO has been the object of sev-
eral experimental17–19and one theoretical investigation.22 As
a result of these studies one has a reasonable qualitative un-
derstanding of the spectrum. However, as we will discuss,
there are some inconsistencies in the calculation that should
be removed in order to arrive at a coherent picture of the
spin-wave spectrum and its relation to the magnetic struc-
tures of NCO. In summary, a detailed consistent microscopic
explanation of the properties mentioned in the preceding
paragraph does not yet exist. It is the purpose of the present
paper to remedy this situation.

Now we summarize the general features of the micro-
scopic interactions we will invoke in order to explain the
magnetic properties and phases of NCO, PCO, and SCO. In
Sec. III we present detailed calculations of the crystal-field
states which verify previous work23,24 which showed that
NCO and PCO have an easy plane perpendicular to the te-
tragonal axis. The same approach provides a microscopic
explanation for the observation7 that for SCO the tetragonal
axis is an easy axis. This is the first important result of the
present paper. We also obtain a systematic treatment of the
fourfold in-plane anisotropy due to the crystal field which

favors alignment in the plane along25 @100# for NCO and
PCO and along@110# for SCO.

As mentioned above, we assume that the Cu-Cu interac-
tions are similar to those in LCO or other cuprates. Next, one
may consider the Nd-Cu interactions. It has been suggested22

that the strongest interaction is a ferromagnetic interaction
between the Cu ions and the two Nd ions which are its near-
est neighbors along the tetragonal axis. In Sec. IV we discuss
the experimental evidence which implies26 that the dominant
Cu-Nd interactions are instead those between nearest neigh-
boring Nd and Cu planes. As we shall discuss, these interac-
tions cannot be the usual isotropic exchange interactions, be-
cause in that case the exchange field on a Nd ion would
vanish when summed over the neighboring plaquette of Cu
ions. Accordingly, it is necessary to consider anisotropic in-
teractions, such as dipolar interactions.20 However, the dipo-
lar interaction has the wrong algebraic sign to explain the
low-temperature phase of NCO. In any event, the magnitude
of the dipolar interaction is too small to be relevant in this
context. For NCO it is therefore necessary to introduce a
pseudodipolar interaction which results from the anisotropic
component of the Nd-Cu exchange interaction.21 The domi-
nance of this interaction implies that a Cu plane together
with the nearest-neighboring Nd planes are tightly coupled.
We then explain the sequence of spin reorientations in NCO
and the lack of such transitions in PCO in terms of smaller
couplings between adjacent tightly bound units. Within these
smaller couplings, we infer the existence of competing Nd-
Nd, Nd-Cu, and Cu-Cu interactions. The rapid temperature
dependence of the Nd moment has a crucial effect on this
competition and, with a proper choice of parameters, can
lead to spin reorientation transitions at the observed6 tem-
peratures. In addition, this result explains the absence of such
transitions in PCO at atmospheric pressure. This explanation
and the inferred dominance of the nearest-neighbor Cu-Nd
interactions is the second important result of the present pa-
per.

The final phenomenon which we address in Sec. V of this
paper is the spin-wave spectrum of NCO. There are two new
ingredients in NCO which are not present in, say, LCO. The
first of these is the existence of low-energy excitations on the
rare-earth sublattices. These excitations will give rise to
nearly flat optical magnon modes, reminiscent of the analo-
gous rare-earth excitations in the rare-earth iron garnets.27

The second new feature of NCO is the noncollinearity of
both the Cu and Nd moments.16 Another interesting feature
of this system is the existence of a Goldstone mode which
reflects a symmetry of the dipolar interactions with respect to
a suitable rotation of the moments in the easy plane. When
the fourfold anisotropy which must occur in a tetragonal en-
vironment is taken into account, this mode will develop a
small gap. Our model for the calculation of the spin-wave
spectrum is somewhat similar to Thalmeier’s22 except that,
as mentioned, we assume a different Cu-Nd interaction to be
dominant than does Thalmeier. Also, because we wish to
reproduce the interesting observed17 temperature dependence
of the optical spin-wave modes which involve the Cu spins,
we introduce a simplified 2D model which includes both Nd
and Cu spins, rather than assume a static Cu exchange field
as Thalmeier does. Our treatment indicates the need for ad-
ditional experiments to probe the very low-energy regions of
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the spin-wave spectrum to locate the Goldstone mode re-
ferred to above.

II. MAGNETIC STRUCTURE OF R2CUO4

„R5ND, PR, AND SM…

We summarize here various experimental results on the
structure and properties of theRCO compounds which are
relevant to our work. We first discuss the features common
to all these materials. As the temperature is lowered, the 2D
AFM correlations between Cu ions, which are well described
by the 2D AFM Heisenberg model,28 grow and, in the pres-
ence of even weak interplanar coupling, lead9 to a phase
transition at a temperature of orderTN'300 K, below which
there is long-range 3D AFM ordering.~The fact that the
magnetic order in someRCO systems is noncollinear, rather
than collinear as in LCO, is not expected to have a signifi-
cant effect on TN .) In contrast to materials like
K 2MnF4,

29 the magnetic anisotropy in the cuprates is such
that the moments lie in the plane perpendicular to the tetrag-
onal axis. In contrast to many materials where such anisot-
ropy is explained in terms of single-ion anisotropy, here,
because the Cu spin is 1/2, this anisotropy has been ex-
plained in terms of a Hubbard model in which the combined
effect of Coulomb exchange and spin-orbit interactions lead
to a small anisotropy in the exchange interactions between
neighboring Cu ions.30,12,13In NCO we assume that as far as
the Cu ions are concerned the picture for LCO remains in-
tact. The fact that the interplanar couplings are stronger in
NCO than in LCO will have only a small effect on the actual
value ofTN . In tetragonal SCCO, a small in-plane anisot-
ropy in which the@100# direction for the Cu moments is
preferred over the@110# direction, has been predicted theo-
retically on the basis of zero-point spin-wave fluctuations,21

and whose existence has been inferred from experiment in a
related material.31 As we shall see, such an in-plane anisot-
ropy arises naturally in NCO from the much larger single-ion
anisotropy of the Nd ion in the crystal electric field of its
neighboring ions, as suggested by Yablonsky.20 ~For SCO
the single-ion mechanism may not be dominant, as we dis-
cuss in Sec. III.! In the ordered phase the Cu magnetization,
i.e., the thermally averaged value of the Cu spin,^S&T , of all
the cuprates is the same and can be represented as14,6,32–34

^S&T5B~12T/TN!b. ~1!

For many cupratesb'0.25.32,35,36To reproducê S&T over
the entire temperature range for NCO we setb50.3 ~Ref.
33! and takeB50.4.

Next we discuss the noncollinear order found in the
RCO’s. In Fig. 1 we show two forms of noncollinear order
and their collinearly ordered counterparts for NCO. In zero
magnetic field the diffraction spectrum of a noncollinear
structure is identical to that from a sample with equal popu-
lations of domains of the two corresponding collinear
structures.37 This fact caused some confusion which was re-
solved when the application of a symmetry-breaking mag-
netic field16,33 showed that the noncollinear structures were
the correct ones for NCO. Apart from field-dependent
neutron-diffraction experiments, the strongest evidence for
the noncollinear spin structure comes from the single-crystal
magnetization experiment of Chernyet al.38 They interpreted
their data as showing a first-order phase transition for a field
H applied along a@100# direction and a second-order phase
transition forH applied along a@110# direction, indicating
that the easy axis of the magnetization for Cu moments is
@100# in the NCO system. We now summarize the experi-

FIG. 1. Possible relative orientations of spins
in the chemical unit cell of Nd2CuO4. Here the
open circles are Cu ions and the filled onesR
ions. Experiments in a magnetic field~Ref. 16!
show that the actual structures are the noncol-
linear ones. We also indicate several of the inter-
actions in our models for NCO.
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ments which bear on the magnetic structure and single-ion
properties of theseRCO systems.

A. NCO

As the temperature is reduced, atTN'255 K the Cu mo-
ments order in the noncollinear structure of Fig. 1~a! ~phase
I!, at T.575 K the Cu spins reorder with the noncollinear
structure of Fig. 1~b! ~phase II!, and atT,530 K the Cu
spins undergo another reorientation back to phase III which
has the same noncollinear order as phase I, the high-
temperature phase.32,16,39Below 2 K, there is evidence for
two more transitions.40 The transition atT'1.5 K is attrib-
uted to ordering of Nd spins due to the Nd-Nd exchange
interactions and the one at 0.5 K has been attributed to
‘‘hyperfine-induced nuclear polarization’’ by Chattopadhyay
and Siemensmeyer.41 Nd moments have also been observed
belowTN , but above 1.5 K, which are supposed to be due to
the exchange interaction with the Cu moments. At 0.4 K the
Nd moment has been measured to be 1.3mB .

6

In phases I and III the Cu and Nd moments along thez
axis are parallel, while in phase II they are antiparallel.42,43

This implies, as shown in Fig. 2, that the relative orientations
of the Cu spins within one plane and the Nd spins in the
nearest-neighboring planes above and below this Cu plane
are fixed and do not change in going from one phase to
another.

A systematic investigation of the crystal-field levels of the
Nd ion using inelastic neutron scattering has been

performed24 and the results have been interpreted in terms of
a crystalline electric-field model. In the presence of the ex-
change field from the Cu and Nd ions, the lowest doublet of
the Nd ions has a splitting in energy,D'0.32 meV in the
T50 limit, as determined by specific-heat measurements.4

Raman experiments44 give D50.35 meV atT520 K and
inelastic neutron-scattering measurements45 give D50.35
meV.

B. PCO

Long-range order of the Cu spins develops below
TN'285 K, with an induced Pr ordering observed at lower
temperatures. The Cu spin structure is a simple antiferromag-
net in thea-b plane and~according to the neutron-scattering
experiment with applied fieldH along the@100# direction! is
noncollinear with the moments alternating along the@100#
and@010# directions as one moves along thec axis as shown
in Fig. 3~a!.33 The ordered moments for the Cu and Pr spins
at about 10 K are 0.4 and 0.08mB , respectively.

6 As the
temperature is lowered no further transitions have been ob-
served in this system. However, under pressure of 0.25 GPa,
PCO behaves like NCO in having two spin reorientation
transitions.46 At atmospheric pressure a nearest-neighbor ex-
change constantJ5(130630) meV and a spin-wave gap of

FIG. 2. The magnetic unit cell for the magnetically ordered
phases I, II, and III of NCO. Note that the magnetic unit cell is
twice as large as the chemical unit cell shown in Fig. 1. Also note
that the@100# directions of the chemical unit cell are the diagonals
of the square plaquettes shown here. The open circles are Cu ions
and the filled onesR ions. Note that in all phases each set of three
planes~one Cu plane together with its two neighboring Nd planes!
forms a rigid unit~here labeled A and B! within which the relative
spin orientations remain fixed. In passing from one phase to another
the relative orientations of one rigid unit with respect to its neigh-
boring rigid unit is reversed. At the far right we indicate the inter-
action energiesX, Y, andZ, associated with interactions between
spins in adjacent sets of planes. In each case, the interactions are
those between nearest neighbors of the type in question.

FIG. 3. As in Fig. 1.~a! The magnetic structure of PCO.~b! The
noncollinear structure attributed~Refs. 34,47! to SCO forT,6 K.
We also show in~c! the corresponding collinear structures, since
the existing data does not completely exclude them.

56 263SINGLE-ION ANISOTROPY, CRYSTAL-FIELD . . .



;5 meV was observed, which correspond to the reduced
anisotropy constanta5(J2Jxy)/J;231024. A systematic
investigation of the crystal-field levels of the Pr ion using
inelastic neutron scattering has been performed23,24 and the
results have been interpreted in terms of a crystalline
electric-field model.

C. SCO

SCO differs significantly from NCO and PCO in several
of its magnetic properties. As the temperature is reduced
throughTN'280 K, the Cu moments order in a structure
with nonzero@ 1

2
1
20] neutron Bragg intensity, implying exis-

tence of either the noncollinear structure of Fig. 1~b! or its
collinear counterparts as shown in Fig. 1~d!.34,47 Neutron-
scattering experiments34,47 with an applied field along a
@110# direction indicate no hysteresis above 20 K, which is
consistent with the noncollinear spin structure shown in Fig.
1~b! and exclude the possibility of collinear ordering. How-
ever, below 20 K, unlike for NCO and PCO, strong hyster-
esis effects were observed. Such effects are not expected for
noncollinear spin ordering~but are for collinear ordering!.
The definitive determination of the spin structure in SCO has
to wait for a magnetization or neutron-scattering experiment
with an applied field along a@100# direction. Such experi-
ments were performed for NCO and unambiguously demon-
strated the noncollinear spin structure of NCO.38,16

The second major difference between SCO and otherR
cuprates is the magnetic ordering of theR ions. Above about
10 K, unlike NCO or PCO, no evidence was found for any
magnetic moment associated with Sm ions. In fact, our cal-
culations predict this moment to be much smaller than in
NCO or PCO. So, although in principle this induced Sm
momentmustexist, it is apparently too small to be observed
up to now. However, below 6 K Sm ions exhibit long-range
ordering with a spin structure totally different than that of
NCO and PCO, as shown in Fig. 3~b!. The Sm magnetic
structure consists of ferromagnetic sheets within thea-b
planes, with the spins in alternate sheets along thec axis
aligned antiparallel to one another.7 In this phase it is not
established whether the structure is the noncollinear one
shown in Fig. 3~b! or the collinear one shown in Fig. 3~c!.
The value of Sm moment at about 2 K was measured to be
0.37mB . As the temperature is lowered, another transition of
a continuous nature below 1 K was observed. As mentioned,
a very similar transition was also observed in NCO and was
attributed to nuclear polarization of theR ions.41

III. RARE EARTHS IN RCO

We now calculate the magnetic response ofR13-ions sub-
ject to tetragonal crystalline fields and a molecular field gen-
erated by the copper spins. Except at temperatures below
about 10 K, one may neglect theR-R interactions and their
contribution to the molecular field at aR site. Here we cal-
culate the thermodynamic properties of theR subsystem at
temperatures above, say, 10 K. This calculation will explain
the easy axis of theR magnetization inRCO. We will treat
the Cu-R interaction within the mean-field approximation.
Therefore the Hamiltonian for the rare-earth ion in the pres-
ence of an exchange fieldh is

H5HCEF2J•h[HCEF1Vex, ~2!

whereHCEF is the crystal electric-field~CEF! potential and
Vex is the perturbation due to the exchange field. Our aim
here is not to obtain a complete fit of all spectroscopically
determined crystal-field energy levels, but rather to explain
the anisotropy of theR ions. Accordingly we restrict our
treatment to states in the lowestJ multiplet. Within this mul-
tiplet vectors are proportional toJ according to the Wigner-
Eckart theorem.48 Accordingly, we arbitrarily define the ex-
change field so that it couples toJ and has the dimensions of
energy.

A. Crystalline electric-field Hamiltonian HCEF

The crystal electric-field HamiltonianHCEF, constructed
to be the most general one consistent with theR-site sym-
metry,D4, is

HCEF5 (
k52,4,6

(
m52k

k

Ak
umuS 4p

2k11D
1/2

(
i51

3

^r i
kYk

m~V i !&,

~3!

where the sum overi is over the three electrons in the un-
filled 4f shell and the sum overk is restricted to 2, 4, and
6 because only these values ofk have nonzero matrix ele-
ments within the manifold ofl53 states of the 4f shell. In
the sum overm only terms for whichumu/4 is an integer or
zero are nonzero, as a result of the fourfold axis of rotation
about thez axis at theR site. The factorsAk

m are approxi-
mately the same for different rare earths in a given environ-
ment. It has been shown by Stevens49 that when we restrict
attention to a manifold of states corresponding to a single
value ofJ, then this potential can be rewritten in terms of the
J operators. In this case,

HCEF5B2
0O2

01B4
0O4

01B4
4O4

41B6
0O6

01B6
4O6

4 , ~4!

where the Stevens operatorsOk
m are

O2
053Jz

22J~J11!,

O4
0535Jz

4230J~J11!Jz
2125Jz

226J~J11!13J2~J11!2,

O4
45

1

2
~J1

4 1J2
4 !,

O6
05231Jz

62315J~J11!Jz
41735Jz

41105J2~J11!2Jz
2

2525J~J11!Jz
21294Jz

2 ,

25J3~J11!3140J2~J11!2260J~J11!,

O6
45

1

4
$@11Jz

22J~J11!238~J1
4 1J2

4 !

1~J1
4 1J2

4 !~11Jz
22J~J11!238#%, ~5!

andBk
m are the CEF parameters

Bk
m5Ak

m^r k&ak /bk
m , ~6!

where^r k& is the average ofr k taken over a 4f radial wave
function,50 the factorak is the Stevens coefficient,49 and
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bk
m is given by Kassman.51 In Table I we list the values of

the B coefficients we obtained from various experimental
works24,52and which we have used for our simplified~in that
we treat only the groundJ multiplet! calculations. We have
verified that the corresponding values ofAk

m obtained using
Eq. ~6! do not vary greatly from oneR ion in RCO to the
next. One sees this from Table II where we list the values of
Ak
m^r k&. ~The values of̂ r k& are the same within a factor of 2

from oneR ion to the next.50!

B. Crystal-field levels

The ground-stateJ multiplet of any rare-earth ion,R31, is
specified by Hund’s rules.53 The splitting of the 2J11-fold
degenerate ground state in the tetragonal crystalline environ-
ment of the various compounds can be qualitatively studied
using group theory.54 For quantitative results the potential of
Eq. ~4! is diagonalized to get the eigenstates. For our study
of the rare-earth anisotropy, we confine our attention to the
lowest J multiplet. Accordingly,uM & will denote the wave
function uJ,M &, where the value ofJ is implicit. Since one
expects that the tetragonal symmetry crystalline electric field
is not extremely different from what one would have under
cubic symmetry, we will show how the energy-level scheme
compares to the cubic symmetry results of Leaet al.
~LLW !.55 In the present case, the cubic CEF Hamiltonian,
Hcub, assumes the form

Hcub5
Wx

F~4!
~O4

025O4
4!1

W~12uxu!
F~6!

~O6
0121O6

4!, ~7!

where F(4)560 andF(6) assumes the values 2520 and
1260 for Nd and Pr, respectively, and is irrelevant for Sm.
The noncubic tetragonal components,Htet, are fixed by the
condition TrHcubHtet50 to beO4

017O4
4 andO6

023O6
4. Any

tetragonal CEF is thus a unique linear combination of a cubic
and a noncubic tetragonal CEF.

1. Nd13 4I 9/2 (S53/2, L56, ground multiplet J59/2, gJ58/11)

Group theory tells us that in view of the Kramers degen-
eracy the tenfold degenerate ground multiplet will split into
five doublets. Diagonalizing the CEF Hamiltonian, we find
the five doublets, whose wave functions~in order of increas-
ing energy! are

uA1&50.482u9/2&10.638u1/2&10.601u27/2&, ~8a!

uA2&50.971u5/2&20.237u23/2&, ~8b!

uA3&50.543u9/2&10.321u1/2&20.776u27/2&, ~8c!

uA4&50.237u5/2&10.971u23/2&, ~8d!

uA5&50.688u9/2&20.700u1/2&10.192u27/2&. ~8e!

We have given only one of the partners in each doublet. The
corresponding energies are shown in Fig. 4, where for com-
parison we also show the levels scheme when only the cubic
component of the CEF is retained, where we have
x520.554 andW521.192 meV.

Since we will be carrying out perturbative and numerical
treatments of the effect of the exchange field on these states,
we now discuss them briefly. Using the fact that the time-
reversal operator,Q, acting on an angular momentum eigen-
state results in

QuJ,M &5~21!J2MuJ,2M &, ~9!

we find the partner ofuAi& in the i th doublet, denoteduBi&, to
be

FIG. 4. Schematic diagrams of the CEF energy levels and states
of PCO~left panel!, NCO ~middle panel!, and SCO~right panel! in
the cubic and tetragonal crystalline-electric field~CEF!. Our ap-
proximate calculations agree qualitatively with more accurate cal-
culations including all multiplets~Ref. 24!.

TABLE I. The crystal-field parametersBk
m of Eq. ~4! ~in meV!

for R31 in RCO.

Bk
m Nd Pr Sm

B2
0 128 170 2841.7

B4
0 10 23 259.1

B4
4 262 2170 2539.0

B6
0 20.064 0.05

B6
4 24.877 7.4

TABLE II. The crystal-field parametersAk
m^r k& in meV for

R31 in RCO.

Nd Pr Sm

A2
0^r 2& 240 216 240.8

A4
0^r 4& 2280 2251 2189

A4
4^r 4& 204 221 206

A6
0^r 6& 27 13

A6
4^r 6& 183 173
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uBi&5~21!2JQ2uBi&5QuAi&. ~10!

Naturally, ^Bi uAi&50. Note that even though the doublet is
degenerate, we may specify the doublet wave functions
uniquely to within a phase factor by requiring that rotation
about thez axis byp/2 gives back the original wave function
with at most an added phase. Note thatuA& and uB& satisfy
this requirement but nontrivial linear combinations of them
do not.

2. Pr13 3H 4 (S51, L55, ground multiplet J54, gJ54/5)

Group theory tells us that the ninefold degenerate ground
multiplet will split into two doublets (uDi& andudi&) and five
singlets. We find the eigenstates~in order of increasing en-
ergy! to be

ug&[ue0&50.707u2&10.707u22&, ~11a!

ud1&50.876u3&10.483u21&, ~11b!

ue1&520.427u4&10.797u0&20.427u24&, ~11c!

ue2&50.707u4&20.707u24&, ~11d!

uD1&520.483u3&10.876u21&, ~11e!

ue3&50.564u4&10.604u0&10.564u24&, ~11f!

ue4&520.707u2&10.707u22&. ~11g!

The doublet partners areud2&5Qud1& and uD2&5QuD1&.
Here when the noncubic contributions to the CEF are ne-
glected one has the LLW parametersx50.807 and
W52.051 meV. The eigenenergies are shown in Fig. 4 and
they agree with the observed energies to within an error of
20%. This error can be reduced if we include admixtures of
the higherJ multiplets.24

3. Sm13 6H 5/2 (S55/2, L55, ground multiplet J55/2, gJ56/7)

Group theory tells us that in view of the Kramers degen-
eracy the sixfold degenerate groundJ multiplet will split into
three doublets. We find the eigenstates~in order of increas-
ing energy! to be

uA1&50.906u5/2&20.423u23/2&, ~12a!

uA2&5u1/2&, ~12b!

uA3&50.423u5/2&10.906u23/2&, ~12c!

with the partners in the doublet given byuBi&5QuAi&. The
corresponding energies are shown in Fig. 4. When the non-
cubic components of the CEF are neglected, we have the
LLW parametersW524.763 meV andx51.0. It is also
important to note that the lowest excited multipletJ57/2 lies
at about 150 meV above the ground state,52 compared to 270
meV for NCO~Ref. 56! and 300 meV for PCO.57 Hence, of
all our results, those for SCO are the most likely to suffer
from not includingJ-mixing effects.

C. Effect of an exchange field on the rare-earth ion

1. Energy levels in the exchange field

We start by discussing the calculation of the energy levels
when the exchange interaction,Vex of Eq. ~2!, is treated per-
turbatively. For the present it is not important which Cu ion
is responsible for this interaction. As we shall see, we will
need to obtain the energy levels correctly up to orderh4.

First we discuss the calculations for NCO.~The calcula-
tions for SCO, which is also a Kramer’s ion, were done
analogously.! We consider the energies of the 10 levels of
the J59/2 state in aD4 CEF and a weak exchange field,
h, as expansions in powers ofh. Thus we write

Ei~h!5Ei~0!1Ei11Ei21Ei31Ei41 . . .[Ei~0!1Ei8,
~13!

where Ein is the nth order ~in h) correction to the
Ei(h50) energy due to the exchange field. To develop the
perturbation series, we note that the states are doubly degen-
erate. To implement perturbation theory we must first diag-
onalize the perturbation matrixVex within the doublet states.
Then these eigenstates are used to perform the rest of the
perturbation calculation. We now evaluate the matrix ele-
ments of the potential between the various states. We start
with the relation

QJQ52J, ~14!

whereQ is the time-reversal operator. This along with Eq.
~10! gives us

^AkuJ1uBl&5^AkuQQJ1QQuBl&5^Al uJ2uBk&, ~15!

whereJ6 are the usual raising and lowering operators. From
the form of the wave functions and the relation above we
have

S ^Aku

^Bku
D J1~ uAl&uBl&)5xkl~sx1 i eklsy!, ~16a!

S ^Aku

^Bku
D J2~ uAl&uBl&)5xkl~sx2 i eklsy!, ~16b!

S ^Aku

^Bku
D Jz~ uAl&uBl&)5zklsz , ~16c!

where uAk&,uBk& are the two members of thekth doublet,
defined in Eqs.~8! and ~10!, s are the Pauli matrices, and
e i j is given by

e i j5~21! i1 j . ~17!

In Tables III and IV we list the values of the symmetric
matricesxkl andzkl for NCO which we calculated from the
CEF eigenstates of Eqs.~8!. Tables V and VI contain the
analogous results for SCO based on Eqs.~12!.

To get the zeroth-order wave function and the first-order
corrections to the energies we diagonalize

S ^Aku

^Bku
DVex~ uAk&uBk&)5S zkkhz xkkh'e

2 if

xkkh'e
if 2zkkhz

D , ~18!
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wherezkk andxkk are defined in Eqs.~16!, h' is the compo-
nent of magnetic field perpendicular to thez axis, andf is
the angle between this component and thex axis. We denote
the zeroth-order eigenstates ofVex by uk1,0& and uk2,0&.
UnderQ we have

uk1,0&52Q2uk1,0&5Quk2,0&. ~19!

Using these, withQVexQ52Vex, we get

Ek11
5^k1,0uVexuk1,0&52Ek21

, ~20!

whereEk61
is the first order correction to the energy of the

eigenstateuk6,0&. Similarly,

Ek1n
5Ek2n

, for evenn ~21a!

Ek1n
52Ek2n

, for oddn. ~21b!

We can calculate the various terms that appear in the expan-
sion to fourth order in the perturbation theory to obtain

Ei11
5l i5Axii2h'

21zii
2hz

2, ~22a!

Ei12
5a2ih'

21b2ihz
2 , ~22b!

Ei13
5@a3i~hx

41hy
4!1b3ihx

2hy
21c3ihz

2h'
21d3ihz

4#/l i ,
~22c!

Ei14
5a4i~hx

41hy
4!1b4ihx

2hy
21c4ihz

2h'
21d4ihz

4 ,
~22d!

whereh'
25hx

21hy
2 . Analytic expressions for the coefficients

are given in Appendix A and their numerical values are
listed in Table VII for NCO and in Table VIII for SCO.
Keeping in mind that the third-order terms are more impor-
tant than the fourth-order terms~these are relevant only in
the high-temperature expansion of the free energy!, we can
see from the fact that 2a3,12b3,1 is positive that the energy
of the ground state is minimized when the exchange field is
along the@100# or @010# directions. Lethz50. Then it is

easy to see that the energy of the ground state~or any state
for that matter! has a linear dependence on the field, and
hence it has a component ofJ along the exchange field given
by x11. The higher-order terms give the induced contribution
to J due to the exchange field. The analogous results for the
ground state of Pr~which is not a Kramer’s ion! are dis-
cussed in Appendix C.

2. Susceptibilities and in-plane anisotropy

Having the perturbation expansion for each energy level
we can easily obtain expansions in powers ofh for the par-
tition function, Z[( iexp(2bEi) and then the free energy,
F[2kTlnZ. For tetragonal symmetry this expansion takes
the form ~up to orderh4)

F~h!5F~0!2
1

2gJ
2x ihz

22
1

2gJ
2x'h'

21a4~hx
41hy

4!1b4hz
4

1g4hx
2hy

21d4h'
2hz

2 , ~23!

the coefficients are given in Appendix B in terms of the
coefficients appearing in Eq.~22!. The Lande´ g value ap-
pears here because the external field couples togJJ rather
than just toJ @see Eq.~2!#. Incorporating the isotropic terms
in F0(h

2), we may write

F~h!5F0~h
2!1

1

2gJ
2~x'2x i!S hz22 1

3
h2D

2K4~hx
41hy

426hx
2hy

2!1 . . . , ~24!

which defines the fourth-order anisotropy constant,K4, given
by K45(g422a4)/8. We have used the standard expres-
sions~given in Appendix B for NCO and SCO and in Ap-
pendix C for PCO! to evaluate the susceptibilities for the
systems under consideration, and the results are shown in
Fig. 5.

Some comments on these results are in order. Note that
our results for Nd and Pr are very similar to those of
Boothroydet al.24 who took account of allJ multiplets. Also
it is interesting that at high temperature the anisotropy be-
tweenx' andx i ~see Fig. 5! for Pr in PCO is much larger
than for Nd in NCO. This is an unexpected result: one might
have thought that Nd must have larger anisotropy, since it
has a moment whereas Pr has a nonmagnetic ground state.

TABLE III. The xkl matrix for Nd in NCO.

1 2 3 4 5

1 1.886 0.796 0.444 1.803 20.358
2 0.796 21.056 21.694 2.033 0.780
3 0.444 21.694 21.008 0.395 21.205
4 1.803 2.033 0.395 1.056 21.575
5 20.358 0.780 21.205 21.575 1.622

TABLE IV. The zkl matrix for Nd in NCO.

1 2 3 4 5

1 20.015 0.000 2.911 0.000 0.864
2 0.000 2.275 0.000 0.922 0.000
3 2.911 0.000 20.729 0.000 2.090
4 0.000 0.922 0.000 21.275 0.000
4 0.864 0.000 2.090 0.000 2.244

TABLE V. The xkl matrix for Sm in SCO.

1 2 3

1 20.857 20.598 0.718
2 20.598 1.500 1.281
3 0.718 1.281 0.857

TABLE VI. The zkl matrix for Sm in SCO.

1 2 3

1 1.784 0.000 1.533
2 0.000 0.500 0.000
3 1.533 0.000 20.784
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However as we shall see below, the anisotropy within the
plane for Nd is much larger than for Pr at temperatures be-
low 150 K. The right panel of Fig. 5 shows the susceptibili-
ties of Sm in SCO. Note that they are completely different
from those of Pr and Nd. First of all, for Sm in SCO,x i is
larger thanx' . This indicates that Sm moments prefer to lie
along the@001# direction. The second major difference con-
cerns the magnitudes ofx i and x' , which are both much
smaller than in PCO or NCO. Thus it is not surprising that
experiments7 show that in SCO the Sm and Cu sublattices
are nearly decoupled.

To analyze the anisotropy within the plane, it is necessary
to studyK4. If x i,x' , then the easy axis is a@100# direc-
tion if K4 is positive and is a@110# direction if K4 is nega-
tive. We should also note that the anisotropy atT50 is eas-
ily deduced from the expansion for the ground-state energy
given in Eq.~22!. For SCO, we determine the easy direction
of the Sm moments when they are constrained~as we might
assume by their interactions with the Cu ions! to lie in the
CuO plane. In Fig. 6 we show our calculations ofK4 for
NCO and SCO done in two ways. At temperatures large
compared to the doublet splitting, we evaluated
K45(g422a4)/8 using the analytic expressions for these
coefficients in Appendix B. We also carried out an approxi-

mate evaluation ofK4 , by numerically calculating the free
energy,F100(T) for h along @100# andF110(T) for h along
@110# and associatingF110(T)2F100(T) with 2K4h

4.
The fact that for NCOK4 is positive at all temperatures

indicates that the Nd moments prefer the noncollinear struc-

FIG. 5. Temperature dependence of the magnetic susceptibility
parallel (x i) and perpendicular (x') to the tetragonalc axis for
threeRCO’s. Note that the anisotropy~betweenx' and x i) for
PCO is actually larger than for NCO at high temperature, which is
an unexpected result. The right panel showsx i and x' for SCO.
Note that for SCO~unlike for NCO or PCO! x' is smaller than
x i . Also the magnitude of the susceptibility of Sm is much smaller
than that of Pr and Nd. Our calculations agree with those of Refs.
24 and 23 for PCO and of Ref. 24 for NCO.

FIG. 6. The in-plane anisotropyK4(T) for NCO and SCO~full
line! calculated numerically, as described in the text, compared to
the perturbation result~dotted line! K45(g422a4)/8. For PCO we
show only the numerical result. The zero-temperature result implied
by Eq. ~25! agrees perfectly with the numerical result. Note that
K4 is at least one order of magnitude larger for NCO than for SCO.

TABLE VII. The coefficients in the energy expansion for the
i th CEF doublet of Nd31 in NCO. These coefficients are in units
such that when the exchange field is in meV, they give the energy
contribution in meV. Listed here are the values of 100a2( i ), etc.

i51 i52 i53 i54 i55

102a2( i ) 214.1 238.5 15.1 30.4 7.1
102b2( i ) 228.8 24.5 21.4 4.5 7.4
103a3( i ) 22.1 28.7 251.0 259.7 21.9
102b3( i ) 216.6 22.5 17.0 29.0 0.2
102c3( i ) 21.8 214.9 6.5 8.9 21.0
103d3( i ) 0.0 219.0 23.2 210.6 23.4
102a4( i ) 0.0 1.05 23.81 2.77 0.00
102b4( i ) 21.27 2.87 1.88 23.51 0.02
103c4( i ) 24.0 13.1 25.4 23.8 0.0
103d4( i ) 2.10 21.45 22.14 1.45 0.04

TABLE VIII. The coefficients in the energy expansion for the
i th CEF doublet of Sm31 in SCO. These coefficients are in units
such that when the field is in meV, they give the energy contribu-
tion in meV. The doublets are labeled in order of decreasing energy.

i51 i52 i53

102a2( i ) 23.31 26.50 9.82
102b2( i ) 26.22 0.0000 6.22
103a3( i ) 21.32 23.33 0.06
102b3( i ) 0.83 27.75 24.36
103c3( i ) 27.63 23.89 5.22
103d3( i ) 27.55 0.00000 23.32
104a4( i ) 21.05 3.81 22.76
103b4( i ) 20.06 24.94 4.99
103c4( i ) 20.79 1.63 20.84
104d4( i ) 21.85 0.000000 1.85
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ture in which they are oriented along@100# directions.~This
conclusion assumes that the exchange field acting on the Nd
spins is a pseudodipolar one, so that as far as such interac-
tions are concerned, the collinear and noncollinear structures
would have the same energy, see discussion below.! For
SCO one sees the reverse result. However, one still has to
consider the contribution from the anisotropic Cu-Cu ex-
change interactions to the anisotropy within the plane. We
study this effect in Appendix E for NCO and show that it is
dominated by the intrinsic Nd anisotropy due to the CEF
acting on the Nd ions. For SCO, whereK4 is at least an order
of magnitude smaller, and where the value ofh is not known,
it is possible that the anisotropy due to the anisotropic Cu-Cu
exchange could be dominant. Since this anisotropy favors
orientation along@100#, we cannot be certain which direction
in the CuO plane is favored. Clearly this topic requires fur-
ther theoretical and experimental investigation.

For PCO we only carried out the perturbative evaluation
of K4 at zero temperature, since for a non-Kramer’s ion, the
temperature dependences will be less pronounced. The cal-
culation of the ground-state energy is simplified by the fact
that only a few of the matrix elements ofVex are nonzero.
The details of the calculation are given in Appendix C and
the final result is

Eg520.389h'
220.040hz

210.00696~hx
41hy

4!10.0165hx
2hy

2

11.67431025hz
420.00447h'

2hz
2 , ~25!

whereEg andh are in meV. In the notation of Eq.~24! this
result implies that K4(T50)5g4/82a4/453.231024

meV. From Eq.~25! we see that the terms of orderh2 lead to
an easy plane and the fact thatK4 is positive indicates that
@100# is an easy direction of magnetization. The numerical
evaluation ofK4 ~shown in Fig. 6! confirms that the essential
results are not very different at nonzero temperature.

We would point out an interesting behavior of the two Pr
doublets in the presence of the exchange field. Normally a
doublet will show an energy splitting linear inh. Here, this
happens if the field is oriented along thez axis. However,
under normal conditions the exchange field is in the plane, in
which case the splitting is proportional toh2. In general, the
splittingsDd andDD between the two states of the doublets
di andDi , respectively, is given by

Da52~pahz
21qah'

4 !1/2, ~26!

with

pa5^a1uJzua1&2, qa5U(
e

^a1QuJxue&^euJxua1&
Ea2Ee

U2,
~27!

wherea5d or a5D labels the doublet. Numerically we find
pd54.28, pD50.0046, and in~meV! 22, qd50.031, and
qD50.25.

3. The rare-earth magnetic moments

In this section we discuss the magnetic moments of Nd
and Pr within the framework of the crystal-field approxima-
tion given in Eq.~2!. In Fig. 7 we show the experimental
results of the rare-earth magnetization versus temperature for

NCO and PCO. We obtained these data from a least-squares
fit to a large number of the neutron magnetic Bragg
reflections.58 At aboutT52 K, the Nd and Pr moments are
1.3 and 0.09mB , respectively, in good agreement with other
studies.6,33 In order to understand these observed magnetic
moments of Nd and Pr we ought to consider the effect of the
exchange fields on theR subsystem due to both the Cu ions
and the otherR ions. However, for the purpose of this sec-
tion we will consider only the exchange field due to Cu ions.
This is a good approximation at allT for PCO and atT.3 K
for NCO. Accordingly we write the magnitude of the ex-
change fieldh in Eq. ~2!, acting on anR ion as

h5lR^S&T , ~28!

where^S&T , the thermally averaged value of the Cu spin is
given in Eq. ~1!. We fix the exchange constantslR for
R5Nd and Pr by fitting the experimental temperature depen-
dence of the magnetization shown in Fig. 7. The magnetiza-
tion is calculated from

FIG. 7. Fit of experimental magnetization of Nd in NCO~bot-
tom! and Pr in PCO~top! versus temperature~solid circles! com-
pared to theoretical fit~solid line! based on the parameters dis-
cussed in the text.
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MR~T!5~1/Z!Tr~me2H/kT!

5~1/Z!(
m

^CmumuCm&e2Em /kT, ~29!

whereEm and uCm& are the energies and associated eigen-
functions ofH in Eq. ~2!, Z5(e2Em /kT, andm is the mag-
netic moment operator divided bymB .

The fit to the experimental magnetization is excellent, as
shown in Fig. 7. The fitted values oflNd andlPr are 0.1772
and 0.3474 meV, respectively. These values correspond to
h50.071 and 0.139 meV for Nd and Pr at T50 K, respec-
tively. For Ndh50.071 meV gives rise to a splitting of 0.27
meV for the ground-state doublet and 1.27mB zero-
temperature magnetization, in good agreement with
experiments.4,6,44,45For NCO, as we shall see in the follow-
ing sections, the Nd-Nd interactions are also important, par-
ticularly at low temperatures, and one has to include them in
order to understand the spin waves, etc. Here it is difficult to
separate the contribution to Bragg intensities coming from
the nuclear polarization, so the data below, say,T53 K are
not as decisive as in some other experiments. For Pr,
h50.139 meV splits the doublets as we discussed perturba-
tively in Eq. ~27!. A numerical diagonalization gives values
which differ at the percent level from those predicted pertur-
batively. Forh50.139 meV we find the numerical values of
the splitting to be 6.8meV for the lower energy doublet and
19.2 meV for the upper energy doublet. These small split-
tings may not be observable via inelastic neutron scattering
within the current experimental uncertainty, but perhaps they
are accessible via other experimental techniques.

Finally, we point out that, as an alternative to Eq.~29!, an
excellent fit to the data can be obtained by treating only the
lowest doublet. In this approximation, the magnetic moment
per Nd ion~in units of Bohr magnetons! can be written as

MNd~T!5M0tanh~D/2kT!, ~30!

where D52l^S&Tx11. The best fit to the data using this
equation yieldslNd50.17 meV,M051.34, and the doublet
splitting D50.26 meV atT50 K, which are in reasonable
agreement with other experimental values.

IV. MAGNETIC REORIENTATION PHASE TRANSITIONS
IN NCO

A. Model of interactions

In this section we will construct a model which can ex-
plain the sequence of spin reorientation phase transitions ob-
served in NCO and shown in Fig. 2. The model we will
introduce is a minimal model, in that one can add to it some
other interactions without modifying its main physical char-
acteristics. Some aspects of this model were already pro-
posed in Ref. 26. The model that we treat is described by a
Hamiltonian,H,

H5HCEF1HCu1HCu-Nd1HNd-Nd1V, ~31!

where the first four terms describe the Hamiltonian of a
single three plane unit~see Fig. 2! andV the coupling be-
tween adjacent units. We now discuss the terms in this
Hamiltonian in turn.HCEF was discussed in Eq.~3!.

We write

HCu5 (
^ i j &PC

(
ab
J ab

i j SiaSjb , ~32!

wherea andb label spin components,i and j are Cu site
labels, and̂ i j &PC ~and later^ i j &PN) indicates a summa-
tion over pairs of nearest-neighboring Cu~Nd! sites. Now
consider the two pairs of Cu sites (1,4) and (1,2) in Fig. 8.
The tetragonal symmetry of the lattice implies that

J xx
145J yy

12[Ji , J yy
145J xx

12[J' , and J zz
145J zz

12[Jz ,
~33!

and all other elements of the tensorJ are zero. Since the
spins prefer to lie in thex-y plane, we know that
Ji1J'.2Jz . A spin-wave analysis~see Ref. 12 or Sec. V,
below! allows us to identify the exchange and anisotropy
fields as

HE[
1

2
~Ji1J'!1Jz ,

HA[Ji1J'22Jz . ~34!

We now setJi5J' . In Appendix E we show that including
the effect ofJiÞJ' has only a very small effect on the
results for NCO. The values of the exchange constants are
fixed by many experiments1,8 in the cuprates to be
HE5130 meV andHA50.1 meV.

We now discuss the remaining interactions between Cu
and Nd ions. An important observation concerning the mag-
netic structure of the three phases of NCO is that all three
phases can be considered as being constructed from three-
plane~Nd-Cu-Nd! units ~labeled A and B in Fig. 2!. At each
reorientation transition the orientation of unit A with respect
to that of unit B changes, but each unit remains intact. There-
fore, it seems clear that the interactions which hold each unit
together are dominant over the interactions between different

FIG. 8. Nd ions which are nearest neighboring to a plaquette of
Cu ions, labeled 1, 2, 3, 4. The Nd ions in planes just above~below!
the Cu plane are labeled ‘‘1 ’’ ~‘‘ 2 ’’ !.
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units. This reasoning indicates that the strongest interaction
between Cu and Nd ions is that between a plaquette of Cu
ions in one plane with the Nd ions directly above~or below!
the center of the plaquette, as shown in Fig. 8. However, it is
also clear that if this interaction were isotropic, the total ef-
fective field on a Nd ion due to a plaquette of Cu ions would
sum to zero. Thus we are led to consider an interaction
HCu-Nd which consists of anisotropic exchange interactions
between the Cu spin 1 and its neighboring Nd ion ‘‘1’’ in
Fig. 8. We write this interaction as

HCu-Nd5 (
iPC

(
jPN

(
ab

Kab
i j SiaJjb , ~35!

whereiPC ( iPN) indicates that the sum overi is over all
Cu ~Nd! sites, andJjb is the b component of the angular
momentum operator for the Nd ion on sitej . We will keep
only the symmetric part of this exchange tensor.~In tetrago-
nal symmetry the effect of the antisymmetric components
cancels out when summed over a plaquette of Cu ions.! The
existence of a mirror plane~passing through sites 1, 3, and
‘‘ 1’’ ! implies that the exchange tensor between sitesi51
and j51 and~after rotating by 90o) between sitesi52 and
j51 in Fig. 8 are of the form

K1,15S Kxx Kxy Kxz

Kxy Kxx Kxz

Kxz Kxz Kzz

D ,
K1,25S Kxx 2Kxy Kxz

2Kxy Kxx 2Kxz

Kxz 2Kxz Kzz

D . ~36!

We can generate the exchange tensors for other pairs of near-
est Nd-Cu neighbors using the symmetry of the lattice. We
now use mean-field theory to discuss the effect of this inter-
action when the spins are constrained to lie in thex-y plane
and are specified by giving the vectorS152S2[S. The Nd
angular momentum of site1 is taken to beJ and that of the
oppositely oriented Nd moment is2J. Then the mean-field
interaction free energy per Nd ion is

FMF54Kxy@SxJy1SyJx#54KxySJsin~uS1uJ!, ~37!

whereuS (uJ) is the angleS (J) makes with thex axis.
Several aspects of this result are noteworthy. First, be-

cause of the frustration inherent in an antiferromagnetic
plaquette, only the anisotropic interaction ofKxy contributes
to the total field at an Nd site. Secondly, the resulting inter-
action has the very unique property that the energy is invari-
ant with respect to rotating one sublattice, say, counterclock-
wise and the other clockwise. This unusual symmetry leads
to a Goldstone mode in the absence of a fourfold anisotropy.
Thirdly, we see that whenKxy ~which by our definition refers
to the coupling tensor for the pair Cu,1 and Nd,1! is posi-
tive, the orientations of the Nd planes relative to their
nearest-neighboring Cu planes are as shown in Fig. 8~with

uS1uJ52p/2). This ordering is maintained in all three
phases of NCO. The angular dependence of this interaction
is the same as that of the dipolar interaction,21 but the inter-
action required to stabilize the spin structure of NCO is op-
posite in sign to that for the dipolar interaction. Hence we
call this a pseudodipolar interaction. In any event, the mag-
nitude of the pseudodipolar interaction is much larger that
that for dipolar interactions between the magnetic moments
of the spins.

To summarize: because the orientations of the Nd spins
relative to the Cu spins in adjacent planes do not change as
one passes through the reorientation transitions, it is reason-
able to assume that the interactions discussed above are
dominant. Considering only these interactions, one sees that
the system naturally condenses into structures in which the
three plane units~labeled A and B in Fig. 2! remain intact at
all temperatures. For PCO, the sign ofKxy must be opposite
to that for NCO, because in PCO the relative orientations of
the Cu and Pr spins are opposite to what they are in NCO.
The actual global spin structure now depends on the smaller
couplings between adjacent three plane units.

We now consider the Nd-Nd interactions within a three-
plane unit contained inHNd-Nd. Since these interactions
couple collinear spins, we parametrize them in a slightly
simplified way, namely, we set

HNd-Nd5 (
^ i j &PN

@N'~JixJjx1JiyJjy!1NzJizJjz#

1 (
^ i j &8

@M'~JixJjx1JiyJjy!1MzJizJjz#

1 (
^ i j &9

@O'~JixJjx1JiyJjy!1OzJizJjz#, ~38!

where^&8 indicates a sum over nearest-neighboring pairs of
Nd spins whose separation vector is parallel to thez axis,
and ^&9 a sum over next-nearest-neighbor pairs of Nd spins
in the same plane. These couplings are indicated schemati-
cally in Fig. 1.

Finally we consider the interactionV between adjacent
three-plane units. Referring to Fig. 2 it is natural to imagine
that at high temperature~when the Nd moments are very
small!, the interactions~labeled ‘‘Z’’ ! between Cu ions in
different units are dominant, whereas at very low tempera-
ture ~when the Nd moments are comparable in size to the Cu
moments!, their interaction~labeled ‘‘X’’ ! dominates be-
cause their separation is much less than the Cu-Cu separa-
tion. To obtain two spin reorientation transitions we also
invoke an intermediate strength interaction~labeled ‘‘Y’’ !
between Cu ions in one unit and Nd ions in an adjacent unit.
In the case of theX and Z interactions, it is necessary to
invoke an anisotropic pseudodipolar interaction to avoid a
cancellation in the mean field. Since theY interaction in-
volves only pairs of spins, there is no cancellation and we
take this interaction to be isotropic. Accordingly, we write
the perturbationV which couples adjacent three-plane units
in the following form:59
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V5X (
iPN, jPN

Jx~ i !Jy~ j !D i j
NN 2xi j yi j

xi j
21yi j

2

1Y (
iPC, jPN

S~ i !•J~ j !D i j
CN

1Z (
iPC, jPC

Sx~ i !Sy~ j !D i j
CC 2xi j yi j

xi j
21yi j

2 , ~39!

wherer i j[(xi j ,yi j ,zi j ) is the vector connecting sitesi and
j , and theD factors are either 1 or 0 so as to limit the sums
to pairs of sites associated with the coupling constant indi-
cated in Fig. 2:D i j

CC andD i j
NN are nonzero only if sitesi and

j are nearest possible neighbors in nearest neighboring Cu or
Nd planes, respectively, andD i j

CN is nonzero only if sitesi
and j are nearest possible neighbors in next nearest neigh-
boring Cu and Nd planes. The geometrical factor
xi j yi j /(xi j

21yi j
2 ) has the transformation properties character-

istic of a pseudodipolar interaction between moments con-
strained to be perpendicular to the tetragonalc axis.

In Eq. ~37! we have already identified the mean-field en-
ergy due to the Nd-Cu interaction we believe to be dominant.
We now give the mean field free energy per Nd spin associ-
ated with those terms in Eq.~31! involving the Nd spin. In
writing this result we set̂ J( i )•n̂( i )&T5x11mN(T) for Nd
spins and̂ S( i )•n̂( i )&T5 1

2mC(T) for Cu spins wheren̂( i ) is
a unit vector along which thei th moment is aligned.@In the
absence of quantum zero-point effects,mC(T50)
5mN(T50)51.# We then find

FMF52
1

2
@4Kxy2sY#x11mN~T!mC~T!

2
1

2
~4N'2M'24O'14sX!x11

2 mN~T!2, ~40!

wheres51 for phases I and III ands521 for phase II.
Within this approximation the splitting of the lowest Nd dou-
blet is

D~T!522]FMF /]mN~T!5@4Kxy2sY#x11mC~T!

1~8N'22M'28O'18sX!x11
2 mN~T!

[DC1DN , ~41!

whereDC5(4Kxy2sY)x11 is the part of the splitting of the
lowest Nd doublet due to the exchange field of the Cu ions
and DN is the remaining part of the splitting due to the
Nd-Nd interactions. Comparing to Eq.~2!, we see that

h52D/x11. ~42!

The term in Eq.~41! proportional toKxy is the dominant one.
The next largest terms are those inM , N, andO, which are
intraunit interactions. The effect of the weaker interactions
between three-plane units on the mean-field energy will be
neglected.

B. Mechanism for reorientation transitions

We now consider the perturbative contribution,dFuc , to
the mean-field free energy per magnetic unit cell from the
couplingV between adjacent three-plane units. In analogy to
Eq. ~40! we have that

dFuc524sZmC~T!2@11yc~T!14xc~T!2#

[24sZmC~T!2F~T!, ~43!

wherey52Y/Z, x5X/Z, c(T)5x11mN(T)/mC(T), ands
is 11 in phases I and III and is21 in phase II. It is clear
that the free energy is minimized by the structure of phases I
and III if ZF(T) is positive and by that of phase II if
ZF(T) is negative. In order to obtain phase II between the
two reorientation transition temperatures,T,530 K and
T.575 K, it is necessary thatZ.0 and

x5
1

4c~T,!c~T.!
551, y52

c~T.!1c~T,!

c~T,!c~T.!
5231,

~44!

where we used Eqs.~1! and ~30! to constructmC(T) and
mN(T) which we used to obtain the above numerical values.
~These equations give values which are essentially equiva-
lent to experimental ones.! We reiterate that the magnetic
dipole-dipole interaction does not explain the stability of
these phases.60 SincemN(T) is small at both transitions~see
Fig. 7!, it is clear thatx@2y@1 or X@Y@Z. As we have
mentioned, the plausibility of this condition is obvious from
the geometry, shown in Fig. 2.

We can also now include the effect of these small pertur-
bations on the Nd doublet splitting. Referring to Eqs.~40!
and~42! we see that the mean field at the Nd site will have a
jump at each of the two reorientation transitions~wheres
changes sign!, and indeed the Raman data44 shows such a
discontinuity. However, the magnitude of the discontinuity is
not easy to obtain from the data, because the data gives di-
rectly only the sum of the splittings of the doublets of the
initial and final Raman states. In principle, a determination of
the jumps in the doublet splitting at these transitions would
fix the magnitudes ofX, Y, and Z, since their ratios are
already fixed by Eq.~44!. In any event the sign of the dis-
continuity is not consistent with only magnetic dipole-dipole
interactions. It remains to consider what this explanation im-
plies for PCO, if we assume that the values ofx and y for
PCO are the same as those for NCO. Note from Figs. 2 and
3 that PCO and NCO~in phase I! differ in the three-plane
units because the Cu spins are reversed in PCO from their
directions in NCO. That means that to treat PCO we should
change the signs of themC(T)’s. This change is equivalent
to changing the sign ofY, or equivalently, the sign ofy.
However, then bothx andy are positive andF is positive at
all temperatures and the phase analogous to NCO phase I
@i.e., the actual structure of PCO shown in Fig. 3~a!# is the
stable one. This argument is clearly rather speculative, be-
cause then one would have to assert that under high pressure
~when PCO does have a sequence of spin reorientations46!
the constanty changes sign.
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V. SPIN WAVES IN NCO

A. General discussion

In this section we use our model to calculate the spin-
wave spectrum of NCO. Although Thalmeier22 has given a
very thorough treatment of the spin-wave spectrum of NCO,
there are some aspects of his model that we find unsatisfac-
tory, as we discuss below. In addition, his basic assumption
that the dynamics of the Cu spins can be ignored is only
appropriate as long as the wave vector is not too small. Thus
his approach, although useful in many respects, is not appro-
priate for a discussion of the zero wave-vector modes. For
that purpose we have had recourse to a simplified 2D model
which enables us to easily take account of the motion of the
Cu spins, the details of their anisotropic coupling to the Nd
sublattices, and the anisotropy of the Nd spins caused by the
crystalline electric field. In the future, it may be of interest to
extend our calculation to a full 3D model.

The Cu-Cu interactions are taken to be as in other cu-
prates. The most important Cu-Nd interaction is fixed by the
high-temperature limit of the Nd doublet splitting. We have
fixed the Nd-Nd interactions to get reasonable agreement
with the experimental results of Henggeleret al.18 for the
spin-wave energies throughout the Brillouin zone. Particu-
larly simple results are obtained at zero wave vector. The
temperature-dependent energies of the optical modes agree
well with the experimental values of Ivanovet al.17 We also
predict the energy gap in the acoustic mode due to the small
fourfold in-plane anisotropy.

The present discussion will assume the structure of phase
I, although as will be seen, most of our results apply to the
spectrum in all three phases. As discussed in Sec. IV, we
may consider the entire system to be built up of weakly
interacting sets of planes, each set consisting of a Cu plane
with one Nd plane above it and another below it. Thus, for
most purposes it suffices to consider a 2D model consisting
of a single set of Nd-Cu-Nd planes. In this 2D model the
spin-wave spectrum has six branches, and the energies of the
modes are functions of the 2D wave vectorq2. In the actual

3D model, the spin-wave spectrum has 12 branches and each
mode energy is a function of the 3D wave vector,
q[(q2 ,qz). The actual spin-wave spectrum18 consisting of
12 branches has essentially no dispersion with respect toqz
because the coupling between one Nd-Cu-Nd set of planes
and the next such set of planes is relatively weak. Since the
3D unit cell contains two nearly noninteracting sets of
planes, the 12 branch spectrum at some value of
q[(q2 ,qz) is the union of one six branch spectrum evalu-
ated atq2 and another six branch spectrum evaluated at
Rq2, whereR is a rotation by 90o about thez axis. Therefore
almost all information is contained in our simplified 2D
model of one set of Nd-Cu-Nd planes. The unit cell for this
model is shown in Fig. 9.

The exchange interactions for the model that we treat are
those described previously in Sec. IV, so that the Hamil-
tonian is

H5HCEF1 (
^ i j &PC

@J'~SixSjx1SiySjy!1JzSizSjz#1(
iPC

(
jPN

(
ab

KabSiaJjb1 (
^ i j &PN

@N'~JixJjx1JiyJjy!1NzJizJjz#

1 (
^ i j &8

@M'~JixJjx1JiyJjy!1MzJizJjz#1 (
^ i j &9

@O'~JixJjx1JiyJjy!1OzJizJjz#. ~45!

The first line contains the first three terms in Eq.~31! and the
remaining lines contain the Nd-Nd interactions shown in
Figs. 1 and 9. To discuss spin waves we will use the
Holstein-Primakoff~HP! transformation for the Cu spins and
a similar transformation to reproduce the dynamics of the Nd
spin within the lowest crystal-field doublet. This procedure
will lead us to a bosonic Hamiltonian in which terms higher
than quadratic in bosonic variables are neglected and in
which quadratic excitations involving higher crystal-field
states are also ignored.

B. Transformation to bosons

The transformation to bosons is obtained by the following
general algorithm for a bilinear interaction involving an op-
eratorR on one site andS on another site. Write

RS5^R&^S&1^S&dR1dŜ R&1dRdS, ~46!

where^& indicates an average in the mean-field ground state,
and dR5R2^R&. By expressingdR and dS in terms of
bosonic excitations about the mean-field ground state one

FIG. 9. 2D unit cell~indicated by the dashed square! for our
simplified model of spin waves in NCO. The open circles are Cu
ions and the filled ones Nd ions. The darker~lighter! Nd arrows
represent the Nd spins in planes just above~below! the Cu planes.
The Nd-Nd interactions scaled by the tensorsM , N, andO are
indicated.

56 273SINGLE-ION ANISOTROPY, CRYSTAL-FIELD . . .



can obtain an expression for the bilinear interaction in terms
of bosonic variables.~In the case of isotropic spins, this pre-
scription is identical to that leading to the HP transforma-
tion.!

There are two sublattices within a copper plane which we
call a andb. In the ground state thea sublattice spinŝSa&
point in the1x direction, while theb spins^Sb& point in the
2x direction. The HP transformation may be written as

Sx
a5S2a†a, Sx

b52S1b†b, ~47a!

Sy
a5AS/2~a†1a!, Sy

b5AS/2~b†1b!, ~47b!

Sz
a5AS/2~a†2a!, Sz

b52 iAS/2~b†2b!. ~47c!

There are two identically ordered Nd planes, one above, the
other below the Cu plane. We denote the sublattices above
~below! the Cu plane with moments along the2y direction
asn1 (n2) and the other Nd sublattice above~below! the Cu
plane asm1 (m2). For the moment we consider a spin in
one of then sublattices. In the presence of the exchange field
due to the other ions its lowest doublet will be split into a
ground stateug& and an excited stateue&. Following the pre-
scription given above we write

Ja5^guJaug&1(
f

~^ f uJaug&nf
†1^guJau f &nf1~^ f uJau f &

2^guJaug&!nf
†nf !1 (

fÞ f 8
^ f uJau f 8&nf

†nf 8, ~48!

where we definenf
†ug&5u f &, and u f & and u f 8& are excited

states. We henceforth keep only bosonic excitations within
the lowest doublet. Thus in Eq.~48! the last term is dropped
and in the first term the only excited state that enters isue&
and we letn denotene . Note that in principle the admixture
of higher crystal-field states intoug& and ue& is taken into
account exactly. However, we did not calculate the moments
of the Nd ions self-consistently, as this prescription requires.
The effect of self-consistency is entirely negligible here.

For then sublattice~with Nd spins in the2y direction!
we have,

S ^eu

^gu D J~ ue&ug&)5F j xsx ,
1

2
~ j y11 j y2!I1

1

2
~ j y12 j y2!sz ,

2 j zsyG , ~49!

wheresa is a Pauli matrix andI is the unit 232 matrix. In
Appendix D we develop expressions for the statesug& and
ue& of the lowest doublet in the presence of an exchange field
h, as power series inh. We have carried these expansions up
to orderh3 to obtain results for the constants in Eqs.~D7!–
~D11!. The anisotropic response of the Nd ion to a magnetic
field is due to the differences in the values ofj x , j y1 ,
2 j y2 , and j z . Setting all of them equal to each other
( j x5 j z5 j y152 j y2) will make this an isotropic spin-1/2
system. The expansions of thej ’s have to be carried to at
least second order inh to get anisotropy within thex-y
plane. At that orderj y152 j y2[ j y5x111O(h2) and Ap-
pendix D gives (j x1 j y)/2'1.886. The anisotropy in the
plane is governed by the value ofj y2 j x , which is of order
h2 and which is evaluated in Appendix D to be
1.3831024. Thus Eq.~48! becomes

Jy5^guJyug&1~^euJyue&2^guJyug&!n†n52 j y12 j yn
†n,
~50a!

Jx5^euJxug&n†1^guJxue&n5 j x~n
†1n!, ~50b!

Jz5^euJzug&n†1^guJzue&n5 i j z~n
†2n!. ~50c!

In them sublattices change the sign ofy andz components
and replacen with m.

The splitting of the doubletD ~when all ions are initially
in their ground state! is

D5(
j
2 j yKxy^Sa

j &12 j y
2(

j
N'22 j y

2(
j
M'22 j y

2(
j
O'

54Kxyj y1~8N'22M'28O'! j y
2

[DC1DN . ~51!

Here the sums overj encompass the shell of neighbors as-
sociated with the exchange interaction in question. This re-
sult differs from Eq.~41! because the interactions between
different three-plane units are not included in the present
model. Also here we replacex11 by j y . This replacement has
only a small effect numerically, but to treat theR anisotropy
correctly we have to include the dependence of the wave
functions onh.

C. Spin waves

After the above-described transformation to bosons is
used, the exchange Hamiltonian becomes
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H5SHE1
1

2
HA12D D S (

p
ap
†ap1(

r
br
†br D 1

1

8
HA(

p,r
gpr~ap

†br1br
†ap!1

1

4
HE(

p,r
gpr~ap

†br
†1apbr !

1(
a

(
sata

$d ta ,sa
D~nsa

† nsa1mta
† mta

!1g ta ,sa
@~N' j x

21Nzj z
2!~nsa

† nta
† 1ntansa!1~N' j x

22Nzj z
2!~nsa

† nta1nta
† nsa!#

1g ta ,sa
~2! @~O' j x

22Ozj z
2!~nsa

† nta
† 1ntansa!1~O' j x

21Ozj z
2!~nsa

† nta1nta
† nsa!#%1(

u
@~M' j x

22Mzj z
2!~nu1

† nu2

† 1nu1
nu2

!

1~M' j x
21Mzj z

2!~nu1

† nu2
1nu1

† nu2
!#1(

a
(
p,sa

~Kp,sa
~0! ap

†nsa1Kp,sa
~1! ap

†nsa
† 1H. c.!1(

a
(
p,ta

~Kp,ta
~0! ap

†mta
1Kp,ta

~1! ap
†mta

†

1H. c.!1(
a

(
r ,sa

~K r ,sa
~0! br

†nsa1K r ,sa
~1! bp

†nsa
† 1H. c.!1(

a
(
r ,ta

~K r ,ta
~0! br

†mta
1K r ,ta

~1! br
†mta

† 1H. c.!, ~52!

where the exchange field,HE , and anisotropy field,HA ,
were defined in Eqs.~34!. Also p refers to sites on thea
sublattice,r theb sublattice,sa thena sublattice, andta the
ma sublattice, where the subscripta assumes the values1
and2 for the Nd sublattices, respectively, above and below
the Cu plane. In the third line of the above equation, the sum
overu is taken so thatu1 ranges over all sites in then1 and
m1 sublattices. Alsodu,v is unity if u5v, gu,v is unity if u
and v are nearest neighbors in the same plane and is zero
otherwise, andgu,v

(2) is unity if u andv are next-nearest neigh-
bors in the same plane and is zero otherwise. We now
specify the interaction constantsKu,v

(0) , whereu is a Cu site
and v a nearest-neighboring Nd site. For this purpose it is
convenient to introduce the notation thatv5u1adW , where
thex andy components ofdW are each of magnitude 1/2 and
the z component is6b. Then we writeKu,v

(n)[Ku
(n)(dW ). We

have

Kp
~n!S 12 , 12 ,b D5Kp

~n!S 2
1

2
,2

1

2
,b D *

52Kp
~n!S 2

1

2
,
1

2
,b D52Kp

~n!S 12 ,2 1

2
,b D *

[Kn , ~53!

where

K05
1

2
~Kxyj x1Kzzj z!1

1

2
iK xz~ j x2 j z!, ~54a!

K15
1

2
~Kxyj x2Kzzj z!1

1

2
iK xz~ j x1 j z!. ~54b!

The other coupling constants can be obtained using the rela-
tionsKu

(n)(dW )5Ku
(n)(2dW ) andK r

(n)(dW )5Kp
(n)(dW )* .

To obtain the spin-wave spectrum we introduce spatial
Fourier transforms via

ci
†~q!5Nuc

21/2(
rP i

cr
†e2 iq•r, ~55!

whereNuc is the number of unit cells in the system,rP i
indicates thatr is summed over all sites in thei th sublattice,
and the sublattices are labeled so that 1,2,3,4,5,6 correspond,
respectively, toa,b,n1 ,m1 ,n2 ,m2 . Thus, if r is in thea
sublattice, thencr

†5ar
† . With this notation we have

H5(
q

H(
i j

Ai j ~q!ci
†~q!cj~q!

1
1

2(i j @Bi j ~q!ci
†~q!cj

†~q!1H. c.#J , ~56!

where
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A53
HE1

1

2
HA12DC

1

4
HA~cx1cy! ~2K0exey!8 2~2K0ey /ex!8 ~2K0* exey!8 2~2K0* ey /ex!8

1

4
HA~cx1cy! HE1

1

2
HA12DC 2~2K0* ey /ex!8 ~2K0* exey!8 2~2K0ey /ex!8 ~2K0exey!8

~2K0exey!8 2~2K0* ey /ex!8 D14O1cxcy 2~cx1cy!N
2 M1 0

2~2K0ey /ex!8 ~2K0* exey!8 2~cx1cy!N
2 D14O1cxcy 0 M1

2~K0* exey!8 2~2K0ey /ex!8 M1 0 D14O1cxcy 2~cx1cy!N
2

2~2K0* ey /ex!8 ~2K0exey!8 0 M1 2~cx1cy!N
2 D14O1cxcy

4 ~57!

B53
0

1

2
HE~cx1cy! ~2K1exey!8 2~2K1ey /ex!8 ~2K1* exey!8 2~2K1* ey /ex!8

1

2
HE~cx1cy! 0 2~2K1

*ey /ex!8 ~2K1* exey!8 2~2K1ey /ex!8 ~2K1exey!8

~2K1exey!8 2~2K1* ey /ex!8 4O2cxcy 2~cx1cy!N
1 M2 0

2~2K1ey /ex!8 ~2K1* exey!8 2~cx1cy!N
1 4O2cxcy 0 M2

2~K1* exey!8 2~2K1ey /ex!8 M2 0 4O2cxcy 2~cx1cy!N
1

2~2K1* ey /ex!8 ~2K1exey!8 0 M2 2~cx1cy!N
1 4O2cxcy

4 , ~58!

where cx5cosaqx , cy5cosaqy , ex5exp(iaqx/2),
ey5exp(iaqy/2), (X)8[ReX, andX65(X' j x

26Xzj z
2), where

X stands forM , N, or O. The eigenvalues of the matrix
(A1B)(A2B) give the squares of the energy of the normal
modes:

~A1B…„A2B!xt~q!5v~q!2xt~q!. ~59!

The eigenvalues are invariant with respect to the operation
q→2q, as expected in view of time-reversal symmetry. To
see this explicitly note that changing the sign ofq is equiva-
lent to interchanging rows and columns 3 and 5 and rows and
columns 4 and 6.

The complete model for the whole lattice will have two
layers of our 2D model per unit cell, with one rotated by

90° about thez axis ~so that thea sublattice spins now point
in the2y direction, and theb sublattice in the1y direction,
etc.!. From Eqs.~57! and ~58! one can see that whenK0 is
real ~i.e., whenKxz50), the spectrum is invariant under this
R4 operation. Even whenKxz is nonzero, this invariance
holds for wave vectors in high-symmetry directions. Thus in
the complete model the spectrum consists of six nearly dou-
bly degenerate modes which are split by weak couplings
between adjacent three-plane units.

D. Normal modes at q50 and on the zone boundary

For q50, we have the simpler forms

A53
HE1

1

2
HA12DC

1

2
HA 2K08 22K08 2K08 22K08

1

2
HA HE1

1

2
HA12DC 22K08 2K08 22K08 2K08

2K08 22K08 D14O1 4N2 M1 0

22K08 2K08 4N2 D14O1 0 M1

2K08 22K08 M1 0 D14O1 4N2

22K08 2K08 0 M1 4N2 D14O1

4 , ~60!
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B53
0 HE 2K18 22K18 2K18 22K18

HE 0 22K18 2K18 22K18 2K18

2K18 22K18 4O2 4N1 M2 0

22K18 2K18 4N1 4O2 0 M2

2K18 22K18 M2 0 4O2 4N1

22K18 2K18 0 M2 4N1 4O2
4 . ~61!

We can immediately identify several eigenmodes. For in-
stanceu1& and u2& are given, respectively, by the upper and
lower choices of sign in (n11m16n26m2)/2. The energy
of these modes is

v6
2 5~D14N214O16M1!22~4N114O26M2!2

'D212D j x
2@4O'14N'6M'#. ~62!

The other simple rare-earth mode isu3&5(n12m1

2n21m2)/2, with

v3
25~D14O124N22M1!22~4O224N12M2!2

'D212D j x
2@4O'24N'2M'#. ~63!

These three modes have energy which is split fromD by the
Nd-Nd interactions.

The other three modes involve the Cu spins. One of these
is the out-of-plane Cu mode:u4&5(a1b)/A2. For it

v4
25~HE1HA12DC!22HE

2'2HE~HA12DC!. ~64!

The remaining two modes are linear combinations of excita-
tions on the Cu, u5&5(a2b)/A2 and on the Nd,
u6&5(n12m11n22m2)/2. In this subspace we have

A5F HE12DC 2A2~Kxyj x1Kzzj z!

2A2~Kxyj x1Kzzj z! D1F'1Fz G ,
B5F 2HE 2A2~Kxyj x2Kzzj z!

2A2~Kxyj x2Kzzj z! F'2Fz G , ~65!

where F'5(M'24N'14O') j x
2 and Fz5(Mz24Nz

14Oz) j z
2 and we used Eqs.~54!. We denote the two eigen-

values of the matrix (A1B)(A2B) asv.
2 andv,

2 and find

v.
2 '4HEDC . ~66!

Neglecting terms of orderj z
2 and using the values of the

parameters given in Sec. VG, below, we have

v,5DS 12
j x
2

j y
2D 1/2'3.7meV. ~67!

We can understand these results in the following manner.
Since the Nd’s mix with the Cu’s only via the uniform Nd
excitation (u6&), we have three Nd modes whose energy
(vk for k51,2,3) is approximatelyD. The energy differ-
ences between these modes is caused by~and therefore is a

measure of! the Nd-Nd interactions. One of the other modes
is an out-of-plane Cu mode which would have energy
'A2HAHE in the absence of the Nd ions. The Nd ions con-
tribute a staggered field of energy 2DC , so thatHA is here
replaced byHA12DC . Another mode is an in-plane optical
mode in which the staggered field is 2DC but this mode does
not involve the out-of-plane anisotropy,HA . This mode has
energyv. given in Eq. ~66!. Finally, there is an acoustic
mode which involves the fourfold anisotropy. We may define
a phenomenological fourfold anisotropy constant,k4 via

E52
1

8
k4cos4f, ~68!

whereE is the ground-state energy andf is the angle in the
x-y plane which the exchange field makes with a@100# di-
rection. We will identifyk4 by finding the ground-state en-
ergy for small f when the exchange Hamiltonian is

FIG. 10. Full curves are the energies~at T50) of the low-
energy modes with respect to the 2D wave vector calculated using
the values of the parameters as given in Eqs.~84!–~88!. In the full
3D model, each of these modes gives rise to two modes whose
splitting is determined mostly by the small coupling between adja-
cent sets of three planes. This coupling is neglected in the 2D
model. The squares, circles, and triangles are mode energies deter-
mined by the inelastic neutron experiments of Ref. 18.~The data of
Ref. 19 is similar to that shown here.! Note that the calculations
predict a strong dispersion of the acoustic mode at small wave
vector. At the far right we show the density of states~DOS! ob-
tained from an evaluation over the entire 2D Brillouin zone.
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Vex[24Kxyn̂•J with n̂5(sinf,cosf,0). Thus
k45]E/]f2uf50. Using the matrix elements of the doublet
given in Eq. ~50a!, we write the exchange Hamiltonian in
terms of Pauli matrices within the lowest doublet as

Vex54Kxy@2 j ycosfsz2sinf j xsx#. ~69!

For smallf the ground-state energy is

E054KxyF2 j yS 12
1

2
f2D2 j x

2f2/~2 j y!G . ~70!

This result suggests that we make the identification

k45~D/2!~12 j x
2/ j y

2!'D~12 j x / j y!57.331025D
~71!

and we write

v,
2 52k4D'1.531024D2. ~72!

In the absence of the fourfold anisotropy the acoustic mode
at zero wave vector would have zero energy. This follows
from the combined effects of two symmetries. First of all,
the diagonal components of the exchange tensor do not con-
tribute to the energy of this mode because these Cu-Nd in-
teractions are completely frustrated. Secondly, as we saw in
Eq. ~37!, the pseudodipolar energy is invariant with respect
to rotating the Cu and Nd spins through the same angle, but
in an opposite sense. Obviously, introduction ofk4 breaks
this symmetry and leads to a nonzero acoustic mode energy.

We can also obtain simple results for wave vectors on the
zone boundary, i.e., fora(qx1qy)5p. Along that line
cy52cx and the matricesA(q) andB(q) for the Nd sector
break up into two identical 232 matrices. Neglecting the
very small effect of the coupling to the high-energy Cu
modes, we thereby find the spin-wave energies to be

v6
2 5~D24O1cx

26M1!22~4O2cx
27M2!2. ~73!

It is a good approximation to setj z50, in which case

v6
2 5D228DO' j x

2cx
262DM' j x

2 . ~74!

Approximately, therefore, we have two doubly degenerate
Nd modes on the zone boundary with energies given by

v6'D24O' j x
2cx

26M' j x
2 . ~75!

E. Normal modes at arbitrary wave vectors

We have evaluated energies of the normal modes for
wave vectors in various high-symmetry directions from Eq.
~59!. Results for the low-lying~Nd! modes for selected val-
ues of the parameters are shown in Fig. 10. We also show the
density of spin-wave states for energy up to 0.8 meV.

F. Temperature dependence of normal modes

An approximate treatment of the temperature dependence
of the mode energies is based on a generalization of the
random-phase approximation. Within this approximation, as
developed for spin systems, one replacesSz ~wherez is the
direction of long-range magnetic order!, by its thermally av-
eraged value,̂Sz&T . For instance, in the relations of Eq.

~47a! one replacesS by ^S&T , for which we use Eq.~1!. One
sees thatS ~which we had previously set equal to12! is now
renormalized by a factorjC(T)[2^S&T , whereas the trans-
verse components of the Cu spin, which are proportional to
AS, are renormalized by a factorAjC(T). We follow the
same rule for the Nd spin in terms of a factorjN(T) where,
neglecting quantum zero-point motion, one has@see Eq.
~30!#

jN~T!5tanh@D/~2kT!#. ~76!

Thus the temperature dependence of the spin-wave matrices
is obtained from Eqs.~57! and ~58! by the replacements

HE→HEjC~T!, DC→DCjN~T!,

Kn→Kn@jC~T!jN~T!#1/2,

D→DCjC~T!1DNjN~T![D~T!, X6→X6jN~T!.
~77!

@Note that whereDC appears it actually represents the ex-
change field acting on the Cu ions due to the Nd moments
and hence it is renormalized by a factorjN(T).# In this for-
mulation we treatHA as a temperature-dependent parameter
and although our prescription indicates thatk4(T) is propor-

FIG. 11. As in Fig. 10, the full lines are our calculations of the
temperature dependence of the spin-wave modes in NCO at zero
wave vector. In the top panel we show the three modes at zero wave
vector which do not involve motion of the Cu spins. These energies
essentially are proportional to the moment of the Cu spins. In the
bottom panel we show the three modes at zero wave vector which
involve motion of the Cu spins. The experimental points of Ivanov
et al. ~Ref. 17! for two of these modes are shown by filled and open
circles. The bottom curve is 200vac. This mode has not yet been
observed.
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tional to D(T), it may be more realistic to also regard
k4(T) as a temperature-dependent parameter. Following the
same analysis as forT50, we now find that the results of
Eqs.~62!–~64! become

v6
2 '@DCjC~T!1DNjN~T!#212@DCjC~T!

1DNjN~T!#jN~T! j x
2@4O'14N'6M'#, ~78!

v3
2'@DCjC~T!1DNjN~T!#212@DCjC~T!

1DNjN~T!#jN~T! j x
2@4O'24N'2M'#, ~79!

and

v4
2'2HEjC~T!@HA12DCjN~T!#. ~80!

The energy of two mixed modes assumes a simple form in
the low-temperature limit@whenHEjN(T)@DCjC(T)#:

vopt
2 '4DCHEjNjC , vac

2 '2k4~T!@D~T!12FzjN~T!#,
~81!

where

k4~T!5
1

2
D~T!@12~ j x / j y!

2#. ~82!

In the high-temperature limit~whenHEjN!DCjC):

vopt'DCjC , vac
2 '8k4~T!HEjN~T!. ~83!

In all these results we assumed that~a! HE dominates all
other coupling constants and~b! DjC(T)@k4(T).

The temperature dependence ofjN(T) has a very strong
effect at temperatures where the thermal energy,kT, passes
throughD. In Fig. 11 we show a graph of the temperature
dependence of the modes. In a moment we will discuss the
extent to which these results are consistent with experiments.

G. Comparison with experiments

There are several features of our calculations which can
be compared with the experimental data. To make this com-
parison we first discuss how we fix the various parameters
which enter the calculation. As mentioned above, the Cu-Cu
exchange interactions, which give rise toHE and HA are
fixed from their values in many other cuprates. In addition,

the values of the Nd crystal-field matrix elements,j x , j y ,
and j z were calculated in Appendix D. We summarize these:

HE5140 meV, HA50.1 meV, ~ j x1 j y!/251.886,

j y2 j x51.431024, j z520.015. ~84!

We note the very small value ofj z . Considering this, the
values of the exchange parameters which involvej z have
little influence on the results. Therefore, we have set

Nz5Mz5Oz50. ~85!

We now fit the other parameters by comparing with the
observed spectrum of Nd spin excitations in NCO.18 In mak-
ing this comparison we note that the experiment shows more
than four low-energy spin-wave modes. This observation in-
dicates that our assumption that the interaction between ad-
jacent three-plane units is negligible, is not totally correct, at
least in this context. However, the dispersion alongqz is
small, in conformity with our assumption. As a result, the
comparison~shown in Fig. 10! of our simple 2D model with
the actual data is somewhat approximate. However, we do
seem to capture the main physical effects with our simple 2D
model. To estimate the numerical values of the parameters,
we use Eq.~75! to identify the observed splitting of 0.3 meV
at theM point with 2M' j x

2 , so that

2M' j x
250.3 meV. ~86!

Also we note that on average the mode energies are about 0.1
meV higher at theX point (cx5cy50) than at theM point
(cx52cy521). Thus we deduce that

4O' j x
250.1 meV. ~87!

We now adjust the other parameters,Kxy andN' to fit the
remaining aspects of the observed spectrum. We found that a
reasonable fit to the spin-wave spectrum determined by in-
elastic neutron scattering18,19could be obtained by taking~all
in meV!

Kxy50.075, Kxz50.01, Kzz50.50, N'50.004,

M'50.025,O'50.003. ~88!

Note that with this parameter set, we obtain a reasonable
fit to various other data. For instance, in Fig. 11, we show the

TABLE IX. Values for the contributions to the splitting in energy of the lowest Nd doublet from various
interactions according to mean-field theory. In columns labeledhN

T we list values~at T50) associated with
the interactionsI n

' of Thalmeier~Ref. 22! compared to the corresponding valueshJ from the interactionJ in
our theory. The first four columns refer to the exchange field due to Cu spins and the remaining columns to
the exchange field due to other Nd spins. Thalmeier’s theory has no splitting analogous to ours due toKxy ~so
we leave the first column of the table blank!. Since we have not made any numerical estimates ofX and
Y, we leave their entries blank. Entries in the last row are all in meV. The total Nd doublet splitting, as
defined by Eq.~41!, is D50.41 meV using our parameters and 0.44 meV using Thalmeier’s.

Cu Nd

– hK hCu hY h1 hM h2 hX h3 hN
T h4 hO

– 4Kxyj y hCu 2Y 1
2I 1

' 22M' j y
2 0 8X 22I 3

' 8N' j y
2 2I 4

' 28O' j y
2

– 0.57 0.59 20.21 20.18 0 0.14 0.11 20.08 20.09
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temperature dependence of the optical modes involving the
Cu sublattices versus temperature. One sees a very good
agreement between theory and the observations of Ivanov
et al.17 They interpreted their results in a qualitative way as
showing two zero wave-vector modes with energy gaps pro-
portional to AHEHA. The detailed theory presented here
gives their argument a firm theoretical basis. Also in Fig. 10
one sees that the density of states indicates a gap to a peak in
the density of states at an energy of about 0.28 meV, in spite
of the fact that the mean-field splittingD given in Eq.~41!, is
somewhat larger~0.41 meV, see Table IX!. This peak value
in the density of states is in very good agreement with the
detailed analysis of the specific heat of NCO~Ref. 4! which
gave a splitting of 0.33 meV~3.7 K in temperature units!.
Our fit in Fig. 7 to the Nd magnetization in NCO gave 0.30
meV for this splitting. So our theoretical spin-wave spectrum
is in broad agreement with the various thermodynamic mea-
surements. Finally, based on our calculations we propose
that a measurement of the lowest gap atq50 and low tem-
peratures would be a useful measure of the fourfold anisot-
ropy and would confirm the physics of our model.

H. Comparison with previous calculations

From our results one sees that the approach used by
Thalmeier22 ~in which the Cu spins create a fixed exchange
field at the Nd sites! is not correct for very small wave vec-
tors. In particular, at zero wave vector such an approach, if
used for our model, would give three of the Nd modes cor-
rectly, because as we have seen from our exact solution for
q50, these modes are confined to the Nd sublattices. Of
course, treating only the Nd spins cannot possibly give a
reasonable estimate of the energy of the lowest~acoustic!
mode for smallq, since this mode is a collective mode of the
Nd and Cu sublattices. Our treatment is only necessary near
zero wave vector. In fact, from Fig. 10, one sees the ex-
tremely strong dependence of the lowest energy mode at
small wave vector such thataq<AD/HE'0.06. For larger
q one has four Nd modes with energies nearD. In treating
the acoustic mode it is also important to incorporate the in-
plane anisotropy of the Nd doublet, as we have done here.
Finally, we give here an approximate treatment of the tem-
perature dependence of the spectrum. Because we assume
that the coupling between adjacent three-plane units is small,
our calculations apply to all three phases of NCO.

A significant difference between our model and Thalmei-
er’s is that in his work the values assigned to the various
exchange tensors are chosen in a way which seems to be
inconsistent with the type of order actually found in the vari-
ous phases. In particular, his choice of the largest Cu-Nd
interaction to be a ferromagnetic one~presumably between a
Cu spin and the Nd ions directly above and below it in the
z direction! seems to be contradicted by the fact that these
spins change their relative orientations during the spin reori-
entation transitions. As discussed in Sec. IV, we would ex-
pect that the spin reorientations would preserve the strongest
coupling and break only less dominant couplings. This ob-
servation motivated our choice of model in which the domi-
nant Nd-Cu interaction is that from the anisotropic exchange
interaction between nearest Cu-Nd neighbors. Also, we may
mention that the form of the exchange anisotropy in which

the Cu-Nd interaction has a tensor with two components, one
for interactions in the@001# plane and another for interac-
tions involvingz components of spin is not appropriate for
the local symmetry of the interaction bond. In fact, as
pointed out,30 the pseudodipolar Nd-Nd interactions arise
from the anisotropic exchange interaction only when the cor-
rect symmetry of the bond is taken into account. This pecu-
liar symmetry is particularly important in the case of the
nearest-neighbor Cu-Nd interactions of Eq.~36!. As we have
seen, the crucial part of this interaction is the pseudodipolar
part proportional toKxy . The other Nd-Nd interactions we
use are very similar to those of Thalmeier, as can be seen by
the comparison shown in Table IX, where we give the con-
tributions to the splitting from various interactions.
@Thalmeier’s contribution to the doublet splitting fromh2
~due to hisI 2

') vanishes because he does not allow for the
pseudodipolar component of exchange interactions between
Nd nearest neighbors.#

Finally we mention the earlier calculation of Sobolev
et al.61 In that calculation the degrees of freedom describing
the Nd spins have been removed, so that there are just four
Cu spins per unit cell. This actually is not too bad, since the
highest mode is exact, and the other mode is reasonably
close to one of our modes with Nd-Cu mixed in. Of course,
this approach cannot describe either the Nd modes or the
low-frequency mode due to Nd-Cu collective excitation.

VI. CONCLUSION

We may summarize our conclusions as follows.
~i! We show that due to the exchange field acting on the

rare-earth ion and crystalline electric-field interactions, there
is a strong single ion anisotropy which aligns the Cu and
R5Pr, Nd magnetization along the@100# axis, as observed.
This same type of calculation also indicates that for Sm in
SCO the easy axis lies along@001#, again in agreement with
observations. Interestingly, our calculation shows that within
the plane, the Sm anisotropy favors alignment along@110#. If
this anisotropy is the dominant in-plane anisotropy, the mag-
netic structure would then be a collinear one. The experi-
ments are not conclusive as to whether or not the magnetic
structure of SCO is noncollinear, especially in the Sm-
ordered phase forT,6 K.

~ii ! Crystalline electric-field theory with a Cu-R exchange
interaction such that the exchange field, defined to couple to
J as in Eq.~2!, of the order 0.080 meV for Nd~correspond-
ing to a splitting of the lowest doublet of 0.3 meV!, and
0.139 meV for Pr successfully explains many properties,
such as the inducedR magnetization, the splitting of the
Kramers doublet, etc., at all temperatures.

~iii ! We propose a model in which a Cu plane with its two
Nd neighboring planes form a tightly bound unit due to in-
teractions between the Cu plaquette and the Nd ions adjacent
to it. In view of the frustration only pseudodipolar interpla-
nar interactions21 effectively contribute. We propose a model
involving Cu-Cu, Cu-Nd, and Nd-Nd interactions between
neighboring tightly bound units. The strengths of the inter-
planar couplings are assumed to decrease rapidly with dis-
tance, but in NCO they can compete because the temperature
dependence of the Nd is extremely rapid. This is the simplest
model which explains both the three consecutive phase tran-
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sitions observed6 in NCO as well as the absence of such
phase transitions in PCO.

~iv! We have calculated the spin-wave spectrum of
Nd2CuO4 within a simplified three-plane model which quali-
tatively reproduces the spectrum obtained from inelastic neu-
tron scattering,18 as is shown in Fig. 10. The resulting Cu-Nd
optical modes have a temperature dependence which agrees
quite well ~see Fig. 11! with the experimental results.17 The
energy of the acoustic spin-wave mode at zero wave vector is
predicted to be'A2k4D'5meV, wherek4 is the small four-
fold anisotropy in the plane andD is the splitting of the
lowest Nd doublet in the Cu exchange field. This mode has

not yet been observed, but clearly its observation is highly
desirable.
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APPENDIX A: COEFFICIENTS IN THE PERTURBATION EXPANSION

The coefficients that appear in Eqs.~22! are
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Numerical values of the coefficients are listed in Table VII.
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APPENDIX B: COEFFICIENTS OF THE FREE-ENERGY
EXPANSION

Here we list the coefficients that appear in the expansions
for the free energy and the partition function.

1

2gJ
2x'5AZ~T!, ~B1a!

1

2gJ
2xz5EZ~T!, ~B1b!

2a45BZ~T!2
1

2
bAZ

2~T!, ~B1c!

2b45FZ~T!2
1

2
bEZ

2~T!, ~B1d!

2g45CZ~T!2bAZ
2~T!, ~B1e!

2d45DZ~T!2bAZ~T!EZ~T!, ~B1f!

where
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i51

5
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ba2i

2 1ba3i

2
1

2
b2xii

2a2i1
b3

4!
xii
4 D , ~B5!

CZ~T!52Z~0!21(
i51

5

e2bEi0S 2b4i1ba2i
2 1bb3i2b2xii

2a2i

1
2b3

4!
xii
4 D , ~B6!

DZ~T!52Z~0!21(
i51

5

e2bEi0S 2c4i1ba2ib2i1bc3i

2
1

2
b2~xii

2b2i1zii
2a2i !1

2b3

4!
xii
2zii

2 D , ~B7!

FZ~T!52Z~0!21(
i51

5

e2bEi0S 2d4i1
1

2
bb2i

2 1bd3i

2
1

2
b2zii

2b2i1
b3

4!
zii
4 D . ~B8!

APPENDIX C: GROUND-STATE ENERGY AND
SUSCEPTIBILITY OF PR

We first give the matrix elements involvingh' . Heref
refers to the angle whichh' makes with thex axis:

^guJ•hS ud1&
ud2&

D 51.883h'S eif

2e2 ifD ;
^guJ•hS uD1&

uD2&
D 50.675h'S eif

2e2 ifD , ~C1a!

^e1uJ•hS ud1&
ud2&

D 50.332h'S e2 if

2eifD ;
^e1uJ•hS uD1&

uD2&
D 51.853h'S e2 if

2eifD , ~C1b!

^e2uJ•hS ud1&
ud2&

D 50.876h'S e2 if

eif D ;
^e2uJ•hS uD1&

uD2&
D 50.483h'S 2e2 if

2eif D , ~C1c!

^e3uJ•hS ud1&
ud2&

D 51.351h'S e2 if

2eifD ;
^e3uJ•hS uD1&

uD2&
D 50.797h'S e2 if

2eifD , ~C1d!

^e4uJ•hS ud1&
ud2&

D 50.434h'S 2eif

2e2 ifD ;
^e4uJ•hS uD1&

uD2&
D 51.953h'S eif

e2 ifD . ~C1e!

The only nonzero matrix elements involvinghz are

(^d1u^d2u!JzhzS ud1&
ud2&

D 52.069hzS 1 0

0 21D ;
^e4uJzhzug&522.000hz , ~C2a!

(^D1u^D2u!JzhzS uD1&

uD2&
D 50.068hzS 21 0

0 1D ;
^e3uJzhzue2&53.190hz , ~C2b!

(^D1u^D2u!JzhzS ud1&
ud2&

D 51.692hzS 21 0

0 1D ;
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^e2uJzhzue1&522.415hz . ~C2c!

Now we use these results to implement perturbation
theory. In our numerical results, all energies andh are ex-
pressed in meV. First-order perturbation of the ground state
is zero. For the second-order perturbation of the ground state
we evaluate terms of the form

(
a

^guVexua&^auVexug&
~Eg2Ea!

. ~C3!

There are two kinds of quantities from this term

(
d1 ,d2

^guVexud&^duVexug&
Eg2Ed

1 (
D1 ,D2

^guVexuD&^DuVexug&
Eg2ED

5
2~1.883!2h'

2

Eg2Ed
1
2~0.675!2h'

2

Eg2ED
520.389h'

2 , ~C4!

and

^guVexue4&^e4uVexug&
Eg2Ee4

5
24hz

2

98.5
520.0406hz

2 . ~C5!

The third-order terms vanish. The fourth-order terms are pro-
portional to (hx

41hy
4), hx

2hy
2 , hz

4 and h'
2hz

2 . There are two
types of matrix elements that we have to evaluate:

~1! (
a,b,g

^guVexua&^auVexub&^buVexug&^guVexug&
~Eg2Ea!~Eg2Eb!~Eg2Eg!

.

From this term we get 2h'
4 @9.6831024cos2(2f)

13.2331024sin2(2f)#20.00546hz
2h'

2 which can be written
as

29.6831024~hx
41hy

4!16.4431024hx
2hy

220.00546hz
2h'

2 .
~C6!

~2! 2(
a,b

^guVexua&^auVexug&^guVexub&^buVexug&
~Eg2Ea!~Eg2Eb!2

.

This will only give quantities proportional toh'
4 , hz

4 and
h'
2hz

2 which are

0.00793h'
411.67431025hz

410.000988hz
2h'

2 . ~C7!

Hence the ground-state energy in a field is given by

Eg520.389h'
220.0406hz

210.00696~hx
41hy

4!10.0165hx
2hy

2

11.67431025hz
420.00447h'

2hz
2 . ~C8!

We also quote here the general formula for the suscepti-
bility for a non-Kramer’s ion,

xaa~T!5
1

ZH 1

kT(G e2EG /kT(
G8

8 u^GumauG8&u2

1(
G

(
G8

9 u^GumauG8&u2
e2EG /kT2e2EG8 /kT

EG82EG
J ,
~C9!

wherem is the magnetic moment operator,uG& is a crystal-
field state forh50, andEG is the corresponding eigenvalue.
Here(8 indicates a sum over statesuG8& that are identical to
or degenerate withuG&, and(9 indicates a sum over states
uG8& that are nondegenerate in energy withuG&. The first
term gives the temperature-dependence of the magnetic sus-
ceptibility and the second term gives a relatively temperature
independent paramagnetism.

APPENDIX D: THE STATES zg‹ AND ze‹

Here we develop expressions for the statesug& andue& of
the lowest doublet in the presence of an exchange field. For
that purpose it is convenient to label the ten zero-field states
as doublets from 1 to 5 in order of increasing energy. We use
perturbation expansions identical to those of Sec. III.C. to
develop expansions forug& andue& in terms of the ten doubly
degenerate states of theJ59/2 multiplet. The exchange field
at a Nd ion in ann sublattice due to all its Cu and Nd
neighbors lies along they axis. The magnitude of the ex-
change field,h, will be fixed to give the observed doublet
splitting.

We first diagonalize the potential due to interactions with
this magnetic field within the ground-state doublet to give
the statesu16&. We will use the fact, shown in Sec. IIIC,
that the matrix elements of theJ operators between any two
sets of doublets are like Pauli spin matrices. For then sub-
lattice ~with Nd moment along the2y direction! we have

S ^ i1u

^ i2u D J~ u j1&u j2&)5~xi jsx ,e i j xi jsz ,2zi jsy!,

~D1!

wheres are the Pauli spin matrices,i , j are labels of the
doublets, ande i j , xi j , andzi j are defined in Eq.~16!.

From the diagonalization of the potential matrix~for a
field in the2y direction, carried out in Sec. IIIC!, we can
see that the zeroth-order ground stateug&0 is the state labeled
u12&, while the zeroth-order first excited stateue&0 is labeled
u11&. Explicitly we have

u12&[ug&05
1

A2
@ uA1&2 iQuA1&],

u11&[ue&05
1

A2
@QuA1&2 i uA1&], ~D2!

where uA1& andQ are given in Eqs.~8e! and ~9!, respec-
tively. At this order there is no difference between thex and
y directions, but there is one between thez direction and the
x or y directions, reflecting the tetragonal symmetry of the
lattice. To see an anisotropy in thex2y plane we need to
carry the expansion to higher order. We can find the correc-
tions to the zeroth-order wave function to first (u16,1&) sec-
ond (u16,2&) and third order (u16,3&) in the fields. These
will be orthogonal to the original state, that is, the correc-
tions to any state will only involve the states belonging to the
four other doublets. In this formulation the eigenstate is not
normalized to unity.
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u16,1&56 (
k52

5

h
e1kxk1
E1k

uk6&[6h(
k52

5

e1kf k
~1!uk6&,

~D3a!

u16,2&5 (
k52

5

h2e1kS xkpxp1E1kE1p
2
xk1x11
E1k
2 D uk6&

[h2(
k52

5

e1kf k
~2!uk6&, ~D3b!

u16,3&56 (
k52

5

h3e1kS xkpxpqxq1E1kE1pE1q
2
xkpxp1x11
E1kE1p

2 2
xkpxp1x11
E1k
2 E1p

1
xk1x11

2

E1k
3 2

xk1x1pxp1
E1pE1k

2 D uk6&

[6h3(
k52

5

e1kf k
~3!uk6&, ~D3c!

where the repeated indices (p,q) are summed from 2 to 5.
Let

f k~h!5 f k
~1!h1 f k

~2!h21 f k
~3!h3. ~D4!

Then the two lowest states are given by

ue&5u1,1&1 (
k52

5

f k~h!e1kuk1&, ~D5a!

ug&5u1,2&1 (
k52

5

f k~2h!e1kuk2&. ~D5b!

For then sublattice~with Nd spin in the2y direction! we
have

S ^eu

^gu D J(ue&ug&)5F j xsx ,
1

2
~ j y11 j y2!I

1
1

2
~ j y12 j y2!sz ,2 j zsyG , ~D6!

where I is the unit 232 matrix and the expressions for
j x . . . j z are

CeCgj x5^guJxue&5x111 (
k52

5

ek1xk1@ f k~h!1 f k~2h!#

1 (
k,p52

5

ekpxkpf k~h! f p~2h!

5^euJxug&, ~D7!

CeCgj z52 i ^guJzue&5S z111 (
k52

5

zk1@ f k~h!1 f k~2h!#

1 (
k,p52

5

zkpf k~h! f p~2h!D
5 i ^euJzug&, ~D8!

Ce
2 j y15^euJyue&5x111 (

k52

5

xk1@ f k~h!1 f k~2h!#

1 (
k,p52

5

xkpf k~h! f p~h!, ~D9!

Cg
2 j y25Cg^guJyug&52x112 (

k52

5

xk1@ f k~h!1 f k~2h!#

2 (
k,p52

5

xkpf k~2h! f p~2h!, ~D10!

where Ce
25^eue& and Cg

25^gug&. One sees that
d j y[ j y11 j y2 is of orderh3, andd j'[ j y2 j x is of order
h2, where j y5( j y12 j y2)/2, whereasj z and the average in
plane j av[( j y1 j x)/2 both are of orderh

0. ForD50.3 meV,
i.e., for h5D/(2 j y)50.07954, we find that
d j y521.031026, d j'51.3831024, j z520.0151, and
j av51.886.

APPENDIX E: ANISOTROPY DUE TO ZERO-POINT
FLUCTUATIONS

In this appendix we consider the effect of the in-plane
anisotropy of the Cu-Cu exchange interactions when
dJ[Ji2J' is nonzero. We consider only the calculation for
T50. Then it is convenient to follow the analysis of Sec. V
of Ref. 12. There one sees in Eq.~67! that within noninter-
acting spin-wave theory there is no gap in the spin-wave
spectrum even whendJ is nonzero. Although one can calcu-
late the gap due todJ using nonlinear spin-wave theory, it is
much easier to estimate this gap by constructing an effective
Hamiltonian,HZP, from the dependence of the quantum
zero-point energy on the orientation of the staggered mo-
ment. This anisotropy is not a long-wavelength
phenomenon—in simple cases it can be estimated from the
short-wavelength fluctuations.62,63Therefore, it is justified to
use the effective Hamiltonian given in Eq.~76! of Ref. 12 for
the Cu system without any rare-earth spins. In the present
notation@and withJav5(J'1Ji)/2# we have

HZP54Javd inS
23 (

iPCu
Six
2 Siy

2

54Javd inS (
p

@ap
21~ap

†!212ap
†ap#

1(
r

@ar
21~ar

†!212ar
†ar # D , ~E1!
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where d in52C2(dJ/Jav)
2'1029 involves a sum over the

zero-point energy of modes in the entire Brillouin zone. This
effect is clearly negligible except possibly for zero wave vec-
tor. This interaction can be included in the dynamical matri-
ces, in which case in Eq.~60! we should replaceHE by
HE14Javd in and the zero entries in the Cu sector of Eq.~61!
should be replaced by 4Javd in . One sees that this modifica-
tion has no effect at all on the energy of the modesv6 and
v3, and a completely negligible effect onv4. In Eq. ~65! we

now have the altered matrix elementsA115HE
12DC14Javd in and B1152HE14Javd in . Then, whend in
can be treated perturbatively, we find

v,
2 'v,

2 ~d in50!S 11
2Javd in

Dc~12 j x / j y!
D . ~E2!

Using the known values of the parameters we see that includ-
ing the effect ofd in has an effect of about 1% onv, .
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