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Graph Sketches: Sparsification, Spanners, and Subgraphs

Abstract

When processing massive data sets, a core task is to construct synopses of the data. To be useful, a synopsis
data structure should be easy to construct while also yielding good approximations of the relevant properties
of the data set. A particularly useful class of synopses are sketches, i.e., those based on linear projections of the
data. These are applicable in many models including various parallel, stream, and compressed sensing settings.
A rich body of analytic and empirical work exists for sketching numerical data such as the frequencies of a set
of entities. Our work investigates graph sketching where the graphs of interest encode the relationships
between these entities. The main challenge is to capture this richer structure and build the necessary synopses
with only linear measurements.

In this paper we consider properties of graphs including the size of the cuts, the distances between nodes, and
the prevalence of dense sub-graphs. Our main result is a sketch-based sparsifier construction: we show that

O(ne2) random linear projections of a graph on n nodes suffice to (1 + €) approximate all cut values. Similarly,

we show that O(¢2) linear projections suffice for (additively) approximating the fraction of induced sub-
graphs that match a given pattern such as a small clique. Finally, for distance estimation we present sketch-
based spanner constructions. In this last result the sketches are adaptive, i.e., the linear projections are
performed in a small number of batches where each projection may be chosen dependent on the outcome of
earlier sketches. All of the above results immediately give rise to data stream algorithms that also apply to
dynamic graph streams where edges are both inserted and deleted. The non-adaptive sketches, such as those
for sparsification and subgraphs, give us single-pass algorithms for distributed data streams with insertion and
deletions. The adaptive sketches can be used to analyze MapReduce algorithms that use a small number of
rounds.
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ABSTRACT

When processing massive data sets, a core task is to cdrstnic

opsesf the data. To be useful, a synopsis data structure should be

easy to construct while also yielding good approximatiohthe
relevant properties of the data set. A particularly usefatg of
synopses arsketchesi.e., those based on linear projections of the
data. These are applicable in many models including varpeus
allel, stream, and compressed sensing settings. A rich bbdyg-
alytic and empirical work exists for sketching numericatadsuch
as the frequencies of a set of entities. Our work investigtaph
sketchingwhere the graphs of interest encode the relationships be-
tween these entities. The main challenge is to capture itthemr
structure and build the necessary synopses with only linesa-
surements.

In this paper we consider properties of graphs includingsthe
of the cuts, the distances between nodes, and the prevaténce
dense sub-graphs. Our main result is a sketch-based spracsifi-
struction: we show thaD(ne~2) random linear projections of a
graph onn nodes suffice tq1 + €) approximateall cut values.
Similarly, we show thaO(e~2) linear projections suffice for (addi-
tively) approximating the fraction of induced sub-grapestimatch
a given pattern such as a small clique. Finally, for distastena-
tion we present sketch-based spanner constructions. d$niabi
result the sketches are adaptive, i.e., the linear projestare per-
formed in a small number of batches where each projection may
be chosen dependent on the outcome of earlier sketches.f All o
the above results immediately give rise to data stream igthgos
that also apply to dynamic graph streams where edges arérboth
serted and deleted. The non-adaptive sketches, such asftitos
sparsification and subgraphs, give us single-pass algusitor dis-
tributed data streams with insertion and deletions. Thetada
sketches can be used to analyze MapReduce algorithms #hat us
small number of rounds.
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gift from Google.
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1. INTRODUCTION

When processing massive data sets, a core task is to cdnstruc
synopsesf the data. To be useful, a synopsis data structure should
be easy to construct while also yielding good approximatioh
the relevant properties of the data set. A particularly wisettiss
of synopses arsketchesi.e., those based on linear projections
of the data. These are applicable in many settings includang
ious parallel, stream, and compressed sensing models.e Ther
a large body of work on sketching numerical data, e.g., fipdin
heavy hitters and quantiles [10, 13]; estimating norms abert
sizes [32, 33]; and constructing histograms and low-diroeras
approximations [11, 26]. See Cormode [12] for a survey. Ia th
paper, we design and analyze sketches for graph data.

Massive graphs arise in any application where there is datata
both basic entities and the relationships between thegteesne.g.,
web-pages and hyperlinks between web-pages, IP addresdes a
flows between addresses, people and their friendships.eRiep
of interest include the distances between nodes of the gragih
ural partitions and the size of cuts, and the prevalence nfele
sub-graphs. Applicable synopses for these propertiesdespan-
ners and sparsifisers These are sparse (weighted) subgraphs of
the original graph from which properties of the original giacan
be approximated. Both spanners and sparsifiers have bediadstu
extensively [8, 22, 34]. Our work addresses the problem of co
structing these synopses for massive graphs. Specifieadlghow
how to construct such synopses given only linear projestairthe
input graph.

Sketching is naturally connected to dimensionality reiductFor
example, the classic tug-of-war sketch of Alon, Mattiasi Smegedy
[5] is closely related to the Johnson-Lindenstrauss lemondof
metric embedding [29]. Our results can similarly be viewsdaa
form of linear dimensionality reduction for graphs. For mxde,

a graph omn nodes is essentially a@(n?) dimensional object.
However, our sparsification result shows that it is possiblén-

early project the graph into@(¢~2 - n - polylog n) dimensional
sketch space such that the size of every cut in the graph itldrest
approximated up to &l + ¢) factor from the sketch of the graph.



1.1 Applications of Sketches

One of the main motivations for our work was to design algo-
rithms for processinglynamic graph streamsA dynamic graph
stream consists of a sequence of updates to a graph, i.es edg
are added and removed. The goal is to compute propertiessof th
evolving graph without storing the entire graph. Sketchresima-
mediately applicable for this task since the linearity af gketch
ensures that the sketch is updatable with edge deletiortzloam
out previously insertions. One proviso is that linear meamients
required in the sketch can themselves be implicitly storeshiall
space and constructed when required. The sketches we design
this property.

Our sketches are also applicable in the distributed streadem
[15] where the stream is partitioned over multiple locasiand
communication between the sites should be minimized. Atjasn
follows because the linearity of the sketches ensures jhatitding
together the sketches of the partial streams, we get thetskét
the entire stream. More generally, sketches can be appliedyi
situation where the data is partitioned between differecations,
e.g., data partitioned between reducer nodes in a MapRégdhbce
or between different data centers.

1.2 Related Work

There exists a growing body on processing graph streamkisin t
setting, an algorithm is presented with a streamnoédges om
nodes and the goal is to compute properties of the resultiaghg
given only sequential access to the stream and limited meriibe
majority of work considers theemi-streamingnodel in which the
algorithm is permitted)(n polylog n) memory [19, 38]. Recent
results include algorithms for constructing graph spansfjl, 35],
spanners [16, 20], matchings [2, 3, 18, 36, 41], and courgimgll
subgraphs such as triangles [6,9,30]. This includes botjiesipass
algorithms and algorithms that take multiple pass over ta.dSee
McGregor [37] for an overview.

This paper builds upon our earlier work [4] in which we estab-
lished the first results for processing dynamic graph in #mis
streaming model. In the previous paper we presented sketsbd
algorithms for testing if a graph was connectéegonnected, bi-
partite, and for finding minimum spanning trees and sparsifie
We also consider sparsifiers in this paper (in addition tomegt
ing shortest path distances and the frequency of variougraphs)
however our earlier results required sketches that wengti@dand
the resulting semi-streaming algorithm used multiple pask this
paper we present a single-pass sparsification algorithmprishd-
ous work on distance estimation addresses the case of e€liges b
both inserted and deleted. The space/accuracy trade-offrafew
algorithm for counting small subgraphs matches that of thes
of-the-art result for counting triangles in the insertyoohse [9].

This paper also uses several techniques which are starmlard i
streaming such as hierarchical sampling [23, 28]sampling [21,
31] and sparse recovery [24].

1.3 Our Results and Roadmap

We start in Section 2 with some preliminary definitions and-le
mas. In the following three sections we present our results.

1. Sparsifiers:Our main result is a sketch-based sparsifier con-
struction: we show thaD(¢~2n polylog n) random linear
projections of a graph on nodes suffice td + ¢ approxi-
mateall cut values including the minimum cut. This leads to
a one-pass semi-streaming algorithm that constructs dgrap
sparsifier in the presence of both edge insertions and dele-
tions. This result improves upon the previous algorithn tha

requiredO(log n) passes [4]. These results are presented in
Section 3.

. Subgraphs:We show thatD(¢2) linear projections suffice
for approximating the fraction of non-empty sub-graphg tha
match a given pattern up to anadditive term. This leads
to aO(¢™?)-space, single-pass algorithm for dynamic graph
streams. In the special case of estimating the number af tria
gles, the space used by our algorithm matches that required
for the state-of-the-art result in the insert-only dataain
model [9]. We present this result in Section 4.

. Spannersin our final section, we consider adaptive sketches.
We say that a sketches scheme-&daptive if the linear mea-
surements are performed inbatches where measurements
performed in a given batch may depend on the outcome of
measurements performed in previous batches. We first show
that a simple adaptation of an existing non-streaming algo-
rithm gives rise to d@-adaptive sketch that us€y(n'*1/%)
linear measurements that can be used to approximate every
graph distance up to a factor 2k — 1. This naturally yields
a k-pass,O(n'*'/*)-space algorithm. The main result of
this section is our second algorithm in which we reduce the
adaptivity/passes tiog k at the expense of increasing the ap-
proximation factor td:'°82 > — 1. We present these results in
Section 5.

PRELIMINARIES
2.1 Model Definitions

We start with the basic model definitions of a dynamic graph
stream, sketches, and linear measurements.

DEFINITION1 (DYNAMIC GRAPH STREAM). A streamS =
(a1, ..., as) whereay, € [n] x [n] x {—1, 1} defines a multi-graph
graphG = (V, E) whereV = [n] and the multiplicity of an edge
(,7) equals

A(Zvj) = |{k sag = (i7j7 +)}| - |{k sag = (i7j>_)}| .

We assume that the edge multiplicity is non-negative andttiea
graph has no self-loops.

DEFINITION 2 (LINEAR MEASUREMENTS ANDSKETCHES).
A linear measurememf a graph is defined by a set of coefficients
c(i,7) for1 <4 < j < n. Given amulti-graphG = (V, E') where
edge(i, ) has multiplicityA(, j), the evaluation of this measure-
mentisy_, ;. c(i, j)A(4, j). Asketchis a collection of linear
measurements. Anradaptive sketching scheme is a sequences of
sketches where the linear measurements performed #ititeketch
may be chosen based on the outcomes of earlier sketches.

2.2 Graph Definitions and Notation

We denote the shortest path distance between two nodem
graphG = (V, E) by dg (u, v). We denote the minimum cut ¢f
by A(G). Foru,v € V, let Ay,»(G) denote the minimuna-v cut
in G. Finally, letA 4 (G) denote the capacity of the cft, V' \ A).

DEFINITION 3 (SPANNERS). Given agraphG = (V, E), we
say that a subgrapltf = (V, E') is ana-spanner forG if

Vu,v €V, da(u,v) <dp(u,v) < a-da(u,v).

DEFINITION4  (SPARSIFICATION). GivenagraphG = (V, E),
we say that a weighted subgraph= (V, E’, w) is ane-sparsification
for G if

VACV, (1-eAa(G) < Aa(H) < (1+)Ma(G).



2.3 Algorithmic Preliminaries

An important technique used throughout this papésisampling
[14, 21, 31]. Consider a turnstile streath= (s1, ..., s:) where
eachs; € (u;, A;) € [n] x R and the aggregate vectarc R™ de-
fined by this stream, i.ez; = Zj:uj:i A;. A é-errorfo-sampler
for x # 0 returnsFAI L with probability at most and otherwise
returns(i, ;) wheres is drawn uniformly at random from

support(x) = {i : z; # 0} .
The next lemma is due to Jowhari et al. [31].

THEOREM2.1 (fo-SAMPLING). There exists a sketch-based
algorithm that performg, sampling using?(log® nlog § ') space
assuming access to a fully independent random hash function

While our final results will not make any assumptions abolly fu
independent hash functions, it will be useful to state thavipus
results under this assumption and only address the assamaqpice
the we have constructed the full algorithm. Another useésuit
will be that we can efficiently recover exactly if x is sparse.

THEOREM2.2 (SPARSERECOVERY). There exists a sketch-
based algorithmk-RECOVERY, that recoversx exactly with high
probability if x has at mosk non-zero entries and outpuEAl L
otherwise. The algorithm us&3(k logn) space assuming access
to a fully independent random hash function.

In our previous paper [4], we presented an algorithm thastes
k-connectivity of a graph. In addition to testikgconnectivity, the
algorithm returns a “witness” which will be useful in Secti8.

THEOREM2.3 (EDGE CONNECTIVITY). There exists a sketch-
based algorithnk-EDGECONNECTthat returns a subgraplif with
O(kn) edges such that € H if e belongs to a cut of sizeor less
in the input graph. Assuming access to a fully independamom
hash function, the algorithm runs i@(kn log® n) space.

3. SPARSIFICATION

In this section we design a linear sketch for graph spartifica
This yields a single-pass, semi-streaming algorithm focpssing
dynamic graphs.

Many sparsification algorithms are based on independeatty s
pling edges based on their connectivity properties [8, 2R, 3n
particular, we will make use of the following recent result.

THEOREM3.1 (FUNG ET AL. [22]). Given an undirected un-
weighted graph, let A\. be the size of the minimumv cut for
each edge = (u,v). If we sample each edgewith probability

Pe > min{253)\;1672 log®n, 1}

and assign weight/p. to sampled edges, then the resulting graph
is ane-sparsification ofG with high probability.

The challenges in performing such sampling in a dynamictygrap
stream are numerous. Even sampling a random edge is naal-triv

since the selected edge may be subsequently removed from th

graph. We solve this problem using random hash functionsito e
sure a consistent sampling process. However, there are ajar m
complications that we need to overcome if we want our alborit
to run in a single pass and use small space.

overcome this we develop an approach that will allow us to

simultaneously sample edges and estimate sample prapertie
We present a basic version of our technique in Section 3.2.
We then bootstrap the process to develop a more efficient
construction in Section 3.3.

e Second, the random hash function being used for the con-
sistent hashing needs to be storedlifrn) space. However,
such a random hash function cannot guarantee the full in-
dependence between random variables which is required for
Lemma 3.1 and Theorem 3.1. We will use Nisan’s pseudo-
random generator [39] which produces a random bits that
are indistinguishable to an algorithm that uses a smallespac
along the same lines as Indyk [27]. In the next three sections
we will assume a random oracle that facilitates full indepen
dence. In Section 3.4, we remove this assumption and detalil
the application of Nisan’s pseudorandom generator.

3.1 Warm-up: Minimum Cut

To warm up, we start with a one-pass semi-streaming algorith
MINCuT, for the minimum cut problem. This will introduce some
the ideas used in the subsequent sections on sparsificalios.
algorithm is based on Karger’s Uniform Sampling Lemma [34].

LEMMA 3.1 (UNIFORM SAMPLING). Given an undirected un-
weighted graph, let A be the minimum cut value. If we sample
each edge with probability

p > min{6A e *logn,1}

and assign weight /p to sampled edges, then the resulting graph
is ane-sparsification oiG with high probability.

See Fig. 1 for our Minimum Cut Algorithm. The algorithm gen-
erates a sequence of grapgis= Gy 2 G1 2 G2 O ... where
G, is formed by independently removing each edgé&in: with
probability1/2. Simultaneously we use EDGECONNECTtO con-
struct a sequence of graph®, H1, Hs, . .. where H; contains all
edges inG; that participate in a cut of size or less. The idea is
that if ¢ is not too large \(G) can be approximated vi&(G;) and
if A\(G;) < kthen\(G;) can be calculated from;.

THEOREM 3.2. Assuming access to fully independent random
hash functions, there exists a single-pa®gc~2n log* n)-space
algorithm that(1 + €)-approximates the minimum cut in the dy-
namic graph stream model.

PROOF IfacutinG; has less thahk edges that cross the cut, the
witness contains all such edges. On the other hand, if a tué va
is larger thark, the witness contains at ledsedges that cross the
cut. Therefore, if7; is notk-edge-connected, we can correctly find
a minimum cut inG; using the corresponding witness.

Let \(G) be the minimum cut size @& and let

1" = |log max 1/\—62
T "6logn ’

Sori < *, the edge weights i7; are all2® and thereforeG;

approximates all the cut values @@w.h.p. by Lemma 3.1. There-
fore, if MINCUT returns a minimum cut frond’; with ¢ < ¢*, the
returned cut is 41 + €)-approximation.

By Chernoff bound, the number of edges@h- that crosses

e First, the sampling probability of an edge can be computed the minimum cut ofG' is O(e~*logn) < k with high probabil-

only after analyzing the entire graph stream. Unfortuyatel

ity. Hence, MNCuUT terminates at < ¢* and returns &1 + ¢)-

at this point it is too late to actually sample the edges. To approximation minimum cut with high probability.C]



Algorithm MINCUT
1. Fori € {1,...,2logn}, leth; : E — {0, 1} be a uniform hash function.
2. Fori € {0,1,...,2logn},
(@) LetG; be the subgraph aff containing edges such thaﬂjgi hj(e) = 1.
(b) Let H; «— k-EDGECONNECT(G;) for k = O(e 2 logn)

3. Return2’ \(H;) wherej = min{i : A\(H;) < k}

Figure 1: Minimum Cut Algorithm. Steps 1 and 2 are performed together in a single pass. Step 3 is performed in post-procésg.

Algorithm SIMPLE-SPARSIFICATION
1. Fori € {1,...,2logn}, leth; : E — {0, 1} be a uniform hash function.
2. Fori € {0,1,...,2logn},
(@) LetG; be the subgraph aff containing edges such thaﬂjgi hj(e) = 1.
(b) Let H; «— k-EDGECONNECT(G;) for k = O(e % log® n).

3. For each edge = (u,v), find j = min{i : \c(H;) < k}. If e € H;, adde to the sparsifier with weight’.

Figure 2: Simple Sparsification Algorithm. Steps 1 and 2 are prformed in a single pass. Step 3 is performed in post-procsing.

3.2 A Simple Sparsification

See Fig. 2 for a simple Sparsification Algorithm. The aldorit
extends the Min-Cut Algorithm by taking into account the wec-
tivity of different edges.

edge weight. For an edgeghat is not frozen, we sample the edge
with probability 1/2. If the edge is sampled, we double the edge
weight and otherwise, we assign weighb the edge.

DEFINITION 5. Let X.; be random variables that represent

LEMMA 3.2. Assuming access to fully independent random hashthe edge weight of at roundi and let X, be the final edge weight

functions, SIMPLE-SPARSIFICATION usesO(e~*n log® n) space
and the number of edges in the sparsificatio®ig ~?n log® n).

PrRoOF Each of theO(logn) instance ofk-EDGECONNECT
runs inO(kn log? n) space. Hence, the total space used by the
algorithm isO(e~?nlog® n). Since the total number of edges re-
turned isO(kn log n), the number of edges in the sparsification is
also bounded b (¢ 2nlog®n). O

As mentioned earlier, the analysis of our sparsificationltes
uses a modification of Theorem 3.1 that arises from the faxt th
we will not be able to independently sample each edge. Thef pro
of Theorem 3.1 is based on the following version of the Chiérno
bound.

LEMMA 3.3 (FUNG ET AL. [22]). Consider any subset of
edges of unweighted edges, where each edge C is sampled
independently with probability. for somep. € (0, 1] and given
weight1/p. if selected in the sample. Let the random variakle
denote the weight of edgesn the sample; it is not selected, then
X. = 0. Then, for anyp < p. for all edgese, anye € (0, 1], and
any N > |C/, the following bound holds:

P[er—m

ecC
We will need to prove an analogous lemma for our sampling
procedure. Consider thelNPLE-SPARSIFICATION algorithm as
a sampling process that determines the edge weight in thre spa
sification. |Initially, the edge weights are dll For each round
i =1,2,...ifan edgee is notk-connected irG;_1, we freeze the

> eN:| < 26Xp(—0.3862pN) .

of e. Letp. = min {253)\; "¢~ log® n, 1} where\. is the edge-
connectivity of and letp, = min {4p., 1}. Let B. be the event
that the edge weight of is not frozen until round log 1/p.. | and
let Bo = Uecec Be. for a setC of edges.

In the above process, freezing an edge weight at reismdquiv-
alent to sampling an edge with probability2‘~*. We will use
Azuma’s inequality, which is an exponentially decaying tat
equality for dependent random process, instead of Lemma 3.3

LEMMA 3.4 (AZUMA’S INEQUALITY). Asequence of random
variables X, X2, X3, ... is calleda martingalef for all + > 1,

E[Xi1|Xi] = X,
If | Xi+1 — Xi| < ¢; almost surely for alk, then
P[|Xn — X1| > 1] < 2exp(—t7/2) ).

We prove the following lemma which is identical to Theorerd 3.
if no bad eventB. occurs.

LEMMA 3.5. LetC be a set of edges. For any < p. for all
e € C'and anyN > |C|, we have

> Xe—|C|

ecC

P |-B¢ and

> eN:| < Qexp(—0.3862pN) .

PROOF Suppose that we sample edges one by one arid let
be the total weight of edges @i afterj steps at round. If Y; o >
|C| + eN for anyi, we stop the sampling process.



Algorithm SPARSIFICATION

2. Forie {1,...

3. Fori € {0,1,...,2logn},

1
—1
0

u,i[

x v, w] =

4. LetT = (V, Er,

(b) Letj = |log(max{w(e)e?/logn,1})].

1. Using SMPLE-SPARSIFICATION construct &1 + 1/2)-sparsification .

,2logn}, leth; : E — {0, 1} be a uniform hash function.

(a) LetG; be the subgraph af containing edges such thaﬂjgi

(b) For each: € V, computek-RECOVERY (x™) for k = O(e~2 log? n) wherex™ € {—1,0,1}() with entries

w) be the Gomory-Hu tree dff and for each edge € Er,
(a) LetC be the cut induced by and letw(e) be the weight of the cut.

(c) k-RECOVERY (D, c 4 x*7) returns all the edges i@; that crosC' with high probability.

(d) Lete = (u,v) be areturned edge arfdbe the minimum weight edge in thev path in the Gomory-Hu tree. If
inducesC, includee to the graph sparsification with edge weight

hj (6) =1.

if u=wvand(v,w) € Gy
if u=wand(v,w) € G; .
otherwise

@)

Figure 3: Better Sparsification Algorithm. Steps 1-3 are peformed in a single pass. Step 4 is performed in post-processj.

For each step in roung we change the edge weight frazfi*
to either2® or 0 with equal probability. The expectation of the
edge weight i2'~" and thereforeE [Y; ;|Yi 1] = Yij—1. In
addition, there are at mos£.-<Y random variabley; _j atroundi
since otherwisey; o has to be greater tha€@'| + e N and we would
have stopped the sampling process. So

z |C] +eN 92’ —1)

2
DD Wy =Yl <
i'<i J i <i
= Y 2" (0] +eN) < 27PN
i<

Now the following inequality follows from Azuma'’s inequgli

€2N)

2i+2
Leti = [logmax{1/(4p),1}]. If Bc does not occurY;, =
> .cc Xe. From the definition of, i = 0 or 27+ > 0.38p.
If i = 0, obviouslyY; o = |C]. If 27(+2 > 0.38p, we get the
desired resultP [|Yi,o — |C|| > eN] < 2exp(—0.38¢*pN). O

P([Yio — C]| > eN] < 2exp (—

THEOREM 3.3. Assuming access to fully independent random
hash functions, there exists a single-pa®ge~2n log® n)-space
(1+4-¢)-sparsification algorithm in the dynamic graph stream model

PROOF By replacing Theorem 3.3 by Lemma 3.5, we can con-
clude that $ARSIFICATION produces a sparse graph that approxi-
mates every cut with high probability or for some edgeB. oc-
curs. Consider an edge= (u,v) and some minimunu-v cut of
cut valueX.. Fori = |log1/p. |, the expected number of edges
in this cut is smaller thak /2 (assuming that we use a sufficiently
large constant to decide). By the Chernoff boundg is not k-
connected inG; with high probability. By union boundB. do
not occur for alle with high probability and we obtain the desired
result. [

3.3 A Better Sparsification

In this section we present a more efficient implementation of
SIMPLE-SPARSIFICATION See Fig. 3. The idea is to first con-
struct a less accurate “rough” sparsifier that we can usditoas
the connectivity of an edge. Then, rather than construaihthe
H, graphs viak-EDGECONNECT, we can use the more efficient
sparse-recovery algorithitRECOVERY in combination with the
Gomory-Hu data structure.

1. Rough-SparsificationWe construct §1+1/2)-sparsification
using the algorithm in the previous section. The goal is to
compute the sampling probability of edges upto a constant
factor.

2. Final-Sparsification: For each edge = (u,v), we find
a O(1)-approximate minimumu-v cut Ce using the rough
sparsification. Based on the cut value(@f, we compute a
sampling probability. of e. Leti. = |log1/p.]. We find
all edges inG, that crossC.. If e € G, assign weighp’
to e and otherwise, assign weighto e.

It is important to note that dividing the process into twopstés
conceptual and that both steps are performed in a singleovass
the stream.

We next discuss finding the cat. for eache. Note that the col-
lection of C. has to be efficiently computable and stored in a small
space. Fortunately, Gomory-Hu tree [25] is such a data tstreic
and it can be computed efficiently [40].

DEFINITION 6. AtreeT is aGomory-Hu treeof graph( if for
every pair of vertices andv in G, the minimum edge weight along
thew-v path inT is equal to the cut value of the minimurrv cut.

Each edge in the Gomory-Hu tree induces a cut. It is a well-
known fact that the cut value of such a cut is equal to the viifjh
the corresponding edge.



The method for finding the edges across a cut (line 4c) is based3.5  Sparsifying a Weighted Graph

an ideas developed in our previous paper [4]. The definitiod'd
in Eq. 1 ensures that for any cit, V' \ A),

support( Z x"")

u€A

whereEg, (A) is the set of edges i@; that cross the cut. Because
k-RECOVERY s a linear sketch, to findtg, (A) (on the assump-
tion there are at mogt edges crossing the cuts) it suffices to have
computedk-RECOVERY (x™*) because

Eg, (A) )

> uea k-RECOVERY (x*)= k-RECOVERY (32, . 4 %) .

THEOREM 3.4. Assuming access to fully independent random
hash functions, there exists a single-pa36é(log® n-+¢ 2 log* n))-
spacee-sparsification algorithm in the dynamic graph stream model

PROOF The algorithm can be implemented in one pass. The
sparse-recovery sketches do not require any knowledge Gdmory-
Hu tree and thus can be constructed in parallel with the rcpagin
sification. The rest of the algorithm is performed in pogigassing.

The space required to construct(h + 1/2)-sparsification is
O(nlog®n). The space required for each sampleig: logn)
which isO(¢~?1og® n). Since there ar@ such samplers pef;,
the total space required for the sampler®ig—>nlog"n). We
obtain the desired space bound by summing up both terink.

3.4 Derandomization

In this section, we prove that we can replace the uniformaand
hash function with Nisan’s pseudorandom generator [39]s &n
be viewed as a limited independence style analysis, howtbiger
construction yields the basic result cleanly. Nisan’s pgseandom
generator has the following property.

THEOREM3.5 (NiSAN [39]). Anyrandomized algorithm that
runs in.S space and using one way accesgteandom bits may be
converted to an algorithm that usé¥(S log R) random bits and
runs inO(S log R) space using a pseudorandom generator.

A pseudorandom generator is different from a hash functian t
only one-way read is allowed. If a random bit has been read, it

LEMMA 3.6. LetC be a set of edges such that edge weights are
in [1, L]. For anyp < p. for all e € C and anyN > |C|, we have

IR i

ecC ecC

P |-B¢ and

> eNL:| < 2exp(—0.38€¢°pN)

Lemma 3.6 is a variant of Lemma 3.5 where we have a weighted
graph with edge weights ifi, L] rather than an unweighted graph.
The proof of Lemma 3.6 is identical to Lemma 3.5. Lemma 3.6
implies that by increasing sampling probability of edges$dnyor L
(or equivalently, increasing by factor L), we have a sparsification
algorithm for a weighted graph with edge weights[inLZ]. This
increases the space requirement and the number of edges in th
graph sparsification.

LEMMA 3.7. There is a semi-streaming sparsification algorithm
that runs in a single pas€)(nL(log® n + ¢~ 2 log® n)) space, and
polynomial time in the dynamic graph stream model where edge
weights are i1, L].

For graphs with polynomial edge weights, we will partitidret
input graph intoO(log n) subgraphs where edge weights are in
rangell, 2), [2,4), .. .. We construct a graph sparsification for each
subgraph and merge the graph sparsifications. The merggk igra
a graph sparsification for the input graph. Summarizing, axeh
the following theorem:

THEOREM 3.8. There is a semi-streaming sparsification algo-
rithm that runs in a single pas§)(n(log” n + ¢ 21log® n)) space,
and polynomial time in the dynamic graph stream model where
edge weights ar®(poly n).

4. SMALL SUBGRAPHS

In this section, we present sketches for estimating the eamb
of subgraphs of a grap@ that are isomorphic to a given pattern
graphH with k& nodes. Specifically we are interested in estimating

cannot be read again. So Theorem 3.5 does not apply to thk grap e fraction of non-empty induced subgraphs that maichWe

sparsification algorithm as it is. Instead, we rearrangeiripat

data so that the algorithm read each random bit only once. The

argument was used first in Indyk [27].

Assume that the data stream is sorted, i.e., insertion aled de
tion operations of the same edge appear consecutively. dabr e
edge, we generate necessary random bits (whicthgpelylog n)
in number) and remember them until all the operations ondge e
are read. In this way, we read each random bit only once aral-the
gorithm still runs inS = O(n) space and? is at most polynomial
in n. We apply Theorem 3.5 to the algorithm with the sorted input
stream. The graph sparsification algorithm (with the psearttiom
generator) succeeds with high probability.

Now note that because the algorithm is sketch-based, tloe alg
rithm’s behavior does not change even if we change the ofdbeo
data stream. Therefore, the algorithm succeeds with highatnil-
ity. The same argument also applies to the minimum cut dlyori
We have the following theorems.

THEOREM3.6 (VARIANT OF THEOREM3.2). There exists a
single-passQ (e~ 2n log® n)-space algorithm thatl +¢)-approximates
the minimum cut in the dynamic graph stream model.

THEOREM3.7 (VARIANT OF THEOREM3.4). There exists a

single-passO(n(log® n 4+ ¢~ log® n))-spacec-sparsification al-
gorithm in the dynamic graph stream model.

denote this quantity by

(@) = Number of induced subgraphs @isomorphic toH
i " Number of non-empty subgraphs@hof order|H| °

Our result is as follows:

THEOREM 4.1. For a given orderk graph H and an orderrn
graph G determined by a dynamic graph stream, it is possible to
approximateyz (G) up to an additives term with probabilityl — §
usingO(e~2log 6 1) space.

We assumé: is a small constant. In the case whénis a trian-
gle, i.e., a size-3 clique, the above result matches thengeas of
the best knowhalgorithm for the insert-only case [9].

The algorithm uses a simple extensiorndgfsampling. Given a
vectorx = (z1,x2,...,Zn), the goal ofly sampling is to return
a pair (i, z;) for ani that is chosen uniformly fronfi : z; # 0},

!Note that Buriol et al. [9] state their result in terms of appr
imating the number of triangle®s up to a(1 + ¢) factor with

O(e™2(Th + T» + T3)/T5) space but the result can equivalently
be stated as an additiveapproximation tdl’s /(nm) using the fact
thatTy + T2 + T3 = ©(mn). Note thatam Is an upper bound on
the number of non-empty induced subgraphs of 8ize
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Figure 4: Linearly Encoding Small Subgraphs. See text for dscription.

i.e., the support set af. For our application we will consider a
a x b binary matrixX with columnsz?, ..., z% and the goal is to
return (i, z*) wherei is chosen uniformly frorfii : * # 0}, i.e.,
we're picking a column ofX uniformly from the set of non-zero
columns.

This can easily be achieved with the machineryosampling.
To do this, we encode the binary mattikas a vector

squash(X) € {0,1,2,...,2°7 1"

Specifically, adding 1 to thé:, j)th entry of X corresponds to
adding2? to thej entry ofsquash(X). Then performing/o sam-
pling of squash(X) returns the encoding of a column picked uni-
formly from the set of all non-zero columns.

The application to finding small subgraphs is as follows. #&or
graphG, define the matrixX¢ € {0,1}**® wherea = (’;) and
b= (Z) The columns ofX correspond to sizé-subsets of the
nodes ofGG and the entries in the column encode the set of edges in
the induced subgraph on the sizesubset.

See Fig. 4 for an example where= 5 andk = 3. The first
column of X corresponds to the subset of nodés2, 3} and the
top entry is 1 because the graghhas an edge between node 1 and
2. The non-zero entries isquash(X¢) correspond to the num-
ber to the number non-empty induced subgraph& ofn the case
of triangles, the entries equal focorrespond to the induced sub-
graphs which are triangles. More generally, the patterplyfd
will correspond to multiple valued i since each we are interested
in induced subgraphs that are isomorphicHoare there may be
multiple isomorphisms. Therefore, estimating(G) is equivalent
to estimating the fraction of non-zero entries that ard jn. By an
application of the Chernoff bound, this can be estimatedougnt
additivee usingO(e~? log ') samples from the non-zero entries,
i.e.,o-samples fromquash(X¢).

5. SPANNERS

In this section, we consider the problem of approximatirapr
distances via the construction of graph spanners. Sevaparp
have investigated spanner construction in an insertiop-graph
stream [7,17,20]. The best result construct®& — 1)-spanner
usingO(n'*'/*) space in a single pass and it is known that this
accuracy/space tradeoff is optimal. All these algorithmeskased
on growing shallow trees from a set of randomly-selectecesod
Unfortunately, this emulating this process is hard in thaatyic
graph setting if we only are permitted one pass over the data.

However, if we may take multiple passes over the stream, it is
straight-forward to emulate these algorithms via fhesampling
and sparse-recovery primitives from Section 2. For exantpie
Baswana-Sen construction [7] leads to @fk)-pass(2k — 1)-
spanner construction using(n'**/*) space in a dynamic graph
streams. Their construction operates as follows:

e Part 1: Growing Trees. This part consists of — 1 phases

where at the end of phagewe have constructed a set of
rooted vertex-disjoint tree®; [v] wherew is the root of the
tree and the set of roots is going to be denotedshyEach
T;[v] will have the property that the distance between a leaf
andv is at mosti. At the end of phaséthere may be many
vertices that are not in a tree.

— First phase: Pick each vertex with probability ~*/%.
Call the selected verticeS;. We will start growing
trees around the selected vertices where the selected
vertices will be the roots of their respective trees. Specif
ically, if vertexw is adjacent to a selected vertexadd
(u,v) to the treeT [v]. If u is adjacent to multiple se-
lected vertex, addu, v) to one of the trees arbitrarily.
If a vertexw is not adjacent to any selected vertex, we
remember the set of incident edgegu).

i-th phase:ConstructS; from S;_; by sampling each
vertex with probabilityn='/*. For eachv € S; ini-
tialize T;[v] = Ti—1[v]. If u is adjacent to a vertew

in some tre€l;[v] add (u, w) to T;[v]. If u is adjacent

to multiple trees, just add to one of the trees (doesn't
matter which). Again if a vertex is not adjacent to any
selected tree, then remember the set of incident edges
L(u) where you only store one edge to vertices in the
sameT;_1 tree.

e Part 2: Final Clean Up. Once we have defineti,_+ [v] for
v € Sk_1 (and deleted all vertices not in these trees)iét
be the set of vertices in th&,_; trees. For eachh € V'
add a single edge to a vertex in soffie_; [v] if such an edge
exists.

See [7] for a proof of correctness. Note that each phaseresui
selectin@(nl/’“) edges incident on each node and this can be per-
formed via either sparse recoveryffsampling.

5.1 Pass-Efficient Recursive Contraction

The above application of the Baswana-Sen construction giave
optimum trade-off between spac&n'*'/*) and approximation
2k — 1, but usedO(k) passes which is less desirable. For exam-
ple, to achieve a semi-streaming space bound, the numbassép
will need to beQ(log n/ log log n). While this is interesting, it is
natural to ask whether we can produce a spanner in fewerpasse
In what follows, we answer the question in the affirmative prat
vide an algorithm that usdeg k passes at the expense of a worse
approximation factor.

The idea behind the pass reduction is as follows. In the Bagwa
Sen algorithm we were growing regions of small diameter éat v
ious granularities) and in each pass we are growing the saatiu
most one. Thus the growth of the regions is slow. Moreover in
each of these steps we are using:) space (if the graph is dense).



Yet the space allowed for the vertex@§n'/*) and we expect the
extra space to matter precisely when the graphs are dengdeaf Bu
we are growing BFS trees, the extra edges are simply not lusefu
We will therefore relax the BFS constraint — this will allovs to
grow the regions faster. The algorithmMERURSECONNECTIS as
follows.

1. The algorithm proceeds in phases which correspond tepass
over the stream. In passwe construct a grapty; which
corresponds to a contraction of the gragh= Go; that is,
subsets of vertices of th@ have been merged into super-
vertices. This process will proceed recursively and we will
maintain the invariant

|éz| < n17(2i71)/k )

After log k passes we have a graph of sige and we can
remember the connectivity between every pair of vertices in
O(n) space. We next describe how to constrG¢t; from

Gi.

2. For each vertex id; we sanjpleny/k distinct neighborg.
To do this, for each vertex i6¥;, we independently partition

the vertex set ofy; into O(n2'/*) subsets, and use dp-
sampler for each partition. This can be achieve@im!/*)
space per vertex and in toi@l(n'**/*) space, using the hy-
potheses$G| < n'~(2'~D/k Using sparse recovery we can
also find all vertices irfy; whose degree is at most'/*.

3. The set of sampled edgesGh gives us a grapl;. We now
choose a clustering aff; where the centers of the clusters
are denoted by’;. Consider the subs&; of vertices ofH;

which have degree at least /*. We will ensure that’; is
a maximal subset of; which is independent itH2. This
is a standard construction used for the approxinkatenter
problem: We start from the s&t? being an arbitrary ver-
tex in H;. We repeatedly augmendt’ to C7*" by adding
vertices which are (i) at distance at ledstas measured in
number of hops ifff;) from each vertex irC?. and (ii) have

degree at leasi®' /*. Denote the finaC/, when we cannot
add any more vertices, 8%. Observe that

= i _(20i+1) _

4. For each vertex € C; all neighbors op in H; are assigned

to p. For each vertex with degree at leasi?' /% in Gy, if it
is not chosen irC;, we have a center in C; within 2 hops
of ¢ in H;; theng is assigned te as well.

5. We now collapse all the vertices assignegte C; into a
single vertex and theg€’;| vertices defines; ;1.

We now analyze the approximation guarantee of the above algo
rithm.

LEMMA 5.1. The distance between any pair of adjacent nodes
u,v € G is at mostk'°825 — 1,

PrROOF. Define the maximum distance between any which
are in the same collapsed setGh asa;. Note thata; < 4 since
the clustering”; has radiu®, and therefore any collapsed pair are
at a distance at modt Fori > 1 observe thati; 1 < 5a,; + 4 and
the result follows. [

2Note that nodes in(; are subsets of the original vertex set.

Vertices p, g in G; are neighbors inG; if there exists an edge
(u,v) € G such that, € pandv € q .

THEOREM 5.1. RECURSECONNECTCONSstructs gk'°825—1)-
spanner iflog k passes and(n'**/*) space.

Acknowledgments

We thank Graham Cormode, Atri Rudra, and David Woodruff for
helpful discussions.

6. REFERENCES o
[1] K. J. Ahn and S. Guha. Graph sparsification in the

semi-streaming model. ICALP (2), pages 328-338, 2009.
K. J. Ahn and S. Guha. Laminar families and metric
embeddings: Non-bipartite maximum matching problem in
the semi-streaming moddé¥lanuscript, available at
http://arxiv.org/abs/1104.4058011.

K.J. Ahn and S. Guha. Linear programming in the

semi-streaming model with application to the maximum

matching problem. IRCALP (2), pages 526-538, 2011.

K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph

structure via linear measurements S®DA 2012.

N. Alon, Y. Matias, and M. Szegedy. The space complexity

of approximating the frequency momenisurnal of

Computer and System Sciencg8:137-147, 1999.

[6] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in

streaming algorithms, with an application to counting

triangles in graphs. IRroc. of SODApages 623-632, 2002.

S. Baswana and S. Sen. A simple and linear time randomized

algorithm for computing sparse spanners in weighted graphs

Random Struct. Algorithm80(4):532-563, 2007.

[8] A. A. Benczdr and D. R. Karger. Approximating s-t

minimum cuts inO(n?) time. INSTOG pages 47-55, 1996.

L. S. Buriol, G. Frahling, S. Leonardi,

A. Marchetti-Spaccamela, and C. Sohler. Counting triasgle

in data streams. IRODS pages 253-262, 2006.

M. Charikar, K. Chen, and M. Farach-Colton. Finding

frequent items in data strean¥heor. Comput. Sgi.

312(1):3-15, 2004.

[11] K. L. Clarkson and D. P. Woodruff. Numerical linear dga
in the streaming model. IBTOG pages 205-214, 2009.

[12] G. Cormode. Sketch techniques for approximate query

processing. In G. Cormode, M. Garofalakis, P. Haas, and

C. Jermaine, editor§ynposes for Approximate Query

Processing: Samples, Histograms, Wavelets and Sketches

Foundations and Trends in Databases. NOW publishers,

2011.

G. Cormode and S. Muthukrishnan. An improved data

stream summary: the count-min sketch and its applications.

J. Algorithms 55(1):58-75, 2005.

G. Cormode, S. Muthukrishnan, and |. Rozenbaum.

Summarizing and mining inverse distributions on data

streams via dynamic inverse samplingMhDB, pages

25-36, 2005.

G. Cormode, S. Muthukrishnan, K. Yi, and Q. Zhang.

Optimal sampling from distributed streams.RODS pages

77-86, 2010.

[16] M. Elkin. A near-optimal fully dynamic distributed
algorithm for maintaining sparse spanners, 2006.

[17] M. Elkin. Streaming and fully dynamic centralized
algorithms for constructing and maintaining sparse spanne
ACM Transactions on Algorithm3(2):20, 2011.

[18] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved
approximation guarantees for weighted matching in the
semi-streaming modeCoRR abs/00907.0305, 2000.

(2]

(3]

(4]
(5]

(7]

(9]

[10]

[13]

[14]

[15]



[19] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. On graph problems in a semi-streaming model.
Theor. Comput. Sgi348(2):207-216, 2005.

[20] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and
J. Zhang. Graph distances in the data-stream m&daM
Journal on Computing38(5):1709-1727, 2008.

[21] G. Frahling, P. Indyk, and C. Sohler. Sampling in dynami
data streams and applications 3ymposium on
Computational Geometrpages 142—-149, 2005.

[22] W. S. Fung, R. Hariharan, N. J. A. Harvey, and D. Panigrah
A general framework for graph sparsification.3mOG
pages 71-80, 2011.

[23] S. Ganguly and L. Bhuvanagiri. Hierarchical samplingn
sketches: Estimating functions over data streams.
Algorithmica 53(4):549-582, 2009.

[24] A. Gilbert and P. Indyk. Sparse recovery using sparse
matrices Proceedings of the IEEB8(6):937 —947, june
2010.

[25] R. E. Gomory and T. C. Hu. Multi-Terminal Network Flows.
Journal of the Society for Industrial and Applied
Mathematics9(4):551-570, 1961.

[26] S. Guha, N. Koudas, and K. Shim. Approximation and
streaming algorithms for histogram construction problems
ACM Trans. Database SysB1(1):396—438, 2006.

[27] P. Indyk. Stable distributions, pseudorandom gelnoesat
embeddings and data stream computatlo\CM
53(3):307-323, 2006.

[28] P. Indyk and D. Woodruff. Optimal approximations of the
frequency moments of data streamsPhoceedings of the
thirty-seventh annual ACM symposium on Theory of
computing pages 202-208. ACM New York, NY, USA,
2005.

[29] W. B. Johnson and J. Lindenstrauss. Extensions of litipsh
mapping into Hilbert Spac&€ontemporary Mathematics, Vol
26, pages 189-206, May 1984.

[30] H. Jowhari and M. Ghodsi. New streaming algorithms for
counting triangles in graphs. MOCOON pages 710-716,
2005.

[31] H. Jowhari, M. Saglam, and G. Tardos. Tight bounds for Ip
samplers, finding duplicates in streams, and related
problems. InPPODS pages 49-58, 2011.

[32] D. M. Kane, J. Nelson, E. Porat, and D. P. Woodruff. Fast
moment estimation in data streams in optimal space. In
STOC pages 745-754, 2011.

[33] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal
algorithm for the distinct elements problem.RPODS pages
41-52, 2010.

[34] D. R. Karger. Random sampling in cut, flow, and network
design problems. ISTOC pages 648—-657, 1994.

[35] J. A. Kelner and A. Levin. Spectral sparsification in the
semi-streaming setting. BTACSpages 440-451, 2011.

[36] A. McGregor. Finding graph matchings in data streams.
APPROX-RANDOMpages 170-181, 2005.

[37] A. McGregor. Graph mining on streams.Emcyclopedia of
Database Systempages 1271-1275, 2009.

[38] S. MuthukrishnanData Streams: Algorithms and
Applications Now Publishers, 2006.

[39] N. Nisan. Pseudorandom generators for space-bounded
computationCombinatorica 12(4):449-461, 1992.

[40] A. Schrijver.Combinatorial Optimization - Polyhedra and

Efficiency volume 24 ofAlgorithms and Combinatorics
Springer, 2003.

[41] M. Zelke. Weighted matching in the semi-streaming niode
Algorithmica DOI: 10.1007/s00453-010-9438-2010.



	University of Pennsylvania
	ScholarlyCommons
	3-16-2012

	Graph Sketches: Sparsification, Spanners, and Subgraphs
	KookJin Ahn
	Sudipto Guha
	Andrew Mcgregor
	Recommended Citation

	Graph Sketches: Sparsification, Spanners, and Subgraphs
	Abstract
	Keywords
	Disciplines
	Comments


	graphsketches.dvi

