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Optical Flow Constraints on Deformable Models With Applications to Face
Tracking

Abstract

Optical flow provides a constraint on the motion of a deformable model. We derive and solve a dynamic
system incorporating flow as a hard constraint, producing a model-based least-squares optical flow
solution. Our solution also ensures the constraint remains satisfied when combined with edge
information, which helps combat tracking error accumulation. Constraint enforcement can be relaxed
using a Kalman filter, which permits controlled constraint violations based on the noise present in the
optical flow information, and enables optical flow and edge information to be combined more robustly
and efficiently. We apply this framework to the estimation of face shape and motion using a 3D
deformable face model. This model uses a small number of parameters to describe a rich variety of face
shapes and facial expressions. We present experiments in extracting the shape and motion of a face from
image sequences which validate the accuracy of the method. They also demonstrate that our treatment
of optical flow as a hard constraint, as well as our use of a Kalman filter to reconcile these constraints
with the uncertainty in the optical flow, are vital for improving the performance of our system.
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Abstract

Optical flow provides a constraint on the motion of a deformable model. We derive and solve adynamic
system incorporating flow as a hard constraint, producing a model-based |east-squares optical flow solution.
Our solution a so ensures the constraint remai ns sati sfied when combined with edge information, which helps
combat tracking error accumul ation. Constraint enforcement can be relaxed using a Kalman filter, which per-
mits controlled constraint violations based on the noise present in the optical flow information, and enables
optical flow and edge information to be combined more robustly and efficiently. We apply thisframework to
the estimation of face shape and motion using a 3D deformable face model. This model uses a small number
of parameters to describe arich variety of face shapes and facial expressions. We present experiments in ex-
tracting the shape and motion of aface fromimage sequences which validatethe accuracy of the method. They
also demonstrate that our treatment of optical flow as ahard constraint, aswell as our use of a Kaman filter to
reconcile these constraints with the uncertainty in the optical flow, are vital for improving the performance of
our system.

1 Introduction

The apparent motion of brightnessin an image—the optical flow—constrains but does not necessarily determine
the three-dimensional motion of an observed object. In reconstructing three-dimensional motion using optical
flow and other ambiguous cues, combining separate solutions derived from different cues can only compromise
among limited guesses. In contrast, adding optical flow constraints to disambiguate a problem of motion esti-
mation can derive a good guess consistent with all the data. This paper describes such a constraint approach to
optical flow within a deformable model framework [33, 38, 48] for shape and motion estimation. We show that
this approach can greatly improve the ability to maintain accurate track of a moving object. For the applications
here, we will be specifically investigating the tracking of human faces.

Image cues provide constraintswhich the estimated model should satisfy as much as possible. Typicaly, con-
straints from multiple cues are reconciled by statistically combining constraint solutions, so as to weight each
source of information according to its reliability. Thisformulation treats data constraints as soft, in that the for-
mul ation biasesthe system towards sati sfying the constrai nt, but does not enforce the constraint after combination.
One of the distinguishingfeatures of our approach isthat wetreat optical flow asa hard constraint on the extracted



motion of the model, which guarantees enforcement. By placing constraintsfrom one cue onto the model during
estimation, we limit the choices of parameter combinations available for solutions using other cues (which are
included as soft constraints), thereby eliminating a portion of the search space. We claim that this simplifiesthe
estimation process and leads to improved robustness by not only producing alower dimensional estimation prob-
lem, but also by avoiding local minima.

The optical flow constraints are based on noisy data, which can lead to problems when using hard constraints
(since the desired portion of the search space could be discarded due to noise). Previous approaches which used
soft constraintsdid not encounter this problem, since a noisy constraint would simply be violated (and hence ig-
nored) when combined with other information. But it is precisely this property which prevents soft constraints
from limiting the search space in the first place (and hence loses the benefits of efficiency and robustness). In-
stead, we use an iterated extended Ka man filter to relax the optical flow constraint to alow for constraint viola-
tions which increase as uncertainty in the flow increases. In Section 4, we will be more precise by what is meant
by relaxing hard constraints, aswell ashow the constraint rel axation takes place. Basically, the Kalman filter finds
amiddle-ground between the hard and soft constraint solutionsthat isin harmony with thelevel of uncertainty in
the hard constraint. This retains the beneficial property of limiting the search space while being robust to noisy
constraints.

Our approach can be summarized as follows. Within a deformable model framework, we start with a model-
based version of the optical flow constraint equation, which constrainsthe velocities of the motion parameters of
the model. In the theory of dynamic systems [41], velocity constraints such as these are called non-holonomic.
Thevelocities of the motion parameters are a ready accounted for as resulting from the application of edge-based
forces; finding the equilibrium resulting from these forces amounts to a straightforward optimization problem.
With the addition of the optical flow constraints, a constrained optimization problem results, which is solved us-
ing Lagrange multipliers. The constrained solution containstwo kinds of forces. One providesthe standard linear
| east-sgquares model-based solution to the optical flow [28]. The second is a constraint enforcement term which
ensures the optical flow constraint remains satisfied when combined with edge forces. The presence of the con-
straint enforcement term yields a profitable combination of the optical flow solution with the edge forces. We
use a Kalman filter to realize this combination in a way that accounts for the uncertainty in the flow. Problems
with tracking error accumulation are aleviated using the edge forces, which now keep the model aligned with the
image without a statistically relevant violation of the optical flow constraint.

The applications we address here concentrate on the problem of estimating the shape and motion of a human
face. Thisproblem has been widely addressed in recent research, having applicationsin human-machine interac-
tion. Face tracking isa particularly natural testbed for our research for two reasons. The actual shape and motion
of faces makes edge and optical flow information easy to use and advantageous to combine; and the abundance
of data describing human face shape [16] facilitates the development of three-dimensional models of faces.

We have constructed a model of the human face which captures the relevant aspects concerning their shape,
motion and appearance. By using data from face anthropometry studies[16], the range of shapes produced cap-
ture the variabilities seen in the shape and appearance of faces across the human population. The design of the
facial motion model employs aspects of the Facia Action Coding System (FACS) [13], whichisamanual coding
method for describing facial movements in terms of “action units’. Our model separately encodes information



regarding an individua’s appearance from their facial motions and expression. Shape parameters describe un-
changing features of an observed object and capture variations in shape across objectsin a target class. Motion
parameters describe how an observed object changes during atracking session. Thisseparation producesan easier
tracking problem by requiring a smaller description of object state to be estimated in each frame. It also allows
information to be applied more precisely, since optical flow information only registers changes in motion param-
eters, while edge information figures in both shape and motion parameter estimation.

1.1 OQutline

After areview of related work, in Section 3 we present some preliminaries on our deformable model framework.
Then, Section 4 describeshow the optical flow istreated asahard constraint in thisframework, and how aKaman
filter isused to relax this constraint to account for uncertainty. We then present a series of experimentsdesigned to
assessthegenerality of our approach and its quantitativevalidity in Section 5. These experimentsextract the shape
of the face, and track its motion—even in the presence of large rotations and self-occlusion. They demonstrate
that our treatment of optical flow as a hard constraint, as well as our use of a Kalman filter to reconcile these
constraints with the uncertainty in the optical flow, are vita for improving the performance of our system.

2 Related Work

Thereisawide variety of work that relates to what is presented here concerning both the underlying techniques
used, and the application of tracking ahuman face. Virtualy all work on face tracking takes advantage of the con-
strained situation: instead of using a generic tracking framework which views the observed face as an arbitrarily
deforming object, a model-based approach is favored, which incorporates knowledge about facial deformations,
motions and appearance. Thisfacial model isused in concert with anumber of model-based techniques.

M odel-based edges and features: A prevalent model-based approach for tracking and shape estimation uses
features and edgesin asequence of imagesto track an object [27, 29, 33, 48, 50]. Thisrequiresaligningthemodel
features with the data, and is typically formul ated as an optimization problem where the parameter combination
is sought which yields the best alignment. The alignment can be performed using either a 2D appearance model
[48, 50] or on 2D features computed from a 3D model [29, 33, 47]. This optimization problem tendsto be quite
difficult, however, especialy as the deviation between the model and data becomes large.

M odel-based optical flow: Instead of computing an unconstrained flow field (agrid of arrows), amodel-based
approach explains the optical flow information in terms of motion parameters of the model [1, 5, 9, 23, 28, 35,
36]. While the prablem is non-linear, these frameworks can use either a single step linear least-squares solution
[9, 28, 36], or an iterative least-squares solution [1, 5, 23, 35]. The motion mode can be a 2D model of image
motion [5, 6] or a3D model (rigid or non-rigid) of object motion [5, 9, 28] (along with acamera model to relate
to the images).

It isalso possibleto compute an unconstrained optical flow field using standard techniques, and fit a parametric
motion model to theresulting field [4, 14]. The primary downsideto thisapproach would be that with the compu-
tation of an unconstrained flow field comes the artifacts resulting from smoothness assumptionsand the problem



of finding motion discontinuities. The model-based methods above take thisinformation from the model (instead
of assuming it).

Preventing tracking drift: In thispaper, we advocate the use of both optical flow and edges for face tracking.
Face tracking methods using only optical flow [4, 6, 14] will suffer from tracking drift, since error will accumul ate
when only velocity informationisused. Asaresult, long sequences are not tracked successfully. However, inthe
context of facial expression recognition (where the sequences are quite short), thismight not be a serious problem.

In previous work [11], we presented a framework for combining optical flow and edge information to avoid
the problems with tracking drift. Aside from this, [28] is the other notable exception of a framework which uses
model -based optical flow yet avoidsdrift. Inthiswork, arender-feedback |oop was used to prevent drift by locally
searching for the best set of parameters which aligns the rendered model with the image.

M odel-based constraints and Kalman filtering: The treatment of optical flow as a hard constraint on the
motion of the model in [11] not only helps prevent tracking drift, but also makes the system more robust and
efficient when coupled with a Kalman filter to handle uncertainty in the constraint.

Before [11], hard constraints were used in estimation only as a modeling tool where an articul ated object was
modeled as a set of rigid pieces held together by geometric constraints (which model the joints) [21, 33, 42]. A
method known as constraint fusion [21, 42] combines constraints with measurement data to account for the fact
that the joint configurations might not be known in advance. This fusion was performed using a Kalman filter
in [21], and ends up being closely related to the physics-based constraint method in [33] which adds constraint
forces to dataforces. More efficient means for dealing with such constraints has a so been investigated [17, 33].

The use of soft constraintsis much more common for fusing information. In [18], stereo and shading informa-
tion are combined using a soft constraint (weighted terms from each source are added into the system energy). A
physics-based sensor fusion method combining range and intensity data was presented in [51]. Using a Kalman
filter [2, 26] or Bayesian methods [12] for fusion combines solutionsin a similar way. Aside from this, Kalman
filtering has become a standard tool for estimation in dealing with noisy data[3, 19, 30, 32, 37].

Facetracking: Thereisavast body of work on tracking the human face, with applicationsranging from motion
capture to human-computer interaction. Among them, there are a number which bare similarity in some respect
to the work presented in this paper.

Severd 2D face model sbased on splinesor deformable templates[27, 34, 50] have been devel oped which track
the contours of aface in an image sequence. In addition to motion, these methods provide rough 2D information
about the observed individual’ sappearance. In [6], the optical flow field is parameterized based on the motion of
the face (under projection) using a set of locally defined 2D motion regions. The extracted parameters are used
for expression recognition.

In[14, 47], aphysics-based 3D face model (with many degrees of freedom) is used, where motion is measured
interms of muscle activations. Edge forcesfrom snakesare usedin [47], whilein[14], activations are determined
from an optical flow field which are later used for expression recognition. In [4], arigid ellipsoid model of the
head is used to estimate motion parameters from aflow field.

Addressing the problem of image coding, [9, 28] estimate face motion using a simple 3D model and amodel -
based | east-squares sol ution to the optical flow constraint equation. [28] improves performance using motion pre-
diction, and avoids tracking drift using a render-feedback loop.
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Our system, first presented in [11], usesacombination of model-based optical flow and model-based edge track-
ing to estimate the shape and motion of aface. The flow and edges are combined by treating the flow as a hard
constraint on the motion of themodel. Thiscombination preventstracking error accumulation, aswith the render-
feedback loop in [28], although our use of a hard constraint produces a much more robust solution by making the
model -based edge tracking problem easier to solve.

In addition to this, none of the previous work makes a serious attempt in extracting a detailed 3D shape de-
scription of the face from an image sequence. At best, only arough shape description is derived. Furthermore,
most all of these approachesfail under large head rotations due to the use of a2D model or theinahility to handle
self-occlusion.

3 Deformable model dynamics

Deformable models [33, 38, 48] are parameterized shapes that deform due to forces according to physical laws.
For vision applications, physics provides a useful analogy for treating shape estimation [33], where forces are
determined from visual cues such as edgesin animage. The deformations that result produce a shape that agrees
with the data. The use of physics aso makes available additional mathematical tools; for example, constraint
techniques from physics will be used in Section 4 to incorporate the optical flow information. In this section, we
review deformable models as presented in [33] and briefly describe our face model.

A three-dimensional deformable model x maps a domain Q (of surface coordinates) to a set of pointsin R3
which form the model’s surface. It is parameterized by a vector of values g, meaning that changesin g register
as geometric deformations of the surface. A particular point on the surface iswritten as x(q; u) with u € Q being
used to identify a specific surface location. (Note that the dependency of x on q is often omitted, for reasons of
conciseness.) The goal of a shape and motion estimation process is to recover the value of g for each imagein
a sequence of frames. We now present our deformable face model; following this, the remaining discussion will
refer to thisface model, although the development of the techniques will apply generally.

3.1 A deformableface model

Acrossthe human popul ation, the faces of individual sexhibit agreat deal of variationintheir appearance, but they
all still have agood deal of structurein common. A similar statement can be made about facial motion—whileit
iscomplex and non-rigid, the motions are still fairly constrained. We take advantage of this commonality in the
construction of our model of the human face. Here, we briefly describe the face model used in the experimentsin
this paper.

Our deformable face model is a 3D polygon mesh, shown smoothly shaded in Figure 1(a) and wireframe in
(b) inits default configuration. The modd isrealized using a set of parameterized deformations (which depend
on q) applied to this polygon mesh. The parameterization of this face model was constructed by hand; details
concerning its construction are in Appendix B. Appendix C describes a system of anthropometric measurements
of theface; we use datafrom published tables of these measurements to hel p bias the model away from producing
unlikely faces during estimation. Our model does have limitationsin its coverage, however. There are no means



for representing large amounts of facial hair (such as abeard or mustache) or eyeglasses. Furthermore, there are
many facial motions that cannot be expressed accurately, such as many of the lip deformations produced during
speech. Effectsof theselimitationson system performance are discussedin Section 5.6. Better and easier methods
of dataacquisition are becoming available, and are making it possibleto build amodel constructed from examples
[10, 25]. It'slikely that more automatic methods of model construction (using examples) will become the favored
approach, asit israther difficult to obtain a fully developed model of the face by hand.

@) (b)
Figure 1: The deformable face model (in rest position)

3.2 Separation of shape and motion

In some applications (including face tracking), to distinguish the processes of shape estimation and motion track-
ing, the parametersin q are rearranged and separated into q,—a stati ¢ quantity—which describes the basic shape
of the object, and into gm—a dynamic quantity—which describes its motion (both rigid and non-rigid), so that
d=(qy,qm) " . Regarding human faces, gy, describes the unchanging features of an observed face and captures
variationsin appearance across the human population, while gy, describes how an observed face changes during
atracking session (head position, aswell as facial displaysand expressions). This separation produces an easier
tracking problem by requiring a smaller description of object state to be estimated in each frame. Thisdivisionis
often built into face models[6, 28, 34, 47] to simplify model construction or estimation, while Reynard, et al. [40]
use this separation to permit learning the variability of motionsfor a class of objects. Note that there is no guar-
antee that the shape and motion of some class of objects is separable; thisis a simplifying assumption that we
make. For human faces, this separation is quite reasonabl e, and resultsin the changesin gy, tending to zero asthe
shape of the observed object is established. Oncethisoccurs, fitting need only continuefor gm. Thissuggeststhat
including as many parameters as possiblein g, makes long-term estimation more efficient.

The moddl x is realized by applying deformation functions to an underlying shape s. For this paper, sisthe
polygon mesh in Figure 1, and Q is an index set used to refer to its vertices (when applications require it, we
add additional structureto Q to allow references to any point on its surface, instead of just the vertices). In other
deformable model work [33], sisasolid primitive such as an elipsoid given by its explicit parametric equation
with its domain Q being an appropriate rectangle in R

Aswiththe parameters, the deformationsappliedto sare splitinto two separate deformation functions—onefor
shape (Ty,) and one for maotion (T ,,)—as demonstrated in Figure 2. These deformation functions (which depend
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Figure 2: Example parameterized deformations of the face model (with separate shape and motion parameters)

on the parameters ¢) map R3 to R3. For faces, the shape deformation Ty, is applied to the underlying polygon
mesh first (since facial motion can be seen as deviations away from a particular individual’ sface), so that:

X(q;u) = Tm (dm; To(qb; S(U))) 1)

The shape deformation T}, uses the parameters gy, to deform the underlying shape s. For faces, applying this de-
formation alone will produce a particul ar individual’sface in rest position. On top of thisisthe motion deforma-
tion T, with parameters qn,, which includes a rigid translation and rotation, as well as non-rigid deformations
(such as raising eyebrows, frowning, smiling, and opening the mouth, as shown on the left of Figure 2). Each
of these deformations can be defined using a series of composed functions, allowing a more modular design (see
Appendix A).

3.3 Kinematics

The kinematics of themodel can be determined in terms of the parameter velocities . Asthe shape changes, the
velocity at a point u on the model is given by:

X(u)=L(q;u)q 2

whereL = dx/dq isthe model Jacobian [33]. For caseswhere X is defined using a sequence of deformation func-
tions, the Jacobian can be computed using the chain rule asin Appendix A. We also partition the Jacobian (aswe
did with the parameters) into blocks corresponding to g, and gm asL = [Lp Lm]. A geometric interpretation for
L (u) comes from viewing each column of L as corresponding to a particular parameter in q. Each columnisa
three-dimensional vector which “points” in the direction that x(u) moves as that parameter is increased. When
considered over the entire model (over Q), they form vector fields, which are shown in Figure 3 for particular
motion parameters of our face model.
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Figure 3: Sample vector fields for various motion parameters

3.4 Perspective projection of the model

When modeling an object viewed in images, x needsto includeacameraprojection, resulting in atwo-dimensional
model (called xp), whichisprojected flat fromtheoriginal three-dimensional model. Under perspectiveprojection
(with a camera having focal length f), the point x(u) = (x,y,2) " projects to the image point xp(u) = ;(x, y)'.

The velocities of model points projected onto the image plane, X, can be found in terms of x. The Jacobian
L, = 0xp/0q isgiven by:

o) = 520 = (L@ ) a- La@us ®

where

(4)

oxp | f/z 0 —fx/Z
x | 0 f/z —fyZ2

Thematrix in (4) projectsthe columns of L (which are three-dimensional vectors) onto the image plane. Aswith
L, we partition L, as [Lpp Lmp]. In fact, the vector fieldsin Figure 3 are just renderings of L .

3.5 Estimation using dynamics

Themodelsdefined earlier are useful for applicationssuch as shapeand motion estimation when used in aphysics-
based framework [33]. These techniques are a form of optimization whereby the deviation between the model
and the datais minimized. The optimization is performed by integrating differential equations derived from the
Euler-Lagrange eguations of motion. In atypical vision application, the equations of motion are simplified to
omit the mass term, which produces a model free of inertia. From an optimization point of view, this has the
desirable property that the model state no longer changes once all forces vanish or equilibrate. In additionto this,
the damping matrix is set to be the identity and the stiffness term is omitted, resulting in the following simplified



dynamic equations of motion:
q="fq ®)

where the applied forces fy are computed from three-dimensional forces f3p and two-dimensiona image forces

fimage as.

fa =3 (L(up) fap(u;) +Lp(u;) Firege(u)) ) (6)
]

The distribution of forces on the model is based in part on forces computed from the edges of an input image.
We compute the image forces fimage(Uj ) Using theintensity gradient, asin [33, 48]. Using this method, theimage
force applied to model point u; (which correspondsby projectionto pixel j) isthe product of theintensity gradient
and aweighting function (with range [0, 1]) which is a*“probability” that the current model configuration would
produce an edge visible nearby pixel j. Asin [48], we use a thresholded version of this weighting function—
details on how potentially visible edges are determined for our face model are provided in Appendix D. Note
that these image forces depend on g not only through L, but aso in the determination of likely visible edges (the
weighting function). Given an adequate mode! initialization, these forces will aign features on the model with
image features, thereby determining the object parameters. Using L and L, the applied forces are converted to
forces which act on g and are integrated over the model to find the total parameter force fq. The dynamic system
in (5) issolved by integrating over time, using standard (explicit) differential equation integration techniques (we
use an Euler step):

q(t+1) =q(t) +q(t)At (")

Theprocess used to initiaizethe system to determine the value of q(0) isdescribedin Section 5. The next section
describes how thisframework is augmented to accommodate optical flow information.

4 Optical flow constraints

In the following, the use of hard optical flow constraints on deformable models is presented. The optica flow
constraint equation, which expresses a constraint on the optical flow velocities, is reformulated as a system of
dynamic constraints that constrain ¢, the velocity of the deformable model. The resulting information will be
combined withthe dataforcesfq whileleaving the constraint satisfied. Theoptical flow constraint equationisused
at anumber of select locationsin the image to constrain the motion of the model, instead of explicitly computing
an unconstrained optical flow field on the entireimage. We will see below how the use of thisconstraint isrelated
to model-based optical flow methods (which are aso known as “direct methods” since they also do not explicitly
compute a flow field). The use of optical flow information grestly improves the estimation of g, the motion
parameters of the deformable model.

In deformablemodel frameworks, estimationisaccomplished through an energy optimization processviaequa-



tions of motion. Hard constraintsimpose aglobal requirement on thisdynamic system whose solutionisenforced
at eachiteration (either exactly or, if the systemisoverconstrained, in aleast-sguares sense), while soft constraints
(such as spring forces) only bias the behavior of the system toward a certain goa (often involving the system en-
ergy). Wewill discuss how hard constraints provide ameansfor results obtained from one datasource to guidethe
computation of the solution to another, potentially more difficult problem. This decreases the cost of thisfurther
computation and increases the likelihood that its solution will closely reflect the true state of the observed object.

Constraints which depend only on q are called holonomic constraints, and constrain the model to a set of al-
lowable positions. They have been used in a deformable model formulation, for instance, to add point-to-point
attachment constraints between the parts of an articulated object [21, 33, 42]. A holonomic constraint C hasthe
general form

Non-holonomic constraints additionally depend on the vel ocity of the parameters, ¢, and constrain the motion of
themodel. A non-holonomic constraint C has the general form

Inthefollowing, we show how the optical flow constraintstake thisform and can beincorporated into thedynamic
system using Lagrange multipliers. Thisresultsin hard constraints, since the constraintswill be enforced exactly
(or in aleast-squares way). Following this, we will describe how this constrained system is solved, and how a
Kalman filter is used to relax these hard constraints.

4.1 Optical flow constraints

Given the assumption of brightness constancy of small regionsin an image, the optical flow constraint equation
[22] at apixel i intheimage| takesthe form:
uff [ i
Vi

where 0l = [Iy |y] arethe spatial derivativesand Iy isthe temporal derivative of the image intensity. u; and v; are
the components of the optical flow velocities.

For amodel under perspective projection, there exists a unique point u; on the model that corresponds to the
pixel i (providedit is not on an occluding boundary). The optical flow constraint equation can now be rewritten
interms of g with thisin mind. This rewriting uses an identification of the image velocity (u;, Vi) at pixel i with
its corresponding model velocity Xp(u;) from (3):

Vi

[ U ] — %p(U) = Lnp(Ui)Gm (11)
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Direct use of the optical flow information only provides motion information, and as aresult, only gn, is affected.
To clarify this: any observed motionis caused by dynamic changesin the true value of gm,. The true value of gy,
is a static quantity—the meaning of g, comes from the analogy of physics, where the value of gy, improves over
the course of fitting (over time) as more data becomes available.

The non-holonomic constraint equation for the optical flow at a pixel i in theimage can be found by rewriting
the optical flow constraint equation (10) using (11):

Instead of using this constraint at every pixel in the image, n pixels are selected from the input image (where

n > dimgm). Appendix E describes the criterion used to choose these particul ar points, and a so describes how

some of the known difficulties in the computation of the optical flow are avoided in this model -based approach.
For the n chosen pixelsin theimage, the system of equations based on (12) becomes:

Dllep(Ul) |t1
: Om+| : | =0 (13)
DIanp(Un) Itn
which can be written compactly as
Bdm+1t=0 (14)

This equation is simply a model-based version of the optical flow constraint equation [1, 5, 9, 23, 28, 35, 36].
Instead of solvingit on itsown, however, it is used as a hard constraint on the motion of the model.

4.2 Solving the dynamic system

Constraining the equations of motion with the model-based flow equation resultsin the constrained system:
q="fy subjectto BQm+I1t=0 (15)

Thisis solved using the method of Lagrange multipliers[41, 45]. The Lagrange multiplier technique adds addi-
tiona degrees of freedom (one for each degree of constraint), to form a larger, unconstrained system (with the
constraints“built in”). Theinitial dynamic equation of motion (5), now split into two parts corresponding to gy
and g, is modified by adding the constraint force f; to qm:

qb = fqb7 qm = fqm +fC (16)

11



Addingaparticular valueof . will ensurethe constraint equationissatisfied, in part by cancelling the components
of fq,, that violate the constraint. This constraint force is determined using the Lagrange multiplier A as:

fo=—B'A (17)
We can combine equations (14), (16) and (17) to form:
BB\ = Bfg, +I (18)
and can now determine the constraint force (by multiplying (18) on theleft by BT, the pseudo-inverse[45] of B):
fo=—B*(Bfg, +11) = —BT1{—BTBfg, (19)
which resultsin the unconstrained dynamic system (which is solved iteratively since f is highly non-linear):
b = fq,, Om = —B*li+ [1-B"B|fq, (20)

Thefirst term of ¢m in (20), —B™ I, is amodel-based linear least-squares solution to the optical flow constraint
equation [28]. A model-based solution to the optical flow constraint equations attributes the flow in theimage to
motion parameters in the model. Thisworks as follows. A change to any motion parameter induces a character-
isticmotion field in theimage. Figure 3 illustratesthese vector fieldsfor particular motion parameters of our face
model. The linear combination of the fields L m,(u) using the weights —B™ | best satisfies (14) at the sampled
pixelsin aleast-squares sense. The pseudo-inverse of B is determined by computing its singular value decompo-
sition [39, 45]. Each motion parameter in g will have a corresponding singular value—a singular value near zero
isinterpreted as alack of motion in that particular parameter (although this could also be caused by thefailureto
gather enough information from the images to sample the motion). In solving (20) iteratively, fq is re-evaluated
upon each iteration, while B is not. (We have empirically found that re-evaluating B does not change the perfor-
mance of our system when high frame-rate cameras are used. Thisisnot surprising, asthe dependency of B onq
isvery small for the applications here, when given moderately sized changesing.)

The second term in (20) contains the edge forces fq,, scaled by the matrix [1—B*B]. This projection matrix
cancels the component of f, . that violates the constraint (14) on gm. Unlike the hard optical flow constraint,
the edge forces act as a soft constraint, but still prevent errors in gn, from accumulating, since the uncancelled
component of the edge forces can further adjust the solution.

Asit stands, however, this method will not be robust since B depends on noisy data. In [11], an ad hoc method
was used to relax the hard constraint by replacing the projection matrix in (20) with [1—B*WB| where W isa
diagonal matrix whose entries (in [0, 1]) represent the certainty of information provided by a particular pixel. A
more principled approach to relaxing the constraint is described in the next section, where (20) is reformul ated
using a Kalman filter. But first, it’s worth taking a closer look at what the hard constraint is actually doing, and
what is meant by relaxing the hard constraint.
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4.3 Discussion

Consider the problem of combining together the two sources of information (edges and flow) to compute gm.
Independently, the edges and flow produce two different solutions: gm = fq,, and gm = —B*1;. In thefollowing
discussion, we consider the different formulations that result depending on whether soft, hard, or relaxed hard
constraints are used to combine the solutions.t

Soft constrai ntsare thetypi cal meansfor combining these solutions. Statistical methodsfor combinationweight
these together (using matrices Wi and Weqge) according to their reliability:

4™ = ~WiiowB ¥ 1t + Wedgefqr (22)

These weighting matrices are typically formed from the covariance matrices for the individual solutions[8, 12].
In non-linear situations, (21) is solved iteratively. Thisis also comparable to using a Kalman filter to combine
sourcestogether (or aniterated extended Ka man filter in the non-linear case). In a deformable model framework,
this approach is achieved by adding together weighted combinations of forces [46, 48] or energies [18] derived
from data sources. The dynamic system produces aweighted |east squares estimate similar to (21) asit converges.

With hard constraints, instead of combining solutions as above, we solve a constrained system: the equation
originally used to solvefor flow, Bgm + 1t = O, will be used as ahard constraint on the sol ution of gm = fg,,. What
resultsis the following:

A = ~WiowB It +Wedge [1 - B¥B] Ty, (22)
Thissolutiongivesprecedenceto theflow solutioninaninterestingway. Thereisnow aprojectionmatrix [1 — B B]
which cancel sthe component of the edge sol utionwhich viol ates the constraint before the sol utionsare combined
together. Thismakesasubstantial difference when (22) must be solved iteratively when themodel -edge alignment
problem (fg,,) is non-linear. When solved alone, it is significantly more computationally expensive than solving
for the flow. In this case, however, the projection matrix cancels out a portion of the search space for the model -
edge alignment that the constraint makes impossible. Thisresultsin alower dimensiona problemin solving the
model-edge alignment, and can improve efficiency, aswell as decrease the chances of reaching alocal minimum.
Alternatively, the edge solution could be used as ahard constraint on the flow; but this would lose the efficiency
benefits, asthe edge solutionis much more expensiveto solve, so that its projection matrix would not be available
in timeto efficiently guide the flow solution.

In practice, the hard constraint depends on noisy data, in which caseit is overly restrictiveto fully cancel any
component of the edge forces. Furthermore, during complex motions, it is not unreasonablefor the flow solution
to be non-degenerate, so that the projection matrix is zero (so that it cancels everything). Oneway of dealing with
thisisto relax the hard constraint: to permit small violations of the hard constraint where it is noisy while still

1To keep this discussion informal, equations (21)-(23) are merely suggestive of the process involved in statistical combination. As
we shall seein the next section, the combination process can be formalized most perspicuously by recasting the entire solution processto
take into account the statistical information from both solutions. Unfortunately, this presentation distracts from the high level differences
between methods.

13



projecting away much of the edge forceswhich violate it.
The ad hoc method that accomplished thisin [11] (mentioned earlier) was to replace the projection matrix in
(22) with [1 — B™W gongraintB], using the diagonal matrix W gongraint. Thisresultsin:

qgelaxed) = —WiiowB ™ It +Wedge [1 — B WeongraintB] fq,, (23)

The best illustration of what thisrelaxed solution is doing comes from the special case when W ¢ongraint has equal
entrieson itsdiagonal, so that W congraint = a1 with a € [0, 1]. Then therelaxed solutionis simply a convex com-
bination of the soft and hard constraint solutions:

an ™ = agn™ + (1- a)gn™ (24)
The hard constraintisenforced when a is 1, with alinear compressionin the constraint’snull space direction that
decreases until a is 0, which is the soft constraint solution. This specia case of the method in [11] represents

one of the simplest means of relaxing ahard constraint. The next section describes a more principled approach to
relaxing the hard constraint using a Kalman filter.

4.4 Kalman filtering and hard constraints

The optical flow constraint on g, isimperfect due to noise and estimation errors. It istherefore desirableto have
only a partial cancellation of fg,,; one way this can be accomplished is through the use of a Kalman filter. This
section describes how the computation from Section 4.2 isreformul ated using an iterated extended Kal man filter.

Kalman filtering [3, 19, 30] has become a popular tool in computer vision, and the formulation hereis, on the
whole, similar to other applications[2, 7, 26, 32, 37]: there is a measurement equation which models the noise
inherent in the data gathering process, and there is a process model, which predicts the behavior of the system
based on the current state. The initialization and tuning of the filter is accomplished using standard techniques.
The significant difference here, is that there is not only the edge data equation (5), which has been previously
used as a filtering measurement equation [33], but there is also a data-based constraint equation (14). The first
part of thissection describes onereasonableway of using thisconstraint in the measurement equation. Alternative
formulationsare possible; ours correspondsto onewhichinvolvesthe solution of ahard constraint. Theremainder
of the section describes an iterated extended Kaman filter based in part on this measurement equation. First, we
will describe our formulation of the filter. Following this, we will explain why thistreatment allows for relaxed
hard constraints.

By assuming a Gaussian noise model for both the measurements and state, a Kalman filter can maintain an
estimate of the statey and the statecovariance P. Whilethe assumption of Gaussian noise might not beparticularly
accurate indescribing the actua noisein thesystem, it permitsamuch simpler solutionwhilestill capturing alarge
amount of the uncertainty.

The measurement equation for the filter relates the measurements z to the state y using the measurement ma-
trix H. Terms vy, and v,, are added to represent the assumed zero-mean Gaussian noisein fq and I; they have
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covariances Ry, and R, respectively:

2(t) = H(t)y(t) + ( Xf((t‘)) ) 25)

where the construction of H, y and z in (25) comes from (14), (16) and (17).

100 Ab . fo, | |
H=10 1 B"|, Yy=1{0m :<q>’ z=|fq, :<fQ>:<Zij(UJ)Tf(UJ)> (26)

A —I —I
0B 0 A N ! !

The statey consistsof the parameter vel ocities; together with the Lagrange multipliersA usedin theoptical flow
solution. Thisinclusionisfor presentation only, because, aswill be seen | ater, A is effectively not part of the state.
The discrete update equation for the state is given by (7).

z consists of the parameter forces f and the temporal image derivatives|;. Note that the spatial image deriva
tives are not included in the measurements (even though they are used in the formation of B); doing so would
greatly complicate the measurement equations. Similar simplifications can be found in image-based optical flow
techniques[44] where the noisein the spatial image derivatives are ignored to provide a Gaussian solution. Rea-
sonably accurate estimates of the spatial image derivativesare usually available (especially away from occlusion
boundaries), making thisafairly safe assumption.

Notethat H dependson the statey, so that the measurement equation is non-linear, and its solutionrequiresthe
use of an extended Kalman filter. We aso chooseto iterate the solution, dueto seriousnon-linearitiesinfy. Recall
from the previous section that while both B and fy depend on g, we only re-evauate fq, and not B. Thisiterated
extended Kalman filter isimplemented in the standard way [19, 31], paying heed to the usual caveats concerning
linearized filter convergence.

A more standard implementation would use the Kalman filter for dataintegration [2, 26] (a soft constraint ap-
proach) to fuse the flow and edge solutions. This solution simply lacks the Lagrange multipliers:

10 . for f
HS)ft — 0 1 , yS)ft — <qb> — 'q’ ZS)ft — fqm — < q > (27)
0 B

Om —lt
—1y

However, it isthe solutionthat containsA that produces ahard constraint solution. Comparing the pseudo-inverses
of these two measurement matrices shows that H* resultsin (20):

1 o0 0
H*=|0 1-B*B  B*
0 (BY)' —(B*)'B* 28)

0 0

HS)ft+: 1
0 (B'B+1)"! (B™B+1)7!BT
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Theinclusion of A in (26) thus ensures the system reduces to the original unfiltered solution (in the presence of
no a priori state information). The presence of A is aresult of the constraints on the dynamic system. However,
it should not be considered part of the state. In fact, the Lagrange multipliers are not something that really needs
to be estimated; but we must include it to effect a hard constraint solution. This decision comes with some com-
plications. Each A in A is associated with a particular pixel from the optical flow computation. However, there
is not necessarily any correspondence between the pixels (and hence the Aj) across iterations. Even worse, the
number of pixels used (the dimension of A) varies across iterations. This means a subset of the state parameters
are only present at one iteration, and their predicted values at timet are not based on any previously estimated
values. An aternativeinterpretation would be to view these parameters A as having infinite observation noise, or
perhaps that the “ observability” of A is changing.

The discrete process equation for the Kalman filter gives an expression for the prediction of the state y(t +
1) given the previous estimate y(t). In this case, this equation states that the predicted motion of the observed
subject is the same as in the previous iteration, along with the added noise w (assumed to be independent zero-
mean Gaussian noise with covariance Q) to form the primarily data-driven system:

y(t+1) =y®)+w()  pw)~N(0,Q) (29)

The prior estimates of y and P used in the computation of the estimated state and covariance at timet are denoted
¥ and P. Since \ is treated as a distinct value at each iteration, only the portions of §i(t — 1) and P(t — 1) that
correspond to g are retained, resulting in:

5(t) = (q“; ”) ,

Pt)=P(t—1)+Q(t—1)

(30)
Pt 1) 0 0 0 0
= 0 |+{0 Qg t—1) 0
o 0 0 0 0 Q(t—1)

(where Pq isthe block of P(t — 1) corresponding to ).

Q isthe covariance of the process noise, and represents the uncertainty in the process model. As estimation
of gy is static, its corresponding block in Q is zero (in practice, a small amount of stabilizing noise is needed).
Qg., Models the uncertainty of the actions of the observed subject. Thisway, the estimation of the static quantity
gp Will eventually cease as the estimated covariance of these parameters converges, while g, isinterpreted as a
dynamic quantity by thefilter. Q, isused to relax the hard constraints; thiswill be explained below.

Computing the estimated mean and covariance of y involves forming the Kalman gain matrix, which is used
to combine the solution using the current measurements with the solution from the previousiteration. In the fol-
lowing filtering equations, all quantitiesare taken at timet, but this dependence is omitted to improve readability.
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The Kaman gain matrix [3, 19, 30] iscomputed as:
~ ~ -1
K=PHT (HPHT—i—R) (31)

The covariance matrix R isthe sum of terms resulting from the noisein fq and I

_ qu 0
[ o] -

The relative scale between R¢, and R, provides a control for tuning how much trust goes into the optical flow
information relative to the edge information.

The estimated mean is computed as a sum of the current solution K z and the weighted prior mean estimate V,
or as the sum of the prior estimate § and the innovation (z— HY) weighted by K:

y=Kz+(1-KH)§=§+K (z—HY) (33)

The estimated covariance[3, 19, 30] is computed from the prior covariance P as:

~

P=(1—-KH)P (34)

44.1 Reaxinghard constraints

In understanding why this formulation relaxes the hard constraints, it is much clearer to consider the following
aternative (and agebraically equivalent) formulation [30] of (31)-(34):

y=PH'R1z+PP1§y
~ -1 (35)
P=(HTRH+P?)

When written thisway, it is clear how the solution of the measurement equation is being combined with the a
priori information, based on their corresponding covariances.

Consider the casewhen R = 1, P(t —1) =0, Qq,,(t— 1) = 0 and Q) (t — 1) = 21, with o > 0 (using Pt for
P~ in the absence of prior information). The result simplifiesto:

00 O
y=|H'H+|0 0 O H'z (36)
0 0 a1

Without the addition of a1, thiswould bethe hard constraint solutionin (20). The addition of al relaxesthe hard
constraint, with more constraint violation as a increases. Thisis because the Lagrange multipliersthat were used
to enforce the constraint are gradually driven towards zero as a increases, since they are increasingly combined
withtheapriori valueof A iny (which iszero). In fact, when a is sufficiently large, this solution approaches that
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of a soft constraint solution (i.e. one without Lagrange multipliers), since:

00 O 1 0 0
lim H'H+[0 0 O =0 (B'TB+1)"1 0 (37)
0 0 al 0 0 0

which, when right multiplied by H, produces H®™t™ (with additional rows of zeros).

Inthe general case, P(t — 1) and Q) (t — 1) will also cause constraint violation, but not in any controlled way.
Rather, their presence causes the solution to be a balance between the measurement equation solution and the
predictionin away that doesn’t respect the constraint. In other words, the Kalman filter can put moretrust in the
prediction (which can violate the constraint) at times when the estimate of , is noisy. In practice, the form of
Q\(t—1)isstill %1, with a determined duringfilter tuning (the determined val ue cancelled on average 97% of the
component of the edge forces which violated the constraint, on each iteration of the extended Kalman filter). Keep
inmind that theonly distinction between thissolution, and an ordinary use of aKaman filter, istheinclusionof the
Lagrangemultipliersinthestate variable, and their processupdatein (30). Neither of thesebetray the assumptions
made in the derivation of the iterated extended Kalman filter [31], and as aresult, the solution here has the same
stability properties as an ordinary solution.

The Kaman filter solution presented here has a number of advantages over the direct solution from (20), and
the commonplace use of a Kalman filter for data fusion. It makes the framework more robust to noise and small
estimation errors. More importantly, it provides a val uable means for combining the edge forces and optical flow
information; the optical flow constraint is now relaxed to adegree based on theerror in theoptical flow information
in away that makes the system more efficient and robust. Next, experiments will be presented which show that
the use of a Kalman filter (in addition to treating optical flow as a hard constraint) was an important addition to
the system.

5 Experimentsand discussion

This section contains the results from a series of face shape and motion estimation experiments. The first three
experiments exhibit the generality of our system on a variety of subjects, while the next four experiments use a
common observed subject, and provide a quantitative validation of the shape and motion estimation. The last of
the validation experiments compares a number of related frameworks mentioned in this paper.

5.1 Initialization

The entire estimation process is automatic, except for the initialization, which requires the manual specification
of severa landmark features in the first frame of the sequence (the eyebrow centers, eye corners, nose tip, and
mouth corners). The subject must also be at rest, and (approximately) facing forward, asin Figure 4(a). In all the
experiments, except for those used for motion validation, the shape of the face is estimated only from the images.

Using these marked features, forces are applied to the initial face model that deform the corresponding points
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ontheface toward thedesired locationsintheimage. Experience has shown that theinitialization processisrobust
to small displacements (i.e. severa pixels) in the selected landmark points. The rotation and tranglation, as well
as course-scal e face shape parameters (such as those which determine the positionsand si zes of the face parts) are
fitted using this information, the result of which is shown in Figure 4(b). Once roughly in place, both edge and
anthropometry forces are applied that pull the face into the correct shape asin Figure 4(c). Thedistancefrom the
initial face to the camerais determined given the assumption that the subject’sface is the same size asthe model.

Figure4: Model initialization

The problem of automatically locating the face and its various features has been addressed el sewhere [49, 50],
and could be used to make this process automatic. No markers or make-up are used on the subject (markers are
used for the validation of the method, however, as described below).

5.2 Tracking experiments

The original image sequences are 8 bit gray images at NTSC resolution (480 vertical lines). In each of the se-
guences, the width of the face in the image averages 200 pixels, and the range of mation of features across the
image sequenceis typically 80 to 100 pixels. For each of the tracking examples, severa frames from the image
sequence are displayed, cropped appropriately. Below each, the same sequence is shown with the estimated face
superimposed. Ineach case, amodel initializationisperformed as described above. Theinitializationprocess usu-
ally takes about 2 minutes of computation. Afterwards, processing each frame (using the extended Ka man filter
formulation) takes an average of 1.4 seconds each (all computation times are measured on a 175 MHz R10000
SGI 02).

The sequence shownin Figure 5 was taken on an IndyCam at 5 fps. Figure 5 shows a subject turning her head
in (a) through (d) and opening her mouth from (d) to (). Based on the good alignment of the face model with the
image, it appears the face model is able to capture the shape of her face, as well as the head rotation and mouth
motion. The next two sequences were taken on a higher quality camera at 30 fps. Both Figure 6 and Figure 7
show asubject smiling and moving forward in (b) and (c), opening their mouth whileturning their head in (€) and
(f), and turning back, closing their mouth dlightly in (g). All of these motions appear to be correctly tracked based
on the observed motion. These three experiments involve different subjects, having very different appearances.
Thissuggeststheverification of theface model shape parameterization (describedin Appendix B) was successful.
The extracted face shapeis quite individualized to the subject, but not to the point that would be useful for certain
applicationsin computer graphics. These extracted models for the three subjects herein Figures5, 6 and 7 are on
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the right side of Figure 2 (the upper-right, lower-left and lower-right, respectively).

5.3 Shapeestimation validation

Thisexperiment providesavalidation of the shape estimation accuracy of our system. The extracted shape (spec-
ified by qp) is vaidated by comparing with a Cyberware range scan of the subject, shown in Figure 8(a).

The shape estimation validation experiment in Figure 9 shows the subject performing small head motionsin
(8 through (f) while smiling in (c) and (d), and finishing with a significant head rotation in (g). At each frame,
Figure 10 shows the extracted shape results as compared against the range scan of the subject. Note that for this
comparison, al motion parameters are ignored, so that only the shape is compared. The RMS error is computed
using the nodes of the model, and also includes a uniform scaling of the model so that the two faces are the same
scale (this eliminates the depth ambiguity—in this case, the estimated model was compared at 96% scal€). The
rigid alignment (translation and rotation) as well as this uniform scaling were computed using a semi-automatic
alignment method (the chosen alignment had the smallest RM S error).

The RMS error, which starts at around 2 cm after initiaization, shows a gradual reduction over the course of
the experiment, ending around 1 cm, with the large reductionin error around frame 50 corresponding to when the
subject turned his head significantly to the sidein Figure 9(f) and (g), where the profile view contained good edge
information to fit the face shape.

5.4 Motion estimation validation

Thenext three experimentsuse markersto alow for thevalidation of the motion tracking of our technique. Eleven
small circular markers were placed on the face of a subject. Analysisof the accuracy of the motion estimationin
Om is performed using these markers on the subject, which allow for aignment verification in the image plane
(ground truth motion in 3D is not available).

For these three experiments, no shape estimation is performed. Instead, the face shape is provided by an off-
linefitting of the face model to the range scan in Figure 8(a)—this way, any deviation can be attributed primarily
to motion error, not shape error. In addition, the fixed locations of the markers on the model are determined using
some additional imagestaken of the subject, shown in Figure 8(b). The markers are fixed into particular locations
of the polygon mesh (they have fixed coordinatesin Q). The model resulting from thisfitting and marker place-
ment is shown in Figure 8(c), with the marker locations shown as dark circles. The RMS error of the extracted
model (comparing the extracted model with the range scan) is 0.26 cm.

First, the image locations of each of the markers from the image sequence is obtained using a semi-automatic
tracking system. The rough location of the markers istracked using the KLT? package (which is based on [43]),
and was fine tuned using a deformabl e ellipse template. Simple caibration tests suggest this tracking technique
has avariance of 0.35 pixelsin measuring the center of a marker (which are usually about 8 pixelsacross) in the
image.

2Stan Birchfield’s KLT packageis availableat ht t p: // vi si on. st anf ord. edu/ “bi rch
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Figure 5: Motion and expression tracking example 1

Figure 7: Motion and expression tracking example 3
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(b) (©
Figure 8: (@) Shaded range scan of subject, (b) Marker calibration images, (c) Resulting marked model

Carewastaken so that the presence of the markers did not significantly affect the motion estimation, sincethese
markers could provideuseful informationfor tracking. Thepixel selection method for the optical flow information
was modified so that no points were selected that were within 3 pixels (the radius of the spatia derivativefilters)
of any point on amarker. In addition, any edges used to produce edge forces were similarly limited to be distant
from markers. Given that the markers were not placed directly on top of important facial features, itis unlikely
that the presence of the markers detrimentally affected the experiment results.

In each of thefollowing three motion validation experiments, thereis an accompanying graph showing thedis-
placement error for each frame. This displacement error of amarker is the Euclidean distance (in pixels) between
theimagelocation of themarker (if visible), and the predicted imagel ocation of themarker giventhemodel (which
is the projected image location of the model marker). The dark line on the graph shows the mean displacement
error of al visible markers (one standard deviation is indicated by the gray region surrounding it). The dotted
lines indicate the minimum and maximum displacement error.

Thefirst two sequences were taken using an IndyCam at 5 fps. The final sequence was taken on ahigh quality
camera (Pulnix TM-9701; grayscale, progressive scan) at 30 fps. Also notethat thisfinal sequence wastaken at a
different time than the first two—the markers were re-applied to the subject, and their locations were determined
again, asinFigure 8(b) and (c). Their new locationswere roughly the same asin the earlier validation experiments
(at most 1.5 cm difference).

The sequence in Figure 11 shows predominantly non-rigid motion (facial expressions). The subject moves
forward and frowns hiseyebrowsin (b), movesback and producesasurpriseexpressionin (d), followed by asmile
in (f). Theaverage error shownin Figure 12 is between 2 and 4 pixels, which given the face is approximately 200
pixelsacrossin theimage, amountsto |ess than 2%. The maximum error of around 7 pixels correspondsto around
3.5% (roughly 0.5 cm). Thelargest error is produced during the smile expression; possible reasons for this are
discussed in the next section.

The second sequence in Figure 13 is a combination of rigid and non-rigid motions. The subject turns his head
from (a) through (d) while smiling, returning to rest positionin (f). The displacement error shown in Figure 14
averages from 2 to 4 pixels (but being closer to 4 for alonger period), reaching a maximum of just over 7 pixels.
Thelargest error is produced when the smileis viewed from the side, and is concentrated in the mouth area.

Thelast sequencein Figure 15isprimarily arigid-motion sequencethat issignificantly longer than the other ex-
periments (760 frames). It includeshead rotationsin avariety of directions, aswell as somelarge head translation
(side-to-sideand away fromthecamera). Eyebrow raisesand asmilearea so present. Thissequencedemonstrates
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the ability of the system to maintain track over along sequence, without experiencing failure dueto tracking drift.
In this sequence, the face is approximately 140 pixelsacross in theimage (somewhat smaller than in the previous
experiments). The average pixel deviations shown in Figure 16, range between 1.5 and 2.8 pixel's, with a maxi-
mum error at 4.6 pixel's, corresponding to about the same absol ute distance error as with the previous experiments
(roughly 0.5 cm). Hence, the apparently lower pixel deviations for this sequence amount to approximately the
same error in actual distance. During the sequence, some of the motions were very close to the maximum limits
of tracking speed (pixel velocitieswere about the same size as the derivativefilter width). In particular, the turn-
ing motion at frames 250-320is the most serious, with other occurrences at frames 430-450 and 610-620. These
motions manifest themselvesin Figure 16 as larger displacement errors. However, during the successive motions
(which arewell bel ow this maximum vel ocity), the system recovers from these errors, and improvesthe fit using
edge information, returning to the baseline deviation amount of around 2 pixels. Thisbaseline correspondsto the
maximum accuracy of model-edge alignment, and the limited precision of the marked model in Figure 8(c).

(a) Frame 1 (b) Frame 11 (c) Frame 18 (d) Frame 24 (e) Frame 35 (f) Frame 46 (9) Frame 57

Figure 9: Shape validation experiment
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Figure 10: Results of shape validation experiment

55 Discussion

The successful tracking performed by this framework is primarily due to the use of optical flow as a constraint.
Thisisempiricaly verified by disabling key components of our tracking system, and observing the resulting per-

23



(a) Frame 1 (b) Frame 11 (c) Frame 16 (d) Frame 18 (e) Frame 24 (f) Frame 29 (g) Frame 40

Figure 11: Motion validation experiment 1 (no shape estimation performed)
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Figure 12: Results of motion validation experiment 1
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(a) Frame 1 (b) Frame 16 (c) Frame 18 (d) Frame 27 (e) Frame 39 (f) Frame 43

Figure 13: Moation validation experiment 2 (no shape estimation performed)
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Figure 14: Results of motion validation experiment 2
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Figure 15: Moation validation experiment 3 (no shape estimation performed)
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Figure 16: Results of motion validation experiment 3

26



Displacement error (pixels)
10.0

®—
flow only ¢ edges only iCVPR 96 without constraint

8.0

6.0

4.0

—

W /\\’\ /\ with constraint
A — PO LoV L p A /lvMW S

T
q
d

q

0.0

0 100 200 300 500 600 700

400
Frame

Figure 17: Tracking performance of various frameworks

Framework Averagetimefor entireframe | Average iterationswithin aframe
with constraint 1.4 seconds 29

CVPR 96 (constraint; no KF) | 1.3 seconds 55

without constraint 6.5 seconds 17.7

flow only 0.34 seconds 1 (not iterative)

edgesonly 15 seconds 36.1

Figure 18: Timing of various frameworks (175 MHz R10000 SGI O2)

formance decrease (in the form of tracking failures®). The resultsof running the experimentsin Figure 15 on the
various frameworks is shown in Figure 17. The timings shown in Figure 18 include the average execution time
for asingleframe (for al iterations) on a 175 MHz R10000 SGI O2, aong with the average number of iterations
required within aframe.

The results from the constraint-based Kaman filtering framework for the third experiment are shown in Fig-
ure 16 (and aso in Figure 17 as the line marked “with constraint”). The framework which uses both optical flow
and edges, but usesthe measurement equationin (27) which does not incorporate optica flow asahard constraint,
isshown as“without constraint” in Figure 17. Thissystem can experiencetracking failure (asin frame 370) when
it encounters a difficult model-edge alignment problem (when the deviation islarge, or many parameters require
adjustment). It is worth noting that a constraint-based Ka man filtering method without the relaxation (a frame-
work like“with constraint” but with Q,, = 0) had tracking performance that was virtually the same as the “ without
constraint” method (although was just as fast as the method “with constraint”).

The framework in [11] (labeled “CVPR 96") used an ad hoc filtering method (to soften the constraint) instead
of aKamanfilter. In other words, thissystem used flow asahard constraint, but did not useaKaman filter. While
each iteration took |ess time, more iterations were required, resulting in roughly the same timing as the method
which uses a Kalman filter. However, thismethod is not as robust, losing track around frame 290.

3Tracking failure is simply defined as reaching a 10 pixel deviation—at this point the deviation typically increases, with tracking being
re-gained only by luck.
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It is also worthwhile to test each data source separately (but still using a Kalman filter). When edges are not
used, leaving only the model-based optical flow solution, errors in the estimation of g, accumulate (since this
solutionisintegrating a velocity), causing the model to lose track quite quickly. This method is marked as “flow
only” in Figure 17. Whileanon-linear iterative solution[5] wouldimprovethe accuracy, it would still not prevent
tracking drift.

The method using only edge information (marked “edges only” in Figure 17) often findslocal minimum solu-
tions(such asaround frame 80 and frame 130), some of which can lead to tracking failure (near frame 280). Asthe
model-image displacement increases, the model -edge alignment problem becomes quite difficult and expensive
to solve. Tracking failure occursin situations not unlike those that caused problems for the framework marked
“without constraint”.

While the framework using hard constraints performed well in this sequence, we can add noise to the system
to determine at what point the systemfails. Thistracking experiment was run again (anumber of times) to exper-
imentally determine the minimum sustained deviation that causes tracking failure. After each iteration, Gaussian
noise was added (of increasing variance until tracking failed) to the rigid motion parameters in g, at the start of
each iteration. Tracking failure became common as average displacement errors went above 4.6 pixels (the in-
cidence of failure went from non-existent below 4.5, to prevaent by 4.7). Alternatively, adding Gaussian noise
directly to theimages (of increasing variance until tracking failed) produced a similar val ue (average displacement
errorsof 4.4 pixels, with acorresponding image noisevariance of 15.5% of intensity). Incidencesof tracking fail-
uresfor the other systems (when noisewas added) became noticeably worse during these tests. This suggeststhat
our system using relaxed hard constraints has a comfortable margin of safety from tracking failure.

Considering al the experiments, the error in the tracking results can have other (non-noisy) sources, besides
motion estimation error. One possibility isthat it can be caused by poorly extracted marker locations (although
thisdistanceislessthan apixel). Another source can bethe discrepancy between the face shapeused and the shape
of the observed subject. The RMS error between the face shape and the range scan for only the marker pointsis
much lower than that from the whole model; it is 0.1 cm, which will cause at most 1 pixel of deviationin marker
locations. Violation of the assumption of perspective projectionisalso a possiblecontributor to error, althoughin
this caseis minimal, given the small depth range of the face compared to the distance of the face to the camera.
From this, it can be concluded that a significant portion of the errors present here are from motion estimation.

Upon closer examination, it can be seen that the larger errors which are present during non-rigid motions (in
particular, smiling), are caused by the smile produced by the model not matching the smile on the subject. In
particular, the subject’s smile is more curved than the one produced by the model. Also, the smile produced by
the model does not move the mouth back (into the face) far enough, which explains the fact that the most error
is present when the smile is viewed from the side. These errors result from the inability to estimate the scaling
constantsused in (46). Attempting to estimate these constantsfor each individual using only edge forces does not
produce reliable results.
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5.6 Limitations

Themany experimentsin thissection show the capabilitiesof the shape estimation and tracking systems described
in this paper. On the other hand, they also say alot about what the limitations of the system are.

First, some of the limitations of the system come directly from the assumptions made during design. Most
obviousis the assumption of brightness constancy during optical flow computation. Mgjor lighting changes can
causetracking failure. Specularitiesalso cause small problems, but tend not to affect the entire model, since they
tend to be fairly localized. In some cases, poor lighting will also lead to tracking failure. Typically, these occur
in situationswhere edges are washed out (opening the aperture too wide on acamera will do this).

Second, is to simply exceed the maximum tracking speed (determined by the derivative filter width). This
problem can be addressed by using multi-scale optical flow methods. On arelated note, the motions and edges
can also become too small to be estimated accurately. When the face in the image is smaller than about 40 pixels
across, there is not enough edge information to maintain track reliably.

Third, are deviationsfrom the model —where the images go past the coverage limits of the model. Attempting
to track motionsthat are not represented produces rel atively unpredictable effects. For example, lip puckeringis
not modeled: tracking thisfacial motion producesthe best fit using the existing motion parameters (and can often
be quite far off). This causes poor model-image aignment, which can lead to tracking failure if the unmodeled
motionisvery large. Notethat during speech, however, the system retainsgood track of the head and brows, while
the motion parameters affecting the mouth region are garbled. Thisis not surprising, asthese unmodel ed motions
are attributed to other parameters in the same region (in aleast squares way). Large occlusions produce similar
problems (such as a hand passing in front of the face). And of course, since a“mask” face model is used, our
framework will lose track during head motions where the mask visibility becomes too small. There is hope for
detecting these problems automati cally—many of these difficultiesfirst appear aslarge increasesin the constraint
residual (localized to the region of model deviation).

Finally, are the problems associated with the tracking of multiple, simultaneous motions. In the validation ex-
periments, situationswhere head rotation was accompanied by anon-rigid expressi on def ormati on often produced
higher pixel deviations. On occasion, thisdeviation can be seriousenough to cause tracking failure. Thisiscaused
by the linearization in the model-based optical flow solution, which could perhaps be alleviated by using an iter-
ative least-squares solution [5]. There can aso be situations where motions can be confused (given a particu-
lar model configuration, two parameterized motions may appear nearly identical). The problem arises when the
model state changes to make the current motion estimate inconsistent. Multiple hypothesis estimation methods
might provideasolution here, althoughit’slikely the most robust sol ution (for some applications) would be simply
to detect and recover from such a situation.

6 Conclusions

We have presented a method for treating optical flow information as a hard constraint on the motion of a de-
formable model. We have argued, as well as empirically demonstrated, that it was the treatment as a hard con-
straint which resulted in the benefits in efficiency and robustness. Furthermore, we showed how a hard constraint
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based on noisy data can be softened using a Kalman filter while preserving these beneficial aspects. Finaly, hard
constraintsprovided ameans for combining information sources which alowed edgeinformation to be used along
with optical flow in order to combat error accumulation in tracking.

Our use of adetailed three-dimensional model also helped agreat deal. By accounting for the self-occlusion
of the face, large amounts of head rotation can successfully be tracked. Our detailed shape model allowed for
accurate descriptionsof facial shapeto be extracted, the parameterization for which would not have been possible
to implement without the use of face anthropometry data to control model coverage. Finaly, by designing the
model with a separable shape and motion parameterization, we can separate the problem of estimating the shape
of an individua’sface from estimating their motion, resulting in a much smaller dynamic estimation problem.

The current system does have a number of limitations, however. The most significant of which is the ide-
alization of the optical flow constraint equation. For instance, the problems of photometric variation and self-
shadowing, whichviolatetheoptical flow constrai nt equation, are not addressed. Thepresence of athree-dimensional
model could proveto be useful when addressing these problems. Another limitationisin tracking large motions;
at the moment, motions larger than the width of the derivative filters will not be tracked correctly. Multi-scale
model -based optical flow techniques[5] can be applied here to address this.

Looking to the future, investigation of the recognition of faces using the shape parameterization, or of facia
expressions using the motion description is worth pursuing. Simplistic approaches that depend on a particular
parameterization (suchasdirectly usingthe“smile” parameter with athreshold) would not berobust. Also, having
amore detailed motion parameterization will allow for the tracking of more complex facial motions. Methods for
generating motion model s from exampl e data, which are becoming more commonpl ace as datagathering methods
improve, would be particularly effective in building such a complex model.
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A Modularization of global defor mations

The shape model x is defined through the repeated application of n global deformations T : R3 — R3, where
k € 1...n, tothe underlying shape s (which has parameters gs in genera deformable model frameworks) as:

X(q;u) =Tn(qr,;- .- T1(ar,;s(as; u))) (39)
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where g, are the parameters used by Ty. The parameters used by &l of the global deformations are accumulated
into the vector gt asin:

ar = (a7,,--.,071,) " (39)

so that g can now be grouped as:

q=(ad.ar)" (40)

For aparticular set of deformation functions, closed form expressionsfor the resulting shape can be derived. From
these compl ex expressions, the Jacobian matrix can be derived (see [33] for an example), although thismethod is
tedious and not modular.

Instead of this, asingle expression for the resulting shapeis not derived, but rather each deformationisapplied
separately given the definition in (38). The Jacobian matrix can be calculated in a similar way using the chain
rule. First, define the deformation Ty as the composition of the first k deformation functions T, through Ty:

w(ar;p) = Te(ar,; .- T1(ar;p)) peR3 kel...n (41)

with 1q defined to be the identity. Given thisdefinition of 1y, it follows how to compute Jx, the Jacobian of x with
respect to g, using the following recurrence:

0s
T " 5, 2
Jy = ITk(p) Ik kel...n
Tk ap Tk-1 aqu te

so that Jy = Jq,,. Theleft block in (42) uses the chain rule, so that the matrix 0Ty (p)/0p “deforms” theindividual
columnsof the Jacobian matrix Jy, ,. Theright block in (42) containsthe derivativesof the outermost deformation
Ty with respect to its parameters.

A naivetechnique for computing Jy using thisrecurrence from the bottom-up (which startswith Jg), is partic-
ularly expensive in terms of both time and space complexity. Thisis particularly a problem since the Jacobian
needs to be re-evaluated at each iteration, over many pointson the model. Instead, the quantity J ' f is computed,
given an applied force f such asin (6). The quantity J'f can be computed efficiently in atop-down fashion as:

.
fo=t, fk_1:<aTa"7;p)> fe kel...n (43)
T T
JSTf:(aa—qSS) fo J?J:(iﬂ‘) f kel...n (44)
k

If theactual columnsof Jy arerequired, asisthe casefor the optical flow computation (12), they can befound by
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three applicationsof the above technique using the unit vectorsi, I andk inthex, y and zdirections, respectively,
as.

~

I =@+ (DI T+ (3 kkT (45)

sinceii " +ﬁT +kkT = 1. For the optical flow computation, this construction is only required for the motion
parametersin gm.

Besides global deformations, it is aso useful to include rigid motions (translations and rotations) and even
camera projections. For the case of camera projections, however, the mapping becomes T : R® — R?, and (45)
uses only i and I since theimage forces are two-dimensional. The formulation of the projected Jacobiansin (3)
and (4) issimply an instance of the left block of (42).

This modular technique for computing the Jacobian matrix allows for significantly easier implementation at
little computational expense. It is also a more modular approach, since the choice of which deformations used
can be made on thefly.

B Facemodel deformations

In order to capturethe variations seen in the shape and motion of human faces, a mixture of scaling, bending, and
rigid deformations are used in the construction of the face model. This section provides details on these defor-
mations. The model designer carefully combines the deformations to produce a parameterized face model. The
result of this construction is an underlying model (the polygon mesh) which has a series of deformations func-
tionsapplied to it, each having a small number of parameters, and each is applied to a particul ar set of face parts,
ranging from asingle part to the entire face.

Rigid transformations such as translation and rotation are used for the placement of parts on the face. Scaling
and bending deformations, shown in Figure 19, alow for the representation of a variety of face shapes. Each
of these deformations is defined with respect to particular landmark locations in the face mesh. By fixing the
deformationsinto the mesh, the desired effect of any particular deformationisnot lost dueto the presence of other
deformations (since the landmark pointsare deformed along with therest of the mesh). Althoughvarying degrees
of continuity can be attained for these deformations, each of the following deformations are C* continuous.

A shape (before any deformation is applied) which containsthe landmark points pg, p1 and cisshownin Fig-
ure 19(a). Figure 19(b) shows the effect of scaling this shape along the displayed axis. The center point c isa
fixed point of the deformation, while the region between py and p; is scaled to have length d (the parameter of
the scaling deformation). Portions of the shape outsidethisregion are rigidly transl ated.

Bending is applied in Figure 19(c), and shows the effect of bending the shapein (a) in adownward direction.
The bending is applied to the area between pg and p;, where c isthe center of the bending. Outside thisarea, the
shapeisrotated rigidly. Each plane perpendicular to the bending axisis rotated by an angle determined by the
distance of thisplaneto the center point c. Theamount of bending is specified by the parameters 8 and 8., which
specify therotation angle at pg and py, respectively.

In addition, the spatial extent of each of these deformations can be localized, as shown in Figure 19(d). The
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Figure 19: Scaling and bending deformations

influence of the scaling deformation varies in directions perpendicular to the axis, producing a tapering effect.
Near thetop of the shape, the object isfully scaled to be the length d, while the bottom of the object is unaffected
by the deformation. The ability to restrict the effect of adeformationisvital in specifying the variations of shape
seen in the face. We will now see how these deformations can be used to create the model.

B.1 Faceshape

The underlying shape s, which is the polygon mesh shown in Figure 1, can take the shape of a variety of faces
through the application of anumber of spatial deformations. Thisparameterization of themodel isspecified by the
model designer. Thejob of thedesigner ismade easier by separating the face into parts, allowing each face model
component to be treated separately. Instead of describing the entire model (which would be extremely lengthy
and not particularly enlightening), a short description is provided which illustrates the concepts necessary for its
construction.

Deformations are defined over a particular set of face model parts, athough most deformations affect only one
part. Example deformationsthat parameterize multiplepartsinclude those affecting the lower face, which deform
the chin and both cheeks. All of the deformations are specified in a particular order, and are applied in sequence
to the underlying shape (see Appendix A). All of the parameters to describe the shape of the face at rest (there
are approximately 80) are collected together into gy,. The shape deformations are collected together into asingle
deformation function Ty,. Most of the parameters are independent due to spatial locality, which keepsthe problem
of estimation using this model fairly tractable.

Figure 20 showssome of the scaling deformati onsdefined for thenose. Each arrow indicatesaparticular scaling
parameter (in the vertical or horizontal direction), that affects the space between the enclosing lines. The results
of applying some of the deformations to the nose are shown in Figure 21. Figure 21(a) and (d) show two views
of the default nose. Figure 21(b) shows a nose deformed using vertical scaling, while the pulled-up nosein (c) is
produced using alocalized bending deformation. Figure 21(e) and (f) show localized scaling affecting the width
of the nosein different places. Different faces produces using many deformations are shown on the right side of
Figure 2.

Verification of the face parameterization produced by the model designer can be accomplished by fitting the
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Figure 20: Scaling deformations of the nose
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Figure 21: Example deformations affecting the nose
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model to aseries of randomly generated sets of facial measurements. Thisiseffectively aMonte Carlo method of
sampling the space of face measurements. Thefitting is easily accomplished, given a set of measurements, using
the anthropometric forces described in Appendix C. The model designer can ater the model parameterization
when a particular set of face measurements cannot be satisfied by the model. We obtained a face model capable
of representing awide variety of faces after only afew design iterations.

B.2 Face motion

The deformations corresponding to motions (such as facial expressions) are modeled using the same techniques
employed for face shape. However, thereis no available motion data that correspondsto anthropometric datafor
shape (although technology for gathering such data is becoming available [20]). The motion deformations are
applied to thefacein rest position—after the shape deformations, asin (1). Examplesof modeled expressionsare
displayed on the left side of Figure 2. The model is capable of frowning or raising each eyebrow (top-le&ft, top-
right), smiling (bottom-left) or opening the mouth (bottom-right). Thisresultsinatotal of 6 expression parameters
(2 brow frowning, 2 brow raising, 1 smiling, 1 mouth opening), each corresponding to a particular FACS action
unit [13]. In addition to this are the six parameters for rigid head motion (translation and rotation), resultingin a
total of 12 parametersin qm. These deformations can be applied to any face (different qp), such as those on the
bottom of Figure 2.

The construction of expressionsis simplified by decomposing each face motion into several component defor-
mations. For example, the mouth opening deformation is decomposed into chin/cheek bending, lip scaling and
lip tranglation. To facilitate tracking of these expressionsby reducing the number of motion parameters, thereisa
single control parameter for each expression which uniquely determines all of its component parameters. Given
a particular face motion which is constructed using a series of deformations with parameters bj, the control pa
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rameter e determines the value b; based on the formula:
b =se (46)

where s isthe scaling parameter used to form the linear relationship between b; and e. These scaling parameters
are the expression-shape parameters included in qy, (there are about 20 in total). For situations where these pa
rameters are not estimated, these parameters are treated as constants, average values for which are determined by
the designer during construction of the mode.

The set of face motion parameters gm consists of the control parameters for each of the expressions (which
areinitialy al zero), and the rigid trandlation and rotation specifying the head position. The parameters b; are
not estimated, but are determined directly by (46) using the estimated value of e. The motion deformations are
collected together into the deformation Ty,.

C Anthropometry

Anthropometry isthe biological science of human body measurement. Anthropometric dataisused inavariety of
applicationsthat require knowledge of the distribution of measurements across human populations. For example,
in medicine, quantitativecomparison of anthropometric datawith patients’ measurements before and after surgery
furthers planning and assessment of plastic and reconstructive surgery [16]. This paper proposes a similar use of
anthropometry, in the construction of aface model for computer vision.

In order to devel op useful statisticsfrom anthropometric measurements, the measurementsare madein astrictly
defined way [24]. Particular |ocationson asubject, called landmark points, are defined in terms of visibleor palpa
blefeatures. A seriesof measurements between theselandmarksisthen taken using carefully specified procedures
and measuring instruments (such as calipers, levels and measuring tape). A canonical coordinate system for the
head and face is also defined in terms of landmarks, and provides a set of axes from which some measurements
are taken. Asaresult, repeated measurements of the same individual (taken a few days apart) are very reliable,
and measurements of different individualscan be successfully compared.

Farkas [16] describes a widely used set of measurements for describing the human face. A large amount of
anthropometric data using this system is available [15, 16]. The system uses atotal of 47 landmark points to
describe the face, and includes the following five types of facial measurements:

¢ the shortest distance between two landmarks (such as the separation of the eyes)

e theaxial distance between two landmarks—the distance measured along an axis (such asthe vertical height
of the nose)

e thetangential distance between two landmarks—the distance measured along a prescribed path on the sur-
face of the face (such asthe arc length of the upper lip boundary)

¢ theangleof inclination between two landmarks with respect to an axis (such as the slope of the nose bridge)

¢ the angle between locations (such as the angle formed at the tip of the nose)
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Farkas describes atotal of 132 measurements on the face and head.

Systematic collection of anthropometric measurements has made possibleavariety of statistical investigations
of groups of subjects. Subjects have been grouped on the basis of gender, race and age. Means and variances
for the measurements within agroup, tabulated in [16], effectively provide a set of measurements which captures
virtually al of the variation that can occur within the group.

In addition to statistics on measurements, statistics on the proportions between measurements have a so been
used. Anthropometrists have found that proportions give useful information about the correlations between fea-
tures, and can serve as more reliable indicators of group membership than can simple measurements[15]. These
proportionsare averaged over a particular population group, and means and variances are provided in [15].

C.1 Useof anthropometry data

Our face model includesrepresentation of the anthropometri c measurements described above. Given the measure-
ment descriptionsin [16], they are realized using a straightforward set of geometric operations performed using
the face moddl: given avalue of gy, a set of measurements can be taken from the mode.

Use of thisdata limitsthe coverage of a hand-crafted model to the space of faces made likely by a distribution
of anthropometric measurements. Forces arising from this data are comparable to internal stiffness forces used
in other deformable model work [48]. In that work, stiffness forces were used to determine a smooth surface
in situations where the data was sparse or hoisy. Here, anthropometric forces maintain a believable face shape,
avoiding the parameter combinationsthat result in unlikely or impossiblefaces.

For a particular set of model pointsx; ...xn, ameasurement M; iswritten as:

M;j(X1,....%n) j€L.M (47)

where M isthe number of measurementsin Farkas' inventory. As an example, a shortest distance measurement
issimply the following:

Maist (X1, X2) = [[X1 —Xa|| (48)

where x; and x, are model points corresponding to the two landmarks used by the measurement. Note that these
points depend on the shape parameters qp,, but hot on the motion parameters g, (whichiseffectively zeroed when
any anthropometric measurements are taken on the model—since this reflects the same “ expressionless’ condi-
tions under which the data was originally gathered).

The statistical characterization of measurements and proportionscan be built into themodel intwoways. First,
by using an average set of measurements, aset of parameters specifyingtheinitial model isdetermined. Thisinitial
model isan anthropometrically “ average” model, and isshownin Figure 1. Second, thischaracterization provides
ameans of biasing the face model shape parameters (qy,) toward more likely occurring individuals.

Given aparticular set of population groups, average measurement values and variances are obtained from [16]
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(4j,0f) jel.M (49)

The biasing of the parametersis performed using three-dimensional spring-like forces (a soft constraint) that are
applied to the polygonal face model that softly enforce ameasurement onthe model. First, an energy isassociated
with each measurement:

Ej: (Mj(Xl,...,Xn)—lJ.j)z (50)

NI

Then, the force resulting from the energy E;, which is applied to model domain point u; (which corresponds to
the point x; on the model surface), is obtained as:

9§
aXi

oM,

fey () = x

= — (Mj(Xq,. .. ,Xn) —1j) (51)

The total anthropometric force applied to model domain point u; is computed as the weighted sum of all mea-
surement forces at uj:

e

-Ej/o%\ P
fam(ui):jE;M (1— ﬁ) fee (uy) (52)

Each forceisweighted by aquantity whichisapower (p) of how improbable the current measurement is (assum-
ing a Gaussian distribution on the anthropometric measurements [16]). Thisweighting prevents the model from
actually attaining the average set of measurements, but instead is simply biased towards them. For values of p
around 10, forces on measurements within one standard deviation of the mean for that measurement are effec-
tively ignored, making it used primarily as a prior on qp,.

For proportions, the energy would involve two measurements as:

Ejk = = (Mj(Xa, - ,Xn) —Pjk- Mk(Xp, ..., X)) (53)

NI

where pji isthe mean proportion between measurements [ and . Aswiththe above for measurements, aforce
distributionfor proportion datais obtained using this energy.

D Facefeatureand edge deter mination

The edge-based force field methods in [33, 48] require knowing which locations of the face model are likely to
produce edgesin an image. On the face, certain features are likely to produce edgesin theimage. The particular
features chosen are the boundary of thelipsand eyes, and the top boundary of the eyebrows. Edgesin the polygon
mesh which correspond to these features were manually marked during the model construction, and are shownin
Figure 22(a).
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Figure 22: Likely face featuresin an image

Other likely candidates for producing edges are the regions on the model of high curvature. The base of the
nose and indentation on the chin are examples of high curvature edges, and can be seenin Figure 22(b). Occluding
boundaries on the model also produce edges in the image, and can be determined using the three-dimensional
model. Thelocation of occlusion boundarieson the model will be useful when determining the quality of selected
pointsfor the measurement of optical flow.

Of course, for an edge to be produced in the image, the corresponding region on the face must be visibleto the
camera. Thisvisibility determinationis performed using the model and camera transformation. The model depth
information can be used to determine the parts of the model that are visible to the camera (the frontmost regions
of the mode!). Figure 22(b) shows visiblelocations of the model (features, high curvature and occluding edges)
that are likely to produce edges, given the model in (c).

Oncethelocationsonthe model are knownwhich arelikely to produceimage edges, we can weight theintensity
gradient accordingly when forming the two-dimensional edge-based forces [33, 48] that are applied to the model.
These forces contributeto the value of fq (affecting parameters in both gy, and qm) based on (6). Over the course
of fitting, these edge forces “pull” the model so that the model edges become aligned with their corresponding
image edges.

E Optical flow point selection

The construction of the optical flow constraint on g, required the selection of a set of image pixelsfrom whichto
measure optical flow information. Whileit would be possibleto use al pixels on the observed object, thiswould
have two problems. Maost obvioudly, it would be more expensiveto solve the system—it is especially wasteful
sinceitislikely that most pixelsdo not provideasignificant amount of useful information. And second, particular
pointsactually provide harmful information—such as those near occlusion boundaries. This section describes our
method for the selection of pixelsin the construction of (13).

Tomasi and Shi [43] define good features for tracking by using the following criterion. The outer product of
the image gradients at pixel i issummed over a small window around that pixel:

O o1’ (54)

window(i)
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A feature is selected when the smaller eigenvalue of this 2 x 2 matrix is greater than a threshold value. These
features possess significant image gradients in two orthogonal directions, which makes them reliable tracking
features, as well as good sources of optical flow information. Features with one very large eigenvalue are also
useful in our application, as these image points a so provide good optical flow information.

However, not al pixelswith significant gradient magnitude should be chosen. In particular, pixelson occlusion
boundaries must be avoided, as they violate the optical flow constraint equation. The use of model-based tech-
niques here provides a straightforward sol ution—assuming the model is at least roughly aligned with the image,
pixelsanywhere nearby the predicted occlusion boundariesof themodel are simply not chosen. A detailed model,
such as our face model, coupled with amethod which computes occlusion boundaries (asin Appendix D), can be
used to avoid these problems.

Traditional techniques for solving the optical flow constraint equation (10), often impose smoothness condi-
tionsontheflow field[22] to determine asolution. Smoothingis complicated by thefact that occlusion boundaries
violate (10) and must be located to determine where to relax the smoothness conditions. The presence of amodel
entirely avoids the need for smoothing, as connectivity and discontinuity information is provided by the model.
In addition to this, model-based optical flow techniques are more immune to the aperture problem [22], sincein-
formation is combined over much larger image regions.

Besides providing the most accurate i nformati on possible, the set of chosen pointsmust al so adequately sample
the motion information present in theimage. The accurate measurement of a parameter in gm, requires asufficient
number of pixelsintheimage corresponding to model pointswherethe Jacobian of that parameter does not vanish.
Note that some motion deformations may affect only a particular region of the face.

Using too few pixelsin the computation resultsin aloss of accuracy, and can reach the point where the system
losestrack of the subject. Including too many pixelsforcesthe pixel selection method to include pixelscontaining
little useful information (such as having asmall gradient magnitude). It has been determined by experimentation
that 10 to 20 pixels per parameter provide sufficient accuracy and robustness for the application of face tracking
(at which point the results change negligibly when more pixelsare used). Since there can be considerable overlap
between the sets of pixels used to measure each parameter, the total number of pixels used can be fairly small.
For each of the experiments here, nis approximately 120 pixels.
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