
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

July 2005

Symbolic Compositional Verification by Learning
Assumptions
Rajeev Alur
University of Pennsylvania, alur@cis.upenn.edu

P. Madhusudan
University of Illinois

Wonhong Nam
University of Pennsylvania

Follow this and additional works at: http://repository.upenn.edu/cis_papers

From the 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/186
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Rajeev Alur, P. Madhusudan, and Wonhong Nam, "Symbolic Compositional Verification by Learning Assumptions", Lecture Notes in
Computer Science: Computer Aided Verification 3576, 548-562. July 2005. http://dx.doi.org/10.1007/11513988_52

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76384098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/11513988_52
http://repository.upenn.edu/cis_papers/186
mailto:libraryrepository@pobox.upenn.edu

Symbolic Compositional Verification by Learning Assumptions

Abstract
The verification problem for a system consisting of components can be decomposed into simpler subproblems
for the components using assume-guarantee reasoning. However, such compositional reasoning requires user
guidance to identify appropriate assumptions for components. In this paper, we propose an automated
solution for discovering assumptions based on the L* algorithm for active learning of regular languages. We
present a symbolic implementation of the learning algorithm, and incorporate it in the model checker
NuSMV. Our experiments demonstrate significant savings in the computational requirements of symbolic
model checking.

Comments
From the 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005.

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/186

http://repository.upenn.edu/cis_papers/186?utm_source=repository.upenn.edu%2Fcis_papers%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages

Symboli Compositional Veri�ation byLearning Assumptions ?
Rajeev Alur1, P. Madhusudan2, and Wonhong Nam11 University of Pennsylvania2 University of Illinois at Urbana-Champaignalur�is.upenn.edu, madhu�s.uiu.edu, wnam�is.upenn.edu

Abstrat. The veri�ation problem for a system onsisting of ompo-nents an be deomposed into simpler subproblems for the omponentsusing assume-guarantee reasoning. However, suh ompositional reason-ing requires user guidane to identify appropriate assumptions for om-ponents. In this paper, we propose an automated solution for disover-ing assumptions based on the L� algorithm for ative learning of reg-ular languages. We present a symboli implementation of the learningalgorithm, and inorporate it in the model heker NuSMV. Our experi-ments demonstrate signi�ant savings in the omputational requirementsof symboli model heking.
1 IntrodutionIn spite of impressive progress in heuristis for searhing the reahable state-spae of system models, salability still remains a hallenge. Compositional ver-i�ation tehniques address this hallenge by a \divide and onquer" strategyaimed at exploiting the modular struture naturally present in system designs.One suh prominent tehnique is the assume-guarantee rule: to verify that astate property ' is an invariant of a system M omposed of two modules M1and M2, it suÆes to �nd an abstrat module A suh that (1) the ompositionof M1 and A satis�es the invariant ', and (2) the module M2 is a re�nement ofA. Here, A an be viewed as an assumption on the environment of M1 for it tosatisfy the property '. If we an �nd suh an assumption A that is signi�antlysmaller than M2, then we an verify the requirements (1) and (2) using auto-mated searh tehniques without having to exploreM . In this paper, we proposean approah to �nd the desired assumption A automatially in the ontext ofsymboli state-spae exploration.If M1 ommuniates with M2 via a set X of ommon boolean variables,then the assumption A an be viewed as a language over the alphabet 2X . Weompute this assumption using the L� algorithm for learning a regular languageusing membership and equivalene queries [6, 21℄. The learning-based approahprodues a minimal DFA, and the number of queries is only polynomial in? This researh was partially supported by ARO grant DAAD19-01-1-0473, and NSFgrants ITR/SY 0121431 and CCR0306382.

the size of the output automaton. The membership query is to test whethera given sequene � over the ommuniation variables belongs to the desiredassumption. We implement this as a symboli invariant veri�ation query thatheks whether the module M1 omposed with the sequene � satis�es ' [16℄.For an equivalene query, given a urrent onjeture assumption A, we �rst testwhetherM1 omposed with A satis�es ' using symboli state-spae exploration.If not, the ounter-example provided by the model heker is used by the learningalgorithm to revise A. Otherwise, we test if M2 re�nes A, whih is feasible sineA is represented as a DFA. If the re�nement test sueeds, we an onlude thatM satis�es the invariant, otherwise the model heker gives a sequene � allowedby M2, but ruled out by A. We then hek if the module M1 stays safe whenexeuted aording to �: if so, � is used as a ounter-example by the learningalgorithm to adjust A, and otherwise, � is a witness to the fat that the originalmodel M does not satisfy '.While the standard L� algorithm is designed to learn a partiular language,and the desired assumption A belongs to a lass of languages ontaining alllanguages that satisfy the two requirements of the assume-guarantee rule, weshow that the above strategy works orretly. The learning-based approah toautomati generation of assumptions is appealing as it builds the assumptioninrementally guided by the model-heking queries, and if it enounters anassumption that has a small representation as a minimal DFA, the algorithm willstop and use it to prove the property. In our ontext, the size of the alphabet itselfgrows exponentially with the number of ommuniation variables. Consequently,we propose a symboli implementation of the L� algorithm where the requireddata strutures for representing membership information and the assumptionautomaton are maintained ompatly using ordered BDDs [9℄ for proessing theommuniation variables.For evaluating the proposed approah, we modi�ed the state-of-the-art sym-boli model heker NuSMV [10℄. In Setion 5, we report on a few exampleswhere the original models ontain around 100 variables, and the omputationalrequirements of NuSMV are signi�ant. The only manual step in the urrentprototype involves speifying the syntati deomposition of the model M intomodules M1 and M2. While the proposed ompositional approah does not al-ways lead to improvement (this an happen when no \good" assumption existsfor the hosen deomposition into modules M1 and M2), dramati gains are ob-served in some ases reduing either the required time or memory by one or twoorders of magnitude, or onverting infeasible problems into feasible ones.Finally, it is worth pointing out that, while our prototype uses BDD-basedstate-spae exploration, the approah an easily be adopted to permit othermodel heking strategies suh as SAT-based model heking [8, 18℄ and ounter-example guided abstration re�nement [15, 11℄.Related Work Compositional reasoning using assume-guarantee rules has along history in the formal veri�ation literature [22, 13, 1, 4, 17, 14, 19℄. Whilesuh reasoning is supported by some tools (e.g. Moha [5℄), the hallengingtask of �nding the appropriate assumptions is typially left to the user and only

a few attempts have been made to automate the assumption generation (in [3℄,the authors present some heuristis for automatially onstruting assumptionsusing game-theoreti tehniques).Our work is inspired by the reent series of papers by the researhers atNASA Ames on ompositional veri�ation using learning [12, 7℄. Compared tothese papers, we believe that our work makes three ontributions. First, wepresent a symboli implementation of the learning algorithm, and this is essentialsine the alphabet is exponential in the number of ommuniation variables.Seond, we address and explain expliitly how the L� algorithm designed to learnan unknown, but �xed, language is adapted to learn some assumption from alass of orret assumption languages. Finally, we demonstrate the bene�ts ofthe method by inorporating it in a state-of-the-art publily available symbolimodel heker.It is worth noting that reently the L� algorithm has found appliations informal veri�ation besides automating assume-guarantee reasoning: our softwareveri�ation projet JIST uses prediate abstration and learning to synthesize(dynami) interfaes for Java lasses [2℄; [23℄ uses learning to ompute the set ofreahable states for verifying in�nite-state systems; while [20℄ uses learning forblak box heking , that is, verifying properties of partially spei�ed implemen-tations.
2 Symboli modulesIn this setion, we formalize the notion of a symboli module, the notion ofomposition of modules and explain the assume-guarantee rule we use in thispaper.Symboli modules In the following, for any set of variables X, we will denotethe set of primed variables of X as X 0 = fx0 j x 2 Xg. A prediate ' over Xis a boolean formula over X, and for a valuation s for variables in X, we write'(s) to mean that s satis�es the formula '.A symboli module is a tuple M(X;XI ; XO; Init ; T) with the following om-ponents:{ X is a �nite set of boolean variables ontrolled by the module,{ XI is a �nite set of boolean input variables that the module reads from itsenvironment; XI is disjoint from X,{ XO � X is a �nite set of boolean output variables that are observable to theenvironment of M ,{ Init(X) is an initial state prediate over X,{ T (X;XI ; X 0) is a transition prediate over X [XI [X 0 where X 0 representsthe variables enoding the suessor state.Let XIO = XI [XO denote the set of ommuniation variables. A state s ofM is a valuation of the variables in X; i.e. s : X ! ftrue; falseg. Let S denotethe set of all states of M . An input state sI is a valuation of the input variables

XI and an output state sO is a valuation of XO. Let SI and SO denote the setof input states and output states, respetively. Also, SIO = SI �SO. For a states over a set X of variables, let s[Y ℄, where Y � X denote the valuation over Yobtained by restriting s to Y .The semantis of a module is de�ned in terms of the set of runs it exhibits. Arun ofM is a sequene s0; s1; � � �, where eah si is a state over X[XI , suh thatInit(s0[X℄) holds, and for every i � 0, T (si[X℄; si[XI ℄; s0i+1[X 0℄) holds (wheres0i+1(x0) = si+1(x), for every x 2 X). For a moduleM(X;XI ; XO; Init ; T) and asafety property '(XIO), whih is a boolean formula over XIO , we de�ne M j= 'if, for every run s0; s1; � � �, for every i � 0, '(si) holds. Given a run s0; s1; � � �of M , the trae of M is a sequene s0[XIO ℄; s1[XIO ℄; � � � of input and outputstates. Let us denote the set of all the traes of M as L(M). Given two modulesM1 = (X1; XI ; XO; Init1; T1) and M2 = (X2; XI ; XO; Init2; T2) that have thesame input and output variables, we say M1 is a re�nement of M2, denotedM1 vM2, if L(M1) � L(M2).Composition of modules The synhronous omposition operator k is a om-mutative and assoiative operator that omposes modules. Given two modulesM1 = (X1; XI1 ; XO1 ; Init1; T1) andM2 = (X2; XI2 ; XO2 ; Init2; T2), with X1\X2 =;, M1kM2 = (X;XI ; XO; Init ; T) is a module where:{ X = X1 [X2, XI = (XI1 [XI2) n (XO1 ℄XO2), XO = XO1 ℄XO2 ,{ Init(X) = Init1(X1) ^ Init2(X2),{ T (X;XI ; X 0) = T1(X1; XI1 ; X 01) ^ T2(X2; XI2 ; X 02).We an now de�ne the model-heking problem we onsider in this paper:Given modules M1 = (X1; XI1 ; XO1 ; Init1; T1) and M2 = (X2; XI2 ; XO2 ;Init2; T2), with X1 \ X2 = ;, XI1 = XO2 and XO1 = XI2 (let XIO =XIO1 = XIO2), and a safety property '(XIO), does (M1kM2) j= '?Note that we are assuming that the safety property ' is a prediate over theommon ommuniation variables XIO . This is not a restrition: to hek aproperty that refers to private variables of the modules, we an simply delarethem to be outputs.Assume-guarantee rule We use the following assume-guarantee rule to provethat a safety property ' holds for a module M =M1kM2. In the rule below, Ais a module that has the same input and output variables as M2:M1kA j= 'M2 v AM1kM2 j= 'The rule above says that if there exists (some) module A suh that the om-position ofM1 and A is safe (i.e. satis�es the property ') andM2 re�nes A, thenM1jjM2 satis�es '. We an view suh an A as an adequate assumption betweenM1 and M2: it is an abstration of M2 (possibly admitting more behaviors thanM2) that is a strong enough assumption for M1 to make in order to satisfy '.Our aim is to onstrut suh an assumption A to show that M1kM2 satis�es '.This rule is sound and omplete [19℄.

3 Assumption Generation via Computational LearningGiven a symboli module M = M1kM2 onsisting of two sub-modules anda safety property ', our aim is to verify that M satis�es ' by �nding anA that satis�es the premises of the assume-guarantee rule explained in Se-tion 2. Let us �x a pair of suh modules M1 = (X1; XI1 ; XO1 ; Init1; T1) andM2 = (X2; XI2 ; XO2 ; Init2; T2) for the rest of this setion.Let L1 be the set of all traes � = s0; s1; � � �, where eah si 2 SIO , suh thateither � 62 L(M1) or '(si) holds for all i � 0. Thus, L1 is the largest languagefor M1's environment that an keep M1 safe. Note that the languages of theandidates for A that satisfy the �rst premise of the proof rule is preisely theset of all subsets of L1.Let L2 be the set of traes ofM2, that is, L(M2). The languages of andidatesfor A that satisfy the seond premise of the proof rule is preisely the set of allsupersets of L2. Sine M1 and M2 are �nite, it is easy to see that L1 and L2 arein fat regular languages. Let B1 be the module orresponding to the minimumstate DFA aepting L1.The problem of �nding A satisfying both proof premises hene redues toheking for a language whih is a superset of L2 and a subset of L1. To disoversuh an assumption A, our strategy is to onstrut A using a learning algorithmfor regular languages, alled the L� algorithm. The L� algorithm is an algorithmfor a learner trying to learn a �xed unknown regular language U through mem-bership queries and equivalene queries. Membership queries ask whether a givenstring is in U . An equivalene query asks whether a given language L(C) (pre-sented as a DFA C) equals U ; if so, the teaher answers `yes' and the learner haslearnt the language, and if not, the teaher provides a ounter-example whih isa string that is in the symmetri di�erene of L(C) and U .We adapt the L� algorithm to learn some language from a range of languages,namely to learn a language that is a superset of L2 and a subset of L1. We donot, of ourse, onstrut L1 or L2 expliitly, but instead answer queries usingmodel-heking queries performed on M1 and M2 respetively.Given an equivalene query with onjeture L(C), the test for equivalenean be split into two| heking the subset query L(C) � U and heking thesuperset query L(C) � U . To hek the subset query, we hek if L(C) � L1,and to hek the superset query we hek whether L(C) � L2. If these two testspass, then we delare that the learner has indeed learnt the language as theonjeture is an adequate assumption.The membership query is more ambiguous to handle. When the learner askswhether a word w is in U , if w is not in L1, then we an learly answer in thenegative, and if w is in L2 then we an answer in the aÆrmative. However, if wis in L1 but not in L2, then answering either positively or negatively an ruleout ertain andidates for A.In this paper, the strategy we have hosen is to always answer membershipqueries with respet to L1. It is possible to explore alternative strategies thatinvolve L2 also.

generating CYes/No

Partitioning information(M1kM2)M;'

M1kC j= ' No
M1kM2 j= '

M1k� j= 'Yes; C No; � 2 L(M2) n L(C)M2 v C
M1kM2 6j= '� is a ounter-example.

Yes

Yes; �No; exequiv(C)
memb(�) L� algorithmM1k� j= '

Fig. 1. Overview of ompositional veri�ation by learning assumptions
Figure 1 illustrates the high-level overview of our ompositional veri�ationproedure. Membership queries are answered by heking safety with respetto M1. To answer the equivalene query, we �rst hek the subset query (by asafety hek with respet toM1); if the query fails, we return the ounterexamplefound to L�. If the subset query passes, then we hek for the superset queryby heking re�nement with respet to M2. If this superset query also passes,then we delare M satis�es ' sine C satis�es both premises of the proof rule.Otherwise, we hek if the ounter-example trae � (whih is a behavior of M2but not in L(C)) keepsM1 safe. If it does not, we onlude thatM1kM2 does notsatisfy '; otherwise, we give � bak to the L� algorithm as a ounter-exampleto the superset query.One of the nie properties of the L� algorithm is that it takes time polyno-mial in the size of the minimal automaton aepting the learnt language (andpolynomial in the lengths of the ounter-examples provided by the teaher). Letus now estimate bounds on the size of the automaton onstruted by our al-gorithm, and simultaneously show that our proedure always terminates. Notethat all membership queries and all ounter-examples provided by the teaher inour algorithm are onsistent with respet to L1 (membership and subset queriesare resolved using L1 and ounter-examples to superset queries, though derivedusing M2, are heked for onsisteny with L1 before it is passed to the learner).Now, if M1kM2 does indeed satisfy ', then L2 is a subset of L1 and heneB1 is an adequate assumption that witnesses the fat that M1kM2 satis�es '.If M1kM2 does not satisfy ', then L2 is not a subset of L1. Again B1 is anadequate automaton whih if learnt will show that M1kM2 does not satisfy '(sine this assumption when heked with M2, will result in a run � whih isexhibited by M2 but not in L1, and hene not safe with respet to M1).Hene B1 is an adequate automaton to learn in both ases to answer themodel-heking question, and all answers to queries are onsistent with B1. TheL� algorithm has the property that the automata it onstruts monotoniallygrow with eah iteration in terms of the number of states, and are always min-

1: R := f"g; E := f"g;2: foreah (a 2 �) f G["; "℄ := member("�"); G["�a; "℄ := member("�a�"); g3: repeat:4: while ((rnew := losed(R;E;G)) 6= null) f5: add(R; rnew);6: foreah (a 2 �); (e 2 E) f G[rnew �a; e℄ := member(rnew �a�e); g7: g8: C := makeConjetureMahine(R;E;G);9: if ((ex := equivalent(C)) = null) then return C;10: else f11: enew := �ndSuÆx (ex);12: add(E; enew);13: foreah (r 2 R); (a 2 �) f14: G[r; enew ℄ := member(r �enew); G[r �a; enew ℄ := member(r �a�enew);15: g g Fig. 2. L� algorithm
imal. Consequently, we are assured that our proedure will not onstrut anyautomaton larger than B1.Hene our proedure always halts and reports orretly whether M1kM2satis�es ', and in doing so, it never generates any assumption with more statesthan the minimal DFA aepting L1.
4 Symboli implementation of L� algorithm4.1 L� algorithmThe L� algorithm learns an unknown regular language and generates a mini-mal DFA that aepts the regular language. This algorithm was introdued byAngluin [6℄, but we use an improved version by Rivest and Shapire [21℄. Thealgorithm infers the struture of the DFA by asking a teaher, who knows theunknown language, membership and equivalene queries.Figure 2 illustrates the improved version of L� algorithm [21℄. Let U be theunknown regular language and � be its alphabet. At any given time, the L�algorithm has, in order to onstrut a onjeture mahine, information about a�nite olletion of strings over �, lassi�ed either as members or non-membersof U . This information is maintained in an observation table (R;E;G) where Rand E are sets of strings over �, and G is a funtion from (R[R��) �E to f0; 1g.More preisely, R is a set of representative strings for states in the DFA suhthat eah representative string rq 2 R for a state q leads from the initial state(uniquely) to the state q, and E is a set of experiment suÆx strings that are usedto distinguish states (for any two states of the automaton being built, there isa string in E whih is aepted from one and rejeted from the other). G mapsstrings � in (R[R��) �E to 1 if � is in U , and to 0 otherwise. Initially, R and Eare set to f"g, and G is initialized using membership queries for every string in

(R[R��) �E (line 2). In line 4, it heks whether the observation table is losed.The funtion losed(R, E, G) returns null (meaning true) if for every r 2 Rand a 2 �, there exists r0 2 R suh that G[r �a; e℄ = G[r0; e℄ for every e 2 E;otherwise, it returns r �a suh that there is no r0 satisfying the above ondition.If the table is not losed, eah suh r �a (e.g., rnew is r �a in line 5) is simplyadded to R. The algorithm again updates G with regard to r�a (line 6). One thetable is losed, it onstruts a onjeture DFA C = (Q; q0; F; Æ) as follows (line8): Q = R, q0 = ", F = fr 2 R j G[r; "℄ = 1g, and for every r 2 R and a 2 �,Æ(r; a) = r0 suh that G[r �a; e℄ = G[r0; e℄ for every e 2 E. Finally, if the answerfor the equivalene query is `yes', it returns the urrent onjeture mahine C;otherwise, a ounter-example ex 2 ((L(C) n U) [(U n L(C)) is provided bythe teaher. The algorithm analyzes the ounter-example ex in order to �ndthe longest suÆx enew of ex that witnesses a di�erene between U and L(C)(line 14). Intuitively, the urrent onjeture mahine has guessed wrong sinethis point. Adding enew to E reets the di�erene in the next onjeture bysplitting states in C. It then updates G with respet to enew .The L� algorithm is guaranteed to onstrut a minimal DFA for the unknownregular language using only O(j�jn2+n logm) membership queries and at mostn � 1 equivalene queries, where n is the number of states in the �nal DFAand m is the length of the longest ounter-example provided by the teaher forequivalene queries.As we disussed in Setion 3, we use the L� algorithm to identify A(XA; XIA;XOA ; InitA; TA) satisfying the premises of the proof rule, where XIOA = XIO .A is hene a language over the alphabet SIO , and the L� algorithm an learnA in time polynomial in the size of A (and the ounter-examples). However,when we apply the L� algorithm to analyze a large module (espeially when thenumber of input and output variables is large), the large alphabet size posesmany problems: (1) the onstruted DFA has too many edges when representedexpliitly, (2) the size of the observation table, whih is polynomial in � andthe size of the onjetured automaton, gets very large, and (3) the numberof membership queries needed to �ll eah entry in the observation table alsoinreases. To resolve these problems, we present a symboli implementation ofthe L� algorithm.4.2 Symboli implementationFor desribing our symboli implementation for the L� algorithm, we �rst explainthe essential data strutures the algorithm needs, and then present our impliitdata strutures orresponding to them. The L� algorithm uses the following datastrutures:{ string R[int℄: eah R[i℄ is a representative string for i-th state qi in theonjeture DFA.{ string E[int℄: eah E[i℄ is i-th experiment string.{ boolean G1[int℄[int℄: eah G1[i℄[j℄ is the result of the membershipquery for R[i℄�E[j℄.

{ boolean G2[int℄[int℄[int℄: eah G2[i℄[j℄[k℄ is the result of the mem-bership query for R[i℄�aj �E[k℄ where aj is the j-th alphabet symbol in �.Note that G of the observation table is split into two arrays, G1 and G2, whereG1 is an array for a funtion from R � E to f0; 1g and G2 is for a funtion fromR �� �E to f0; 1g. The L� algorithm initializes the data strutures as following:R[0℄=E[0℄=", G1[0℄[0℄=member (" � "), and G2[0℄[i℄[0℄=member (" �ai � ") (forevery ai 2 �). One it introdues a new state or a new experiment, it adds toR[℄ or E[℄ and updates G1 and G2 by membership queries. These arrays alsoenode the edges of the onjeture mahine: there is an edge from state qi to qjon ak when G2[i℄[k℄[l℄=G1[j℄[l℄ for every l.For symboli implementation, we do not wish to onstrut G2 in order toonstrut onjeture DFAs by expliit membership queries sine j�j is too large.While the expliit L� algorithm asks for eah state r, alphabet symbol a andexperiment e, if r � a� e is a member, we ompute, given a state r and a booleanvetor v, the set of alphabet symbols a suh that for every j � jvj, member(r �a� ej) = v[j℄. For this, we have the following data strutures:{ int nQ: the number of states in the urrent DFA.{ int nE: the number of experiment strings.{ BDD R[int℄: eah R[i℄ (0 � i < nQ) is a BDD over X1 to represent the setof states of the module M1 that are reahable from an initial state of M1 bythe representative string ri of the i-th state qi: postImage(Init1(X1); ri).{ BDD E[int℄: eah E[i℄ (0 � i < nE) is a BDD over X1 to apture a setof states of M1 from whih some state violating ' is reahable by the i-thexperiment string ei: preImage(:'(X1); ei).{ booleanVetor G1[int℄: Eah G1[i℄ (0 � i < nQ) is the boolean vetor forthe state qi, where the length of eah boolean vetor always equals to nE. Notethat as nE is inreased, the length of eah boolean vetor is also inreased.For i 6= j, G1[i℄ 6= G1[j℄. Eah element G1[i℄[j℄ of G1[i℄ (0 � j < nE)represents whether ri � ej is a member where ri is a representative string forR[i℄ and ej is an experiment string for E[j℄: whether R[i℄ and E[j℄ haveempty intersetion.{ booleanVetor Cd[int℄: every iteration of the L� algorithm splits somestates of the urrent onjeture DFA by a new experiment string. Morepreisely, the new experiment splits every state into two state andidates,and among them, only reahable ones are onstruted as states of the nextonjeture DFA. The Cd[℄ vetor desribes all these state andidates andeah element is the boolean vetor of eah andidate. jCdj = 2�nQ.Given M =M1kM2 and ', we initialize the data strutures as follows. R[0℄is the BDD for Init1(X1) and E[0℄ is the BDD for :' sine the orrespondingrepresentative and experiment string are ", and G1[0℄[0℄ = 1 sine we assumethat every initial state satis�es '. In addition, we have the following funtionsthat manipulate the above data strutures for implementing the L� algorithmimpliitly (Figure 3 illustrates the pseudo-ode for the important ones.):

BDD edges(int i, booleanVetor v)fBDD eds := true; // eds is a BDD over XIO .foreah (0 � j < nE)f // In the below, XL1 = X1 nXIO .if (v[j℄) then eds := eds ^ :(9XL1 ; X10: R[i℄(X1)^T1(X1;XI1 ; X 01)^E[j℄(X 01));else eds := eds ^ (9XL1 ;X10: R[i℄(X1) ^ T1(X1;XI1 ;X 01) ^ E[j℄(X 01));greturn eds;gvoid addR(int i, BDD b, booleanVetor v)fBDD io := pikOneState(b); // io is a BDD representing one alphabet symbol.R[nQ℄ := (9X1;XI1 : R[i℄(X1) ^ io ^ T1(X1; XI1 ;X 01))[X 01 ! X1℄;G1[nQ++℄ := v;gvoid addE(BDD[℄ bs)fBDD b := '; // b is a BDD over X1.for (j := length(bs); j > 0; j--) f b := 9XI1 ;X 01: b(X 01) ^ bs[j℄ ^ T1(X1;XI1 ; X 01); gE[nE℄ := :b;foreah (0 � i < nQ) fif ((R[i℄ ^ E[nE℄) = false) then G1[i℄[nE℄ := 1;else G1[i℄[nE℄ := 0;foreah (0 � j < nE) f Cd[2i℄[j℄ := G1[i℄[j℄; Cd[2i+ 1℄[j℄ := G1[i℄[j℄; gCd[2i℄[nE℄ := 0; Cd[2i+ 1℄[nE℄ := 1;gnE++;g Fig. 3. Symboli implementation of observation table
{ BDD edges(int, booleanVetor): this funtion, given an integer i and aboolean vetor v (0 � i < nQ, jvj = nE), returns a BDD over XIO represent-ing the set of alphabet symbols by whih there is an edge from state qi to astate that has v as its boolean vetor.{ void addR(int, BDD, booleanVetor): when we introdue a new state(whose predeessor state is qi, the BDD representing edges from qi is band the boolean vetor is v), addR(i, b, v) updates R, G1 and nQ.{ void addE(BDD[℄): given a new experiment string represented as an array ofBDDs (where eah BDD of the array enodes the orresponding state in theexperiment string), this funtion updates E, G1 and nE. It also onstruts anew set Cd[℄ of state andidates for the next iteration.{ boolean isInR(booleanVetor): given a boolean vetor v, isInR(v) he-ks whether v = G1[i℄ for some i.{ BDD[℄ findSuffix(BDD[℄): given a ounter-example ex (from equivalenequeries) represented by a BDD array, findSuffix(ex) returns a BDD ar-ray representing the longest suÆx that witnesses the di�erene between theonjeture DFA and A.

While the L� algorithm onstruts a onjeture mahine by omputing G2and omparing between G1 and G2, we diretly make a symboli onjeture DFAC(XC ; XIO ; InitC ; FC ; TC) with the following omponents:{ XC is a set of boolean variables representing states in C (jXC j = dlog2nQe).Valuations of the variables an be enoded from its index for R.{ XIO is a set of boolean variables de�ning its alphabet, whih omes fromM1 and M2.{ InitC(XC) is an initial state prediate over XC . InitC(XC) is enoded fromthe index of the state q0: InitC(XC) = Vx2XC (x � 0).{ FC(XC) is a prediate for aepting states. It is enoded from the indies ofthe states qi suh that G1[i℄[0℄=1.{ TC(XC ; XIO ; X 0C) is a transition prediate over XC [XIO [X 0C ; that is, ifTC(i; a; j) = true, then the DFA has an edge from state qi to qj labeled bya. To get this prediate, we ompute a set of edges from every state qi toevery state andidate with boolean vetor v by alling edges(i, v).This symboli DFA C(XC ; XIO ; InitC ; FC ; TC) an be easily onverted to asymboli moduleMC(XC ; XI ; XO; InitC ; TC). Now, we an onstrut a symbolionjeture DFA C using impliit membership queries by edges(). In addition,we have the following funtions for equivalene queries:{ BDD[℄ subsetQ(SymboliDFA): our subset query is to hek whether allstrings allowed by C make M1 stay in states satisfying '. Hene, given asymboli DFA C(XC ; XIO ; InitC ; FC ; TC), we hek M1kMC j= (FC ! ')by reahability heking, whereMC is a symboli module onverted from C.If so, it returns null ; otherwise, it returns a BDD array as a ounter-example.{ BDD[℄ supersetQ(SymboliDFA): it heks that M2 v C. The return valueis similar with subsetQ(). Sine C is again a (symboli) DFA, we an simplyimplement it by symboli reahability omputation for the produt of M2and MC . If it reahes the non-aepting state of C, the sequene reahingthe non-aepting state is a witness showing M2 6v C.{ boolean safeM1(BDD [℄): given a string � represented by a BDD array, itexeutes M1 aording to �. If the exeution reahes a state violating ', itreturns false; otherwise, returns true.Figure 4 illustrates our symboli ompositional veri�ation (SCV) algorithm.We initialize nQ, nE, R, E, G1, Cd and C in lines 1{3. We then ompute aset of edges (a BDD) from every soure state qi to every state andidate withboolean vetor Cd[j℄. One we reah a new state, we update R, nQ and G1 byaddR() (line 9). This step makes the onjeture mahine losed. If we have anon-empty edge set by edges(), then we update the onjeture C (line 10).After onstruting a onjeture DFA, we ask an equivalene query as disussedin Setion 3 (lines 12{15). If we annot onlude true nor false from the query,we are provided a ounter-example from the teaher and get a new experimentstring from the ounter-example. E, nE, Cd and G1 are then updated based onthe new experiment string. We implement this algorithm with the BDD pakagein a symboli model heker NuSMV.

boolean SCV(M1;M2; ')1: nQ := 1; nE := 1; R[0℄ := Init1(X1); E[0℄ := :';2: G1[0℄[0℄ := 1; Cd[0℄ := 0; Cd[1℄ := 1;3: C := initializeC ();4: repeat:5: foreah (0 � i < nQ) f6: foreah (0 � j < 2�nQ) f7: eds := edges(i, Cd[j℄);8: if (eds 6= false) then f9: if (:isInR(Cd[j℄)) then addR(i, eds, Cd[j℄);10: C := updateC (i ; eds; indexofR(Cd[j℄));11: g g g12: if ((ex := subsetQ(C)) = null) then f13: if ((ex := supersetQ(C) = null) then return true;14: else if (:safeM1(ex)) then return false;15: g16: addE(findSuffix(ex));Fig. 4. Symboli ompositional veri�ation algorithm
5 ExperimentsWe �rst explain an arti�ial example (alled `simple') to illustrate our methodand then report results on `simple' and four examples from the NuSMV pakage.Example: simple Module M1 has a variable x (initially set to 0 and updatedby the rule x0 := y in eah round where y is an input variable) and a dummyarray that does not a�et x at all. Module M2 has a variable y (initially set to0 and is never updated) and also a dummy array that does not a�et y at all.For M1kM2, we want to hek that x is always 0. Both dummy arrays are froman example swap known to be hard for BDD enoding [18℄. Our tool exploresM1 and M2 separately with a two-state assumption (whih allows only y = 0),while ordinary model hekers will searh whole state spae of M1kM2.For some examples from the NuSMV pakage, we slightly modi�ed them be-ause our tool does not support the full syntax of the NuSMV language. The pri-mary seletion riterion was to inlude examples for whih NuSMV takes a longtime or fails to omplete. All experiments were performed on a Sun-Blade-1000workstation using 1GB memory and SunOS 5.9. The results for the examplesare shown in Table 1. We ompare our symboli ompositional veri�ation tool(SCV) with the invariant heking (with early termination) of NuSMV 2.2.2.The table has the number of variables in total, in M1, in M2 and the numberof input/output variables between the modules, exeution time in seonds, thepeak BDD size and the number of states in the assumption we learn (for SCV).Entries denoted `{' mean that a tool did not omplete within 2 hours.The results of simple are also shown in Table 1. For simple1 throughsimple4, we just inreased the size of dummy arrays from 8 to 11, and heked

example tot M1 M2 IO SCV NuSMVname spe var var var var time peak BDD assumption states time peak BDDsimple1 69 36 33 4 19.2 607,068 2 269 3,993,976simple2 true 78 41 37 5 106 828,842 2 4032 32,934,972simple3 86 45 41 5 754 3,668,980 2 { {simple4 94 49 45 5 4601 12,450,004 2 { {guidane1 false 135 24 111 23 124 686,784 20 { {guidane2 true 122 24 98 22 196 1,052,660 2 { {guidane3 true 122 58 64 46 357 619,332 2 { {barrel1 false 20.3 345,436 3 1201 28,118,286barrel2 true 60 30 30 10 23.4 472,164 4 4886 36,521,170barrel3 true { { too many { {msi1 45 26 19 25 2.1 289,226 2 157 1,554,462msi2 true 57 26 31 25 37.0 619,332 2 3324 16,183,370msi3 70 26 44 26 1183 6,991,502 2 { {robot1 false 92 8 84 12 1271 4,169,760 11 654 2,729,762robot2 true 92 22 70 12 1604 2,804,368 42 1039 1,117,046Table 1. Experimental results
the same spei�ation. As we expeted, SCV generated a 2-state assumptionand performed signi�antly better than NuSMV.The seond example, guidane, is a model of a spae shuttle digital autopilot.We added redundant variables to M1 and M2 and did not use a given variableordering information as both tools �nished fast with the original model andthe ordering. The spei�ations were piked from the given pool: guidane1,guidane2, guidane3 have the same models but have di�erent spei�ations.For guidane1, our tool found a ounter-example with an assumption having 20states (If this assumption had been expliitly onstruted, the 23 I/O variableswould have aused way too many edges to store expliitly).The third set, barrel, is an example for bounded model heking and novariable ordering works well for BDD-based tools. barrel1 has an invariant de-rived from the original, but barrel2 and barrel3 have our own ones. barrel1,barrel2 and barrel3 have the same model saled-up from the original, but withdi�erent initial prediates.The fourth set, msi, is a MSI ahe protool model and shows how the toolssale on a real example. We saled-up the original model with 3 nodes: msi1 has 3nodes, msi2 has 4 nodes and msi3 has 5 nodes. They have the same spei�ationthat is related to only two nodes, and we �xed the same omponent M1 in all ofthem. As the number of nodes grew, NuSMV required muh more time and theBDD sizes grew more quikly than in our tool.robot1 and robot2 are robotis ontroller models and we again added re-dundant variables to M1 and M2, as in the ase of guidane example. Eventhough SCV took more time, this example shows that SCV an be applied tomodels for whih non-trivial assumptions are needed. More details about theexamples are available at http://www.is.upenn.edu/�wnam/av05/.

Referenes1. M. Abadi and L. Lamport. Conjoining spei�ations. ACM TOPLAS, 17:507{534,1995.2. R. Alur, P. Cerny, P. Madhusudan, and W. Nam. Synthesis of interfae spei�a-tions for Java lasses. In Pro. 32nd ACM POPL, pages 98{109, 2005.3. R. Alur, L. de Alfaro, T.A. Henzinger, and F. Mang. Automating modular veri�-ation. In CONCUR'99: Conurreny Theory, LNCS 1664, pages 82{97, 1999.4. R. Alur and T.A. Henzinger. Reative modules. Formal Methods in System Design,15(1):7{48, 1999. A preliminary version appears in Pro. 11th LICS, 1996.5. R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.MOCHA: Modularity in model heking. In 10th CAV, pages 516{520, 1998.6. D. Angluin. Learning regular sets from queries and ounterexamples. Informationand Computation, 75:87{106, 1987.7. H. Barringer, C.S. Pasareanu, and D. Giannakopolou. Proof rules for automatedompositional veri�ation through learning. In Pro. 2nd SVCBS, 2003.8. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symboli model heking withoutBDDs. In Pro. 5th TACAS, pages 193{207, 1999.9. R.E. Bryant. Graph-based algorithms for boolean-funtion manipulation. IEEETransations on Computers, C-35(8):677{691, 1986.10. A. Cimatti, E. Clarke, E. Giunhiglia, F. Giunhiglia, M. Pistore, M. Roveri, R. Se-bastiani, and A. Tahella. NuSMV Version 2: An OpenSoure Tool for SymboliModel Cheking. In Pro. CAV 2002, LNCS 2404, pages 359{364, 2002.11. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guidedabstration re�nement. In Computer Aided Veri�ation, pages 154{169, 2000.12. J.M. Cobleigh, D. Giannakopoulou, and C.S. Pasareanu. Learning assumptions forompositional veri�ation. In Pro. 9th TACAS, LNCS 2619, pages 331{346, 2003.13. O. Gr�umberg and D.E. Long. Model heking and modular veri�ation. ACMTransations on Programming Languages and Systems, 16(3):843{871, 1994.14. T.A. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Method-ology and ase studies. In Pro. CAV 98, LNCS 1427, pages 521{525, 1998.15. R.P. Kurshan. Computer-aided Veri�ation of Coordinating Proesses: theautomata-theoreti approah. Prineton University Press, 1994.16. K.L. MMillan. Symboli model heking. Kluwer Aademi Publishers, 1993.17. K.L. MMillan. A ompositional rule for hardware design re�nement. In CAV 97:Computer-Aided Veri�ation, LNCS 1254, pages 24{35, 1997.18. K.L. MMillan. Applying SAT methods in unbounded symboli model heking.In Pro. 14th Computer Aided Veri�ation, LNCS 2404, pages 250{264, 2002.19. K.S. Namjoshi and R.J. Treer. On the ompleteness of ompositional reasoning.In CAV 2000: Computer-Aided Veri�ation, LNCS 1855, pages 139{153, 2000.20. D. Peled, M.Y. Vardi and M. Yannakakis. Blak box heking. Journal of Au-tomata, Languages and Combinatoris, 7(2): 225-246, 2002.21. R.L. Rivest and R.E. Shapire. Inferene of �nite automata using homing se-quenes. Information and Computation, 103(2):299{347, 1993.22. E.W. Stark. A proof tehnique for rely-guarantee properties. In FST & TCS 85,LNCS 206, pages 369{391, 1985.23. A. Vardhan, K. Sen, M. Viswanathan, and G. Agha. Atively learning to verifysafety properties for FIFO automata. In Pro. 24th FSTTCS, pages 494{505, 2004.

	University of Pennsylvania
	ScholarlyCommons
	July 2005

	Symbolic Compositional Verification by Learning Assumptions
	Rajeev Alur
	P. Madhusudan
	Wonhong Nam
	Recommended Citation

	Symbolic Compositional Verification by Learning Assumptions
	Abstract
	Comments

	cav05.dvi

