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On the Generation of Smooth Three-Dimensional Rigid Body Motions

Abstract
This paper addresses the problem of generating smooth trajectories between an initial and final position and
orientation in space. The main idea is to define a functional depending on velocity or its derivatives that
measures the smoothness of a trajectory and find trajectories that minimize this functional. In order to ensure
that the computed trajectories are independent of the parameterization of positions and orientations, we use
the notions of Riemannian metric and covariant derivatives from differential geometry and formulate the
problem as a variational problem on the Lie group of spatial rigid body displacements, SE (3). We show that
by choosing an appropriate measure of smoothness, the trajectories can be made to satisfy boundary
conditions on the velocities or higher order derivatives. Dynamically smooth trajectories can be obtained by
incorporating the inertia of the system into the definition of the Riemannian metric. We state the necessary
conditions for the shortest distance, minimum acceleration and minimum jerk trajectories. Analytical
expressions for the smooth trajectories are derived for some special cases. We also provide several examples of
the general case where the trajectories are computed numerically.
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Submitted to IEEE Transactions on Robotics and Automation c
 1995 IEEEOn the generation of smooth three-dimensionalrigid body motions�Milo�s �Zefrany, Vijay Kumary and Christopher CrokezyGeneral Robotics and Active Sensory Perception (GRASP) LaboratoryzDepartment of MathematicsUniversity of PennsylvaniaAbstractThis paper addresses the problem of generating smooth trajectories between an initial and a �nal positionand orientation in space. The main idea is to de�ne a functional depending on velocity or its derivativesthat measures the smoothness of a trajectory and �nd trajectories that minimize this functional. In order toensure that the computed trajectories are independent of the parameterization of positions and orientations,we use the notions of Riemannian metric and covariant derivative from di�erential geometry and formulate theproblem as a variational problem on the Lie group of spatial rigid body displacements, SE(3). We show thatby choosing an appropriate measure of smoothness, the trajectories can be made to satisfy boundary conditionson the velocities or higher order derivatives. Dynamically smooth trajectories can be obtained by incorporatingthe inertia of the system into the de�nition of the Riemannian metric. We state the necessary conditions forthe shortest distance, minimum acceleration and minimum jerk trajectories. Analytical expressions for thesmooth trajectories are derived for some special cases. We also provide several examples of the general casewhere the trajectories are computed numerically.1 IntroductionThere are many applications in which the problem of generating smooth trajectories for a rigid body in IR3is encountered. In robotics, it is frequently necessary to plan movements between a given (start) end-e�ectorposition and orientation and a desired (goal) position and orientation [2]. In general, we have to compute theactuator forces that achieve the speci�ed displacement. But when the dynamic model of the system is notavailable or di�cult to derive, it is better to separately plan the kinematic (task space) trajectory and use someother method to compute the corresponding actuator torques. Smooth trajectories are preferred because (a)the electro-mechanical system is limited by the size of the actuators and their control bandwidth so it cannotproduce large velocities and accelerations; and (b) movements with high acceleration and/or jerk can excite thestructural natural frequencies in the system. Planning of smooth task space trajectories is also employed in theprogramming of industrial robots for tasks such as welding and painting where a \teaching" process is employedto record intermediate positions and the �nal trajectory is obtained by interpolation [2]. Similarly, in computeranimation it is necessary to generate a smooth trajectory passing through a set of key frames specifying positionsand orientations [3]. In this case, smoothness is required to obtain realistic motions or motions that \look"natural.There are several factors that need to be considered when developing a trajectory planning method. It isdesirable that the trajectories are independent of the choice of coordinates for the space. In this way, computationsperformed with di�erent choices of coordinates will produce consistent results. Further, to describe motion of arigid body in space, an inertial and a body �xed reference frames must be chosen. We would therefore also liketo �nd a planning method that does not depend on the choice of these two frames. And �nally, the computedtrajectories should have good performance for the chosen task.Coordinate independence of the trajectories is assured if they are computed using the intrinsic geometric (i.e.,coordinate free) properties of the space. Appropriate tools are provided by di�erential geometry and the theory of�Part of this paper was presented at the 1996 IEEE International Conference on Robotics and Automation [1].



Lie groups. Di�erential geometry o�ers a consistent way of extending the notion of di�erentiation from Euclideanspace to an arbitrary manifold so that we can de�ne acceleration, jerk and di�erent measures of smoothness ofthe trajectories. The theory of Lie groups provides a framework for investigating the invariance of the trajectorieswith respect to the choice of the inertial and body �xed frames.There is extensive literature on trajectory generation in kinematics, robotics and computer graphics. In order togenerate a smooth motion for a robot arm from an initial to a �nal position, Whitney [4] and Pieper [5] advocatedusing a screw motion. Waldron [6] developed an algorithm that is based on a slight variation of Pieper's schemeso that the velocity pro�le along the trajectory is trapezoidal. In all these schemes, although the screw motion isinvariant with respect to rigid body transformations, it does not optimize a meaningful cost function. Further, thetranslational part of a screw motion between two points is in general not a straight line. Paul [2] decomposes thedesired displacement into a translation and two rotations each of which is smoothly parameterized with respectto time. The motion of the end-e�ector is obtained by a composition of these three displacements. He employs afourth-order polynomial of time to obtain a smooth motion. Although there is some justi�cation for the proposedtrajectory, the approach will lead to di�erent trajectories if di�erent parameterization is chosen for the rotationor if the coordinate frames in which the trajectory is computed are changed. There is also no attempt to developa measure of smoothness for three-dimensional motions.Shoemake [7] proposed a scheme for interpolating rotations with Bezier curves. This idea was extended byGe and Ravani [8] to spatial motions and proposed for computer-aided geometric design. In both cases, theinterpolating curves are screw motions and therefore invariant with respect to the choice of reference frames.However, the interpolating scheme produces a motion that does not posses these invariance properties. Further,these motions are not of minimal length for any meaningful metric. In contrast, Park and Ravani [9] use a scale-dependent left invariant metric to design Bezier curves for three-dimensional rigid body motion interpolation.In this paper, the trajectory planning problem is posed as �nding maximally smooth trajectories between aninitial and a �nal position and orientation. The measure of the lack of smoothness is chosen to be the integralover the trajectory of a cost function depending on velocity or its higher derivatives. Boundary conditions onthe derivatives of desired order can be enforced by appropriately choosing the cost function. For example, byminimizing the norm of the velocity we obtain the shortest distance paths. The minimumacceleration (minimumjerk) trajectories can be made to satisfy boundary conditions on the velocities (accelerations). Dynamicallysmooth trajectories can be obtained by incorporating the inertia of the system into the cost function. A simpleextension of the ideas in this paper allows the inclusion of intermediate positions and orientations and lends itselfto motion interpolation.Necessary conditions for smooth curves on general manifolds were derived by Noakes et al. [10], and in parallelwith our work by Camarinha et al. [11] and Crouch and Silva Leite [12]. In [10], necessary conditions for cubicsplines which correspond to our minimumacceleration curves are derived for an arbitrary manifold. These resultsare extended in [12] to the dynamic interpolation problem. In [11] necessary conditions for curves minimizing theintegral of the norm of an arbitrary derivative of velocity are derived. None of these works deals speci�cally withcomputing the trajectories on SE(3), nor do they address the choice of the metric for the space. Since there isno natural metric for SE(3) [13, 14], the choice of metric for trajectory planning becomes an important issue.The paper is organized as follows. We �rst review some preliminary concepts on Lie groups and space kine-matics, including the ideas of a left invariant metric, connection and the covariant derivative. This material isstandard and can be found in many texts [14, 15, 16]. In Section 3, we address the choice of metric for SE(3).We propose a left invariant metric given by the kinetic energy of a rigid body and derive the expressions for thecovariant derivative given by this metric. We use these geometric constructs to formalize the ideas of accelerationand jerk on SE(3). Most of these results are presented here for the �rst time. In Section 4, we discuss thevariational problems that need to be solved in order to calculate the shortest distance, minimum accelerationand minimum jerk trajectories. While some of these results were derived in [10] and [11], we present alternativeproofs and specialize the results to SE(3). In Section 5, we derive analytical solutions for the smooth trajectoriesin some special cases. For more general situations, we compute numerical solutions. Section 6 provides someconcluding remarks. 2



2 Kinematics, Lie groups and di�erential geometry2.1 The Lie group SE(3)Consider a rigid body moving in free space. Assume any inertial reference frame fFg �xed in space and a framefMg �xed to the body at point O0 as shown in Figure 1. At each instance, the con�guration (position andorientation) of the rigid body can be described by a homogeneous transformation matrix corresponding to thedisplacement from frame fFg to frame fMg. The set of all such matrices is called SE(3), the special Euclideangroup of rigid body transformations in three-dimensions:SE(3) = �� R d0 1 � j R 2 IR3�3; d 2 IR3; RTR = I; det(R) = 1� : (1)It is easy to show [14] that SE(3) is a group for the standard matrix multiplication and that it is a manifold. Itis therefore a Lie group [16].
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Figure 1: The inertial (fixed) frame and the moving frame attached to the rigid bodyOn a Lie group, the tangent space at the group identity de�nes a Lie algebra. The Lie algebra of SE(3),denoted by se(3), is given by:se(3) = �� 
 v0 0 � j 
 2 IR3�3; v 2 IR3;
T = �
� : (2)A 3� 3 skew-symmetric matrix 
 can be uniquely identi�ed with a vector ! 2 IR3 so that for an arbitrary vectorx 2 IR3, 
x = ! � x, where � is the vector cross product operation in IR3. Each element S 2 se(3) can be thusidenti�ed with a vector pair f!; vg.Given a curve A(t) : [�a; a]! SE(3), an element S(t) of the Lie algebra se(3) can be associated to the tangentvector _A(t) at an arbitrary point t by:S(t) = A�1(t) _A(t) = � RT _R RT _d0 0 � : (3)A curve on SE(3) physically represents a motion of the rigid body. If f!(t); v(t)g is the vector pair correspondingto S(t), then ! physically corresponds to the angular velocity of the rigid body while v is the linear velocity ofthe origin O0 of the frame fMg, both expressed in the frame fMg. In kinematics, elements of this form are calledtwists [14] and se(3) thus corresponds to the space of twists. It is easy to check that the twist S(t) computedfrom Eq. (3) does not depend on the choice of the inertial frame fFg. For this reason, S(t) is called the leftinvariant representation of the tangent vector _A. Alternatively, the tangent vector _A can be identi�ed with a rightinvariant twist (invariant with respect to the choice of the body-�xed frame fMg). In this paper, right invarianttwists will not be considered, but all the developments are parallel to those for the left invariant twists.3



Since se(3) is a vector space, any element can be expressed as a 6 � 1 vector of components corresponding toa chosen basis. The standard basis for se(3) is:L1 = 2664 0 0 0 00 0 �1 00 1 0 00 0 0 0 3775 L2 = 2664 0 0 1 00 0 0 0�1 0 0 00 0 0 0 3775 L3 = 2664 0 �1 0 01 0 0 00 0 0 00 0 0 0 3775L4 = 2664 0 0 0 10 0 0 00 0 0 00 0 0 0 3775 L5 = 2664 0 0 0 00 0 0 10 0 0 00 0 0 0 3775 L6 = 2664 0 0 0 00 0 0 00 0 0 10 0 0 0 3775 (4)The twists L1, L2 and L3 represent instantaneous rotations about and L4, L5 and L6 instantaneous translationsalong the Cartesian axes x, y and z, respectively. The components of a twist S 2 se(3) in this basis are givenprecisely by the velocity vector pair, f!; vg.The Lie bracket of two elements S1; S2 2 se(3) is de�ned by:[S1; S2] = S1S2 � S2S1:It can be easily veri�ed that if f!1; v1g and f!2; v2g are vector pairs corresponding to the twists S1 and S2, thevector pair f!; vg corresponding to their Lie bracket [S1; S2] is given byf!; vg = f!1 � !2; !1 � v2 + v1 � !2g: (5)In kinematics, this product operation is called the motor product of the two twists.The Lie bracket of two elements of a Lie algebra is an element of the Lie algebra and can be expressed as alinear combination of the basis vectors. The coe�cients Ckij corresponding to the Lie brackets of the basis vectorsare called structure constants of the Lie algebra [15]:[Li; Lj ] =Xk CkijLk: (6)2.2 Left invariant vector �eldsA (di�erentiable) vector �eld on a manifold is a (smooth) assignment of a tangent vector to each element of themanifold. At each point, a vector �eld de�nes a unique integral curve to which it is tangent [16]. Formally, avector �eld X is a (derivation) operator which, given a di�erentiable function f , returns its derivative (anotherfunction) along the integral curves of X. In other words, if 
(t) is a curve tangent to a vector �eld X at pointp = 
(t0), then: Xf jp = df(
(t))dt ����t0 : (7)On a matrix Lie group, an example of a (di�erentiable) vector �eld, X, is obtained by setting:X(A) = T̂ (A) = AT; (8)where T belongs to the Lie algebra of the group. Such a vector �eld is called a left invariant vector �eld. Weuse the notation T̂ to indicate that the vector �eld is obtained by left translating the Lie algebra element T .The set of all left invariant vector �elds is a vector space and by construction it is isomorphic to the Lie algebra.Right invariant vector �elds can be de�ned in analogous way. In general, a vector �eld need not be left or rightinvariant.We now concentrate on the group SE(3). Since L1; L2; : : : ; L6 are a basis for the Lie algebra se(3), the setof the left invariant vector �elds nL̂1; L̂2; : : : ; L̂6o is a basis of the space of the left invariant vector �elds. Inaddition, we have [15]: [L̂i; L̂j] = d[Li; Lj] =Xk CkijL̂k: (9)4



Finally, because at any point A 2 SE(3) the vectors L̂1(A); : : : ; L̂6(A) form a basis of the tangent space atthat point, any vector �eld X can be expressed asX = 6Xi=1XiL̂i; (10)where the coe�cients Xi vary over the manifold { if they are constant then X is left invariant. This implies thatwe can associate a vector pair f!; vg de�ned by! = [X1; X2; X3]T ; v = [X4; X5; X6]T :to an arbitrary vector �eld X.2.3 Exponential map and local coordinatesA motion of the rigid body in IR3 is described by a curve, A(t), on SE(3). If V = dAdt is the vector �eld tangentto A(t), the vector pair f!; vg associated with V corresponds to the instantaneous twist (screw axis) for themotion. In general, the twist f!; vg changes with time. Motions for which the twist f!; vg is constant are knownin kinematics as screw motions. In this case the twist f!; vg can be identi�ed with the screw axis of the motion. Ifthe vector pair f!; vg is interpreted as Pl�ucker coordinates of a line in space, it is not di�cult to see that the screwmotion physically corresponds to a rotation about this line with a constant angular velocity and a concurrenttranslation along the line with a constant translational velocity.Let the twist S 2 se(3) be represented by a vector pair f!; vg and let A(t) be a screw motion with the screwaxis f!; vg such that A(0) = I. We de�ne the exponential map exp : se(3)! SE(3) by:exp(tS) = A(t); (11)Using Eq. (3) we can show that the exponential map agrees with the usual exponentiation of the matrices inIR4�4: exp(tS) = 1Xk=0 tkSkk! ; (12)where S denotes the matrix representation of the twist S. The sum of this series can be computed explicitly andthe resulting expression, when restricted to SO(3), is known as Rodrigues' formula. The formula for the sum inSE(3) is derived in [14, pp. 413].2.4 Riemannian metrics on Lie groupsIf a smoothly varying, positive de�nite, bilinear, symmetric form is de�ned on the tangent space at each point onthe manifold, we say the manifold is Riemannian. The bilinear form is an inner product on the tangent space ateach point and is called a Riemannian metric.On a Lie group, and thus on SE(3), an inner product in the tangent space at the identity can be extendedto a Riemannian metric (everywhere on the manifold) using the idea of left translation. Assume that the innerproduct of two elements T1; T2 2 se(3) is de�ned by< T1; T2 >I= tT1Wt2; (13)where t1 and t2 are the 6� 1 vectors of components of T1 and T2 with respect to some basis and W is a positivede�nite matrix. If V1 and V2 are tangent vectors at an arbitrary group element A 2 SE(3), the inner product< V1; V2 >A in the tangent space TASE(3) can be de�ned by:< V1; V2 >A=< A�1V1; A�1V2 >I : (14)The metric obtained in such a way is called a left invariant metric [16]. Physically, left invariance correspondsto independence of the choice of the inertial frame. Let A1(t) and A2(t) represent two motions of a rigid bodythat pass through a point A at t = t0 and let V1 = dA1dt and V2 = dA2dt be the corresponding velocity vector5



�elds. Let C describe a displacement of the inertial reference frame. In new reference frame, the motions become~A1(t) = CA1(t) and ~A2(t) = CA2(t), and the velocity vector �elds ~V1 = CV1 and ~V2 = CV2. Then:< ~V1; ~V2 >CA=< A�1C�1 ~V1; A�1C�1 ~V2 >I=< V1; V2 >A : (15)We could similarly de�ne a right invariant Riemannian metric and in this case the metric would be independenton the choice of the body-�xed frame.2.5 A�ne connection and covariant derivativeThe motion of a rigid body is represented by a curve, A(t), on SE(3). The velocity at an arbitrary point is thetangent vector to the curve at that point. In order to obtain the acceleration, or to engage in a dynamic analysis,we need to be able to di�erentiate a vector �eld along the curve. At each point A 2 SE(3), the value of a vector�eld belongs to the tangent space TA SE(3) and to di�erentiate a vector �eld along a curve, we must be able tosubtract vectors from tangent spaces at di�erent points on the curve. But tangent spaces at di�erent points arenot related. We thus have to specify how to transport a vector along the curve from one tangent space to another.This process is called parallel transport and is formalized with the a�ne connection [16].A derivative of a vector �eld along a curve A(t) is de�ned through the parallel transport. Let X be a vector�eld de�ned along A(t), and let X(t) stand for X(A(t)). Denote by Xt0(t) the parallel transport of the vectorX(t) to the point A(t0). The covariant derivative of X along A(t) is:DXdt ����t0 = limt!t0 Xt0(t) �X(t0)t : (16)By taking covariant derivatives along integral curves of a vector �eld Y , we obtain a covariant derivative of thevector �eld X with respect to the vector �eld Y . This derivative is also denoted by rYX:rYXjA0 = DXdt ����t0 ; (17)where DXdt is taken along the integral curve of Y passing through A0 at t = t0. It is clear that in order to computerYX at a point, we have to know how X changes in a neighborhood of that point. The a�ne connection, r, istherefore not a tensor.The covariant derivative of a vector �eld is another vector �eld so it can be expressed as a linear combinationof the basis vector �elds. The coe�cients �kji of the covariant derivative of a basis vector �eld along another basisvector �eld, rL̂iL̂j =Xk �kjiL̂k; (18)are called Christo�el symbols 1. Note the reversed order of the indices i and j.Given a Riemannian manifold, there exists a unique connection [16] which is compatible with the metric:X <Y;Z>=<rXY; Z> + <Y;rXZ> 2 (19)and symmetric: rXY �rYX = [X;Y ]: (20)This connection is called the Levi-Civita or Riemannian connection.The velocity, V (t), of the rigid body moving along the curve A(t) is given by the tangent vector �eld:V (t) = dA(t)dt :1In the literature, di�erent de�nitions for the Christo�el symbols can be found. Some texts (e.g. [15]) reserve the term for thecase of the coordinate basis vectors. We follow the more general de�nition from [16] in which the basis vectors can be arbitrary.2Note that X <Y;Z> is a derivative of the function <Y; Z> along the integral curves of X (see Section 2.2).6



The acceleration, A(t), is the covariant derivative of the velocity along the curve:A = Ddt �dAdt � = rV V: (21)Note that the acceleration depends on the choice of the connection. We can also de�ne jerk, J , as the covariantderivative of the acceleration: J = DdtA(t) = rVrV V: (22)2.6 Curvature tensorThe curvature of a Riemannian manifold � is a correspondence R that associates to a pair of vector �elds X andY a mapping: R(X;Y ) : Z 7! rYrXZ �rXrYZ +r[X;Y ]Z (23)where Z is a vector �eld and r is the Riemannian connection on �3. Unlike the a�ne connection, curvature is apointwise object. That is, the value of R(X;Y )Z at a point A only depends on the vectors X(A), Y (A) and Z(A),it is not important how the vector �elds change in the neighborhood of A. The curvature tensor is a multi-linearmapping which maps a quadruple of vectors (X;Y; U; V ) into a real number. The value of the curvature tensoron the quadruple (X;Y; U; V ) is given by < R(X;Y )U; V >. If Xi is a basis, the components of the curvaturetensor are given by: Rijkl =< R(Xi; Xj)Xk; Xl > (24)3 Riemannian structure on SE(3)3.1 Choice of metricA desired property of a planning method is that the generated trajectories are invariant with respect to thechoice of the reference frames. One family of such invariant trajectories are screw motions [17]. But it can beshown [17] that screw motions are not the shortest length curves for any Riemannian metric so they do notminimize any physically meaningful cost function. Since the trajectories that we propose in the paper will dependon a Riemannian metric, another possibility to obtain invariant trajectories is to choose a metric that is bi-invariant (both, left and right invariant) and thus independent of the choice of the reference frames (see Section2.4). However, SE(3) does not admit a bi-invariant Riemannian metric (see [13] and in the context of robotics[18, 19]). For this reason we focus on the left invariant metrics that are independent of the choice of the inertialreference frame thus giving up the independence of the computed trajectories with respect to the choice of thebody-�xed reference frame.A metric that is attractive for trajectory planning can be obtained by considering the dynamic properties ofthe rigid body. The kinetic energy of a rigid body is a scalar that does not depend on the choice of the inertialreference frame. It thus de�nes a left invariant metric. For this metric, the matrix W in Eq. (13) is the inertiamatrix and 12 < V; V > corresponds to the kinetic energy of the rigid body moving with a velocity V . If thebody-�xed reference frame is attached at the centroid and aligned with the principal axes, then we have:W = � H 00 mI � ; (25)where m is the mass of the rigid body and H is the matrix:H = 24 Hxx 0 00 Hyy 00 0 Hzz 35 ;with Hxx, Hyy, and Hzz denoting the moments of inertia about the x, y, and z axes, respectively. If f!; vg isthe vector pair associated with the vector V , this vector pair represents the instantaneous twist associated with3Sign convention in the de�nition of the curvature in the literature varies. Here we follow [15].7



the motion, expressed in the body-�xed reference frame. The norm of the vector V thus assumes the familiarexpression: < V; V >= !TH! +mvT v: (26)Now assume that the body �xed frame fMg is displaced by the matrix:C = � R d0 1 �to a new frame fMgC . The kinetic energy does not change if the body-�xed frame is changed. It is not di�cultto check that this implies that the matrix WC de�ning the energy metric for the new description of the motionof the rigid body is: WC = � RTHR�mRTD2R �mRTDRmRTDR mI � ; (27)where D is the skew-symmetric matrix corresponding to the vector d. This is therefore the most general form ofthe inertia matrix and can be viewed as a spatial version of Steiner's parallel-axis theorem.If we desire a trajectory that can be used for di�erent objects, we can abstract the inertial properties by settingH = �I and m = � in Eq. (25), where � and � are two arbitrary positive scalars. In this way the matrix Wbecomes: W = � �I 00 �I � (28)This was the metric proposed by Park and Brockett [20] for study of kinematic dexterity of robot mechanisms. Inaddition to being left invariant, this metric is also bi-invariant when restricted to the group of rotations, SO(3).The two scalars, � and �, act like scaling factors for angular velocities and linear velocities. In kinematic analysisthere is no a priori justi�cation for choosing them.Metrics (25) and (28) are not right invariant. Speci�cally, they will depend on the choice of the origin of thebody-�xed reference frame.Remark 3.1 In [17] it was shown that the matrix of metric coe�cients, G = h< L̂i; L̂j >i, for a product metricon SO(3)� IR3 induced by a left invariant metric Q on SO(3) and the standard Euclidean metric on IR3, has theform: G = � Q 00 
I � : (29)The metric (25) (and thus (28)) has this form and is therefore a product metric. In other words, there is anisometry between SE(3) endowed with any of these metrics and the product space SO(3)� IR3 with appropriatelyde�ned metrics on SO(3) and IR3. Although (27) is not a product metric with respect to this splitting, it isisometric to a metric of the form (25). Consequently, any metric induced by the kinetic energy will be isometricto a product metric. These isometries do not preserve the group structure of SE(3), they are isometries in thesense of manifolds. But since none of the functionals that we later use to de�ne the smoothness of a curve dependson the group structure of SE(3), the calculations in the examples could be simpli�ed by performing them on theproduct space SO(3) � IR3. However, the key results in this paper are derived for a general metric and are notlimited to product metrics. There are important applications of such general metrics. For example, if the metricis de�ned so that it re
ects the dynamic properties of the mechanical system to which the object is attached, itwill in general not be a product metric. For this reason, the product structure of SE(3) equipped with the metricinduced by the kinetic energy metric (25) will not be used in the derivations.3.2 The Riemannian connectionIn this section we �nd the Riemannian connections that correspond to the left invariant metrics (25) and (28).We start with an elementary result relating the Christo�el symbols and the structure constants for an arbitraryLie group. It can be shown [15] that if r is the Riemannian connection then for any three vector �elds X, Y andZ: < Z;rXY >= 12 fY < X;Z > +X < Z; Y > �Z < X; Y > ++ < [Z; Y ]; X > + < [Z;X]; Y > + < [X;Y ]; Z >g (30)8



This immediately implies:Proposition 3.2 If r is the Riemannian connection compatible with a left invariant metric described by a matrixW = [wij], the Christo�el symbols for the basis L̂i are given by�kji = 12Xm w�1km �Csijwsm +Csmjwsi + Csmiwsj� ; (31)where Ckij are the structure constants of the Lie algebra and w�1km = (W�1)km.Any vector �eld on SE(3) can be expressed as a linear combination of left invariant vector �elds (with possiblyvarying coe�cients) according to Equation (10). If X = P6i=1XiL̂i and Y = P6i=1 Y iL̂i are any two vector�elds, then rXY = rXj L̂jY iL̂i = dY idt L̂i +XiY jrL̂iL̂j = dY idt L̂i +XiY j�kjiL̂k; (32)where ddt is the derivative along the integral curve of X and �kji are obtained from Equation (31)4. But insteadof computing the �kji, we derive expressions for the Riemannian connection directly from Equation (30). First,we prove the following lemma for SE(3):Lemma 3.3 Let X = XiL̂i, Y = Y iL̂i and Z = ZiL̂i be three arbitrary vector �elds and let the correspondingvector pairs be f!x; vxg, f!y; vyg, and f!z; vzg, respectively. If r is the Riemannian connection corresponding toa left-invariant Riemannian metric < :; : >, then:< Z;rXY > = < Z;X(Y i)L̂i >+ 12 [< f(!z � !y); (!z � vy + vz � !y)g; f!x; vxg >+ < f(!z � !x); (!z � vx + vz � !x)g; f!y; vyg >+ < f(!x � !y); (!x � vy + vx � !y)g; f!z; vzg >] (33)Proof: The result of the Lemma follows directly from Equation (30). The Lie bracket of any two vector �elds is:[X;Y ] = XiY j [L̂i; L̂j ] +X(Y i)L̂i � Y (Xi)L̂i;where X(f) denotes the action of the vector �eld on a scalar function f (See Section 2.2). Rewritten in terms ofthe pairs f!x; vxg and f!y; vyg, the �rst term becomesXiY j[L̂i; L̂j] = f!x � !y; !x � vy + vx � !ygThus, in Equation (30),< Z; [X;Y ] > = < f!z; vzg; f(!x � !y); (!x � vy + vx � !y)g >+ < Z;X(Y i)L̂i > � < Z; Y (Xi)L̂i >Furthermore, if Wij are the entries of W in Equation (13),X < Y;Z >= X(Y iWijZj) = X(Y i)WijZj + Y iWijX(Zj) =< X(Y i)L̂i; Z > + < Y;X(Zi)L̂i >If we similarly expand all terms in Equation (30) and add them, the result in Equation (33) follows. 24Starting from this point we use the Einstein summation convention to simplify the notation.9



Proposition 3.4 Let X = XiL̂i and Y = Y iL̂i be two arbitrary vector �elds. If r is the Riemannian connectioncorresponding to the Riemannian metric (25), thenrXY = " d!ydt + 12 �(!x � !y) +H�1(!x � (H!y)) +H�1(!y � (H!x))�dvydt + !x � vy # (34)where ddt is the derivative along the integral curve of X. The translational component of the expression rXY isindependent of the choice of matrix H and thus independent of the choice of the metric on SO(3).Proof: We use Lemma 3.3 and compute the right hand side of Eq. (33) using the metric (25):< Z;rXY > = < Z;X(Y i)L̂i >+ 12[(!z � !y) � (H!x) +m(!z � vy + vz � !y) � vx+ (!z � !x) � (H!y) +m(!z � vx + vz � !x) � vy+ (!x � !y) � (H!z) +m(!x � vy + vx � !y) � vz]= < Z;X(Y i)L̂i > +12 [2 m(!x � vy) � vz� ((H!x)� !y) � !z + (!x � (H!y)) � !z + (!x � !y) � (H!z)]= < Z;X(Y i)L̂i > +12 �2 m(!x � vy) � vz � (H�1((H!x)� !y)) � (H!z)+ (H�1(!x � (H!y))) � (H!z) + (!x � !y) � (H!z)�= < Z;X(Y i)L̂i >+ < Z; f12 �(!x � !y) +H�1(!x � (H!y)) +H�1(!y � (H!x))� ; (!x � vy)g >Since the above is true for an arbitrary Z, this proves the proposition. 2By substituting H = �I, we obtain the following corollary:Corollary 3.5 Let X = XiL̂i and Y = Y iL̂i be two arbitrary vector �elds. If r is the Riemannian connectioncorresponding to the Riemannian metric (28), thenrXY = fd!ydt + 12!x � !y; dvydt + !x � vyg; (35)where ddt is the derivative along the integral curve of X.Remark 3.6 Note that the expression for the Riemannian connection corresponding to the metric (28) is inde-pendent of the scaling constants, � and �.3.3 The curvatureIn the subsequent sections we will also need expressions for the Riemannian curvature of SE(3) for the metric(28).Proposition 3.7 If X, Y and Z are three arbitrary vector �elds on SE(3) with the associated vector pairsf!x; vxg, f!y; vyg, and f!z; vzg, and SE(3) has the Riemannian connection de�ned in Equation (35), then theRiemannian curvature R(X;Y ) Z is R(X;Y )Z = f14(!x � !y)� !z; 0g (36)Proof: The result directly follows from Equations (23) and (35). 210



3.4 Acceleration and jerk in three-dimensional motionsHaving a formula for the covariant derivative, we can compute the expressions for the acceleration and jerk. Weuse the scale-dependent left invariant metric fromEquation (28) to illustrate this. Since the connection coe�cientsand the covariant derivative are independent of the choice of the constants � and �, the resulting expressions foracceleration and jerk will also be independent of these scale factors.If V is the velocity (tangent to the curve) associated with the motion A(t) of a rigid body and if f!; vg is thecorresponding velocity pair, it immediately follows from Equations (21) and (35) that the acceleration is given byA = rV V = � _!_v + ! � v � (37)The third derivative of motion, jerk, can be computed from Equations (22) and (35):J = rVrV V = � d _!dt + 12! � _!d( _v+!�v)dt + ! � ( _v + ! � v) � (38)Remark 3.8 The resulting expression for the acceleration corresponds to the acceleration that is used in kine-matics. The same is true for the jerk. Given that the acceleration and jerk depend on the connection and thereforeon the metric, this result is due to the special choice of the metric (28) and does not hold, for example, for ageneral form of the metric (25). See [17] for discussion of this phenomenon.4 Necessary conditions for smooth trajectories4.1 Variational calculus on manifoldsIn this section, we consider trajectories between a starting and a �nal position and orientation that minimize anintegral cost functions while possibly satisfying additional boundary conditions on the velocities and/or accel-erations. The cost functions can be the kinetic energy of the rigid body, or some other measure of smoothnessinvolving velocity or its higher derivatives. More speci�cally, we will be interested in curves A : [a; b]! SE(3)that minimize integrals of the form J = Z ba < h(dAdt ); h(dAdt ) > dt (39)where boundary conditions on A(t) and its derivatives may be speci�ed at the end points a and b. The function hreturns a vector �eld and usually involves one or more recursive applications of the covariant derivative. To obtaintrajectories that are independent of the choice of the inertial reference frame fFg, we will use a left invariantmetric and the corresponding Riemannian connection.We adapt methods from the classical calculus of variations to the di�erential geometric setting [15]. Noakeset al. [10] use such a framework to derive expressions for cubic splines on a general manifold and they providethe formulas for the group of rotations SO(3). The cubic splines correspond to our minimum acceleration curvesand we derive the results from [10] using more direct approach. We will illustrate this approach by derivingthe necessary conditions for minimum jerk curves. These necessary conditions were independently obtained byCamarinha et al. [11], who extended the results by Noakes et al. to higher order splines.In the calculus of variations, the �rst-order necessary conditions for the minimal solution are derived bystudying variations of the optimal trajectory. Let A(t) be a curve on SE(3) and let f : (��; �)� [a; b]! SE(3)be a di�erentiable mapping such that f(0; t) = A(t). Such mapping is called a variation of the curve A(t) [15]. Avariation is called proper, if any curve fs(t) = f(s; t) satis�es the given boundary conditions at t = a and t = b.For a variation f , we can de�ne the vector �elds V = @f(s;t)@t and S = @f(s;t)@s . The value of the cost functional ona curve fs(t) is J(s) = Z ba < h(@f(s; t)@t ); h(@f(s; t)@t ) > dt; s 2 (��; �): (40)If the curve A(t) = f(0; t) is a stationary point of J then the �rst variation dJ(s)ds must vanish for s = 0 and thisgives us the �rst order necessary condition for the optimal trajectories.11



4.2 Minimum distance curves - geodesicsGiven a Riemannian metric, the length of a curve A(t) between the points A(a) and A(b) is de�ned to be:L(A) = Z ba < dAdt ; dAdt > 12 dt (41)We are usually interested in �nding the shortest curve (the curve that minimizes L) between two points. It canbe shown [15], that if there exist a curve that minimizes the functional L, this curve also minimizes so calledenergy functional: J = E(s) = Z ba < df(s; t)dt ; df(s; t)dt > dt = Z ba < V; V > dt (42)The critical points of the energy functional are called geodesics and they are given by the following equation [15]:rV V = 0; (43)where V = dA(t)dt .To solve Equation (43) and �nd the geodesics on SE(3) for the metric (25), we express V as a linear combinationof left invariant vector �elds L̂1; : : : ; L̂6 according to Equation (10). The coe�cients of the linear combinationform the vector pair f!; vg which in general varies over the manifold.Proposition 4.1 A curve A(t) is a geodesic on SE(3) equipped with the metric (25) if and only if the vector pairf!; vg corresponding to the velocity vector �eld V = dAdt satis�es the equations:d!dt = �H�1(! � (H!))dvdt = �! � v: (44)The second equation in (44) can be simpli�ed to the equation:�d = 0: (45)Proof: A curve A(t) is a geodesic if and only if Equation (43) is satis�ed. Substituting for rV V from Equation(34), and letting f!x; vxg = f!y; vyg = f!; vg we get the Equation (44). The second equation in (44) can bewritten as: _v + ! � v = 0:By writing 
 = RT _R and v = RT _d and using the identity _RT = �RT _RRT , we obtain_v + ! � v = _v +
v = ( _RT _d+RT �d) + RT _RRT _d = RT �d = 0;which proves �d = 0. 2Remark 4.2 According to Hamilton's principle, the trajectory that minimizes the kinetic energy is obtained bysolving the dynamic equations of motion. It therefore comes as no surprise that the �rst equation in (44) are theEuler equations while Equation (45) is the Newton's equation in the absence of external forces.Corollary 4.3 A curve A(t) = � R(t) d(t)0 1 �is a geodesic on SE(3) equipped with the metric (28) if and only if the vector pair f!; vg corresponding to thevelocity vector �eld V = dAdt satis�es the equations:d!dt = 0dvdt = �! � v: (46)12



The second equation in (46) can be simpli�ed to the equation:�d = 0:Remark 4.4 It is worth noting that the above result is independent of the choice of scale factors � and �. Thenecessary conditions for minimum acceleration and minimum jerk curves derived in subsequent subsections willalso have the same property. However, the curves do depend on the choice (of the origin) of the body-�xedreference frame.4.3 Minimum acceleration curvesWe derive the necessary conditions for the curves that minimize the square of the L2 norm of the acceleration byconsidering the �rst variation of the acceleration functionalLa = Z ba < rV V;rV V > dt; (47)where V (t) = dA(t)dt and A(t) is a curve on the manifold. The initial and �nal point as well as the initial and �nalvelocity for the motion are prescribed. Noakes et al. [10] derived the following theorem:Theorem 4.5 (Noakes et al. [10]) Let A(t) be a curve on a Riemannian manifold that satis�es the boundaryconditions (that is, it starts and ends at the prescribed points with the prescribed velocities) and let V = dAdt . IfA(t) minimizes the functional La, then:rVrVrV V + R(V;rV V )V = 0: (48)Proof: The proof of the theorem is similar to the proof of Theorem 4.8 and it will be omitted in the interest ofspace. Noakes et al. use slightly di�erent approach and their proof is more involved. 2We can directly apply Theorem 4.5 to SE(3) with the Riemannian connection computed from the metric (28).Proposition 4.6 Let A(t) = � R(t) d(t)0 1 �be a curve between two prescribed points on SE(3) that has prescribed initial and �nal velocities. If f!; vg is thevector pair corresponding to V = dAdt , the curve minimizes the cost function La derived from the metric (28) onlyif the following equations hold: !(3) + ! � �! = 0d(4) = 0; (49)where (�)(n) denotes the nth derivative of (�).Proof: We start by using Equations (37) and (36) to compute the second term in Equation (48):rVrVrV V + R(V;rV V )V = rVrVrV V + � 14(! � _!)� !0 � = 0 (50)By repeated application of Equation (35) the termrVrVrV V can be simpli�ed. The rotational part of the aboveequation thus reduces to the �rst equation in (49). To simplify the translational component, we �rst observe thatthe translational component of rV V can be written as (see Proposition 4.1):_v + ! � v = RT �d:13



It follows that the translational component of rVrV V is:ddt(RT �d) + ! � (RT �d) = ( ddt (RT �d) + RT _R(RT �d) = ( _RT �d+RTd(3)) +RT _RRT �d = RTd(3):Similarly, the translational component of rVrVrV V can be simpli�ed to getRTd(4) = 0from which the second equation in (49) follows. 2Remark 4.7 As observed in [10], the �rst equation (49) can be integrated to obtain!(2) + ! � _! = constant (51)However, this equation cannot be further integrated analytically for arbitrary boundary conditions. In Section5.2 we will show how to obtain the solution for special choice of the initial and �nal velocities.4.4 Minimum jerk curvesThe minimum jerk curves between two points are obtained by minimizing the L2 norm of the Cartesian jerk,provided that the appropriate boundary conditions are given. In particular, it is possible to solve for minimumjerk trajectories when the initial and �nal velocities and the initial and �nal accelerations are speci�ed. Minimumjerk trajectories are particularly useful in robotics where one is generally able to control the acceleration of the ende�ector of a robot (and therefore the velocity and position) but the electro-mechanical actuators cannot producesudden changes in the acceleration.The jerk cost functional is: Lj = Z ba < rVrV V;rVrV V > dt (52)where V = dA(t)dt . The curve must start and end at the desired points on the manifold and with the desiredvelocities and accelerations. We arrive at the necessary conditions for the solution by following the same approachas in the previous subsection5.Theorem 4.8 Let A(t) be a curve on a Riemannian manifold that satis�es the boundary conditions (that is,it starts and ends at the prescribed points with the prescribed velocities and the prescribed accelerations) and letV = dAdt . If A(t) minimizes the functional Lj , then:r5V V + R(V;r3V V )V � R(rV V;r2V V )V = 0: (53)Proof: See Appendix A. 2The expressions for the minimum jerk trajectories on SE(3) for the metric (28) immediately follow.Proposition 4.9 Let A(t) be a curve between two prescribed points on SE(3) that has prescribed initial and �nalvelocities and initial and �nal accelerations. If f!; vg is the vector pair corresponding to V = dAdt , the curveminimizes the cost function Lj for the metric (28) only if the following equations hold:!(5) + 2 ! � !(4) + 54! � (! � !(3)) + 52 _! � !(3)+14! � (! � (! � �!)) + 32! � ( _! � �!) � (! � �!)� _!�14(! � _!)� �! � 38! � ((! � _!)� _!) � 18 (! � (! � _!)) � _! = 0d(6) = 0: (54)Proof: The proof follows the same lines as the proof for Proposition 4.6. We use formulas (35) and (36) toevaluate the three terms in Equation (53) and the result follows in a straightforward manner. 25A generalized version of Theorem 4.8 was derived in parallel with our work by Camarinha et al. [11].14



5 Solutions for optimal trajectories5.1 Shortest distance path on SE(3)According to Proposition 4.1, the rotational components for the minimum distance curves corresponding to themetric (25) are the Euler equations (see Remark 4.2). In general, these equations do not have an analyticalsolution and must be solved numerically. However, for the metric (28), the equations simplify and the minimumdistance curves can be computed analytically. Using properties of the Riemannian covering maps, Park showed[18] that for the metric (28), the geodesics can be obtained by lifting the geodesics from SO(3) (zero pitch screwmotions) and IR3 (straight lines). We come to the same result constructively using Equation (46).Proposition 5.1 (Park [18]) Given two con�gurationsA1 = � R1 d10 1 � A2 = � R2 d20 1 �a shortest distance path (minimal geodesic) A(t) = � R(t) d(t)0 1 �between them with respect to the metric (28) is given byR(t) = R1 exp(
0t) (55)d(t) = (d2 � d1) t+ d1 (56)where 
0 = log(RT1R2):The path is unique unless Trace(RT1 R2) = �1 when there exist two geodesics of equal minimum length (see Remark5.2).Proof: The result follows from Proposition (4.3). The �rst equation in (46) can be readily integrated to obtain!(t) = !0: (57)Let 
 be the skew symmetric matrix representation of the vector !. From Equation (3) we have
 = RT _R (58)Equation (57) can be thus integrated: RT _R = 
0 ) R(t) = R0 exp(
0t): (59)From the initial condition we get R0 = R1 and from the boundary condition 
0 = log(RT1R2). The function logis the inverse of the exponential function. See [14, pp. 414] for the formula on SE(3).The expression for the vector d(t) is obtained by integrating the equation �d = 0 twice. As a result, we getd(t) = c1t + c0and Equation (56) immediately follows from the initial and �nal conditions on d. 2Remark 5.2 The log function on SO(3) is multi-valued. If log(R) yields a solution (u; �), where u is a unitvector along the axis of rotation and � is the angle of rotation, then (u; �+ 2k�) is also a solution for any integerk. The multiplicity of the solution can be avoided by restricting � to lie in the interval [0; �] (the interval [��; 0]is covered by using axis �u). The geodesic computed by restricting � to lie in the interval [0; �] can be shownto give the unique minimal-length geodesic [18] unless � = �. If we think of the representation of SO(3) as aunit hyper-sphere in IR4 with antipodal points identi�ed, the minimal-length geodesic is unique between any twogeneral points, R1 and R2, except when Trace(RT1 R2) = �1 and there exist two geodesics of equal minimumlength. 15



According to Chasles' theorem there is a unique6 screw motion between any two given positions and orienta-tions. A screw motion will be a geodesic for metric (28) only in the special case in which the screw axis for thescrew displacement from the initial position and orientation to the �nal position and orientation passes throughthe origin O. In [17] we show that there is no Riemannianmetric whose geodesics are screw motions. Furthermore,it is shown that there is a family of non-degenerate (but not positive-de�nite) bi-invariant 2-forms for which thescrew motions satisfy the geodesic equation (43). These forms can be viewed as generalizations of the Klein andKilling forms and they are the only 2-forms for which the geodesic equation is satis�ed by the screw motions.
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Figure 2: Motions in a plane: (a) a screw motion; (b) a geodesic for metrics (28) and (25); and (c) a geodesic after the
body-fixed frame fMg is displaced.Figure 2 shows various trajectories for a motion in the plane z = 0. Figure 2-a shows a screw motion whichin the planar case corresponds to rotation about a �xed point in the plane. A geodesic for the metric (28) isshown in Fig. 2-b. For planar motions, the geodesic for the metric (25) will be the same. Since the trajectory iscomputed by using a left invariant metric, it does not change if the inertial reference frame fFg is moved. Butthe trajectory changes if we change the body-�xed frame fMg. The trajectory for a di�erent body-�xed referenceframe is shown in Fig. 2-c and is di�erent from the curve shown in Fig. 2-b. We also show the motion of thenew body-�xed frame. The �gure clearly shows that the new body-�xed frame follows a geodesic for metric (28),but the rigid body will move along a curve that is di�erent from the geodesics on Fig. 2-b. Examples of threedimensional motions can be found in [1, 21].It is also interesting to compare the geodesics for the metric (25), which are products of geodesics on SO(3)and IR3, with geodesics for a non-product metric. For illustrative purposes we present motions in the plane andthus the geodesics on SE(2). A generalized form of metric (25) for SE(2) is:W = 24 1 0 00 �1 00 0 �2 35 : (60)The rows correspond to components !z, vx and vy, respectively. When �1 6= �2, this metric is not a productmetric (see Remark 3.1). Such a metric might be used, for example, to plan the end-e�ector trajectories for agantry mechanism that has di�erent dynamic characteristic for motions in the x and y directions.Figure 3 shows the geodesics for di�erent choices of �1 and �2. Figure 3-a shows a geodesic when �1 = �2. Inthis case the metric becomes the same as metric (28) and the geodesic is a product of geodesics on S(1) and IR2.The other two �gures show geodesics for the cases when �1 6= �2 and the metrics are not product metrics. In thiscase the rotational and the translational components of the motion are coupled. In particular, the translationalmotion does not follow a straight line. These geodesics were computed numerically.Remark 5.3 To obtain trajectories satisfying the necessary conditions for a general variational problem, it isnecessary to solve a two-point boundary value problem. To solve these boundary-value problems numerically, weused a �nite-di�erence method [22]. Typically, the solution for approximation with a grid of 100 points takesless than 5 seconds to compute and is very robust with respect to the choice of the initial guess. More details,including some three-dimensional examples, are presented in [21].6An argument similar to that in Remark 5.2 shows that the screw motion is unique if we limit the angle of rotation to [0; �).16
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Figure 3: Geodesics for different metrics on SE(2): (a) product metric, �1 = �2 = 1; (b) a metric with �1 = 1,�2 = 10; and (c) a metric with �1 = 5, �2 = 1.5.2 Minimum acceleration and minimum jerk trajectoriesIn general, the rotational components of the minimum acceleration curves (Equation 49) and minimum jerkcurves (Equation 54) can not be computed analytically. However, in the special case when the initial velocitiesand accelerations are collinear with the initial velocity of the geodesic between the two endpoints, and the �nalvelocities and accelerations are collinear with the �nal velocity of the geodesic, it is easy to obtain a solutionfor these trajectories in terms of the geodesic curve. If the geodesic curve can be computed analytically, so canminimum acceleration and minimum jerk curves. This is true not only for SE(3) with the metric (28) but forany geodesically complete Riemannian manifold.Proposition 5.4 Given an initial point q0 and a �nal point q1 on a Riemannian manifold, let 
 : [0; 1]! � bea geodesic connecting these two points so that 
(0) = q0 and 
(1) = q1. Let V0 = d
dt ���t0 and V1 = d
dt ���t1 . If theboundary conditions for the minimum acceleration curve are of the form:V (t0) = �1V0 V (t1) = �1V1; (61)then the minimum acceleration curve is given by 
(p(t)), where p(t) is a third degree polynomial that satis�es:p(0) = 0; p(1) = 1p0(0) = �1; p0(1) = �1; (62)where p0 = dpdt .Proof: Assume that the minimum acceleration curve � has the form �(t) = 
(p(t)), where p is an arbitraryscalar function, p : IR ! IR. It is easy to see that V = d�dt = p0 d
dt . Let T = d
dt . Since 
 is a geodesic, rTT = 0.It then follows: rV V = V (p0)T + p0p0rTT = V (p0)T: (63)But V (p0) is a derivative of p0 along �, so V (p0) = p00. It immediately follows that:rnV V = p(n+1)T: (64)Using the linearity of the curvature, we also get:R(V;rV V ) = R(p0T; p00T ) = p0p00R(T; T ) = 0: (65)Equation (48) therefore reduces to: p(4)T = 0: (66)Since T is a tangent vector for a geodesic and therefore never vanishes, we must have:p(4) = 0: (67)17



Solution of this di�erential equation is a polynomial of degree 3 and the boundary conditions transform into Eq.(62). 2The following proposition can be proved along similar lines:Proposition 5.5 Given an initial point q0 and a �nal point q1 on a Riemannian manifold, let 
 : [0; 1]! � bea geodesic connecting these two points so that 
(0) = q0 and 
(1) = q1. Let V0 = d
dt ���t0 and V1 = d
dt ���t1 . If theboundary conditions for the minimum jerk curve are of the form:V (t0) = �1V0; V (t1) = �1V1;rV V jt0 = �2V0; rV V jt1 = �2V1; (68)then the minimum jerk curve is given by 
(p(t)), where p(t) is a �fth degree polynomial that satis�es:p(0) = 0; p(1) = 1p0(0) = �1; p0(1) = �1;p00(0) = �2; p00(1) = �2: (69)For this special form of the boundary conditions, the minimum acceleration, minimum jerk and minimumdistance paths are therefore the same, only the parameterization along the path varies. Figure 4 shows thatfor more general boundary conditions the path of the minimum acceleration curve does not follow a geodesic.Further, the path changes with the boundary conditions. The �gure shows minimum acceleration motions in theplane z = 0 for di�erent choices of the initial and �nal velocities. We consider SE(3) equipped with the metric(28). In Fig. 4-a, the initial and �nal velocities are 0, so the object follows the geodesic path shown in Fig. 3-a,but with a di�erent velocity pro�le. The initial and �nal velocities for Figs. 4-b,c are not collinear with the initialand �nal velocities of the geodesic in the �gure 3-a and the paths are di�erent.
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Figure 4: Minimum acceleration motions in the plane for different boundary conditions: (a) V (0) = V (1) = f0; 0; 0gT ;
(b) V (0) = f�1; 3; 10gT ; V (1) = f2; 2; 5gT ; and (c) V (0) = f1; 10; 5gT ; V (1) = f�1;�10;�5gT . The tripleV = !z; vx; vy denotes the velocity components for the planar motion.6 Concluding remarksThis paper addressed the problem of generating smooth trajectories for a rigid body between an initial and a �nalposition and orientation. The main idea was to de�ne a measure of the smoothness of a trajectory in the formof a functional and �nd trajectories that minimize this cost functional. Using some basic tools from di�erentialgeometry, the problem was formulated as a variational problem on the Lie group of rigid body displacementsSE(3). We de�ned an inner product on the Lie algebra se(3) leading to a left invariant Riemannian metric onSE(3). This metric gave rise to a Riemannian connection and a covariant derivative. We derived analyticalexpressions for the covariant derivative and the curvature of SE(3). The covariant derivative was used to de�neacceleration and jerk for spatial rigid body motions. We stated the necessary conditions for minimum distance,18



minimum acceleration and minimum jerk trajectories and specialized these conditions for SE(3). We computedthe analytical solutions for the minimum distance trajectories by choosing an appropriate basis for the space ofthe vector �elds. We also found analytical solutions for the minimum acceleration and minimum jerk trajectoriesfor a special class of boundary conditions.In addition to these results, we show how SE(3) can be naturally endowed with a product metric or withmetrics that are isometric to a product metric. We provide several numerical examples to illustrate how thegenerated solutions are a�ected by (a) the metric; (b) the choice of the body-�xed reference frame; and (c) theboundary conditions. A simple extension of the ideas in this paper allows the inclusion of intermediate positionsand orientations and lends itself to motion interpolation (see [11]). The presented methods also have immediateapplications in computer graphics and planning of the trajectories for robots and other machines.AcknowledgmentThe authors thank Professor F. Park for discussions on prior work in this area, and for pointing out Reference[10]. This work has been supported by the NSF grants BCS 92-16691, MSS 91-57156, CISE/CDA 88-22719 andDMS 95-05175 and ARPA Grant N00014-92-J-1647. The �rst author is a fellow of the Institute for Research inCognitive Sciences at the University of Pennsylvania.A Proof of Theorem 4.8The proof is similar to the derivation of the �rst variation for the energy functional [15] and the same reasoningcould be also used to prove Theorem 4.5. We will use the following identities:(1) df(s)ds = Sf(2) < rV S; U >= V < S;U > � < S;rV U >(3) rV S = rSV + [V; S] = rSV (since S and V are derivatives with respect to coordinate curves t and s,[V; S] = 0).(4) for V = @@t , R ba V (f)dt = R ba df(t)dt dt = f(t)jba(5) rSrTU = rTrSU +R(T; S)U .(6) < R(X;Y )Z; T >=< R(Z; T )X;Y >.The �rst and the fourth identity express the fact that a vector �eld is a di�erential operator. The second andthe third identity state that r is a Riemannian connection, thus compatible with the metric (2) and symmetric(3). Identity (5) is just the de�nition of the curvature operator when [S; T ] = 0, while (6) is one of the symmetryproperties of the curvature tensor [15]. In the proof, the numbers above the equal signs indicate which identitieswere employed.We �rst obtain the expression for the �rst variation of the functional Lj :12L0j(s) = 12 dds Z ba < r2V V;r2V V > dt1= 12S Z ba < r2V V;r2V V > dt2= Z ba < rSr2V V;r2V V > dt5= Z ba (< rVrSrV V + R(V; S)rV V;r2V V >)dt2;6= Z ba (V < rSrV V;r2V V > � < rSrV V;r3V V > + < R(rV V;r2V V )V; S >)dt19



4;5= < rSrV V;r2V V >��ba + Z ba (� < rVrSV +R(V; S)V;r3V V >+ < R(rV V;r2V V )V; S >)dt3= < rSrV V;r2V V >��ba + Z ba (� < r2V S;r3V V > � < R(V; S)V;r3V V >+ < R(rV V;r2V V )V; S >)dt2;6= < rSrV V;r2V V >��ba + Z ba (�V < rV S;r3V V > + < rV S;r4V V >� < R(V;r3V V )V; S > + < R(rV V;r2V V )V; S >)dt4;5= [< rVrSV + R(V; S)V;r2V V > � < rV S;r3V V >]ba+ Z ba (< rV S;r4V V > � < R(V;r3V V )V; S > + < R(rV V;r2V V )V; S >)dt2;3;6= [< rVrV S;r2V V > + < R(V;r2V V )V; S > � < rV S;r3V V >]ba+ Z ba (V < S;r4V V > � < S;r5V V > + < �R(V;r3V V )V +R(rV V;r2V V )V; S >)dt4= [< rVrV S;r2V V > + < R(V;r2V V )V; S > � < rV S;r3V V > + < S;r4V V >]ba+ Z ba (< [�r5V V � R(V;r3V V )V + R(rV V;r2V V )V ]; S >)dt (70)Since the initial and �nal positions, velocities and accelerations are �xed, S, rSV = rV S and rSrV V =rVrSV +R(V; S)V = rVrV S vanish at the endpoints. Thus the integral in the above equation must vanish foran arbitrary variation (that preserves the boundary conditions). But this is only possible if Equation (53) holdsso the Theorem is proved.References[1] M. �Zefran and V. Kumar, \Planning of smooth motions on se(3)", in Proceedings of 1996 InternationalConference on Robotics and Automation, Minneapolis, MN, Apr. 1996, pp. 121{126.[2] R. P. Paul, Robot Manipulators, Mathematics, Programming and Control, The MIT Press, Cambridge, 1981.[3] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, AK Peters, 1993.[4] D. E. Whitney, \The mathematics of coordinated control of prosthetic arms and manipulators", ASME J.Dynamic Systems and Control, vol. 94, pp. 303{309, 1972.[5] D. L. Pieper, The kinematics of manipulators under computer control, PhD thesis, Stanford University, 1978.[6] K. J. Waldron, \Geometrically based manipulator rate control algorithms",Mechanism and Machine Theory,vol. 17, no. 6, pp. 379{385, 1982.[7] K. Shoemake, \Animating rotation with quaternion curves", ACM Siggraph, vol. 19, no. 3, pp. 245{254,1985.[8] Q. J. Ge and B. Ravani, \Computer aided geometric design of motion interpolants", ASME Journal ofMechanical Design, vol. 116, pp. 756{762, 1994.[9] F. C. Park and B. Ravani, \Bezier curves on Riemannian manifolds and Lie groups with kinematics appli-cations", ASME Journal of Mechanical Design, vol. 117, no. 1, pp. 36{40, 1995.[10] L. Noakes, G. Heinzinger, and B. Paden, \Cubic splines on curved spaces", IMA J. of Math. Control &Information, vol. 6, pp. 465{473, 1989. 20
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