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On the Generation of Smooth Three-Dimensional Rigid Body Motions

Abstract

This paper addresses the problem of generating smooth trajectories between an initial and final position and
orientation in space. The main idea is to define a functional depending on velocity or its derivatives that
measures the smoothness of a trajectory and find trajectories that minimize this functional. In order to ensure
that the computed trajectories are independent of the parameterization of positions and orientations, we use
the notions of Riemannian metric and covariant derivatives from differential geometry and formulate the
problem as a variational problem on the Lie group of spatial rigid body displacements, SE (3). We show that
by choosing an appropriate measure of smoothness, the trajectories can be made to satisfy boundary
conditions on the velocities or higher order derivatives. Dynamically smooth trajectories can be obtained by
incorporating the inertia of the system into the definition of the Riemannian metric. We state the necessary
conditions for the shortest distance, minimum acceleration and minimum jerk trajectories. Analytical
expressions for the smooth trajectories are derived for some special cases. We also provide several examples of
the general case where the trajectories are computed numerically.
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On the generation of smooth three-dimensional
rigid body motions*

Milog Zefran®, Vijay Kumar! and Christopher Croke!
TGeneral Robotics and Active Sensory Perception (GRASP) Laboratory
tDepartment of Mathematics

University of Pennsylvania

Abstract

This paper addresses the problem of generating smooth trajectories between an initial and a final position
and orientation in space. The main idea is to define a functional depending on velocity or its derivatives
that measures the smoothness of a trajectory and find trajectories that minimize this functional. In order to
ensure that the computed trajectories are independent of the parameterization of positions and orientations,
we use the notions of Riemannian metric and covariant derivative from differential geometry and formulate the
problem as a variational problem on the Lie group of spatial rigid body displacements, SE(3). We show that
by choosing an appropriate measure of smoothness, the trajectories can be made to satisfy boundary conditions
on the velocities or higher order derivatives. Dynamically smooth trajectories can be obtained by incorporating
the inertia of the system into the definition of the Riemannian metric. We state the necessary conditions for
the shortest distance, minimum acceleration and minimum jerk trajectories. Amnalytical expressions for the
smooth trajectories are derived for some special cases. We also provide several examples of the general case
where the trajectories are computed numerically.

1 Introduction

There are many applications in which the problem of generating smooth trajectories for a rigid body in IR?
is encountered. In robotics, it is frequently necessary to plan movements between a given (start) end-effector
position and orientation and a desired (goal) position and orientation [2]. In general, we have to compute the
actuator forces that achieve the specified displacement. But when the dynamic model of the system is not
available or difficult to derive, it is better to separately plan the kinematic (task space) trajectory and use some
other method to compute the corresponding actuator torques. Smooth trajectories are preferred because (a)
the electro-mechanical system is limited by the size of the actuators and their control bandwidth so it cannot
produce large velocities and accelerations; and (b) movements with high acceleration and/or jerk can excite the
structural natural frequencies in the system. Planning of smooth task space trajectories is also employed in the
programming of industrial robots for tasks such as welding and painting where a “teaching” process is employed
to record intermediate positions and the final trajectory is obtained by interpolation [2]. Similarly, in computer
animation 1t is necessary to generate a smooth trajectory passing through a set of key frames specifying positions
and orientations [3]. In this case, smoothness is required to obtain realistic motions or motions that “look”
natural.

There are several factors that need to be considered when developing a trajectory planning method. It is
desirable that the trajectories are independent of the choice of coordinates for the space. In this way, computations
performed with different choices of coordinates will produce consistent results. Further, to describe motion of a
rigid body in space, an inertial and a body fixed reference frames must be chosen. We would therefore also like
to find a planning method that does not depend on the choice of these two frames. And finally, the computed
trajectories should have good performance for the chosen task.

Coordinate independence of the trajectories is assured if they are computed using the intrinsic geometric (i.e.,
coordinate free) properties of the space. Appropriate tools are provided by differential geometry and the theory of

*Part of this paper was presented at the 1996 IEEE International Conference on Robotics and Automation [1].



Lie groups. Differential geometry offers a consistent way of extending the notion of differentiation from Euclidean
space to an arbitrary manifold so that we can define acceleration, jerk and different measures of smoothness of
the trajectories. The theory of Lie groups provides a framework for investigating the invariance of the trajectories
with respect to the choice of the inertial and body fixed frames.

There is extensive literature on trajectory generation in kinematics, robotics and computer graphics. In order to
generate a smooth motion for a robot arm from an initial to a final position, Whitney [4] and Pieper [5] advocated
using a screw motion. Waldron [6] developed an algorithm that is based on a slight variation of Pieper’s scheme
so that the velocity profile along the trajectory is trapezoidal. In all these schemes, although the screw motion is
invariant with respect to rigid body transformations, it does not optimize a meaningful cost function. Further, the
translational part of a screw motion between two points is in general not a straight line. Paul [2] decomposes the
desired displacement into a translation and two rotations each of which is smoothly parameterized with respect
to time. The motion of the end-effector is obtained by a composition of these three displacements. He employs a
fourth-order polynomial of time to obtain a smooth motion. Although there is some justification for the proposed
trajectory, the approach will lead to different trajectories if different parameterization is chosen for the rotation
or if the coordinate frames in which the trajectory is computed are changed. There is also no attempt to develop
a measure of smoothness for three-dimensional motions.

Shoemake [7] proposed a scheme for interpolating rotations with Bezier curves. This idea was extended by
Ge and Ravani [8] to spatial motions and proposed for computer-aided geometric design. In both cases, the
interpolating curves are screw motions and therefore invariant with respect to the choice of reference frames.
However, the interpolating scheme produces a motion that does not posses these invariance properties. Further,
these motions are not of minimal length for any meaningful metric. In contrast, Park and Ravani [9] use a scale-
dependent left invariant metric to design Bezier curves for three-dimensional rigid body motion interpolation.

In this paper, the trajectory planning problem is posed as finding maximally smooth trajectories between an
initial and a final position and orientation. The measure of the lack of smoothness 1s chosen to be the integral
over the trajectory of a cost function depending on velocity or its higher derivatives. Boundary conditions on
the derivatives of desired order can be enforced by appropriately choosing the cost function. For example, by
minimizing the norm of the velocity we obtain the shortest distance paths. The minimum acceleration (minimum
jerk) trajectories can be made to satisfy boundary conditions on the velocities (accelerations). Dynamically
smooth trajectories can be obtained by incorporating the inertia of the system into the cost function. A simple
extension of the ideas in this paper allows the inclusion of intermediate positions and orientations and lends itself
to motion interpolation.

Necessary conditions for smooth curves on general manifolds were derived by Noakes et al. [10], and in parallel
with our work by Camarinha et al. [11] and Crouch and Silva Leite [12]. In [10], necessary conditions for cubic
splines which correspond to our minimum acceleration curves are derived for an arbitrary manifold. These results
are extended in [12] to the dynamic interpolation problem. In [11] necessary conditions for curves minimizing the
integral of the norm of an arbitrary derivative of velocity are derived. None of these works deals specifically with
computing the trajectories on SE(3), nor do they address the choice of the metric for the space. Since there is
no natural metric for SE(3) [13, 14], the choice of metric for trajectory planning becomes an important issue.

The paper is organized as follows. We first review some preliminary concepts on Lie groups and space kine-
matics, including the ideas of a left invariant metric, connection and the covariant derivative. This material is
standard and can be found in many texts [14, 15, 16]. In Section 3, we address the choice of metric for SE(3).
We propose a left invariant metric given by the kinetic energy of a rigid body and derive the expressions for the
covariant derivative given by this metric. We use these geometric constructs to formalize the 1deas of acceleration
and jerk on SF(3). Most of these results are presented here for the first time. In Section 4, we discuss the
variational problems that need to be solved in order to calculate the shortest distance, minimum acceleration
and minimum jerk trajectories. While some of these results were derived in [10] and [11], we present alternative
proofs and specialize the results to SE(3). In Section 5, we derive analytical solutions for the smooth trajectories
in some special cases. For more general situations, we compute numerical solutions. Section 6 provides some
concluding remarks.



2 Kinematics, Lie groups and differential geometry

2.1 The Lie group SE(3)

Consider a rigid body moving in free space. Assume any inertial reference frame {F} fixed in space and a frame
{M} fixed to the body at point O’ as shown in Figure 1. At each instance, the configuration (position and
orientation) of the rigid body can be described by a homogeneous transformation matrix corresponding to the
displacement from frame {F} to frame {M}. The set of all such matrices is called SF(3), the special Euclidean
group of rigid body transformations in three-dimensions:

SE(3) = {[g f] | RER>™? d e IRB,RTR:I,det(R):l}. (1)

It is easy to show [14] that SF(3) is a group for the standard matrix multiplication and that it is a manifold. Tt
is therefore a Lie group [16].

FINAL
POSITION

INITIAL
POSITION

Figure 1: The inertial (fixed) frame and the moving frame attached to the rigid body

On a Lie group, the tangent space at the group identity defines a Lie algebra. The Lie algebra of SE(3),
denoted by se(3), is given by:

56(3):{[% 8] |Q€IR3X3,UEIR3,QT:—Q}. (2)
A 3 x 3 skew-symmetric matrix € can be uniquely identified with a vector w € IR? so that for an arbitrary vector
¢ € R?, Qu = w x x, where X is the vector cross product operation in IR®. Each element S € se(3) can be thus
identified with a vector pair {w, v}.

Given a curve A(t) : [-a,a] — SE(3), an element S(t) of the Lie algebra se(3) can be associated to the tangent
vector A(t) at an arbitrary point ¢ by:

S(t) = ATH0A() =

[ RTR RTd ] . 3)

0 0

A curve on SE(3) physically represents a motion of the rigid body. If {w(?), v(¢)} is the vector pair corresponding
to S(t), then w physically corresponds to the angular velocity of the rigid body while v is the linear velocity of
the origin O’ of the frame {M}, both expressed in the frame {M}. In kinematics, elements of this form are called
twists [14] and se(3) thus corresponds to the space of twists. It is easy to check that the twist S(¢) computed
from Eq. (3) does not depend on the choice of the inertial frame {F}. For this reason, S(t) is called the left
invariant representation of the tangent vector A. Alternatively, the tangent vector A can be identified with a right
invariant twist (invariant with respect to the choice of the body-fixed frame {M}). In this paper, right invariant
twists will not be considered, but all the developments are parallel to those for the left invariant twists.



Since se(3) is a vector space, any element can be expressed as a 6 x 1 vector of components corresponding to
a chosen basis. The standard basis for se(3) is:

0 0 0 0 0 0 1 0 0-1 0 0
0 0-1 0 0 0 0 0 1 0 0 0

Li=1qg 1 0 o La=1_1 9 0 o Ls=119 0 0 o
0 0 0 0 | 0 0 0 0 | 0 0 0 0
_ ) _ ) ) 3 (4)
0 0 0 1 0 0 0 0 00 0 0
0 0 0 0 0 0 0 1 0 0 0 0

Li= g 0 0 o Ls=19 0 0 o0 Le=110 o 0 1
0 0 0 0 | 0 0 0 0 | 0 0 0 0

The twists L1, Lo and L3 represent instantaneous rotations about and L4, Ls and Lg instantaneous translations
along the Cartesian axes z, y and z, respectively. The components of a twist .S € se(3) in this basis are given
precisely by the velocity vector pair, {w,v}.

The Lie bracket of two elements Sy, .Sz € se(3) is defined by:

[S1, 2] = S1592 — 52.51.

It can be easily verified that if {w1,v1} and {ws, ve} are vector pairs corresponding to the twists S; and Sy, the
vector pair {w, v} corresponding to their Lie bracket [Sy, Ss] is given by

{w,v} = {w1 X wa,wy X va + v X wa}. (5)

In kinematics, this product operation is called the motor product of the two twists.

The Lie bracket of two elements of a Lie algebra is an element of the Lie algebra and can be expressed as a
linear combination of the basis vectors. The coeflicients C’Z»k]» corresponding to the Lie brackets of the basis vectors
are called structure constants of the Lie algebra [15]:

[Li, ;] ZC{}L;C. (6)

2.2 Left invariant vector fields

A (differentiable) vector field on a manifold is a (smooth) assignment of a tangent vector to each element of the
manifold. At each point, a vector field defines a unique integral curve to which it is tangent [16]. Formally, a
vector field X is a (derivation) operator which, given a differentiable function f, returns its derivative (another
function) along the integral curves of X. In other words, if v(t) is a curve tangent to a vector field X at point

p = 7(ty), then:

xg, = L0 g

On a matrix Lie group, an example of a (differentiable) vector field, X, is obtained by setting:
X(A) =T(A4) = AT, (8)

where 7" belongs to the Lie algebra of the group. Such a vector field is called a left invariant vector field. We
use the notation 7' to indicate that the vector field is obtained by left translating the Lie algebra element T
The set of all left invariant vector fields is a vector space and by construction it is isomorphic to the Lie algebra.
Right invariant vector fields can be defined in analogous way. In general, a vector field need not be left or right
invariant.

We now concentrate on the group SF(3). Since Ly, La, ..., Ls are a basis for the Lie algebra se(3), the set

of the left invariant vector fields {ﬁl, Lo, ..., ﬁ6} is a basis of the space of the left invariant vector fields. In
addition, we have [15]:
[Li, L;] = [L1, L] Zcijk. (9)



Finally, because at any point A € SFE(3) the vectors il(A), ...y Ls(A) form a basis of the tangent space at
that point, any vector field X can be expressed as

X=> XL (10)

where the coefficients X? vary over the manifold — if they are constant then X is left invariant. This implies that
we can associate a vector pair {w, v} defined by

w=[X" X% XN =X X0 X

to an arbitrary vector field X.

2.3 Exponential map and local coordinates

A motion of the rigid body in R? is described by a curve, A(t), on SE(3). fV = % is the vector field tangent
to A(t), the vector pair {w,v} associated with V' corresponds to the instantaneous twist (screw axis) for the
motion. In general, the twist {w,v} changes with time. Motions for which the twist {w, v} is constant are known
in kinematics as screw motions. In this case the twist {w, v} can be identified with the screw azis of the motion. If
the vector pair {w, v} is interpreted as Pliicker coordinates of a line in space, it is not difficult to see that the screw
motion physically corresponds to a rotation about this line with a constant angular velocity and a concurrent
translation along the line with a constant translational velocity.

Let the twist S € se(3) be represented by a vector pair {w,v} and let A(t) be a screw motion with the screw
axis {w, v} such that A(0) = I. We define the exponential map exp : se(3) — SE(3) by:

exp(tS) = A(t), (11)

Using Eq. (3) we can show that the exponential map agrees with the usual exponentiation of the matrices in
R*>4:

k=0
where S denotes the matrix representation of the twist S. The sum of this series can be computed explicitly and
the resulting expression, when restricted to SO(3), is known as Rodrigues’ formula. The formula for the sum in

SFE(3) is derived in [14, pp. 413].

2.4 Riemannian metrics on Lie groups

If a smoothly varying, positive definite, bilinear, symmetric form is defined on the tangent space at each point on
the manifold, we say the manifold is Riemannian. The bilinear form is an inner product on the tangent space at
each point and is called a Riemannian metric.

On a Lie group, and thus on SE(3), an inner product in the tangent space at the identity can be extended
to a Riemannian metric (everywhere on the manifold) using the idea of left translation. Assume that the inner
product of two elements 71,75 € se(3) is defined by

<T1,T2 >r= thtz, (13)

where t; and t, are the 6 x 1 vectors of components of T} and 75 with respect to some basis and W is a positive
definite matrix. If V1 and V4 are tangent vectors at an arbitrary group element A € SFE(3), the inner product
< Vi, V2 >4 in the tangent space T4 SFE(3) can be defined by:

< Vi, Vo >a=< A7, AT > (14)

The metric obtained in such a way is called a left invariant metric [16]. Physically, left invariance corresponds
to independence of the choice of the inertial frame. Let A;(¢) and As(t) represent two motions of a rigid body

that pass through a point A at ¢ = ¢; and let V; = dc‘?tl and Vo = dc‘?f be the corresponding velocity vector




fields. Let C' describe a displacement of the inertial reference frame. In new reference frame, the motions become

fil(t) = CAi(t) and fiz(t) = C'As(t), and the velocity vector fields Vi, = CV; and Vs = C'Vy. Then:
< ‘N/l, ‘N/z >coca=< A‘l(]‘lf/l,A‘lC‘lf/z >r=< Vi, Vo >4 . (15)

We could similarly define a right invariant Riemannian metric and in this case the metric would be independent
on the choice of the body-fixed frame.

2.5 Affine connection and covariant derivative

The motion of a rigid body is represented by a curve, A(t), on SF(3). The velocity at an arbitrary point is the
tangent vector to the curve at that point. In order to obtain the acceleration, or to engage in a dynamic analysis,
we need to be able to differentiate a vector field along the curve. At each point A € SE(3), the value of a vector
field belongs to the tangent space T4 SE(3) and to differentiate a vector field along a curve, we must be able to
subtract vectors from tangent spaces at different points on the curve. But tangent spaces at different points are
not related. We thus have to specify how to transport a vector along the curve from one tangent space to another.
This process is called parallel transport and is formalized with the affine connection [16].

A derivative of a vector field along a curve A(t) is defined through the parallel transport. Let X be a vector
field defined along A(t), and let X (¢) stand for X(A(¢)). Denote by X'(¢) the parallel transport of the vector
X(t) to the point A(tg). The covariant derivative of X along A(t) is:

DX Xto(t) — X (¢
DIy, X0 = Xllo) (16)
dt b o t

By taking covariant derivatives along integral curves of a vector field Y, we obtain a covariant derivative of the
vector field X with respect to the vector field Y. This derivative is also denoted by Vy X:

DX
VyX|, = — 17
yXla = | ()
where % is taken along the integral curve of Y passing through Ay at ¢ = ¢;. It is clear that in order to compute

Vy X at a point, we have to know how X changes in a neighborhood of that point. The affine connection, V| is
therefore not a tensor.

The covariant derivative of a vector field is another vector field so it can be expressed as a linear combination
of the basis vector fields. The coefficients Ffi of the covariant derivative of a basis vector field along another basis
vector field,

Vi k=) Tl (18)
k

are called Christoffel symbols 1. Note the reversed order of the indices ¢ and j.
Given a Riemannian manifold, there exists a unique connection [16] which is compatible with the metric:

X <Y, Z>=<VxY,Z>+ <Y, VxZ>? (19)

and symmetric:

VxY - VyX = [X,V]. (20)

This connection is called the Levi-Civita or Riemannian connection.
The velocity, V (), of the rigid body moving along the curve A(?) is given by the tangent vector field:
dA(?)

v =8

n the literature, different definitions for the Christoffel symbols can be found. Some texts (e.g. [15]) reserve the term for the
case of the coordinate basis vectors. We follow the more general definition from [16] in which the basis vectors can be arbitrary.
2Note that X <Y, Z > is a derivative of the function <Y, Z> along the integral curves of X (see Section 2.2).



The acceleration, A(%), is the covariant derivative of the velocity along the curve:

D /dA

Note that the acceleration depends on the choice of the connection. We can also define jerk, J, as the covariant
derivative of the acceleration:

J = %A(t) =VyVyV. (22)

2.6 Curvature tensor

The curvature of a Riemannian manifold X 1s a correspondence R that associates to a pair of vector fields X and
Y a mapping:
R(X,Y) A —=VyVxZ —-VxVyZ+ V[ny]Z (23)

where Z is a vector field and V is the Riemannian connection on . Unlike the affine connection, curvature is a
pointwise object. That is, the value of R(X,Y )7 at a point 4 only depends on the vectors X(A4), Y(A) and Z(A),
it 18 not important how the vector fields change in the neighborhood of A. The curvature tensor is a multi-linear
mapping which maps a quadruple of vectors (X,Y,U, V) into a real number. The value of the curvature tensor
on the quadruple (X,Y,U,V) is given by < R(X,Y)U,V >. If X; is a basis, the components of the curvature
tensor are given by:

Rijr =< R(X;, Xj) Xy, X1 > (24)

3 Riemannian structure on SE(3)

3.1 Choice of metric

A desired property of a planning method is that the generated trajectories are invariant with respect to the
choice of the reference frames. One family of such invariant trajectories are screw motions [17]. But it can be
shown [17] that screw motions are not the shortest length curves for any Riemannian metric so they do not
minimize any physically meaningful cost function. Since the trajectories that we propose in the paper will depend
on a Riemannian metric, another possibility to obtain invariant trajectories is to choose a metric that is bi-
invariant (both, left and right invariant) and thus independent of the choice of the reference frames (see Section
2.4). However, SF(3) does not admit a bi-invariant Riemannian metric (see [13] and in the context of robotics
[18, 19]). For this reason we focus on the left invariant metrics that are independent of the choice of the inertial
reference frame thus giving up the independence of the computed trajectories with respect to the choice of the
body-fixed reference frame.

A metric that is attractive for trajectory planning can be obtained by considering the dynamic properties of
the rigid body. The kinetic energy of a rigid body is a scalar that does not depend on the choice of the inertial
reference frame. Tt thus defines a left invariant metric. For this metric, the matrix W in Eq. (13) is the inertia
matrix and 1 < V,V > corresponds to the kinetic energy of the rigid body moving with a velocity V. If the

7
body-fixed reference frame is attached at the centroid and aligned with the principal axes, then we have:

(25)

H 0
W_[O m[]’

where m is the mass of the rigid body and H is the matrix:

Heyy 00
H=| 0 Hy, 0 |,
0 0 H,

with Hyy, Hyy, and H,, denoting the moments of inertia about the «, y, and z axes, respectively. If {w, v} is
the vector pair associated with the vector V, this vector pair represents the instantaneous twist associated with

3Sign convention in the definition of the curvature in the literature varies. Here we follow [15].



the motion, expressed in the body-fixed reference frame. The norm of the vector V thus assumes the familiar
expression:

<V, V>=wlHu+mvlv. (26)
Now assume that the body fixed frame {M} is displaced by the matrix:
R d
=[5 1]

to a new frame {M}.. The kinetic energy does not change if the body-fixed frame is changed. It is not difficult
to check that this implies that the matrix W defining the energy metric for the new description of the motion
of the rigid body is:

mRTDR mi (27)

where D is the skew-symmetric matrix corresponding to the vector d. This is therefore the most general form of
the inertia matrix and can be viewed as a spatial version of Steiner’s parallel-axis theorem.

If we desire a trajectory that can be used for different objects, we can abstract the inertial properties by setting
H = ol and m = 3 in Eq. (25), where o and 3 are two arbitrary positive scalars. In this way the matrix W
becomes:

[ RTHR—mR"D?R —mR"DR ]
WC = ’

(28)

e

0 BI

This was the metric proposed by Park and Brockett [20] for study of kinematic dexterity of robot mechanisms. In
addition to being left invariant, this metric is also bi-invariant when restricted to the group of rotations, SO(3).
The two scalars, o and 3, act like scaling factors for angular velocities and linear velocities. In kinematic analysis
there 1s no a prior: justification for choosing them.

Metrics (25) and (28) are not right invariant. Specifically, they will depend on the choice of the origin of the
body-fixed reference frame.

Remark 3.1 In [17] it was shown that the matrix of metric coefficients, G = [< L;, ﬁj >] , for a product metric
on SO(3) x R? induced by a left invariant metric @ on SO(3) and the standard Euclidean metric on IR, has the

form: 0 0

o=17 5] (29)
The metric (25) (and thus (28)) has this form and is therefore a product metric. In other words, there is an
isometry between SF(3) endowed with any of these metrics and the product space SO(3) x IR? with appropriately
defined metrics on SO(3) and R®. Although (27) is not a product metric with respect to this splitting, it is
isometric to a metric of the form (25). Consequently, any metric induced by the kinetic energy will be isometric
to a product metric. These isometries do not preserve the group structure of SE(3), they are isometries in the
sense of manifolds. But since none of the functionals that we later use to define the smoothness of a curve depends
on the group structure of SE(3), the calculations in the examples could be simplified by performing them on the
product space SO(3) x IR®. However, the key results in this paper are derived for a general metric and are not
limited to product metrics. There are important applications of such general metrics. For example, if the metric
is defined so that it reflects the dynamic properties of the mechanical system to which the object is attached, it
will in general not be a product metric. For this reason, the product structure of SE(3) equipped with the metric
induced by the kinetic energy metric (25) will not be used in the derivations.

3.2 The Riemannian connection

In this section we find the Riemannian connections that correspond to the left invariant metrics (25) and (28).
We start with an elementary result relating the Christoffel symbols and the structure constants for an arbitrary
Lie group. It can be shown [15] that if V is the Riemannian connection then for any three vector fields X, ¥ and

A
1
<Z,VXY>:§{Y<X,Z>+X<Z,Y>—Z<X,Y>+
+<[ZY, X >+<[7,X],Y >+ <[X,Y], 7 >} (30)



This immediately implies:

Proposition 3.2 IfV is the Riemannian connection compatible with a left invariant metric described by a matriz
W = [w;;], the Christoffel symbols for the basis L; are given by

1
Y= 9 Z Wi (Cjwem + Chpjwsi + Chypwgj) (31)

where C’Z»k]» are the structure constants of the Lie algebra and w;nll =W Yem-

Any vector field on SE(3) can be expressed as a linear combination of left invariant vector fields (with possibly
varying coefficients) according to Equation (10). If X = Z?Il XL and YV = 2?21 YiL; are any two vector
fields, then

. dy? . L R dY? . L R
VxY = Vg Vili= —-Li+ XYV Ly = ——Li+ XYLy, (32)
d

where = is the derivative along the integral curve of X and Ffi are obtained from Equation (31)*. But instead
of computing the F}“i,

we prove the following lemma for SE(3):

we derive expressions for the Riemannian connection directly from Equation (30). First,

Lemma 3.3 Let X = Xiﬁi, Y = YiL; and Z = Z'L; be three arbitrary vector fields and let the corresponding
vector pairs be {wy, vy b, {wy, vy}, and {w,, v, }, respectively. If V is the Riemannian connection corresponding to
a left-invariant Riemannian metric < .,. >, then:

<Z,VxY > = <Z,X(Y)L; >
1

b e x )

+ < {(ws Xwe), (We X Vg + v X we)}, {wy, vy} >

+ < {(we X wy), (we X vy + vy X wy)}, {ws, v} >] (33)

,((.dz X vy + v, X Wy)}a {Wxavx} >

Proof: The result of the Lemma follows directly from Equation (30). The Lie bracket of any two vector fields is:
[X,Y]= XYL, L;]+ X(Y))L; — Y (X)L,

where X(f) denotes the action of the vector field on a scalar function f (See Section 2.2). Rewritten in terms of
the pairs {wy, v} and {wy, vy}, the first term becomes

XYLy, L] = {we X wy,we X vy + 0y X wy}
Thus, in Equation (30),

<Z[X,)Y]> = <A{w:, v}, {(we X wy), (We X vy + g X wy)} >
+ < Z,X(YHL; > - < Z,Y(XYL; >

Furthermore, if W;; are the entries of W in Equation (13),
X<V, Z>= XYW 70) = X(YOYWi; 27 + Y Wi X(7) =< X(YD)Li, Z > + < Y, X(Z)L; >

If we similarly expand all terms in Equation (30) and add them, the result in Equation (33) follows.

4Starting from this point we use the Einstein summation convention to simplify the notation.



Proposition 3.4 Lei X = X'Li and Y = Y'L; be two arbitrary vector fields. If V is the Riemannian connection
corresponding to the Riemannian metric (25), then

dw 1 —1 -1
v 4+ 1 [(wy, x + H e« X (H + A X (Hwg

34
i + Wy X vy ( )

where % 1s the derivative along the integral curve of X. The translational component of the expression VxY 1s

independent of the choice of matriz H and thus independent of the choice of the metric on SO(3).

Proof: We use Lemma 3.3 and compute the right hand side of Eq. (33) using the metric (25):
<Z,VxY> = <Z XYY)L; >

3l X wy) - (How) + (s x vy 02 X 0y) v

+ (W, X wg) - (Hwy) + m(w, X vp + v, X wy) - vy

+ (we X wy) - (Hw;) + mwe X vy + g X wy) - 0]
= < Z,X(Yi)ﬁi > —I—% 2 m(we X vy) -0,
— (Hwe) X wy) ~w: + (we X (Hwy)) - w: + (we X wy) - (Hw;)]

< Z,X(YY)L; > +% [2 m(we X vy) v, — (H  (Hwy) X wy)) - (Hw.)
+ (H ™ we x (Huy))) - (Hws ) + (we X wy) - (Hw:)]
= <Z,X(Y)L; >
<20 [ X g) o+ H7 (e X () o B (g x (i) (s % 2)} >

Since the above is true for an arbitrary 7, this proves the proposition. O

By substituting H = o, we obtain the following corollary:

Corollary 3.5 Let X = X'L; and Y = Y'L; be two arbitrary vector fields. If V is the Riemannian connection
corresponding to the Riemannian metric (28), then

dw 1 dv
VXY—{d—ty—i—waxwy,d—ty—l—wxxvy}, (35)
where % 15 the dertvative along the integral curve of X.

Remark 3.6 Note that the expression for the Riemannian connection corresponding to the metric (28) is inde-
pendent of the scaling constants, « and 3.

3.3 The curvature

In the subsequent sections we will also need expressions for the Riemannian curvature of SE(3) for the metric

(28).

Proposition 3.7 If X, Y and 7 are three arbitrary vector fields on SE(3) with the associated vector pairs
{we, Vo b, {wy, vy}, and {w;,v.}, and SE(3) has the Riemannian connection defined in Equation (35), then the
Riemannian curvature R(X,Y) 7 is

R(X,)Y)Z = {%(wx X wy) X w;,0} (36)

Proof: The result directly follows from Equations (23) and (35).

10



3.4 Acceleration and jerk in three-dimensional motions

Having a formula for the covariant derivative, we can compute the expressions for the acceleration and jerk. We
use the scale-dependent left invariant metric from Equation (28) to illustrate this. Since the connection coefficients
and the covariant derivative are independent of the choice of the constants « and /3, the resulting expressions for
acceleration and jerk will also be independent of these scale factors.

If V is the velocity (tangent to the curve) associated with the motion A(t) of a rigid body and if {w, v} is the
corresponding velocity pair, it immediately follows from Equations (21) and (35) that the acceleration is given by

A:VVV:[ © ] (37)

V4w X

The third derivative of motion, jerk, can be computed from Equations (22) and (35):
dw 1 :
=4 sw X W

=VvyVyV = . t 2 38

j V VvV |: d(v+dc;)xv§l+wx(b+wxy):| ( )

Remark 3.8 The resulting expression for the acceleration corresponds to the acceleration that is used in kine-
matics. The same is true for the jerk. Given that the acceleration and jerk depend on the connection and therefore
on the metric, this result is due to the special choice of the metric (28) and does not hold, for example, for a
general form of the metric (25). See [17] for discussion of this phenomenon.

4 Necessary conditions for smooth trajectories

4.1 Variational calculus on manifolds

In this section, we consider trajectories between a starting and a final position and orientation that minimize an
integral cost functions while possibly satisfying additional boundary conditions on the velocities and/or accel-
erations. The cost functions can be the kinetic energy of the rigid body, or some other measure of smoothness
involving velocity or its higher derivatives. More specifically, we will be interested in curves A : [a,b] — SFE(3)
that minimize integrals of the form

J :/a < h(%),h(%) > dt (39)

where boundary conditions on A(¢) and its derivatives may be specified at the end points a and b. The function A
returns a vector field and usually involves one or more recursive applications of the covariant derivative. To obtain
trajectories that are independent of the choice of the inertial reference frame {F}, we will use a left invariant
metric and the corresponding Riemannian connection.

We adapt methods from the classical calculus of variations to the differential geometric setting [15]. Noakes
et al. [10] use such a framework to derive expressions for cubic splines on a general manifold and they provide
the formulas for the group of rotations SO(3). The cubic splines correspond to our minimum acceleration curves
and we derive the results from [10] using more direct approach. We will illustrate this approach by deriving
the necessary conditions for minimum jerk curves. These necessary conditions were independently obtained by
Camarinha et al. [11], who extended the results by Noakes et al. to higher order splines.

In the calculus of variations, the first-order necessary conditions for the minimal solution are derived by
studying variations of the optimal trajectory. Let A(¢) be a curve on SE(3) and let f : (—¢,¢€) x [a,b] — SE(3)
be a differentiable mapping such that f(0,¢) = A(¢). Such mapping is called a variation of the curve A(t) [15]. A
variation is called proper, if any curve f(t) = f(s,t) satisfies the given boundary conditions at ¢t = a and t = b.
For a variation f, we can define the vector fields V' = w and S = %. The value of the cost functional on
a curve f(t) is

b
Of(s,t af(s,t
J(S)I/ < h( f(a? )),h( f(a? ))>dt, s € (=€ e). (40)
If the curve A(t) = f(0,t) is a stationary point of J then the first variation de(ss) must vanish for s = 0 and this

gives us the first order necessary condition for the optimal trajectories.
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4.2 Minimum distance curves - geodesics
Given a Riemannian metric, the length of a curve A(¢) between the points A(a) and A(b) is defined to be:
b
dA dA 1
L(A) = —, — >2dt 41
w=[ <G5> (41)
We are usually interested in finding the shortest curve (the curve that minimizes L) between two points. It can

be shown [15], that if there exist a curve that minimizes the functional L, this curve also minimizes so called
energy functional:

b b
df(s,t) df(s,t
J:E(s):/<M,M>dt:/<V,V>dt (42)
a dt dt a
The critical points of the energy functional are called geodesics and they are given by the following equation [15]:
VyV =0, (43)

dA(¢
where V = %—2.

To solve Equation (43) and find the geodesics on SFE(3) for the metric (25), we express V' as a linear combination
of left invariant vector fields Ly, ..., Lg according to Equation (10). The coefficients of the linear combination
form the vector pair {w, v} which in general varies over the manifold.

Proposition 4.1 A curve A(t) is a geodesic on SE(3) equipped with the metric (25) if and only if the vector pair
{w, v} corresponding to the velocity vector field V = % satisfies the equations:

Cfl—c: = —H_l(wx(Hw))
Ccll_: = —wXxu. (44)

The second equation in (44) can be simplified to the equation:

d=0. (45)

Proof: A curve A(¢) is a geodesic if and only if Equation (43) is satisfied. Substituting for ViV from Equation
(34), and letting {wy, ve} = {wy, vy} = {w,v} we get the Equation (44). The second equation in (44) can be
written as:

v4+wxv=0.
By writing Q = RTR and v = RTd and using the identity RT = —RTRRT, we obtain

itwxv=0+Q=(RTd+RTd)+ R"TRR"d=R"d =0,

which proves d=0. O

Remark 4.2 According to Hamilton’s principle, the trajectory that minimizes the kinetic energy is obtained by
solving the dynamic equations of motion. It therefore comes as no surprise that the first equation in (44) are the
Fuler equations while Equation (45) is the Newton’s equation in the absence of external forces.

Corollary 4.3 A curve

A(t) = [ R(()t) d(lt) ]

is a geodesic on SE(3) equipped with the metric (28) if and only if the vector pair {w,v} corresponding to the
velocity vector field V = 42 satisfies the equations:

= a@
dw
dt
d
d—: = —wXu. (46)
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The second equation in (46) can be simplified to the equation:
d=0.

Remark 4.4 It is worth noting that the above result is independent of the choice of scale factors o and 3. The
necessary conditions for minimum acceleration and minimum jerk curves derived in subsequent subsections will
also have the same property. However, the curves do depend on the choice (of the origin) of the body-fixed
reference frame.

4.3 Minimum acceleration curves

We derive the necessary conditions for the curves that minimize the square of the L? norm of the acceleration by
considering the first variation of the acceleration functional

b
Lg I/ < VyV, VvV > dt, (47)

where V(t) = M;hﬁ and A(t) is a curve on the manifold. The initial and final point as well as the initial and final
velocity for the motion are prescribed. Noakes et al. [10] derived the following theorem:

Theorem 4.5 (Noakes et al. [10]) Let A(t) be a curve on a Riemannian manifold that satisfies the boundary
conditions (that is, it starts and ends at the prescribed points with the prescribed velocities) and let V = %. If
A(t) minimizes the functional Ly, then:

Vy Vv VvV + RV, Vy V)V = 0. (48)

Proof: The proof of the theorem is similar to the proof of Theorem 4.8 and it will be omitted in the interest of

space. Noakes et al. use slightly different approach and their proof is more involved. O

We can directly apply Theorem 4.5 to SE(3) with the Riemannian connection computed from the metric (28).

Proposition 4.6 Let

A(t) = [ R(()t) d(lt) ]

be a curve between two prescribed points on SE(3) that has prescribed initial and final velocities. If {w, v} is the
vector pair corresponding to 'V = %, the curve minimizes the cost function L, derived from the metric (28) only
iof the following equations hold:

W rwuxe=0

(49)
d® =0,
where (-)) denotes the n'* derivative of (-).
Proof: We start by using Equations (37) and (36) to compute the second term in Equation (48):
l .
VyVyVyV+ RV, Vy V)V =VyVy ViV + [ i X(;d) X ] =0 (50)

By repeated application of Equation (35) the term Vi Vi ViV can be simplified. The rotational part of the above
equation thus reduces to the first equation in (49). To simplify the translational component, we first observe that
the translational component of ViV can be written as (see Proposition 4.1):

v+wxv=RTd.

13



It follows that the translational component of Vi ViV is:

%(RTJ) +wx (RTd) = (%(RTCZ) + RTR(R"d) = (RTd + RTd®) + RTRR"d = RTd®.
Similarly, the translational component of Vi Vy ViV can be simplified to get
RTd™ =0
from which the second equation in (49) follows. -
Remark 4.7 As observed in [10], the first equation (49) can be integrated to obtain
w®) 4w x & = constant (51)

However, this equation cannot be further integrated analytically for arbitrary boundary conditions. In Section
5.2 we will show how to obtain the solution for special choice of the initial and final velocities.

4.4 Minimum jerk curves

The minimum jerk curves between two points are obtained by minimizing the L? norm of the Cartesian jerk,
provided that the appropriate boundary conditions are given. In particular, it is possible to solve for minimum
jerk trajectories when the initial and final velocities and the initial and final accelerations are specified. Minimum
jerk trajectories are particularly useful in robotics where one is generally able to control the acceleration of the end
effector of a robot (and therefore the velocity and position) but the electro-mechanical actuators cannot produce
sudden changes in the acceleration.

The jerk cost functional is:

b
L].:/ <VyVyV,VyVyV > dt (52)

where V = M;“Q. The curve must start and end at the desired points on the manifold and with the desired
velocities and accelerations. We arrive at the necessary conditions for the solution by following the same approach

as in the previous subsection®.

Theorem 4.8 Let A(t) be a curve on a Riemannian manifold that satisfies the boundary conditions (that is,
it starts and ends at the prescribed points with the prescribed velocities and the prescribed accelerations) and let

V= %. If A(t) minimizes the functional L;, then:

ViV + RV, VEV)V — R(VyV,VEV)V = 0. (53)

Proof: See Appendix A.
The expressions for the minimum jerk trajectories on SFE(3) for the metric (28) immediately follow.

Proposition 4.9 Let A(t) be a curve between two prescribed points on SE(3) that has prescribed initial and final
velocities and initial and final accelerations. If {w,v} is the vector pair corresponding to V = %, the curve
minimizes the cost function L; for the metric (28) only if the following equations hold:

W 120w x 0 4 %w X (w X w(?’)) + gw x w3

Fiw x (WX (wx @)+ 2wx (Wxw)—(wxd)xw

1

—twxw)xd—3wx((wxw)xw)— %

slwx(wxw))xw = 0

4% = 0. (54)

Proof: The proof follows the same lines as the proof for Proposition 4.6. We use formulas (35) and (36) to

evaluate the three terms in Equation (53) and the result follows in a straightforward manner. O

5 A generalized version of Theorem 4.8 was derived in parallel with our work by Camarinha et al. [11].
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5 Solutions for optimal trajectories

5.1 Shortest distance path on SF£(3)

According to Proposition 4.1, the rotational components for the minimum distance curves corresponding to the
metric (25) are the Euler equations (see Remark 4.2). In general, these equations do not have an analytical
solution and must be solved numerically. However, for the metric (28), the equations simplify and the minimum
distance curves can be computed analytically. Using properties of the Riemannian covering maps, Park showed
[18] that for the metric (28), the geodesics can be obtained by lifting the geodesics from SO(3) (zero pitch screw
motions) and IR® (straight lines). We come to the same result constructively using Equation (46).

Proposition 5.1 (Park [18]) Given two configurations

R d | R ds
m=[ 5] =[]

a shortest distance path (minimal geodesic)

between them with respect to the metric (28) is given by

R(t) = Ryexp(fot) (55)
dit) = (da—dy)t+dy (56)
where
Qo = log(RT Ry).
The path is unique unless Trace(RfRz) = —1 when there exist two geodesics of equal minimum length (see Remark
5.2).

Proof: The result follows from Proposition (4.3). The first equation in (46) can be readily integrated to obtain

w(t) = wg. (57)
Let © be the skew symmetric matrix representation of the vector w. From Equation (3) we have
Q=R'R (58)
Equation (57) can be thus integrated:
RYR = Q¢ = R(t) = Roexp(Qt). (59)

From the initial condition we get Ry = R; and from the boundary condition ¢ = log(RfRz). The function log
is the inverse of the exponential function. See [14, pp. 414] for the formula on SE(3).
The expression for the vector d(t) is obtained by integrating the equation d = 0 twice. As a result, we get

d(t) = Clt 4+ c¢o

and Equation (56) immediately follows from the initial and final conditions on d. O
Remark 5.2 The log function on SO(3) is multi-valued. If log(R) yields a solution (u, @), where u is a unit
vector along the axis of rotation and @ is the angle of rotation, then (u, § + 2kx) is also a solution for any integer
k. The multiplicity of the solution can be avoided by restricting @ to lie in the interval [0, 7] (the interval [—x, 0]
is covered by using axis —u). The geodesic computed by restricting # to lie in the interval [0, 7] can be shown
to give the unique minimal-length geodesic [18] unless # = m. If we think of the representation of SO(3) as a
unit hyper-sphere in R* with antipodal points identified, the minimal-length geodesic is unique between any two
general points, Ry and Rs, except when Trace(R¥ R;) = —1 and there exist two geodesics of equal minimum
length.
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According to Chasles’ theorem there is a unique® screw motion between any two given positions and orienta-
tions. A screw motion will be a geodesic for metric (28) only in the special case in which the screw axis for the
screw displacement from the initial position and orientation to the final position and orientation passes through
the origin O. In [17] we show that there is no Riemannian metric whose geodesics are screw motions. Furthermore,
it is shown that there is a family of non-degenerate (but not positive-definite) bi-invariant 2-forms for which the
screw motions satisfy the geodesic equation (43). These forms can be viewed as generalizations of the Klein and
Killing forms and they are the only 2-forms for which the geodesic equation is satisfied by the screw motions.

y y y
20 20
20

18 18 18 A booas.
16 16 16
14 14 14
12 12 12
10 10 M 10

8 8 8

6 6 6

4 X 4 X X

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

a) b) ¢)

Figure 2: Motions in a plane: (a) a screw motion; (b) a geodesic for metrics (28) and (25); and (c) a geodesic after the
body-fixed frame {M} is displaced.

Figure 2 shows various trajectories for a motion in the plane z = 0. Figure 2-a shows a screw motion which
in the planar case corresponds to rotation about a fixed point in the plane. A geodesic for the metric (28) is
shown in Fig. 2-b. For planar motions, the geodesic for the metric (25) will be the same. Since the trajectory is
computed by using a left invariant metric, it does not change if the inertial reference frame {F} is moved. But
the trajectory changes if we change the body-fixed frame {M}. The trajectory for a different body-fixed reference
frame is shown in Fig. 2-c¢ and is different from the curve shown in Fig. 2-b. We also show the motion of the
new body-fixed frame. The figure clearly shows that the new body-fixed frame follows a geodesic for metric (28),
but the rigid body will move along a curve that is different from the geodesics on Fig. 2-b. Examples of three
dimensional motions can be found in [1, 21].

It is also interesting to compare the geodesics for the metric (25), which are products of geodesics on SO(3)
and IR®, with geodesics for a non-product metric. For illustrative purposes we present motions in the plane and
thus the geodesics on SE(2). A generalized form of metric (25) for SE(2) is:

1 0 0
w=|0p8 0. (60)
0 0 p

The rows correspond to components w,, vy and v,, respectively. When §; # o, this metric is not a product
metric (see Remark 3.1). Such a metric might be used, for example, to plan the end-effector trajectories for a
gantry mechanism that has different dynamic characteristic for motions in the z and y directions.

Figure 3 shows the geodesics for different choices of 51 and f2. Figure 3-a shows a geodesic when /1 = f2. In
this case the metric becomes the same as metric (28) and the geodesic is a product of geodesics on S(1) and R?.
The other two figures show geodesics for the cases when ) # 82 and the metrics are not product metrics. In this
case the rotational and the translational components of the motion are coupled. In particular, the translational
motion does not follow a straight line. These geodesics were computed numerically.

Remark 5.3 To obtain trajectories satisfying the necessary conditions for a general variational problem, it is
necessary to solve a two-point boundary value problem. To solve these boundary-value problems numerically, we
used a finite-difference method [22]. Typically, the solution for approximation with a grid of 100 points takes
less than 5 seconds to compute and is very robust with respect to the choice of the initial guess. More details,
including some three-dimensional examples, are presented in [21].

6 An argument similar to that in Remark 5.2 shows that the screw motion is unique if we limit the angle of rotation to [0, 7).
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Figure 3: Geodesics for different metrics on SF(2): (a) product metric, 51 = 32 = 1; (b) a metric with 51 = 1,
B> = 10; and (c) a metric with 8, = 5, 85 = 1.

5.2 Minimum acceleration and minimum jerk trajectories

In general, the rotational components of the minimum acceleration curves (Equation 49) and minimum jerk
curves (Equation 54) can not be computed analytically. However, in the special case when the initial velocities
and accelerations are collinear with the initial velocity of the geodesic between the two endpoints, and the final
velocities and accelerations are collinear with the final velocity of the geodesic, it is easy to obtain a solution
for these trajectories in terms of the geodesic curve. If the geodesic curve can be computed analytically, so can
minimum acceleration and minimum jerk curves. This is true not only for SF(3) with the metric (28) but for
any geodesically complete Riemannian manifold.

Proposition 5.4 Given an initial point qo and a final poini q; on a Riemannian manifold, let v : [0,1] — X be
a geodesic connecting these two points so that v(0) = qp and y(1) = ¢1. Let Vy = %‘ and Vi = CC% . If the

to t1

boundary conditions for the minimum acceleration curve are of the form:

V(to) =mVo V(t1) = p1 V1, (61)
then the minimum acceleration curve is given by y(p(t)), where p(t) is a third degree polynomial that satisfies:

p(0) = 0, p(1) =1
P(0) =, P() = pr, (62)

where p' = Ccll—’;.

Proof: Assume that the minimum acceleration curve « has the form «(t) = v(p(t)), where p is an arbitrary

scalar function, p : R — IR. It is easy to see that V = Cgl—? = p’%. Let T' = %. Since v is a geodesic, VT = 0.

It then follows:
VvV =V(T +p'p'VeT = V(p)T. (63)

But V(p') is a derivative of p' along «, so V(p') = p”. Tt immediately follows that:
VeV = pntiT, (64)
Using the linearity of the curvature, we also get:
R(V,VvV)=RT,p"T)=p'p"R(T,T) = 0. (65)

Equation (48) therefore reduces to:
pIT = 0. (66)

Since T'is a tangent vector for a geodesic and therefore never vanishes, we must have:

P =0. (67)
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Solution of this differential equation is a polynomial of degree 3 and the boundary conditions transform into Eq.

(62). -

The following proposition can be proved along similar lines:

Proposition 5.5 Given an initial point qo and a final poini q; on a Riemannian manifold, let v : [0,1] — X be

a geodesic connecting these two points so that v(0) = qp and y(1) = ¢1. Let Vy = CC% and Vi = CC% . If the
t t

boundary conditions for the mintmum jerk curve are of the form: ’ '

Vi(to) = m Vo, V(t) =p Vi, (68)
vvv|t0 = 772V0a VVV|t1 = szl,
then the minimum jerk curve is given by v(p(t)), where p(t) is a fifth degree polynomial that satisfies:
p(0) =0, p(l) =1
p'(0) =m, P'(1) = pr, (69)
p"(0) = n2, p'(1) = pa.

For this special form of the boundary conditions, the minimum acceleration, minimum jerk and minimum
distance paths are therefore the same, only the parameterization along the path varies. Figure 4 shows that
for more general boundary conditions the path of the minimum acceleration curve does not follow a geodesic.
Further, the path changes with the boundary conditions. The figure shows minimum acceleration motions in the
plane z = 0 for different choices of the initial and final velocities. We consider SFE(3) equipped with the metric
(28). In Fig. 4-a, the initial and final velocities are 0, so the object follows the geodesic path shown in Fig. 3-a,
but with a different velocity profile. The initial and final velocities for Figs. 4-b,c are not collinear with the initial
and final velocities of the geodesic in the figure 3-a and the paths are different.
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a) b) ¢)

Figure 4: Minimum acceleration motions in the plane for different boundary conditions: (a) V(0) = V(1) = {0,0,0}%;
(b) V(0) = {-1,3,10}7, V(1) = {2,2,5}F; and (c) V(0) = {1,10,5}F, V(1) = {~1,-10,-5}T. The triple
V = w;,vg, vy denotes the velocity components for the planar motion.

6 Concluding remarks

This paper addressed the problem of generating smooth trajectories for a rigid body between an initial and a final
position and orientation. The main 1dea was to define a measure of the smoothness of a trajectory in the form
of a functional and find trajectories that minimize this cost functional. Using some basic tools from differential
geometry, the problem was formulated as a variational problem on the Lie group of rigid body displacements
SFE(3). We defined an inner product on the Lie algebra se(3) leading to a left invariant Riemannian metric on
SFE(3). This metric gave rise to a Riemannian connection and a covariant derivative. We derived analytical
expressions for the covariant derivative and the curvature of SF(3). The covariant derivative was used to define
acceleration and jerk for spatial rigid body motions. We stated the necessary conditions for minimum distance,
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minimum acceleration and minimum jerk trajectories and specialized these conditions for SF(3). We computed
the analytical solutions for the minimum distance trajectories by choosing an appropriate basis for the space of
the vector fields. We also found analytical solutions for the minimum acceleration and minimum jerk trajectories
for a special class of boundary conditions.

In addition to these results, we show how SFE(3) can be naturally endowed with a product metric or with
metrics that are isometric to a product metric. We provide several numerical examples to illustrate how the
generated solutions are affected by (a) the metric; (b) the choice of the body-fixed reference frame; and (¢) the
boundary conditions. A simple extension of the ideas in this paper allows the inclusion of intermediate positions
and orientations and lends itself to motion interpolation (see [11]). The presented methods also have immediate
applications in computer graphics and planning of the trajectories for robots and other machines.
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A  Proof of Theorem 4.8

The proof is similar to the derivation of the first variation for the energy functional [15] and the same reasoning
could be also used to prove Theorem 4.5. We will use the following identities:

(1) af(s) _ Sf

ds
(2) <VyS,U>=V<SU>—-<85VylU>

(3) VvS = VsV + [V, S] = VsV (since S and V are derivatives with respect to coordinate curves ¢ and s,
[V,5] =0).

(4) for V=2, ['V(fdt = [ War = p1))°

a

(5) VsVpU =VprVeU + R(T, S)U.
(6) < R(X,Y)Z,T >=< R(Z, T)X,Y >.

The first and the fourth identity express the fact that a vector field is a differential operator. The second and
the third identity state that V is a Riemannian connection, thus compatible with the metric (2) and symmetric
(3). Tdentity (5) is just the definition of the curvature operator when [S, 7] = 0, while (6) is one of the symmetry
properties of the curvature tensor [15]. In the proof, the numbers above the equal signs indicate which identities
were employed.

We first obtain the expression for the first variation of the functional L;:

1L'() I b<V2VV2V>dt
o\ T 9 ), S VY

1 b
= 5S/ < VIV,ViV > dt
5 b
= / < VsViV,VEV > dt
5 ab
= / (K VyVsVyV + R(V,S)VyV, ViV >)dt

b
£ / (V< VsVyV, ViV > - < VsV V, ViV >+ < R(VyV, Vi V)V, S >)dt
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b
< VsVyvV, ViV >|Z +/ (- < VvVsV + RV, SV, V3V >

+ < R(VvV,VEV)V,S >)dt

[leo

b
< VsVyV, ViV >|Z +/ (- < ViS, VIV > - < R(V,S)V,VYV >

+ < R(VvV,VEV)V,S >)dt

15V

<D

b
< VsV V, VeV >[ +/ (—V < VyS, V3V >+ < Vy S, VEV >

— < R(V,VSV)V,S >+ < R(VyV,ViV)V, S >)dt
[< Vy VsV + R(V,S)V, ViV > - < VyS, V3V >]°

S

(o34

b
+ / (K VvS, ViV > — < RV, VIV)V,S >+ < R(VvV,VEV)V, S >)dt

2% [« VyVyS, V2V > + < R(V,VEV)V, 8 > — < VS, V3V b

b
+ / (V< S, ViV >—< S VYV >+ < =RV, VEV)V + R(VyV, Vi V)V, S >)dt

4

[< VyVyS, ViV >+ < RV,VIiVIV,S > — < VyS, VeV >+ < S ViV >0
b
+ / (< [-VyV = R(V,VIV)V + R(VyV, Vi V)V], S >)dt (70)
Since the initial and final positions, velocities and accelerations are fixed, S, VgV = Vy S and VgVyV =
Vv VsV + R(V,S)V = Vy VS vanish at the endpoints. Thus the integral in the above equation must vanish for

an arbitrary variation (that preserves the boundary conditions). But this is only possible if Equation (53) holds
so the Theorem is proved.

References

[1] M. Zefran and V. Kumar, “Planning of smooth motions on se(3)”, in Proceedings of 1996 International
Conference on Robotics and Automation, Minneapolis, MN, Apr. 1996, pp. 121-126.

[2] R. P. Paul, Robot Manipulators, Mathematics, Programming and Control, The MIT Press, Cambridge, 1981.
[3] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design, AK Peters, 1993.

[4] D. E. Whitney, “The mathematics of coordinated control of prosthetic arms and manipulators”, ASME J.
Dynamic Systems and Control vol. 94, pp. 303-309, 1972.

[5] D. L. Pieper, The kinematics of manipulators under computer control, PhD thesis, Stanford University, 1978.

[6] K.J. Waldron, “Geometrically based manipulator rate control algorithms” | Mechanism and Machine Theory,

vol. 17, no. 6, pp. 379-385, 1982.

[7] K. Shoemake, “Animating rotation with quaternion curves”, ACM Siggraph, vol. 19, no. 3, pp. 245-254,
1985.

[8] Q. J. Ge and B. Ravani, “Computer aided geometric design of motion interpolants”, ASME Journal of
Mechanical Design, vol. 116, pp. 756-762, 1994.

[9] F. C. Park and B. Ravani, “Bezier curves on Riemannian manifolds and Lie groups with kinematics appli-
cations”, ASME Journal of Mechanical Design, vol. 117, no. 1, pp. 36-40, 1995.

[10] L. Noakes, G. Heinzinger, and B. Paden, “Cubic splines on curved spaces”, IMA J. of Math. Control &
Information, vol. 6, pp. 465-473, 1989.

20



[11]

[12]

[13]

[14]

[18]

[19]

[20]

[21]
[22]

M. Camarinha, F. Silva Leite, and P. Crouch, “Splines of class ¢* on non-Euclidean spaces”, IMA J. Math.
Control Inform., vol. 12, no. 4, pp. 399-410, 1995.

P. Crouch and F. Silva Leite, “The dynamic interpolation problem: on riemannian manifolds, lie groups,
and symmetric spaces”, J. Dynam. Control Systems, vol. 1, no. 2, pp. 177-202, 1995.

J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North-Holland Publishing
Company, Amsterdam, 1975.

R. M. Murray, Z. L1, and S. S. Sastry, A Mathematical Introduction to Robotic Manipulation, CRC Press,
1994.

M. P. do Carmo, Riemannian geometry, Birkhauser, Boston, 1992.
B. F. Schutz, Geometrical Methods of Mathematical Physics, Cambridge University Press, Cambridge, 1980.

M. Zefran, V. Kumar, and C. Croke, “Choice of riemannian metrics for rigid body kinematics” | in Proceedings

of the 24th ASME Biennial Mechanisms Conference, Irvine, CA, 1996.

F. C. Park, “Distance metrics on the rigid-body motions with applications to mechanism design”, ASME
Journal of Mechanical Design, vol. 117 no. 1, pp. 48-54, 1995.

J. Loncaric, Geometrical analysis of compliant mechanisms in robotics, PhD thesis, Harvard University,

1985.

F. C. Park and R. W. Brockett, “Kinematic dexterity of robotic mechanisms”, International Journal of
Robotics Research, vol. 13, no. 1, pp. 1-15, 1994.

M. Zefran, Continuous methods for motion planning, PhD thesis, University of Pennsylvania, 1996.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Cambridge
University Press, Cambridge, 1988.

21



	University of Pennsylvania
	ScholarlyCommons
	8-1-1998

	On the Generation of Smooth Three-Dimensional Rigid Body Motions
	Miloš Žefran
	Vijay Kumar
	Christopher Croke
	Recommended Citation

	On the Generation of Smooth Three-Dimensional Rigid Body Motions
	Abstract
	Disciplines
	Comments


	tmp.1284388728.pdf.Onwg8

