View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ScholarlyCommons@Penn

Libraries . University of Pennsylvania
UNIMERSITY of PENNSYLVANI/ 4 ScholarlyCommons
Departmental Papers (CIS) Department of Computer & Information Science
February 2004

Formal Specifications and Analysis of the

Computer Assisted Resuscitation Algorithm
(CARA) Infusion Pump Control System

Rajeev Alur

University of Pennsylvania, alur@cis.upenn.edu

David Arney

University of Pennsylvania

Elsa L. Gunter
New Jersey Institute of Technology

Insup Lee

University of Pennsylvania, lee@cis.upenn.edu

Jaime Lee
Walter Reed Army Institute of Research

See next page for additional authors

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Recommended Citation

Rajeev Alur, David Arney, Elsa L. Gunter, Insup Lee, Jaime Lee, Wonhong Nam, Frederick Pearce, Steve Van Albert, and Jiaxiang
Zhou, "Formal Specifications and Analysis of the Computer Assisted Resuscitation Algorithm (CARA) Infusion Pump Control
System", International Journal on Software Tools for Technology Transfer 5(4), 308-319. February 2004. http://dx.doi.org/10.1007/
s10009-003-0132-7

Postprint version.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/127

For more information, please contact libraryrepository@pobox.upenn.edu.

https://core.ac.uk/display/76384028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1007/s10009-003-0132-7
http://dx.doi.org/10.1007/s10009-003-0132-7
http://repository.upenn.edu/cis_papers/127
mailto:libraryrepository@pobox.upenn.edu

Formal Specifications and Analysis of the Computer Assisted
Resuscitation Algorithm (CARA) Infusion Pump Control System

Abstract

Reliability of medical devices such as the CARA Infusion Pump Control System is of extreme importance
given that these devices are being used on patients in critical condition. The Infusion Pump Control System
includes embedded processors and accompanying embedded software for monitoring as well as controlling
sensors and actuators that allow the embedded systems to interact with their environments. This nature of the
Infusion Pump Control System adds to the complexity of assuring the reliability of the total system. The
traditional methods of developing embedded systems are inadequate for such safety-critical devices. In this
paper, we study the application of formal methods to the requirements capture and analysis for the Infusion
Pump Control System. Our approach consists of two phases. The first phase is to convert the informal design
requirements into a set of reference specifications using a formal system, in this case EFSMs (Extended Finite
State Machines). The second phase is to translate the reference specifications to the tools supporting formal
analysis, such as SCR and Hermes. This allows us to conclude properties of the reference specifications. Our
research goal is to develop a framework and methodology for the integrated use of formal methods in the
development of embedded medical systems that require high assurance and confidence.

Keywords
CARA system, requirements formalization, safety-critical systems, formal methods, software verification

Comments
Postprint version.

Author(s)
Rajeev Alur, David Arney, Elsa L. Gunter, Insup Lee, Jaime Lee, Wonhong Nam, Frederick Pearce, Steve Van
Albert, and Jiaxiang Zhou

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/127

http://repository.upenn.edu/cis_papers/127?utm_source=repository.upenn.edu%2Fcis_papers%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages

Formal Specifications and Analysis of the
Computer Assisted Resuscitation Algorithm
(CARA) Infusion Pump Control System *

Rajeev Alur 1 David Arney 1 Elsa L. Gunter f
Insup Lee t Jaime Lee § Wonhong Nam
Frederick Pearce § Steve Van Albert § Jiaxiang Zhou t

October 2003

Abstract

Reliability of medical devices such as the CARA Infusion Pump Con-
trol System is of extreme importance given that these devices are being
used on patients in critical condition. The Infusion Pump Control Sys-
tem includes embedded processors and accompanying embedded software
for monitoring as well as control sensors and actuators that allow the
embedded systems to interact with their environments. This nature of
the Infusion Pump Control System adds to the complexity of assuring
the reliability of the total system. The traditional methods of developing
embedded systems are inadequate for such safety-critical devices. In this
paper, we study the application of formal methods to the requirements
capture and analysis for the Infusion Pump Control System. Our approach
consists of two phases. The first phase is to convert the informal design
requirements into a set of reference specifications using a formal system,
in this case EFSMs (Extended Finite State Machines). The second phase
is to translate the reference specifications to the tools supporting formal
analysis, such as SCR, CHARON, and Hermes. This allows us to con-
clude properties of the reference specifications. Our research goal is to
develop a framework and methodology for the integrated use of formal
methods in the development of embedded medical systems that require
high assurance and confidence.

*tUniversity of Pennsylvania, INew Jersey Institute of Technology, §Walter Reed Army
Institute of Research

*This research was supported in part by ARO DAADI19-01-1-0473, NSF CCR-
9988409, NSF CCR-0086147, NSF CISE-9703220, and SRC 99-TJ-688. POC: Insup Lee
(lee@cis.upenn.edu)

1 Introduction

Medical devices with embedded processors are part of safety-critical systems
which must be highly reliable and built correctly with respect to the require-
ments. Such embedded systems consist of a collection of components that inter-
act with each other and with their environment through sensors and actuators.
Embedded software is used to control these sensors and actuators and to pro-
vide application-dependent functionality. Demands on embedded systems have
been increasing as microprocessors become more powerful. This in turn requires
more complicated supporting software which must also be verified. Embedded
systems have been developed traditionally in an ad-hoc manner by practicing
engineers and programmers. The existing technology for embedded systems
does not effectively support the development of reliable and robust embedded
systems. The effective development of embedded systems requires a collection of
tools to capture requirements, to construct, analyze and simulate specifications,
to generate and test implementations, and to monitor and check implementa-
tions at run-time.

The research goal of the UPenn/NJIT team is to develop a framework and
methodology for the integrated use of formal methods in the development of
embedded medical systems that require high assurance and confidence. Our
approach is to apply the formal techniques to different stages of system devel-
opment, ranging from requirements capture to design specification and analysis
to code generation and validation. This paper describes our case study based
on an infusion pump system that has been developed at WRAIR, (Walter Reed
Army Institute of Research). Figure 1 shows our approach, which consists of two
phases. The first phase is to manually convert the informal design requirements
into the reference specifications in EFSM (Extended Finite State Machines).
The informal design requirements were supplied to us by WRAIR in the form
of a tagged requirements document written in informal English, together with
a listing of 133 questions and answers. The questions-and-answers document
amended and overrode the original tagged requirements document. This first
phase resulted in many new questions and answers as well as refinements to the
requirements to remove inconsistencies. The second phase is to manually trans-
late the reference specifications to the tools based on formal methods, such as
SCR [5], CHARON [2], and Hermes [3]. These tools have different strengths and
weaknesses, and they are used together to complement each other. For example,
SCR can provide us with coverage checks, CHARON supports the modeling of
hybrid systems involving both discrete and continuous behaviors (as is needed
to include a model of the patient in the system), and Hermes supports model
checking of safety properties.

The rest of the paper is organized as follows: Section 2 gives an overview
CARA and its components, Section 3 shows the details of our EFSM transla-
tion of the English requirements, Section 4 discusses our SCR model, Section 5
explains the Hermes model, and finally, Section 6 contains our conclusions.

Informal Requirements

Translator

Requirements

‘ Specification in ‘ ‘ Specification in ‘ ‘ Specification in ‘

Specification in

SCR Hermes CHARON

Consistency Model Simulator
Checker Checker

Figure 1: Two Phase Approach

2 Overview of CARA

The Computer Assisted Resuscitation Algorithm (CARA) is a system which
determines the rate at which an infusion pump should infuse fluid such as saline
into a patient suffering from severe hypotension due to blood loss. The CARA
determines the rate based on the patient’s current blood pressure; the more
severe the hypotension the more rapidly the fluid is to be infused. CARA
controls a system which includes a M 100 infusion pump from Infusion Dynamics
and a physiological monitoring device. The physiological monitoring device
is the conveyor of blood pressure information for the CARA, including data
from potentially several different sources such as a non-invasive cuff, a pulse
wave velocity sensor, or an arterial line pressure sensor. The eventual use for
the CARA system will be combat casualties, and it seems probable that a
device such as this will eventually become part of emergency medical equipment
deployed for automobile and industrial accidents.

The CARA software system is the aim of our formal reference specification
analysis. The CARA software functions within a context that is described in
Figure 2. The total Infusion Pump System consists of five components: CARA,
Pump, Blood Pressure Sensor, Caregiver, and Patient. CARA must interact
with each of these components and clarifying that interface is an important
aspect of the reference specification. For the most part, in this work, we have
focused on formalizing and analyzing just the reference specification of CARA.
However, by modeling (in Hermes and CHARON, for example) the Caregiver
and Patient as part of the total infusion pump we are able to capture require-

ments about their behavior upon which the correctness of CARA depends. This
section briefly describes the functionality of individual components and their in-
terfaces.

Caregiver |
A

v

Pump Monitor

Blood Pressure

Patient Monitor
Algorithm ‘
g I} . :

| 94— Caregiver

' Interface

BP Monitor

Figure 2: Overall Structure of the Infusion Pump System

CARA. CARA will drive the infusion pump with the aim of raising the patient’s
blood pressure and maintaining it at an acceptable level. The pump’s infusion
speed will be calculated by CARA based on the patient’s current blood pressure
and the desired average blood pressure set by the medical staff. A physiological
device attached to the patient will provide the algorithm with the patient’s
current blood pressure information. The desired average blood pressure will be
set by an attending caregiver or left at the default of 70 mmHg. The reason for
such a minimal blood pressure set-point is that CARA is expected to be used, at
least initially, in situations where the availability of resuscitation fluid is quite
limited and there may be several patients to be treated. While 70 mmHg is a
low blood pressure, it is sufficient to ensure the survival of the patients until
they can be transported to better equipped care facilities. The caregiver has
the option of increasing the set-point if it is judged necessary.

CARA communicates with the caregiver via alarm signals, messages that
appear on a display screen, and user input via soft buttons. The display screen

shows the the driving voltage (and hence the flow rate) as determined by the
algorithm. Whenever a pump fault occurs (e.g., occlusion in the fluid tubing),
appropriate alarm signals are activated. The caregiver is responsible for remov-
ing the pump’s faults, and if they happen when the pump is being controlled by
CARA, the software releases its control. We have tried to abstract the interface
so that it can specify what a replacement pump would have to satisfy in order
to be used instead of the M100.

Blood Pressure Sensor. The Blood Pressure Sensor is the monitoring device
which is the source of physiological signals such as arterial blood pressure and
cuff blood pressure. It will be attached to the patient and communicate the
signals to CARA. However, the design does not allow for direct interface with the
algorithm. Instead, all data from the sensor is assumed to be stored in a shared
buffer that the software will have access to. This allows for a more modular
design which could enable greater flexibility in using a variety of monitoring
devices.

Pump. The infusion pump is the device which moves fluid into the patient.
It has a variety of sensors and can trigger alarms if fault conditions occur.
The pump has two modes, manual and autocontrol. In manual mode, the
pump speed is set with a switch built into the pump. In autocontrol mode, the
pumping speed is set by a control voltage from an external source.

Caregiver. The caregiver represents the person that will be in charge of the
infusion, usually a doctor, nurse, or medic. He or she can interact with the
actual pumping device via hardware buttons on the pump and with the CARA
software via messages and soft buttons on a display screen. He or she sets
the desired blood pressure via soft buttons on the display, and sets a default
flow rate directly on the pump for use by the pump when it is operating in
manual mode (not under the control of CARA). The caregiver also takes care
of potential faults and failures that may occur during infusion.

Patient. The patient is the object in this system. He or she is connected to the
pump and the blood pressure sensor. Infusion is carried out depending on the
patient’s current state, with the aim to rapidly restore his or her intravenous
volume and blood pressure.

3 Reference Model Specification of CARA in
EFSM

As mentioned in the introduction, the first phase was to convert the informal
requirements to the reference formal specifications.

Researchers at Walter Reed Army Institute for Research (WRAIR) provided
us with two documents upon which our specification is based [12] [11]. These
were the requirements list and a list of questions and answers. The requirements

document listed 228 requirements which the software had to meet. For example,
typical requirements are [12]:

Requirement 8.1: If the Air OK signal remains low for 10 seconds
Requirement 8.1.1: An appropriate alarm message should be is-
sued.

The questions document listed 133 questions and answers, which amended
the requirements document. This format led to some initial confusion as the
questions document sometimes overruled the requirements. In order to write our
specification, it was necessary to use both documents in concert. This problem
was exacerbated when we started adding our own questions to the list.

The requirements documents and appended questions developed at WRAIR
provide a fairly thorough description of the desired behavior of the CARA sys-
tem. However, they do not quite fit the standard, for example the Software En-
gineering Standard of the European Space Agency [9], for a user requirements
document in a variety of ways. One of the problems we have in attempting to
derive a system requirements document from the requirements documents from
WRAIR is that the requirements documents from WRAIR contain statements
about the operations CARA should perform internally to achieve certain exter-
nal behaviors. An example of the specification of such internal behavior can be
seen in Requirement 9:

Requirement 9: CARA should monitor the back EMF line from
the pump to keep track of infused fluids by polling immediately when
the pump is plugged and then on every even 5-second clock interval
while the pump remains plugged in.

The “even 5-second clock interval” is referring to the value of an internal clock.
In our work, we considered the requirements documents as a given, except where
we required additional clarification. Therefore, our specifications also fall short
of the standards for system requirements documents because they deliberately
contain a reflection of all internal details described in the original requirements
documents.

We started our translation by specifying the CARA system using 21 Ex-
tended Finite State Machines (EFSMs). An EFSM is a finite state machine
with variables, and in our model the state machines communicate using shared
variables. Specifying the system in this way allowed us to generate a standard
document which could be referred to by each of the several teams working with
the system. Our goal in creating EFSMs was to capture our understanding of
the requirements documents in a precise and mathematically rigorous manner.
We could then apply various formal analysis techniques by translating EFSMs
to other formalisms. The requirements documents and questions were written
in relatively non-technical English, and thus contained a number of ambiguities.
In the course of creating the EFSMs, we generated 30 questions identifying 4
inconsistencies, 12 instances of incompleteness and clarifying our understanding
of 14 terms.

Inconsistencies arose when the requirements defined behaviors which were
contradictory or incompatible. These definitions appeared both in the tagged
requirements document and the questions. For instance, there were several
exchanges requesting clarification on the fact that the requirements indicate
that certain actions are to be taken if a beat-to-beat source is lost for more than
3 minutes (Requirements 42 and 43), but the Q/A document says it should be
2 minutes (Question 120).

Incompleteness is when the requirements did not specify a behavior which
seemed to be necessary or which was required by another behavior. Question
134 asks whether we can assume that we can detect the source of a BP reading,
as it seemed to be assumed but was never stated explicitly.

Clarifications of terms were necessary as the WRAIR team used medical
terminology we were unfamiliar with. It was also necessary in cases where the
English was ambiguous. For instance, one requirement stated that something
should be done on every even 5 second interval. We modeled the system so that
this event happened at the 10, 20, 30, ...second marks — the even (not odd) 5
second intervals. It was only after we asked for clarification that we knew that
they meant that it should happen every 5 seconds.

3.1 Overall Structure of CARA.

In addition to directly implying certain internal implementation details, the
requirements documents strongly suggest certain internal logical structure, or
components for any implementation. We now describe a logical decomposition
of CARA into these modules and briefly explain their functionalities and the
interfaces between them. A graphical layout of the CARA components and their
interfaces is depicted in Figure 3. The components include Caregiver Interface,
Blood Pressure Monitor, Algorithm, and Pump Monitors.

The purpose of the Algorithm component is to control the infusion rate of
the pump and keep track of infusion related data in log files. A patient’s blood
pressure is used to compute the rate at which the pump will be infusing: the
higher the blood pressure, the lower the flow rate. The CARA algorithm controls
the flow rate as long as there are no complications in the pump’s operation. In
case of complications, control reverts to the manual operator or caregiver.

The Caregiver Interface unit has two functions. First, it serves as means
of communication with a caregiver. It allows the caregiver to modify infusion
parameters such as the target blood pressure, and also initiate and terminate the
algorithm’s control of the pump. Second, it displays and sounds error messages.
There are two kinds of error messages: pump malfunctions and patient/infusion
related error messages.

The Blood Pressure (BP) Monitor relays vital data (such as BP source, BP
value and infusion related errors) from the BP sensors to the Algorithm and
Caregiver Interface units. The BP Monitor is designed to work with multiple
sources, such as arterial line, pulse wave velocity, or cuff sensors, and it will
automatically select the ‘best’ source after corroborating them. It also calculates
the change in the patient’s blood pressure and can trigger a number of alarms.

Alr Line

Oce Line

Pump Line
Biack EMF Line
Impedance Line
Continuity Line

(Caregiver)

Dialog Box Buttons®

Pump Status
Current Mode

BF Data”

Infusion Data”
Motation Messages®
Alarms Messages®
Dialog Boxes®

Y

{Pump)

Caregiver Interface GuifQverride
CorroborationOverride

Plugln A & A

AirOk J

OOk

Continuity gs%ﬁ:em

BP Alarms’ InflateCuff
Mode Blood >
Pump Infused\olume P (Propaq)
. e ressure
Monitors . .
Pumping StarnAC Monitor
PaollingFailure TeminateAC Data Buifers*
ExitAC SetPoint Ermor Buffers*
Pumping
p wceAlamm
L Flow Rate v
Impedance Gotohanual
BackEMF BPSource
L BFValue
Algorithm -
Pollimpedance
FollBackEMF

(Pump)

Drive Voltage
Connectors 2,6

Figure 3: Components of CARA module

The Pump Monitors check that the pump is functioning correctly by checking
that it is plugged in and that the infusion process is within norms. There
are individual monitors for each of the key readings followed by the monitors.
These include occlusion, impedance, back EMF (i.e., a measure of how fast
the pump motor is pumping), continuity, and whether the pump is plugged in.
The monitors report data back to the Algorithm and may also directly trigger
alarms.

3.2 Modeling of CARA in EFSM.

The hierarchical structure within the four components of CARA is shown in
Figure 4.

e The Pump Monitor is modeled as six EFSM’s, where Monitor Plugin,
Monitor AirOk, Monitor OccOk, and Monitor Continuity are used by the
monitor to check if the input signal is available, and Monitor backEMF
and Monitor Impedance are used to poll the flow rate and infused volume
and to poll the impedance during Pumping.

e The BP Monitor is modeled as three EFSM’s, which in turn include nested
EFSM’s: BP Detector is responsible for determining the BP sources and
BP value, BP Handler is to handle the data and corroborate the BP
Source, and BP Checker is used in Auto Control status to report falling
BP and BP slope. In the Detector and Handler, different BP sources have
different EFSM’s.

e The Caregiver Interface has three subcomponents. Status Display shows
pumping data and the current mode of CARA and also reports any ex-
ceptional situation. Button I/O allows the caregiver to reset the set point
value. Alarm Display show messages associated with current alarms.

e The Algorithm is used to decide the current mode of CARA and to im-
plement the polling algorithm. It switches from one mode to the other
according to the current situation of the pump system. It also controls
the pumping flow rate according to the control BP value.

Interfaces between the modules are modeled by global variables in the EF-
SMs. We specify which components read and write a particular variable and
what the meaning of that variable is. To prevent reuse of names, we prefix
each variable name with a two letter code for the module. All variables are
globally readable but only writeable by a single module. Thus, if there is a
condition which can be triggered by multiple modules, it is necessary to cal-
culate the conjunction of the conditions for each module. For example, in the
Algorithm EFSM, we see the statement “CA_backManual OR CB_backManual
OR CP_backManual OR CC_backManual - CA_mode = Manual”. This simply
means that any of four EFSMs can trigger the algorithm to switch the mode to
“Manual”. We use similar message passing schemes for most of the alarms.

Monitor Plugin BP Detecting Frequency

Mode Display
Polling Display
AL Detector
Blood Pressure Display
PW Detector

— Status Display

Cuff Detector

Monitor AirOk

Monitor OccOk

BP Lost Detector

Monitor Continuity
Alarm Display

Valid BP Handler

Monitor backEMF

Cuff Source Handler

Monitor Impedance AL Source Handler Start AC 10

@
bl
[v]
D
@
=3
S

PW Source Handler

Change Setpoint 10 ‘

Pump Monitor

BP Handler Override 10

Mode Control

g Terminate AC 10
Algirthm

BP Slope Checker

BP Falling Checker Alarm IO

Polling Algorithm

BP Checker — ButtonlO

Algorithm Blood Pressure Monitor Caregiver Interface

Figure 4: Detailed view of CARA components

3.3 Detailed Example

As an example of the lowest level of detail captured in the EFSM specifica-
tion, we will describe the EFSM components for the Blood Pressure Handler in
greater detail. The English requirements are shown in Figure 6.

Figure 5 shows the EFSM we generated from the requirements listed in
Figure 6. This generation was done manually through several iterations. Table
7 shows the listing of variables used in this state machine. Variables can be
written by only one EFSM in the system, but may be read by many EFSMs.

Generating the EFSM documents from the requirements list was a multistep,
iterative process. The first step was reading and understanding the English lan-
guage requirements. In addition to the requirements illustrated in Figure 6,
there were multiple sets of questions which modified or superceded the original
requirements. This arrangement necessitated multiple reading of all the docu-
ments to identify the requirements pertaining to a particular section. Once we
identified the requirements we thought went together, we began constructing a
state machine to implement those requirements. After several iterations of this
process, we finalized the set of EFSMs presented in part in this document.

The requirements listed in Figure 6 are not implemented entirely in the Cuff
Handler EFSM. There is another EFSM (not shown) which assigns the con-
trol BP and handles validation of BP sources, and there are a number of other
EFSMs involved. The correspondence from requirements to the EFSM is fairly

10

CA_mode =="AC"

In Auto Control

B_ctrlType == "Cuff" —>
Handle Cuff | CB_iterations = 0; CB_localTimer = 0

CB_localTimer >= 60
AND CB_cuffSource == "Cuff"
—> CB_iterations ++;
CB_localTimer = 60

CB_iterations >= 5 AND

CB_ctrlType == "Cuff’ CB_ctrlType !5 "Cuff"
CB_ctrlValue < 60 AND CB_ctrlValue >= 40

—> CB_cuffFrequency = 60; CB_localTimer = 0

In CB_ctrlValue < 70 AND CB_ctrlValue >= 60 Cuff
—> CB_cuffFrequency = 120; CB_localTimer = 0 Frequency

CB_ctrlValue < 90 AND CB_ctrlvValue >= 70
—> CB_cuffFrequency = 300; CB_localTimer = 0

CB_ctrlValue <= 150 AND CB_ctrlValue >= 90
—> CB_cuffFrequency = 600; CB_localTimer = 0

CB_localTimer >= CB_cuffFrequency —>
CB_ctrlValue = CB_cuffvalue

CB_localTimer >= 40 —>
CB_alarm_cuffinvalid2 = true
CB_backManual = true

CB_cuffvalue <= 150 AND CB_cuffSValue >= 40 —>
CB_alarm_cuffinvalidl = false

Cuff Invalid 1

CB_ctrlValue > 150 OR CB_ctrlValue < 40 —>
CB alarm cuffinvalid1 = true: CB localTimer = 0

Figure 5: Cuff Handler

straightforward. Requirements 27.1 through 27.4 pertain to setting the BP sam-
pling rate, and they match with the four transitions from “Cuff in AC” to “Cuff
Frequency”. Requirement 44.3.1.3 corresponds to the transition from “Cuff In-
valid 1”7 to “In Auto Control”, specifically the statement “CB_backManual =
true” which triggers the Algorithm component to return to Manual mode.

As we used the EFSMs to create models in the various tools, we found a
number of errors or ambiguities in our EFSM model. These were corrected and
the results of the modeling were also fed back into the EFSM model. While there
was a degree of overhead in creating and maintaining the EFSM documents,
they were an extremely useful tool in helping to maintain conformity between
the various models. They were also useful in facilitating communication between
the various teams using each tool.

3.4 EFSMs as Specifications

There are some issues concerning the appropriateness of using EFSMs as system
requirements. In appearance, EFSMs are highly operational in nature. They
appear to specify not only what behavior is required of the system, but how the
system is to achieve that desired behavior. It is indisputable that they strongly
suggest a particular path of implementation. However, the extent to which they
actually require a particular implementation depends greatly upon the inter-
pretation of the EFSMs as specifications. One interpretation of an EFSM as
a specification is as a set of sequences of input and output behaviors, where a
system satisfies the specification provided all possible sequences of input and
output behavior of the system are within that set. With this interpretation,

11

13. The CARA should be able to use a blood pressure from various sources as the input into
the CARA algorithm. Blood pressure sources (artial line, cuff, other noninvasive
pressures [pulse wave, etc.]) will be prioritized based on quality.
13.1 A corroborated A-line is use priority 1
13.2 A corroborated pulse-wave pressure is use priority 2
13.3 A cuff pressure is use priority 3
15. During resuscitation CARA should respond to any lost blood pressure sources
15.1 With an appropriate message
15.2 With a level 1 alarm
15.3 With a notation in the resuscitation file
18 Mean pressure readings from Propaq must be within 40 - 150 mmHg to be valid throughout resuscitation
27. When the cuff pressure is being used for control, CARA should set a cuff reading frequency based on a ta
In general, blood pressures will be taken more frequently while below the set point.
If the cuff is already inflating for some other reason when the time arives for another reading,
an additional cuff reading does not need to be requested.
27.1 If the mean BP is 60 or below, cuff pressures will be taken once per minute.
27.2 If the mean BP is (60 - 70], cuff pressures will be taken once every 2 minutes.
27.3 If the mean BP is (70 - 90], cuff pressures will be taken once every 5 minutes.
27.4 If the mean BP is above 90, cuff pressures will be taken once every 10 minutes.
28 If CARA can not obtain a valid blood pressure in 3 minutes, it should revert back to manual mode.
28.1 An appropriate message should be displayed.
28.2 A level 2 alarm should be issued.
44 1f only the cuff pressure is being used and an expected blood pressure reading is invalid
44.1 An appropriate message should be displayed
44.2 A level-1 alarm should sound
44.3 CARA should then initiate another request for a cuff pressure
44.3.1 If this pressure is invalid,
44.3.1.1 An appropriate message should be displayed
44.3.1.2 A level-2 alarm should sound
44.3.1.3 The system will revert to manual mode
44.4 Notations should be made to the resuscitation file

Figure 6: Requirements for the Cuff Handler in Auto Control

12

Variable Name Description Written By
CA_Mode CARA’s current mode Algorithm
CB_alarm_cuffInvalidl Level 1 Alarm Cuff Handler
CB_alarm_cuffInvalid2 Level 2 Alarm Cuff Handler
CB_backManual Go back to manual mode Cuff Handler
CB_ctrlType Type of Control BP Corroboration
CB_ctrlValue Value of Control BP Corroboration
CB_cuffFrequency Frequency to read Control BP (seconds) Cuff Handler
CB_cuffSource Source of Cuff BP Reading? Corroboration
CB_cuffValue Value of Cuff BP Reading Corroboration
CB_drivenVoltage Voltage to drive pump Algorithm
CB._iterations Number of iterations Cuff Handler
CB_ocalTimer Local Timer Cuff Handler

Figure 7: Variables of the Cuff Handler EFSM

the internal structure apparent in the EFSM is only a suggestion of the internal
structure an implementation might have. The implementor is free to seek an-
other architectural design. In this interpretation, EFSMs can be used as system
requirements.

If the interpretation of the EFSM is a stronger specification where not only
the sequence of values for the input and output variables are recorded, but
also the sequence of values for all (global) internal variables, then the internal
structure ceases to be a suggestion and in effect becomes a requirement of any
system implementation of it. In this case, the EFSM has slid from the role of
system requirements to that of architectural design. In our construction of the
EFSM specification of CARA, it was our intention that either interpretation
could be applied as was found appropriate, and thus, within the limitations
of remaining faithful to the original requirements documents, that they could
be used in either the capacity of total system requirements, or as a lower-level
architectural design, as any team working on the CARA specification would
deem appropriate.

4 CARA in SCR

SCR. (Software Cost Reduction) is a formal requirements method developed at
NRL [7, 6]. It is designed to be used by engineers for specifying requirements of
complete systems as well as software. SCR consists of a specification editor, a
simulator, and a set of analysis tools. The specification editor allows informa-
tion about the system to be entered in a tabular form and there are tools for
generating a number of visualizations of the design. The editor automatically
generates Java code which can be run in the simulator to get immediate feed-
back on the effects of changing input variables. SCR represents the system as a
finite state automata and it defines transitions, input and output variables, and

13

events in terms of that automata.

smReadCuffData Mode Transition Function

P lre
P lou
O Errar

smReadCuffData Mode Transition Function
Name |smReadCuffData |

Source Mode Events Destination Mode
@T(mSampleCuff) OR @T{{mSource sRead Cuff E
= Cuff) AND (nCRTimer =
cCuffFreq))

sRead Cuff @F({mSource = Cuff) swWait

sRead Cuff @T({mCuffRead) sCheckData

sCheckData @T{mVvalidCuffData = TRUE) sEndCheck

sCheckData @T{mVvalidCuffData = FALSE) sCheckFailed

sCheckFailed @T{mVvalidCuffData) sEndCheck

sCheckFailed @F(mvalidCuffData) sEndCheck —

sEndCheck @T{mSource = Cuff) sSetFrequency 3

e P B

Figure 8: Tabular format of SCR

4.1 Modeling in SCR

Our SCR model of the CARA system incorporates 20 separate automata which
can be viewed as working in parallel. Each automaton corresponds roughly
to a machine in the EFSM model. The complete model uses 65 monitored
(externally controlled) variables, 13 term variables and 38 controlled variables.
Mode transition tables are represented in SCR’s tabular notation with three
columns; one each for starting state, transition condition and end state. This
allows users to model state machines by simply putting the information in the
right boxes. A state with two exit transitions would have two rows with disjoint
transition conditions and destination states but the same starting state. Other
tables allow definitions of variables, types and functions.

Initially, we expected that converting our EFSMs into the SCR, format would
be a fairly straightforward task. We recognized that this problem does not ex-
actly fit the domain of SCR, but we felt that we could learn valuable information

14

smReadCuffData Mode Transition Graph

ait

5 :l\lFl't‘(:illl?ﬂ cy

\

sindCheck A \

6.](&11”

sheckFailed
sCheckData

— —)
N~y
Repulsion —

10 30 50 70 50 110 130 150 170 150 210 230 250 270 290 310 330 350 370 390

Figure 9: Graphical Output from SCR,

15

about the system using SCR. There is an important assumption implicit to the
SCR system which caused us some difficulty. This is the One Input Assumption.

A basic assumption, called the One-Input Assumption, is that ex-
actly one input event occurs at each state transition[5].

The One-Input Assumption requires that every state transition must be
triggered by an input event — an event which arrives from the environment of
the state machine. Since our EFSMs have transitions which are not triggered
by the arrival of an event, we were unable to simply transfer the EFSMs into
SCR.

This problem arises because SCR is designed for capturing black box require-
ments. We hoped to utilize SCR to capture the formal requirements intended
by the set of English language informal requirements we already had. This
approach would allow us to use SCR to better define the interfaces between
the purely internal components — such as the algorithm for choosing a blood
pressure source — and the external components like the blood pressure sensor.
Since the English language requirements we were given included a large amount
of information about the internal structure of the CARA system, we found it
difficult to fully capture the model in SCR.

In the BP Monitor system there is an EFSM! which reads and validates the
data from the arterial line source. Arterial line readings are more accurate than
cuff readings, but if the catheter is incorrectly inserted then the value will be off
by a large amount. To guard against this problem, CARA reads in the arterial
line data then performs a validity check against a cuff reading. If the reading
fails the first time, CARA does another cycle of reading and validation. The
EFSM model has a state after the initial validation where the exit conditions
are controlled by a boolean condition. If the data is valid the machine ends the
check. If the cuff reading is not valid, then another reading is performed. This
sort of simple conditional switching is tricky to do in SCR. Because the actual
reading is performed in another machine, SCR can not use it as an input and it
is necessary to define a new variable to trigger the transition. Rather than using
a transition condition like “If the reading is valid then go to the end state”, our
model has to use “When the validation is done, if the reading is valid then go
to the end state”. We can not use the reading itself as a condition because its
value may not change; that is, it could already be set to true when we enter the
check and setting a variable to a value it already holds does not count as an
event.

For this reason, instead of creating an exact duplicate of the EFSM model
we created a translation which preserved the requirements from the documents
while staying as close as possible to the EFSMs. In several cases, we revised the
EFSMs to match the SCR translation of the requirements, and in the course of
this translation we manually uncovered some more issues with the requirements.
Specifically, we added 18 questions to the list. By category, we found 3 incon-
sistencies, 7 instances of incompleteness and 8 clarifications. An example of an

LScreenshots of this state machine in SCR. are included in Figures 8 and 9.

16

important incompleteness discovered during the SCR phase was that although
there were conditions for testing whether the impedance of the infusate was
within range, other than logging the impedance value, the requirements failed
to specify any action to be taken, such as sounding an alarm and cutting power
to the pump, when the impedance was out of range. We were most successful
with modeling the CARA system’s interface with its environment. In particu-
lar, we found that the interface with the blood pressure sensor was not clearly
defined which resulted in WRAIR clarifying that interface.

4.2 Analysis in SCR

SCR allows us to perform type, disjointness and coverage checks. Coverage
checks are limited to condition tables, which can only specify term and con-
trolled variables. In the example from the BP Monitor above, SCR allows us to
check that exit conditions from the validation state are disjoint. That is, if the
conditions are denoted as C1 and C2, they can not both be true at the same
time (—=C1 A =C2) as this would allow an unwelcome indeterminency. In addi-
tion to this disjointness test, we would like to have a test to guarantee that there
exists an action which will allow a transition out of every state (C'1V C2). This
would help to ensure that the machine could not become stuck in a state with
no exits. As it is now, SCR will happily pass a model where all the transition
conditions are “False”.

4.3 Future Work in SCR

Future work in SCR would focus on rounding out our model and completing
the sections which we left simplified, such as logging. We may also work more
with the SCR Simulator which would allow us to run our specification and see
how it responds to input.

5 CARA in Hermes

Hermes [3] is a model checker that supports creating and manipulating hier-
archical models. The Hermes input language is based on hierarchical reactive
modules [1]. In hierarchical reactive modules, the notion of hierarchy is sup-
ported by an observational trace-based semantics and the semantics is used
to define the notion of refinement using assume-guarantee rules. Additionally,
hierarchical reactive modules support extended finite state machines where the
communication is via shared variables. The Hermes implementation has a visual
front-end and XML-based back-end.

The central component of the description is a mode. The attributes of
a mode include global variables used to share data with its environment, local
variables, well-defined entry and exit points, and submodes connected with each
other by transitions. The transitions are labeled with guarded commands that
access the variables by the natural scoping rules. By using Hermes’ modes,

17

we can specify hierarchically the EFSM’s modules including variables. The
language distinguishes between a mode definition and a mode reference, which
allows sharing and reuse. Assertions associated with control points or modes,
and system-wide invariants can be used to specify desired safety properties.

We can specify the Infusion Pump System hierarchically and various prop-
erties as boolean valued expression by using Hermes. Hermes exhaustively ex-
plores the state space to determine whether the Infusion Pump System satisfies
the properties. Consequently, Hermes either verifies the property or provides a
counterexample.

5.1 Modeling

Our Hermes model consists of 30 modes executing concurrently and representing
the five components of the Infusion Pump System; CARA, pump, caregiver,
blood pressure sensor, and patient. A screenshot of the top level of our model
in Hermes can be found in Figure 10. In order to derive a Hermes model
from EFSM, we need to restrict variables to finite types — boolean, enumerated
types, and bounded integers. States and transitions are almost the same as the
EFSM’s.

2 cara,xml - Hermes -[0] x|

File Edit Yiew Options Run Help

new " open " gave| | Zoom-— ” Zoom+ " select " point " mode " trans " back || prop|

oo -~
L4 =

Mlonitor_Plugin &
-

BP_Detdctor

onitor_{AirOk ode_Dilsplay
E v andier
onitor |OccOk & (e
'(‘ & E
BPL Source| Handler tart_AL_10

&
-

Mopitor_Continuity

o
-

HMode_Contrpl_Algorithm
® srminatp_AC_10
Mionitor_backEMF

& Pojling_Algorithm

-

Monitor_Impedance !

-

B

Figure 10: The top level of Hermes model

In this paper, we explain two example modes of the Hermes model: the
Mode_Control_Algorithm mode and the Polling_Algorithm mode. Figure 11
describes the Mode_Control_Algorithm mode. In the Mode_Control_Algorithm

18

mode, we specify the four states of CARA - wait, manual, autocontrol init, and
autocontrol — and the Ask_StartAC submode. While the transition labels are
not made visible in the Hermes display, they have been translated from the tran-
sition labels of EFSM. In the Ask_StartAC submode, the setpoint value can be
changed and Awutocontrol_Init may be entered by pushing the StartAC button.

X cara.xml - Hermes i (=]
File Edit View Options Run Help

: ‘EEW H open ‘| gave‘ | z0om- ‘| zoom+ H select H point || mode H trans || back || Druu|

Mzl Mads

k_StanAC

Autacantral it

Bartacantral Mads

[T

Figure 11: Mode_Control_Algorithm mode

The Polling-Algorithm mode is showed in Figure 12. This mode consists of
two kinds of submodes, which are Polling_Back_EMF and Polling_Impedance.
The polling algorithm is designed to monitor back EMF and impedance value.
The impedance is polled immediately after the back EMF polling, and the
back EMF polling and impedance polling are tried at most three times if they
fail. If the back EMF or impedance reading cannot be obtained or is zero, the
appropriate alarm must be sounded.

5.2 Analysis

Hermes has two mechanisms for describing requirements of a system. A point
in a mode of a Hermes model can be given an assertion condition. This is a
boolean valued expression that must be true whenever that point is active.
An example of such an assertion is that at the Manual_Mode point of the
Mode_Control_Algorithm mode, we always have CA_Mode = Manual. A mode
can also be given an assertion condition which must be true whenever any point
in the mode is active. We verified that following assertions are satisfied on the
corresponding points in modes.

e (CA_Mode = Manual) at Manual_Mode point of the Mode_Control_Algorithm
mode

19

il - Hermes =10l x|

File Edit View Options Run Help

:;;| new ” open ” gave‘ | zoom- ” zoom+ ” seleqt ” point H mode ” trans || back H prnp|

?

-

Polling_PackBEMF

Polling_ a[kEMFB\]

Folling,ln[pe ance}

Pnlling,lnlpedance

P IIing,Intpedance

[4]

]

Figure 12: Polling_Algorithm mode

(PPu_PlugIn = true) at PlugIn point of the Monitor_Plugln mode

(PPu_Plugln = true) A (PPu_AirOK = true) at AirOK point of the
Monitor_AirOK mode

(PPu_PlugIn = true) A (PPu-OccOK = true) at OccOK point of the
Monitor-OccOK mode

(PPu_PlugIn = true) A (PPu_-ContinuityOK = true) at ContinuityOK
point of the Monitor_Continuity mode

(PPu_PlugIn = true) A (PPu_backEMF _positive = true) at backEMFOK
point of the Monitor_backEMF mode

(PPu_PlugIn = true) A(PPu_Impedance_positive = true) at ImpedanceOK
point of the Monitor_Impedance mode

Furthermore, a system also can be given an invariant which is a boolean
valued expression like an assertion condition. An invariant, however, must
evaluate to true for all the states of a system, no matter which modes or
points are active. An example of a system-wide invariant one could test is
CB_Alarm_BPLow = false. This invariant means that CB_Alarm_-BPLow is
always false, that is, BPLow alarm is never sounded. In this case, we do not
want it to always be true; we are actually testing that it is possible for the

20

alarm to sound. Hermes verifies that the invariant does not hold of the In-
fusion Pump System and gives a counterexample which shows a path where
CB_Alarm_BPLow becomes true. The path is useful for designers to make sure
thier design. We checked the following false-invariants and got counterexample
paths to reach the states where the invariants are false.

e CA_Mode # AUTO

e CB_Alarm_BPLow = false

e CB_Alarm_belowSP = false
e CB_Alarm_Slope = false

e CB_Alarm_PollEMF = false
e CB_Alarm_Polllmp = false

e CB_Alarm_BPInvalid = false
e CB_Alarm_AllLost = false

e CB_backManual = false

There are limitations to the verification capabilities of Hermes. At present,
Hermes is most useful for finding counter-examples to false conjectures. For
verifying true assertions on a system of the size of the Infusion Pump System,
with the current version of Hermes we encounter the state explosion problem
and Hermes fails to successfully terminate. Future versions of Hermes may be
able to remedy this problem, at least for systems of this size. Another limitation
of Hermes is inherent in the system. It allows us to test various safety properties
provided we can formulate the safety properties as boolean expressions of values
of the system variables. However, it does not allow us to guarantee liveness
properties. In general, we can not use Hermes to prove that eventually some
good state will be reached. For this a system with a more expressive logic would
be required.

6 Related Work

Below we describe other work that has been done to model real-world systems
using finite state machine techniques, and to use that model to verify properties
of those systems, and we discuss some of the differences between that work and
ours.

In [4], Heitmeyer et, al. describe their effort to prove system invariants for the
Software Requirements Specification for a Weapons Control Panel. The main
emphasis of this work is to describe a set of abstraction techniques that could
be applied automatically to reduce the size of the model to render it practical
for purposes of model checking. Properties in the abstract model were checked
using Spin through an automatic call from SRC. Once a counter example was

21

found in the abstract model, it was translated back to the full model and tested
using simulation in SCR. One major difference with this work and ours is that
we had to begin with a specification document written in English prose, with a
sequence of modifying and overriding appendices, while the Software Require-
ments Specification with which they worked was a much more complete and
precise semi-formal description needed in a “build-to” specification, including
such things as listing of input and output variables and a description of output
values as a function of inputs. Developing a detailed formal software require-
ments specification from informal English narrative was part of our endeavor.
Also, in that paper, the properties that were checked were state invariants (true
in every state with no reference to earlier or later states), and transition in-
variants (true of all pairs of pre and post states of all transitions). Here, we
are building a framework to allow broader classes of properties to be checked,
possibly using different tools, but always based on the same model.

In [10], an example is given of a formal specification of the mode logic of a
flight guidance system. The specification utilizes a formalization based on that
of SCR with several extentions such as transition buses and hierarchical organi-
zation. This formalism is esentially the same as that used in this paper. In that
work, however, the formalism is incomplete in that they lack a complete formal
semantics, particularly for concurrent hierarchical finite state machines. This
work provides a thorough system description, but does so using informal syntax
which did not admit any automated checking of properties of the specification.

[8] describes the application of the SCR* toolset to a communications secu-
rity device. After converting prose requirements to SCR, the authors were able
to check consistency and completeness with the SCR. tools and prove properties
about the system by plugging SCR into the SPIN model checker and TAME /
PVS theorem prover. The CARA system is significantly larger than the comsec
device (116 variables versus 39), but the details of modeling in this formalism
are basically the same. A significant difference is that their work started with
prose (natural language) specifications, while we were able to start with a formal
EFSM specification. This sped up modeling significantly and facilitated using
SCR in parallel with other tools.

7 Conclusion

We have described our on-going project using formal methods tools for the
specification and analysis of the CARA based infusion pump system. Our pre-
liminary work is based on SCR and Hermes. As mentioned in the paper, we
were able to discover several inconsistencies and incompleteness in the informal
requirements that were provided to us for our study.

The current work is to identify safety properties that CARA should satisfy
and to model check them using Hermes. Another ongoing effort is to model the
system using CHARON [2]. CHARON is a language for modular specification
of interacting hybrid systems based on the notions of agent and mode. Hybrid
systems exhibit behaviors that are continuous as well as discrete. The infusion

22

system can be naturally specified as hybrid systems. The main advantage of
using CHARON is that the reference specification in EFSM can naturally be
described in CHARON without any changes. In addition, it is possible to specify
explicitly the model of a patient (based on the known continuous flow model of
a human heart) and analyze the infusion pump system with a given particular
type of patient.

While the Cleanroom process was used in developing the initial English
language requirements at WRAIR, it did not employ the type of formal modeling
and analyis techniques such as model checking that we have described in this
paper. Ideally, such formal methods and analysis techniques should be applied
from the beginning of the development process of safety-critical medical systems

such as CARA.

8 Acknowledgment.

We would like to thank Alwyn Goodloe and Jitka Stribrna for their participation
during the initial development of EFSM and SCR specifications. We also would
like to express our appreciation to Paul Jones at FDA and David Hislop at ARO
for their support and encouragement.

References

[1] R. Alur and R. Grosu. Modular refinement of hierarchic reactive machines.
In Proceedings of the 27th ACM Symposium on Principles of Programming
Languages, pages 390-402, 2000.

[2] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specifications
of hybrid systems in CHARON . In Proceedings of Hybrid Systems: Compu-
tation and Control, Third International Workshop, volume 1790 of LNCS,
pages 6-19. Springer-Verlag, 2000.

[3] R. Alur, R. Grosu, and M. McDougall. Efficient Reachability Analysis
of Hierarchical Reactive Machines. In 12th International Conference on
Computer-Aided Verification, LNCS 1855, pages 280-295. Springer Verlag,
2000.

[4] Constance Heitmeyer, James Kirby Jr., Bruce Labaw, Myla Archer, and
Ramesh Bharadwaj. Using abstraction and model checking to detect safety
violations in requirements specifications. IEEE TSE, 24(11):927 — 948,
November 1998.

[5] Constance L. Heitmeyer, Ralph D. Jeffords, and Bruce G. Labaw. Auto-
mated consistency checking of requirements specifications. ACM Transac-
tions on Software Engineering and Methodology, 5(3):231-261, July 1996.

23

[6]

[10]

[11]

[12]

K. Heninger, D. L. Parnas, J. E. Shore, and J. W. Kallander. Software
requirements for the a-7e aircraft. Technical Report 3876, Naval Research
Lab, Washington, DC, 1978.

K. L. Heninger. Specifying software requirements for complex systems:
New techniques and their application. Software Engineering, 6(1):2-13,
January 1980.

James Kirby, Constance Heitmeyer, and Myla Archer. Scr: A practical
approach to building a high assurance comsec system. In 15th Annual
Computer Security Applications Conference (ACSAC ’99), pages 109 — 118.
IEEE Comp. Soc. Press, 1999.

C. Mazza, J. Fairclough, B. Melton, D. de Pablo, A. Scheffer, and
R. Stevens. Software Engineering Standards. Prentice Hall, 1994.

Steven P. Miller. Specifying the mode logic of a flight guidance system in
core and scr. In Proceedings of the second workshop on Formal methods in
software practice, pages 44-53. ACM Press, 1998.

WRAIR Dept. of Resuscitative Medicine. Cara questions. Proprietary
Document, WRAIR, Silver Spring, MD, January 2001.

WRALIR Dept. of Resuscitative Medicine. Cara tagged requirements. Pro-
prietary Document, WRAIR, Silver Spring, MD, March 2001.

24

	University of Pennsylvania
	ScholarlyCommons
	February 2004

	Formal Specifications and Analysis of the Computer Assisted Resuscitation Algorithm (CARA) Infusion Pump Control System
	Rajeev Alur
	David Arney
	Elsa L. Gunter
	Insup Lee
	Jaime Lee
	See next page for additional authors
	Recommended Citation

	Formal Specifications and Analysis of the Computer Assisted Resuscitation Algorithm (CARA) Infusion Pump Control System
	Abstract
	Keywords
	Comments
	Author(s)

	papergen.dvi

