
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

November 2000

Timestamp Snooping: An Approach for Extending
SMPs
Milo Martin
University of Pennsylvania, milom@cis.upenn.edu

Daniel J. Sorin
University of Wisconsin

Anastassia Ailamaki
University of Wisconsin

Alaa R. Alameldeen
University of Wisconsin

Ross M. Dickson
University of Wisconsin

See next page for additional authors

Follow this and additional works at: http://repository.upenn.edu/cis_papers

Postprint version. Copyright ACM, 2000. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the ninth international conference on Architectural support for programming languages
and operating systems 2000, ASPLOS IX, Volume 28, Issue 5, November 2000, pages 25-36.
Publisher URL: http://doi.acm.org/10.1145/378993.378998

NOTE: At the time of publication, author Milo Martin was affiliated with the University of Wisconsin-Madison. Currently (March 2007), he is a
faculty member in the Department of Computer and Information Science at the University of Pennsylvania.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/312
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Milo Martin, Daniel J. Sorin, Anastassia Ailamaki, Alaa R. Alameldeen, Ross M. Dickson, Carl J. Mauer, Kevin E. Moore, Manoj Plakal,
Mark D. Hill, and David A. Wood, "Timestamp Snooping: An Approach for Extending SMPs", . November 2000.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/312
mailto:libraryrepository@pobox.upenn.edu

Timestamp Snooping: An Approach for Extending SMPs

Abstract
Symmetric multiprocessor (SMP) servers provide superior performance for the commercial workloads that
dominate the Internet. Our simulation results show that over one-third of cache misses by these applications
result in cache-to-cache transfers, where the data is found in another processor’s cache rather than in memory.
SMPs are optimized for this case by using snooping protocols that broadcast address transactions to all
processors. Conversely, directory-based shared-memory systems must indirectly locate the owner and sharers
through a directory, resulting in larger average miss latencies.

This paper proposes timestamp snooping, a technique that allows SMPs to i) utilize high-speed switched
interconnection networks and ii) exploit physical locality by delivering address transactions to processors and
memories without regard to order. Traditional snooping requires physical ordering of transactions.
Timestamp snooping works by processing address transactions in a logical order. Logical time is maintained
by adding a few bits per address transaction and having network switches perform a handshake to ensure on-
time delivery. Processors and memories then reorder transactions based on their timestamps to establish a
total order.

We evaluate timestamp snooping with commercial workloads on a 16-processor SPARC system using the
Simics full-system simulator. We simulate both an indirect (butterfly) and a direct (torus) network design. For
OLTP, DSS, web serving, web searching, and one scientific application, timestamp snooping with the
butterfly network runs 6-28% faster than directories, at a cost of 13-43% more link traffic. Similarly, with the
torus network, timestamp snooping runs 6-29% faster for 17-37% more link traffic. Thus, timestamp snooping
is worth considering when buying more interconnect bandwidth is easier than reducing interconnect latency.

Comments
Postprint version. Copyright ACM, 2000. This is the author's version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive version was published in
Proceedings of the ninth international conference on Architectural support for programming languages and operating
systems 2000, ASPLOS IX, Volume 28, Issue 5, November 2000, pages 25-36.
Publisher URL: http://doi.acm.org/10.1145/378993.378998

NOTE: At the time of publication, author Milo Martin was affiliated with the University of Wisconsin-
Madison. Currently (March 2007), he is a faculty member in the Department of Computer and Information
Science at the University of Pennsylvania.

Author(s)
Milo Martin, Daniel J. Sorin, Anastassia Ailamaki, Alaa R. Alameldeen, Ross M. Dickson, Carl J. Mauer, Kevin
E. Moore, Manoj Plakal, Mark D. Hill, and David A. Wood

This conference paper is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/312

http://repository.upenn.edu/cis_papers/312?utm_source=repository.upenn.edu%2Fcis_papers%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages

This work is supported in part by the National Science Foundation with
grants MIP-9625558, EIA-9971256, and CDA-9623632, two Wisconsin
Romnes Fellowships, and donations from Compaq Computer Corporation,
Intel Corporation, and Sun Microsystems. Milo Martin is supported by an
IBM Graduate Fellowship. Anastassia Ailamaki is supported by the
Anthony C. Klug NCR Fellowship in Databases.

Appears in the proceedings of the
Ninth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX),

Cambridge, Massachusetts, November 13-15, 2000.

Copyright © 2000 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1
(212) 869-0481, or permissions@acm.org.

Timestamp Snooping: An Approach for Extending SMPs

Milo M. K. Martin, Daniel J. Sorin, Anastassia Ailamaki, Alaa R. Alameldeen, Ross M. Dickson,
Carl J. Mauer, Kevin E. Moore, Manoj Plakal, Mark D. Hill, David A. Wood

Computer Sciences Department
University of Wisconsin-Madison

http://www.cs.wisc.edu/multifacet

Abstract
Symmetric multiprocessor (SMP) servers provide superior per-
formance for the commercial workloads that dominate the
Internet. Our simulation results show that over one-third of
cache misses by these applications result in cache-to-cache
transfers, where the data is found in another processor’s cache
rather than in memory. SMPs are optimized for this case by
using snooping protocols that broadcast address transactions
to all processors. Conversely, directory-based shared-memory
systems must indirectly locate the owner and sharers through a
directory, resulting in larger average miss latencies.
This paper proposes timestamp snooping, a technique that
allows SMPs to i) utilize high-speed switched interconnection
networks and ii) exploit physical locality by delivering address
transactions to processors and memories without regard to
order. Traditional snooping requires physical ordering of trans-
actions. Timestamp snooping works by processing address
transactions in a logical order. Logical time is maintained by
adding a few bits per address transaction and having network
switches perform a handshake to ensure on-time delivery. Pro-
cessors and memories then reorder transactions based on their
timestamps to establish a total order.
We evaluate timestamp snooping with commercial workloads
on a 16-processor SPARC system using the Simics full-system
simulator. We simulate both an indirect (butterfly) and a direct
(torus) network design. For OLTP, DSS, web serving, web
searching, and one scientific application, timestamp snooping
with the butterfly network runs 6-28% faster than directories,
at a cost of 13-43% more link traffic. Similarly, with the torus
network, timestamp snooping runs 6-29% faster for 17-37%
more link traffic. Thus, timestamp snooping is worth consider-
ing when buying more interconnect bandwidth is easier than
reducing interconnect latency.

1 Introduction

This paper is concerned with the design of shared-memory
multiprocessors for commercial workloads. These systems
provide an important computational infrastructure for the

Internet. These workloads have two key characteristics.
First, there is diminished incentive to dramatically
increase the number of processors in a multiprocessor.
While some scientific workloads can use 1000s of proces-
sors, most multiprocessors for commercial workloads—
which are the bulk of total multiprocessor sales—are
smaller systems: 2-4 processors first, 4-8 next, then 16-32,
and finally 64 and up. Service providers who need even
more throughput often create clusters, since they also
desire availability and know that little commercial soft-
ware runs on multiprocessors with 100s of processors. As
Gregory Papadopoulos says [34], “Multiprocessors can’t
just scale up. They have to scale down, too.” Many com-
puter vendors have responded to this market reality by
optimizing for small systems first. Intel, for example, con-
centrates on four processor “quad” systems. Eight proces-
sor systems integrate two quads together [43]. Still larger
systems cluster multiple quads into a distributed shared-
memory system [29].

The second key characteristic of commercial workloads is
that data sharing is common, i.e., they frequently suffer
cache misses that must obtain data from other processors’
caches. These misses have been calledcache-to-cache
transfers, dirty misses, and (for directory protocols)three-
hop transactions. For an online transaction processing
(OLTP) commercial workload, Barroso et al. [8] report
that cache-to-cache transfers account for 55-62% of
misses and state that tradeoffs that penalize cache-to-cache
transfers “will have a severe impact on OLTP perfor-
mance.” Moreover, since cache-to-cache transfers are due
to true sharing, false sharing, and migratory data, they can-
not be reduced by increasing the cache sizes. Instead,
because larger caches have fewer capacity and conflicts
misses, the fraction of cache-to-cache transfers and their
impact on performance actually increases [24].

A key way in which many computer vendors optimize
cache-to-cache transfers is by supportingsnoopingcache
coherence. Systems using snooping—calledsymmetric
multiprocessors (SMPs)—broadcast each coherence trans-
action on a “bus” that implicitly places transactions into a
total order and synchronously delivers them to memories
and caches. Low-latency broadcast ensures that the owner

2

of a block can respond to a coherence request as quickly as
possible. Recently, some vendors have begun to further
optimize cache-to-cache transfers by carefully tuning the
implementation path for sourcing data from one cache to
another. The IBM NorthStar (RS64-II) system [11], for
example, has a cache-to-cache transfer latency (43 cycles)
that is 55% of main memory latency (78 cycles) [23].

More than a decade ago, Agarwal et al. [2] predicted that
limited bus bandwidth would lead to the demise of SMPs.
They argued that directory-based coherence protocols pro-
vide better scalability by sending memory transactions over
a point-to-point network to a directory (usually at memory)
that redirects the request either to memory (trivial) or to
other processors. Yet, to date, directories have failed to
dominate SMPs for two reasons. First, as noted above, scal-
ability is much less important for most commercial servers.
Second, directories achieve their scalability by adding a
level of indirection to handle cache-to-cache transfers, sig-
nificantly increasing average miss latency. For example, a
cache-to-cache transfer takes 1036 ns on the SGI Origin
2000 [26] compared to 742 ns on the Sun UE10000 [12],
despite a comparable memory access time [21].

Instead of fading away, SMPs have continued to dominate
the multiprocessor market, largely due to a wealth of tech-
niques for building high-bandwidth, low-latency “buses”
that deliver transactions in an implicit, physical total order.
These techniques include split-transaction buses, physi-
cally separate interconnects for address requests and data
responses [38], bus-bridging with filtering [43], multiple
request buses interleaved by address [12], multiple hierar-
chical buses [11], and moving from physical shared wire
buses to logical buses implemented as bit-sliced pipelined
broadcast trees with point-to-point links [12]. To match this
bus bandwidth, SMP designers have increased snoop band-
width by duplicating cache tags, using multiple banks, and
exploiting the higher bandwidth of on-chip cache control-
lers and tags.

However, two new issues threaten the future of SMPs. The
first issue is the increasing cost (and opportunity cost) of
building address networks that performordered broad-
casts, i.e., deliver snooping coherence transactions to all
processors in a total order. Increasing levels of integration
are encouraging some designers to directly connect proces-
sors, eliminating the cost and delay of glue chips. The
Compaq 21364 [19], for example, can be connected in a
torus, which does not lend itself to delivering broadcasts in
a total order. Designs that use hierarchy also have trouble
exploiting near neighbor communication, because deliver-
ing transactions in order requires all transactions to pass
through the root(s) of the hierarchy. An example of a
directly connected system with significant natural hierar-
chy is IBM’s Power4 [13], which contains two processors

per chip, four chips per multi-chip module (MCM), and
multiple MCMs per board, with a memory controller for
each chip.

The second issue threatening the future of SMPs is that
delivering each transaction to all caches and memories at
the same time—synchronous broadcast—is a poor match
for emerging interconnection options. At an architectural
level, designers may wish to conserve resources by having
coherence transactions and data dynamically share the
same physical network links. Maintaining synchronous
broadcast requires that switches carefully coordinate their
routing decisions, thereby limiting feasible topologies,
routing schemes, and buffering strategies. At an implemen-
tation level, most current SMPs use back-pressure flow-
control to throttle the address network when end-point con-
tention causes queues to fill up. With hierarchical designs,
longer relative latencies, and high-bandwidth source syn-
chronous links [20], maintaining synchronous broadcast
may require a global, rather than simply local, flow control
mechanism.

Will problems with ordered and synchronous broadcast
doom SMPs? We think not, because snooping protocols
depend on processing coherence transactions in a total
order, but they need not require that the network deliver the
transactions in that order or at the same time. To this end
we proposetimestamp snooping,which operates as fol-
lows. A processor node generates a coherence transaction
and submits it to the network. The network assigns the
transaction a logical timestamp and then broadcasts it to all
processor and memory nodes without regard for order.
Finally, processor and memory nodes process coherence
transactions in the same logical order, but not necessarily at
the same physical time. While other write-through coher-
ence proposals have used logical timestamps [10, 44],
timestamp snooping applies them to ubiquitous writeback
MOESI protocols (see Section 6).

Qualitatively, the benefit of timestamp snooping is that it
has the potential to outperform traditional SMPs by
exploiting the natural hierarchy of high-bandwidth
switched networks and delivering address transactions to
each node via the shortest path. Timestamp snooping can
outperform moderate-scale directory systems by eliminat-
ing three-hop cache-to-cache transfers. Of course, directo-
ries will always provide superior performance for large-
scale systems because of the greater bandwidth require-
ments of snooping.

There are two primary challenges to implementing time-
stamp snooping. First, the network must be augmented to
maintain logical time and deliver transactions by their logi-
cal time deadlines. Section 2 provides an overview of the
technique and presents one possible implementation based

3

on token passing. Second, the coherence protocol must be
extended to eliminate the need for synchronous broadcasts.
Section 3 explains how to accomplish this by adding a state
bit in memory to indicate whether memory owns a block
(as in Synapse [15]).

Section 4 discusses our evaluation methodology that
includes full system simulation of a 16-processor SPARC
system running commercial workloads. Section 5 presents
quantitative results that show that timestamp snooping is
faster than (6-29%) two directory protocols at a cost of
using more interconnection network bandwidth (13-43%).
Finally, Section 6 discusses related work and Section 7
concludes.

This paper make two contributions. First, it presents time-
stamp snooping as a design for implementing MOESI
snooping on switched networks. Second, it shows how, rel-
ative to directories, timestamp snooping reduces execution
time by using more interconnection network bandwidth.

2 Timestamp Snooping Networks

In this section, we describe how to build an interconnection
network that delivers address transactions with an explicit
logical order, rather than delivering them in an implicit
physical order. The network is the sole method of commu-
nication between cache and memory controllers. This net-
work proposal is independent of topology and routing
policy, and it adds relatively little hardware to existing net-
work switches.

Our snooping system uses a broadcast address network and
a logically separate data network. The data network must
reliably deliver data messages to a single destination, but it
can do so without regard for order. It can—and we assume
it will—be implemented in the same physical network as
the address network. By providing separate virtual net-
works for address requests and data responses, deadlocks
are easily avoided [14]. Since the data network design is
conceptually straightforward, we will not discuss it further.

2.1 Basic Idea

Our address network creates snooping’s total order by add-
ing a logical timestamp to each transaction. Transactions
are delivered as quickly as possible without regard to order.
Processors and memories receive transactions out of order,
put them back into the global order using the logical time-
stamps, and process transactions only after receiving a
guarantee that no earlier transaction will arrive. This
approach relies on two types of logical times:

• Ordering time (OT)is the logical ordering time of an
address transaction. The OTs of all transactions define
a total order. Snooping protocols will use this total
order for processing transactions.

• Guarantee time (GT)for a network switch or processor
interface is a logical time that is guaranteed to be less
than the OTs of any transactions that may later be
received. A processor or memory can safely process a
transaction whose OT≤ GT, because no logically ear-
lier transactions may be in-flight.

Processing proceeds in four steps:

• Assign OT: When a processor injects a transaction
into the network, the processor assigns an OT to the
transaction. This OT is at least the source’s GT plus
the logical time to get from the source to the furthest
destination (e.g., the number of hops between them).

• Broadcast: The network may use any deadlock-free
routing algorithm to broadcast transactions to all nodes
in any order.

• Compute GTs: Network switches exchange informa-
tion to coordinate when it is safe to update their GTs.
Switches may stall GT updates to ensure that in-flight
transactions are delivered to the next routing hop with
enough time remaining to reach their final destination
at or before their OT.

• Destination Operation: Processors and memories
receive transactions out of OT order, put them back
into order, and (logically) process a transaction only
when no earlier transaction could still arrive (i.e.,
when a transaction’s OT is less than or equal to the GT
of the end-point).

To the first order, this network will have the same perfor-
mance as an unordered broadcast network, because the GT
calculation only affects whether the end-point can process
a transaction, not whether the network can deliver it.

2.2 One Network Implementation
This section describesone specific wayto implement the
abstract ordered network of the last section. In this imple-
mentation, OTs and GTs are maintained implicitly. A trans-
action carries only an explicitslackterm, which is the extra
amount of logical time that the transaction can use to get to
its destination (in addition to the required logical time to
get from its current location to its destination). Slack is ini-
tially set by the source, and it is modified by switches while
in-transit, as explained below. From the slack, a switch can
determine the OT. Similarly, GTs are implicitly maintained
using token passing, as in earlier ordered network propos-
als [32, 37].

Each processor/memory node connects to one network
switch. Switches are connected to each other in some
topology, and our scheme can be applied to many network
topologies. Each node and switch begin operation with one
(or more) tokens on each input port.

4

Source Node Operation.When a node generates a trans-
action, it includes a non-negativeslack Sin its payload.
This action implicitly sets the transaction’s OT to:

OTtransaction = GTsource + Dmax + S

whereGTsourceis the GT of the transaction’s source,Dmax
is the network pipeline delay (e.g., network hops) to the
furthest destination, andS is the slack. SettingS to a small
positive value allows GTs to advance during moderate net-
work contention without unduly delaying destination pro-
cessing. The source node then passes the transaction to the
adjacent switch. A node implicitly maintains its GT in the
same manner as will be discussed for switches.

Switch Operation. Switches exchange tokens to maintain
their GTs and to ensure that all transactions are delivered at
or before their OTs. Each switch logically maintains a
token counter per input port and contains a logically cen-
tralized transaction buffer. Intuitively, the GT of a switch is
the number of tokens it has propagated. A switch may
propagate a token whenever:

• It has received a token from each input (i.e., the token
counters of all incoming links are non-zero), and

• All buffered transactions have non-zero slack.

When a switch propagates a token it:

• Sends a token on each of its outputs,

• Decrements the slack of all buffered transactions, and

• Decrements the token counter for each input.

When a switch receives a transaction, it must forward it to
one or more output ports. We assume a statically balanced
broadcast routing algorithm using minimum distance span-
ning trees implemented with a table lookup on transaction
source ID.

There are three circumstances under which a switch modi-
fies the slack of an in-flight transaction to ensure that a
transaction’s OT is invariant as it is delivered to all destina-
tions. In all cases, it is calculated with the recurrence:

Snew = Sold + ∆GT + ∆D

whereSold is the previous slack,∆GT is the difference in
GT, and∆D is the magnitude of thedecreasein maximum
pipeline depth for a branch of the broadcast (to allow for
unbalanced broadcast trees). All switch operations must
further satisfy the invariant thatSnew≥ 0.

First, when a transaction enters a switch,∆GT equals the
number of tokens it moves past (i.e., the value of the token
counter on its input port). In effect, moving past a token
makes a transaction earlier in logical time; thus slack must
be increased to hold OT invariant. Second, when a switch
propagates a token that moves past a buffered transaction,
the transaction effectively becomes later (closer to its OT)
in logical time, requiring that its slack be decremented
(∆GT = -1). Note that the invariant of havingSnew≥ 0 pro-
hibits tokens from moving past zero-slack transactions.
Third, when a switch sends a transaction out, a∆D is
obtained for each outgoing branch in the same lookup that
selects output ports.∆D is zero for the branch that contin-
ues on the longest path, and it is greater for shorter paths.
Figure 1 provides an example illustrating how switches
exchange tokens and transactions, and it covers the three
cases of the recurrence. Note that, in practice, a token can
be encoded in one or two bits piggybacked on a transaction
or a null message.

The switch is standard [14, Chapter 2] except for the token
passing logic, which operates in parallel with normal mes-
sage routing. While the token passing logic may delay GTs

token count: 0

token count: 1

token count: 0

token count: 1

token count: 0

token count: 1

token count: 0

token count: 1 D = 1∆

D = 0∆

token

token

msg, slack 1(e)

(d)

(c)

(b)

(a)
msg, slack 1

token

token

msg, slack 2

msg, slack 2

msg, slack 2

token count: 2

token count: 1

msg passed token

msg, slack 1

token passed msg

Figure 1. Token Passing Example

This figure illustrates a token passing example with a sim-
plified 2x2 switch, where (physical) time flows from top to
bottom. Initially, in (a), the switch has an empty buffer and
an incoming message,msg, with slack equal to one. In (b),
the switch handles this message, and we assume that con-
tention forces this message to be buffered. As the message
moves past the token counter, the switch buffers the mes-
sage and increments its slack to equal 2 (∆GT=1). In (c), the
switch processes the incoming tokens by incrementing the
token counters. Then, in (d), it can issue a token on each
output. When the token is issued on the outputs, it moves
past the message in the buffer and causes its slack to
decrease to one (∆GT=-1). Finally, in (e), we assume that
the contention is removed and the switch can issue the mes-
sage on its output links, with the slack modified on each link
to reflect the change in distance to the furthest destination
on each link (note that∆D=1 on the top link).

5

from advancing, it never delays transaction delivery. The
additional hardware for token passing includes i) a read-
only table to obtain∆D (easily combined with the routing
table), and ii) logic that detects zero-slack transactions and
decrements the slack of buffered transactions when a token
is sent to each output. Including zero-detect logic and a
small decrementor (e.g., 4-6 bits) on a modest number of
buffers (e.g., 64) is neither difficult nor expensive. Finally,
the arbitration logic gives precedence to zero-slack transac-
tions, to speed token passing.

Destination Operation.Processors and memories will fre-
quently receive transactions with positive slack, implying
OTtransaction> GTdestination. To recreate the total order, each
endpoint must sort the transactions and delay processing
until it is sure it will not receive a transaction with an ear-
lier OT. Moreover, all endpoints must, in the same way,
fairly order transactions that have the same OT. This is eas-
ily done by breaking ties with a function of source ID num-
bers.

We implement destination processing with an augmented
priority queue.1 When a transaction arrives, it is inserted
into the priority queue with its current slack (and source ID
tie-breaker). When a destination gets a token from its adja-
cent switch, it processes all slack-zero transactions, decre-
ments the slack of still enqueued transactions, and sends a
token to its switch.

Buffering. To avoid deadlock, network switches and end-
points must provide enough buffering to ensure thatearly
transactions (S>0) cannot blockon-timetransactions (S=0).
A sufficient solution adds no special buffering to switches
but requires endpoints to provide worst-case buffering
(e.g., 128 address buffers per endpoint in a system that
allows 8 outstanding transactions from each of 16 proces-
sors). We are investigating more parsimonious solutions.

3 Timestamp Snooping Protocols

Conventional write-invalidate snooping protocols maintain
a subset of the MOESI stable states—M (Modified), O
(Owned), E (Exclusive), S (Shared), and I (Invalid) [40]—
in response to transactions delivered in order (ordered
broadcast) and at the same time (synchronous broadcast).
Many implementations require processors in M or O to
assert anownedsignal that is logically OR-ed to inform
memory not to respond. Similarly, processors in S or E can

assert asharedsignal to prevent a processor seeking an S
copy from entering the E state.

Timestamp snooping protocols can also support any subset
of the MOESI states in response to transactions that have
been delivered quickly but restored to a logical order.
Implementing owned and shared signals, however, is diffi-
cult since transactions can arrive at different times. For this
reason, we recommend eliminating theownedsignal with
the old Synapse scheme of adding one bit per block to indi-
cate if memory is the owner [15]. This can be implemented
with minimal memory overhead (0.2% for 64-byte blocks)
or without additional memory bits by changing the error
correcting code [7, 18, 27, 33]. This change will increase
memory controller occupancy, however, by turning some
memory reads into read-modify-writes. We can eliminate
the sharedsignal by adding a second bit in memory or by
forgoing the E state optimization.

At least two groups have formally shown that snooping
depends on the order but not on the time transactions are
processed [1, 39]. Thus, timestamp snooping correctly
implements coherence and allows processors to implement
any memory consistency model. Sorin et al. [39] present a
detailed specification of a broadcast snooping protocol that
could operate with a timestamp snooping network.

Finally, the timestamp snooping network permits two opti-
mizations not possible with conventional snooping. These
involve ‘peeking’ at a transaction that has been delivered
but not yet safely put in the logical order. First, memory
and cache controllers can prefetch data from DRAM and
SRAM, respectively, provided they do not send the data
until the logical order is confirmed. Second, processors can
process other processors’ early transactions to blocks cur-
rently in stable states S, I, or not present. The first optimi-
zation hides timestamp snooping’s worst-case broadcast
delay, while the second can significantly reduce average
queueing delay and buffer utilization.

4 Performance Evaluation Methods

This section describes our benchmarks, target system
assumptions, and simulation techniques for evaluating
timestamp snooping. We concentrate on comparing time-
stamp snooping versus a directory protocol using full sys-
tem simulation of a 16-processor SPARC system running
commercial workloads. We assume two example network
topologies based on point-to-point links and no require-
ment for global synchrony. We do not compare against a
fully-synchronous SMP, because, as we argued in the intro-
duction, it is not clear how to build such a machine at the
high bandwidths required for future systems.

1. Recall that a priority queue is a data structure that permits
items to be inserted, can respond with the value of the minimum
item, and can remove the minimum item. Priority queues are
widely used in routers and can be implemented with constant time
operations using linear space [28, 31].

6

4.1 Benchmarks
Table 1 describes the benchmarks we use. We concentrate
on commercial applications, such as database workloads,
web servers, and search engines, but we also include one
scientific application for comparison purposes. All of the
workloads were run once for warm-up and then again for
measurement. To simplify the simulations of the client-
server benchmarks (OLTP, web serving, and web search-
ing), we ran the client and the server on the same machine.

4.2 Target System Assumptions
We evaluate 16-node SPARC systems running an unmodi-
fied copy of Solaris 7. Each node contains a processor core,
level one caches, a unified level two cache (4 Mbyte, 4-
way, 64-byte blocks), a cache controller, and a memory
controller for part of the globally shared memory (1 GByte
total). We assume that a processor and level one caches
would complete four billion instructions per second with a
perfect memory system beyond the level one caches. This
could be accomplished, for example, with a 1 GHz proces-
sor having an IPC of 4 (instructions per cyclewith a perfect
memory system), or a 2 GHz processor with an IPC of 2.

Protocols.We implement timestamp snooping (TS-Snoop)
and two directory protocols (DirClassic and DirOpt). All
are MSI protocols, allow processors to silently downgrade

from S to I, support several transactions (e.g., get an S
copy, get an M copy, writeback an M copy), and interact
with processors to support sequential consistency. TS-
Snoop uses one-bit per block in memory. Controllers
prefetch from memory or cache as soon as transactions
arrive (optimization 1 in Section 3), but controllers do not
perform early invalidations (optimization 2).

Both directory protocols use a full bit vector for sharers.
DirClassic is modeled after the protocol used in the com-
mercially-deployed SGI Origin 2000 [26]. It assumes unor-
dered virtual networks, and it sometimes nacks (negatively
acknowledges) transactions. Recent directory research has
sought to reduce or eliminate nacks [7, 18]. To this end, we
developed DirOpt, which uses point-to-point ordering on
one virtual network to avoid nacks and avoid all blocking at
cache and memory controllers.

Networks. We consider integrated processor/memory con-
troller nodes connected in twoexample2 interconnection
topologies that are illustrated in Figure 2:four indirect
radix-4 butterfliesand adirect 4x4 2D torus.These net-
work topologies are examples that are not necessarily opti-
mal, but they were selected because they are similar to

Table 1. Benchmark Descriptions

Online Transaction Processing (OLTP): DB2 with a TPC-C-like workload. The OLTP workload is based on the TPC-C
benchmark [41] on IBM’s DB2 v6.1 database management system. TPC-C portrays the activity of a wholesale supplier, with
many concurrent users executing read/write transactions against the database. The TPC-C implementation in our experiments
uses the IBM benchmark kit to build the database and model users who execute transactions with no keying or think time. We
modified the driving scripts to execute a set number of transactions per user. Our experiments use a memory-resident 400 MB, 4-
warehouse database and executes 10 transactions for each of 16 concurrent users.

Decision Support Systems (DSS): DB2 with TPC-H-like workload.The DSS workload is modeled by a single run of query 12
from the TPC-H benchmark [42] on IBM’s DB2 v6.1. We used the IBM TPC-H benchmark kit to create a memory-resident 100
MB database. TPC-H consists of a suite of business-oriented ad-hoc queries, and each query involves a complex execution plan,
which is implemented by a rich collection of collaborating operators. The configuration exploits parallelism amongst operators by
enabling intra-query parallelism.

Web server: Apache with SURGE.Web servers, such as Apache [4], have become an important enterprise server application.
We used Apache 1.3.9 for SPARC/Solaris 7, and it was driven by SURGE, the Scalable URL Request Generator [6], which ana-
lytically generates traffic representative of real-world requests. The SURGE client used 12 threads with zero think time to gener-
ate 652 HTTP/1.1 requests for documents chosen from a corpus of 8000 text files (totalling 160MB).

Web search engine: Altavista.Search engines, such as Altavista, are a significant server workload due to their increased deploy-
ment on enterprise intranets. We used an evaluation copy of Altavista 2.3A for Solaris [3] to build a 500MB index of nearly
160,000 web pages from over 6000 Internet web servers. The Altavista server uses two threads (each in a separate process) to
handle a single query. Our query generation client used 12 request generation threads with zero think time to execute 50 search
requests from a pre-constructed request trace. Each request returned an average of 4000 web pages (2.5% of our index size).

Scientific workloads: SPLASH-2.Since scientific workloads are not the focus of this paper, we selected only one application
from the SPLASH-2 benchmark suite [45]:barnes-hutwith 16K bodies. The benchmark was compiled with the POSIX-threads
version of the PARMACS shared-memory macros used by Artiaga et al. [5], and we began measurement at the start of the parallel
phase to avoid measuring thread forking. The macro library was modified to use user-level synchronization through test-and-set
locks rather than POSIX-thread library calls.

2. Recall that our scheme is topology independent.

7

current or future systems interconnects. We selected the
butterfly because SMP proposals have used indirect switch-
ing nodes to create trees or fat trees to support fast broad-
cast [9, 12]. A butterfly is like a fat tree that uses separate
switches for the “up” and “down” paths, enabling a higher
radix implementation (for a fixed number of switch pins) at
a cost of not having some shorter paths [14]. We assume
four butterflies, selected round-robin, so that processor/
memory controller nodes have four outgoing and four
incoming point-to-point links (the same as with the torus
described next). A 16 processor radix-4 butterfly delivers a
message using 3 links and broadcasts a transaction with 3-
link latency using 21 links (1+4+16).

We selected a 2D bidirectional torus because it is the pro-
posed network topology of the Compaq Alpha 21364 [19].
Like the Alpha 21364, our network switch is integrated
onto the processor die, avoiding any additional switch
chips. A torus delivers messages using a mean of 2 links
and broadcasts transactions using 15 links with a mean
arrival latency of 2 links and worst-case latency of 4 links.

TS-Snoop uses two virtual networks: one for address trans-
actions (that applies the techniques of Section 2) and the
other for an unordered data network. The directory proto-
cols use three virtual networks: an unordered request net-
work, a network for requests forwarded by the directory to
processors, and an unordered network for responses from
processors and directories. The forwarded request virtual
network is unordered for DirClassic and point-to-point
ordered for DirOpt. All virtual networks use virtual cut
through routing, which requires only one virtual channel
per virtual network.

System Timing Assumptions.Table 2 gives selected tim-
ing assumptions. To approximate the published latencies of
the Compaq Alpha 21364 [19], we selected 15 ns for each
switch transversal (which includes wire propagation, syn-
chronization, and routing) and 80 ns memory access time.

When a protocol message arrives at a cache or memory it
takes 25 ns or 80 ns, respectively, to provide data to the net-
work. With timestamp snooping, cache or memory
accesses may not complete until the protocol message is
ordered (see Section 3).

Notice that, for snooping, the cache-to-cache transfer
latency is smaller than memory latency (e.g., 70% of mem-
ory latency on the butterfly: 123 ns vs.178 ns). We assume

Figure 2. 16-Processor System with Four Radix-4
Butterflies (left) and 4 x 4 Bidirectional Torus (right)

P M P M P M P M

S S S S

S S S S
 P

 S
M P

 S
M P

 S
M

 P
 S

M P
 S

M P
 S

M P
 S

M

 P
 S

M P
 S

M P
 S

M P
 S

M

 P
 S

M P
 S

M P
 S

M P
 S

M

 P
 S

M

Table 2.Unloaded Network Timing Assumptions

Description Value

Assumed latency

Enter/exit a network (Dovh) 4 ns

Switch to switch (Dswitch) 15 ns

Access directory and memory (Dmem) 80 ns

Access cache (from network) (Dcache) 25 ns

Computed for indirect radix-4 butterfly

One way latency (Dnet = Dovh + 3*Dswitch) 49 ns

Block from memory

(Dnet + Dmem + Dnet)

178 ns

Block from cache with timestamp snooping
(Dnet + Dcache + Dnet)

123 ns

Block from cache with directory “3 hops”

(Dnet + Dmem + Dnet+ Dcache + Dnet)

252 ns

Computed for direct 4x4 torus (means)

One way latency (Dnet = Dovh + [0,4]*Dswitch
with mean Dovh +2*Dswitch)

34 ns

Block from memory (Dnet + Dmem + Dnet) 148 ns

Block from cache with timestamp snooping
(Dnet + Dcache + Dnet)

93 ns

Block from cache with directory “3 hops”

(Dnet + Dmem + Dnet+ Dcache + Dnet)

207 ns

8

that this case is carefully optimized as is the case for the
IBM NorthStar (RS64-II) SMPs [11] where a cache-to-
cache transfer latency is 55% of main memory latency [23].
The cache-to-cache transfer latency for the directory proto-
cols is significantly higher than a fetch from memory, due
to indirection through memory and thus incurring the
latency of the directory access, supplying the data from the
cache, and three network messages. Combining these two
effects, timestamp snooping has a cache-to-cache miss
latency that is roughly half that of the directory protocols
with either network.

4.3 Simulation Methods
We simulated our target systems with the Simics full-sys-
tem multiprocessor functional simulator [30], and we
extended Simics with a memory hierarchy simulator to
compute execution times.

Simics.Simics is a system-level architectural simulator
developed by Virtutech AB that is capable of booting
unmodified commercial operating systems and running
arbitrary unmodified applications. We are using Simics/
sun4u, which can simulate Sun Microsystems’s SPARC v9
platform architecture (e.g., used for Sun E6000s) in suffi-
cient detail to boot an unmodified copy of Sun Solaris 7.
Simics is a functional simulator only, and it assumes that
each instruction takes one simulated cycle to execute
(although I/O may take longer), but it provides an interface
to support detailed memory hierarchy simulation. Using
full system simulation allows us to avoid trace-based simu-
lations that fail to capture the timing-sensitive and data
dependent nature of cache coherence operations.

Processor Model.We use Simics to approximate a proces-
sor core and level one caches that execute 4 billion instruc-
tions per second and generate blocking requests to the level
two data cache. We use this simple processor model to
enable tractable simulation times for full-system simulation
of commercial workloads. We elected to obtain approxi-
mate numbers for the mostly commercial workloads rather
than more precise numbers for small scientific workload
benchmarks. This simplification is also supported by the
existence of current high performance SMPs that use stati-
cally scheduled processors [11, 27] and thus limit the num-
ber of parallel misses.

Memory System.We have implemented a memory hierar-
chy simulator that supports all of our cache coherence pro-
tocols. It captures all state transitions (including transient
states) of our coherence protocols in level two caches and
memory. We accurately model unloaded network latencies,
timestamp snooping ordering delays, but we do not model
network contention. Thus, our results will be meaningful
only when network bandwidth is sufficient to keep network
contention low. We validated our memory system simulator

by comparing simulation results against measured results
from the hardware counters on a Sun E6000 and by simu-
lating microbenchmarks with known results.

Stability of Results. Multiprocessor performance is sensi-
tive to subtle timing issues. Since full-system simulation
captures kernel behavior and inter-processor timing, minor
changes in timing can lead to significant variation in run
time. To overcome observed instabilities, we performed
redundant simulations perturbed by injecting small random
delays in all message responses. Among a set of perturbed
simulations, most results were near the minimum, while a
small minority of outliers were the victims of unfortunate
timing races. Thus, when presenting the results in
Section 5, we report the minimum run time from a set of
runs whose only difference is the perturbation.

In the DSS workload, we observed low-activity startup and
end transients with highly variable lengths. When measur-
ing total runtime, these transients often obscured the length
of the active segment of the query. To compensate for this
effect, we report the measurements from only the contigu-
ous active segment of the query simulation.

5 Performance Evaluation

This section evaluates timestamp snooping against directo-
ries, with two example networks of 16 processors, by
examining benchmark characteristics, execution times, and
network traffic.

Benchmark Characteristics.Table 3 displays results that
partially characterize the execution of our benchmarks.
Column 1 gives the benchmark name. Column 2 gives the
total data memory touched. The relatively small size of
data touched makes our 4MB level two caches behave
more like infinite caches where cache-to-cache misses
dominate capacity and conflict misses. This situation may
be representative of future systems where designers use
larger caches and other techniques to minimize capacity
and conflict misses. Columns 3 and 4 give the total number
of misses on all processors and the percent of misses that
are cache-to-cache transfers, respectively, from an average
of the runs described next.

Table 3. Benchmark Characteristics

Benchmark
Total Data
Touched

Total
Misses

3-Hop
Misses

DB2/TPC-C 47.1 MB 5.3 M 43%

DB2/TPC-H Q12 8.7 MB 1.7 M 60%

Apache/SURGE 13.3 MB 2.3 M 40%

Altavista 15.3 MB 2.4 M 40%

Barnes 4.0 MB 1.0 M 43%

9

Execution Times.Figure 3 gives benchmark runtimes
(smaller is better) with the butterfly (left) and torus (right)3

for timestamp snooping and directories, normalized to the
runtime of TS-Snoop. Timestamp snooping substantially
improves runtime over the range of workloads. On the but-
terfly, TS-Snoop runs 10-28% and 6-28% faster than
DirClassic and DirOpt, respectively.4 On the torus, TS-
Snoop is 15-29% and 6-23% faster than DirClassic and
DirOpt, respectively. We omit DSS results with DirClassic
in Figures 3 and 4, because runtimes were more than twice
as long as those of the other two protocols, due, in part, to a
large number of nacks.

This improvement occurs because of the high fraction of
cache-to-cache misses (see Table 3 column 4) and the fact
that TS-Snoop handles uncontended cache-to-cache misses
in about half the time of a directory. TS-Snoop is faster for
cache-to-cache misses because it avoids both a directory
lookup and a third hop through the network that are both
incurred by a directory protocol. Recall that the unloaded
network latency assumptions in Table 2 for the butterfly
found that cache-to-cache transfers take 123 ns for time-
stamp snooping and 252 ns for directories, while both took
178 ns for data found in memory.

Network Traffic. While timestamp snooping reduces the
latency for obtaining data from other caches, this reduction
comes at a cost of higher bandwidth. The extra bandwidth
required for timestamp snooping can cause additional
latency due to increased contention (not modeled here).
Figure 4 illustrates the total traffic per butterfly link (left)
and torus link (right) of all three protocols, normalized to
that of TS-Snoop. The figure assumes 72-byte data mes-

sages (including a 64-byte data block) and 8-byte non-data
messages (including the necessary bits of a 44-bit physical
address). On the butterfly, TS-Snoop uses 13-43% more
link bandwidth than the directory protocols (or alterna-
tively, directory protocols use 12-30% less bandwidth than
TS-Snoop). Results are similar on the torus, with TS-
Snoop using 17-37% more bandwidth.5

The intuition for these numbers follows from a back-of-
the-envelope calculation. On the butterfly, a timestamp
snooping transaction sends an address packet over 21 links
and receives a data packet over three links, for a total band-
width of 384 bytes (21✕8 + 3✕72). Directory protocols, at
a minimum, send an address packet over three links and
receive a data packet over three links, for a total of 240
bytes (3✕8 + 3✕72). Thus, if all protocols took the same
number of misses, the extra bandwidth used by timestamp
snooping cannot exceed 60% (or alternatively, directories
use at least 63% the bandwidth of timestamp snooping).
The actual bandwidth difference is smaller, however,
because (a) all MSI protocols send two data messages
when a processor in state M gets a request for an S block,
and (b) directory protocols send additional non-data mes-
sages, such as invalidations, acknowledgments, negative
acknowledgments, and forwarded requests.

Furthermore, both butterfly and torus link bandwidth
results are sensitive to block size and system size, which
are currently 64 bytes and 16 processors, respectively.
Doubling the block size on a 16-node butterfly, for exam-
ple, reduces the upper limit on the extra bandwidth per
miss of timestamp snooping to 33%. Increasing the number

3. Comparing runtimes between the two networks is problematic
since the networks use different numbers of switches and wires.

4. “X is n% faster than Y” means that TimeY/TimeX - 1 = n%.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

un
ti

m
e

(n
or

m
al

iz
ed

)

Butterfly

TS-Snoop

DirClassic

DirOpt

OLTP DSS apache altavista barnes

Figure 3. Normalized Runtime with Butterfly (left) and Torus (right)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
un

ti
m

e
(n

or
m

al
iz

ed
)

Torus

TS-Snoop

DirClassic

DirOpt

OLTP DSS apache altavista barnes

5. The data bandwidth used varies modestly with protocol, since
protocols do not take the same number of misses. When spinning
on a lock, for example, getting a nack rather than data may save
data bandwidth by generating a re-request without a miss.

10

of processors increases the cost of broadcasting each trans-
action. Thus, at larger number of processors, directory pro-
tocols or hierarchical coherence schemes become
increasingly attractive. Conversely, reducing system size to
8 or 4 processors reduces the bandwidth requirements of
timestamp snooping.

6 Related Work

Coherence Protocols.Thegray zone[10] anddelta coher-
enceprotocols [44] are the prior work most closely related
to timestamp snooping. All three proposals implement
coherent shared memory using messages that are (implic-
itly) timestamped over an interconnection network that
recursively calculates the age of the oldest outstanding
message. Both gray zone and delta coherence protocols are
essentially write-through protocols because they send
reads, writes, and read-modify-writes thatbind remotely
(e.g., writes can remotely update values). Delta protocols
implement sequential consistency using an isotach network
[37] to ensure that messages arrive exactly “on time.” Gray
zone implements weak consistency by allowing messages
to arrive early, processing only non-synchronization mes-
sages early, but processing synchronizing read-modify-
writes “on time.” Gray zone also discards and retries mes-
sages that arrive late, which seems complex, especially for
writes that update multiple copies.

Timestamp snooping, on the other hand, adapts the above
ideas to work with writeback MOESI coherence protocols
that are (nearly) universally used in commercial systems.
For example, with MOESI, a non-binding coherence trans-

action allows a cache to enter state M and then perform
many binding writes locally. Binding reads, writes and
read-modify-writes do not occur remotely. MOESI coher-
ence allows timestamp snooping to operate with processors
that do or do not preserve the order of memory references
to implement either sequential consistency or weak consis-
tency with early transaction delivery and selective early
transaction processing. There are also more technical dif-
ferences (e.g., gray zone argues for a global physical clock
and delta coherence protocols sometimes need to delay
when a read hit takes effect).

Several other coherence protocols require explicit network
order but, like timestamp snooping, do not rely on when
transactions are delivered. Landin et al. [25] discuss many
protocol options for the restricted case of acyclic network
topologies with ordered links and FIFO buffers. Bilir et al.
[9] describe a multicast snooping protocol whose network
delivers transactions in order but at different times. Pong et
al. [35] describe a broadcast snooping protocol with an
ordered broadcast implemented on a central memory con-
troller chip that is separated from four processors by FIFO
queues. The directory protocol of Compaq’s recent
AlphaServer GS320 [18] uses a crossbar to provide a total
order of forwarded requests and invalidations, thereby
eliminating the need to acknowledge invalidations. Unlike
these protocols, timestamp snooping uses logical time-
stamps to create a total order.

Simulation. Considerable work has been done using logi-
cal ordering times in an implementation to create correct
function. Many parallel discrete event simulation (PDES)

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

0.0

0.2

0.4

0.6

0.8

1.0

L
in

k
T

ra
ff

ic
 (

no
rm

al
iz

ed
)

Butterfly

Misc.

Nack

Request

Data

OLTP DSS apache altavista barnes

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

TS
-S

no
op

D
irC

la
ss

ic
D

irO
pt

0.0

0.2

0.4

0.6

0.8

1.0

L
in

k
T

ra
ff

ic
 (

no
rm

al
iz

ed
)

Torus

Misc.

Nack

Request

Data

OLTP DSS apache altavista barnes

Figure 4. Normalized Link Traffic with Butterfly (left) and Torus (right)
Miscellaneous directory messages are for forwarding, invalidations, and acknowledgments.

11

algorithms [16] clearly separate the logical (virtual) time of
the target system being simulated from the physical time of
the host performing the simulation. Conservative PDES
algorithms transmit logical times in messages and make
recipients delay message processing until it is safe to pro-
ceed, while optimistic PDES algorithms, such as Jeffer-
son’s Time Warp [22], process messages speculatively and
roll back if necessary. Timestamp snooping uses ideas from
conservative PDES.

At least two other systems inspired by PDES use logical
time to determine how computation is performed, but nei-
ther of these machines supports a shared-memory multipro-
cessor model as the present proposal does. Fujimoto’s Time
Warp machine [17] applies optimistic PDES to hardware to
implement a sequential program execution on parallel
hardware using speculation. Ranade [36] proposed hard-
ware to mimic a PRAM model using techniques derived
from conservative PDES.

Networks. Several other efforts have included logical time
in network delivery. Isotach networks [37] deliver a mes-
sage at precisely the logical time specified when it enters
the network. Logical time is updated using a token-passing
method that inspired how the timestamp snooping network
manages the guarantee time (GT). Ranade’s network
ensures that memory references arrive at the correct PRAM
cycle [36]. Multicast snooping’s network [9] ensures that
address multicasts arrive in the logical order determined by
the network roots. All of these efforts delay messages so
that they arrive at exactly the appropriate logical time. The
network proposed in this paper seeks higher performance
by delivering transactions as soon as possible, but not later
than a logical time deadline.

7 Conclusions and Future Work

This paper presentstimestamp snoopingas a design for
implementing MOESI snooping on switched networks.
Timestamp snooping works by processing address transac-
tions in a logical order determined by logical timestamps
implicitly added to address transactions. Relative to two
directory protocols, timestamp snooping reduces execution
time by 6-29% at a cost of using 13-43% more intercon-
nection network bandwidth on a 16-processor SPARC sys-
tem running commercial workloads. Thus, as another
example of the classic latency-bandwidth tradeoff, time-
stamp snooping is worth considering when buying more
interconnect bandwidth is easier than reducing interconnect
latency.

We see several promising avenues of future work. First, we
would like to refine the timestamp network design of
Section 2 and develop alternatives. Second, we would like
to implement multicast snooping [9] on these networks to

reduce transaction bandwidth and extend the system size
for which snooping is viable. Third, we would like to spec-
ulatively send data in response to requests that arrive before
their ordering times. Fourth, we would like to explore addi-
tional applications of logical time (e.g., to improve multi-
processor availability).

Acknowledgments

We thank Virtutech AB—especially Magnus Christensson,
Johan Högberg, Peter Magnusson, Andreas Moestedt, and
Bengt Werner—for their critical support of Simics; Gary
Valentin, Gopi Attaluri, and Bernard Beaton for their sup-
port of IBM DB2; Paul Barford for the SURGE client; and
Ernest Artiaga for the PARMACS macros. We thank the
Condor group and Remzi Arpaci-Dusseau for providing
additional computing resources. We thank the following for
their comments on this work and/or paper: Wisconsin
Computer Architecture Affiliates, Alan Baum, Anne Con-
don, Robert Cypher, Charles Fischer, Joel Emer, Steve
Kunkel, Yannis Schoinas, Jeff Thomas, and Craig Zilles.

References

[1] Y. Afek, G. Brown, and M. Merritt. Lazy Caching.ACM
Trans. Prog. Lang. Syst., 15(1):182–205, Jan. 1993.

[2] A. Agarwal, R. Simoni, M. Horowitz, and J. Hennessy. An
Evaluation of Directory Schemes for Cache Coherence. In
Proceedings of the 15th Annual International Symposium on
Computer Architecture, pages 280–289, 1988.

[3] Altavista Business Solutions. http://doc.altavista.com/
business_solutions/bus_solutions.html.

[4] Apache HTTP Server Project. http://www.apache.org/
httpd.html.

[5] E. Artiaga, N. Navarro, X. Martorell, and Y. Becerra.
Implementing PARMACS Macros for Shared Memory
Multiprocessor Environments. Technical report, Polytechnic
University of Catalunya, Department of Computer
Architecture Technical Report UPC-DAC-1997-07, Jan.
1997.

[6] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation.
In Proceedings of the 1998 ACM Sigmetrics Conference on
Measurement and Modeling of Computer Systems, pages
151–160, June 1998.

[7] L. A. Barroso et al. Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing. InProceedings of the 27th
Annual International Symposium on Computer Architecture,
pages 282–293, June 2000.

[8] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
System Characterization of Commercial Workloads. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3–14, June 1998.

[9] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin,
M. D. Hill, and D. A. Wood. Multicast Snooping: A New
Coherence Method Using a Multicast Address Network. In
Proceedings of the 26th Annual International Symposium on
Computer Architecture, May 1999.

[10] R. Bisiani, A. Nowatzyk, and M. Ravishankar. Coherent
Shared Memory on a Message Passing Machine. In

12

Proceedings of the 1989 International Conference on
Parallel Processing, pages I–133–141. ICPP, August 1989.

[11] J. Borkenhagen and S. Storino. 4th Generation 64-bit
PowerPC-Compatible Commercial Processor Design. IBM
Whitepaper, January 13, 1999, http://www.rs6000.ibm.com/
resource/technology/nstar.pdf.

[12] A. Charlesworth. Extending the SMP Envelope.IEEE
Micro, pages 39–49, Jan/Feb 1998.

[13] K. Diefendorff. Power4 Focuses on Memory Bandwidth.
Microprocessor Report, 13(13), Oct. 1999.

[14] J. Duato, S. Yalamanchili, and L. Ni.Interconnection
Networks. IEEE Computer Society Press, 1997.

[15] S. J. Frank. Tightly Coupled Multiprocessor System Speeds
Memory-access Times.Electronics, 57(1):164–169, Jan.
1984.

[16] R. M. Fujimoto. Parallel Discrete Event Simulation.
Commun. ACM, 33(10):30–53, Oct. 1990.

[17] R. M. Fujimoto. The Virtual Time Machine. InProceedings
of the Second ACM Symposium on Parallel Algorithms and
Architectures (SPAA), June 1990.

[18] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of AlphaServer GS320. In
Proceedings of the Ninth International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS IX), Nov. 2000.

[19] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck.
Microprocessor Report, Oct. 1998.

[20] M. Horowitz, C.-K. K. Yang, and S. Sidiropoulos. High-
Speed Electrical Signaling: Overview and Limitations.IEEE
Micro, 18(1), January/February 1998.

[21] C. Hristea, D. Lenoski, and J. Keen. Measuring Memory
Hierarchy Performance of Cache-coherent Multiprocessors
Using Micro Benchmarks. In Proceedings of
Supercomputing ’97, Nov. 1997.

[22] D. R. Jefferson. Virtual Time.ACM Trans. Prog. Lang. Syst.,
7(3):404–425, July 1985.

[23] S. Kunkel. Personal Communication, Apr. 2000.

[24] S. Kunkel, B. Armstrong, and P. Vitale. System
Optimization for OLTP Workloads.IEEE Micro, pages 56–
64, May/June 1999.

[25] A. Landin, E. Hagersten, and S. Haridi. Race-Free
Interconnection Networks and Multiprocessor Consistency.
In Proceedings of the International Symposium on Computer
Architecture, June 1991.

[26] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA
Highly Scalable Server. InProceedings of the 24th Annual
International Symposium on Computer Architecture, June
1997.

[27] G. Lauterbach and T. Horel. UltraSPARC-III: Designing
Third Generation 64-Bit Performance.IEEE Micro, 19(3),
May/June 1999.

[28] C. E. Leiserson. Systolic Priority Queues. InCaltech
Conference on VLSI, pages 199–214, Jan. 1979.

[29] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA
Computer System for the Commercial Marketplace. In
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 308–317, May 1996.

[30] P. S. Magnusson et al. SimICS/sun4m: A Virtual
Workstation. InProceedings of Usenix Annual Technical
Conference, June 1998.

[31] S.-W. Moon, J. Rexford, and K. G. Shin. Scalable Hardware

Priority Queue Architectures for High-Speed Packet
Switches. In Proc. IEEE Real-Time Technology and
Applications Symposium, pages 203–212, June 1997.

[32] A. Nowatzyk. Performance Analysis of Hypercube Based
Ensemble Machine Architectures. Phd thesis, Carnegie-
Mellon, 1989.

[33] A. Nowatzyk, M. Monger, M. Parkin, E. Kelly, M. Borwne,
G. Aybay, and D. Lee. S3.mp: A Multiprocessor in a
Matchbox. InProc. PASA, 1993.

[34] G. M. Papadopoulos. SC99 State-of-the-Field Address,
1999.

[35] F. Pong, M. Dubois, and K. Lee. Design and Performance of
SMPs with Asynchronous Caches. Technical Report HPL-
1999-149, HP Labs, Nov. 1999.

[36] A. G. Ranade. How to Emulate Shared Memory.Journal of
Computer and System Sciences, 42(3):307–326, 1991.

[37] P. F. Reynolds, Jr., C. Williams, and R. R. Wagner, Jr.
Isotach Networks.IEEE Transactions on Parallel and
Distributed Systems, 8(4):337–348, April 1997.

[38] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yaun,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvery,
E. Hagersten, and B. Liencres. Gigaplane: A High
Performance Bus of Large SMPs. InIEEE Hot
Interconnects, pages 41–52, Aug. 1996.

[39] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M.
Martin, and D. A. Wood. Specifying and Verifying a
Broadcast and a Multicast Snooping Cache Coherence
Protocol. Technical Report 1412, Computer Sciences
Department, University of Wisconsin–Madison, Mar. 2000.

[40] P. Sweazey and A. J. Smith. A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE
Futurebus. InProceedings of the 13th Annual International
Symposium on Computer Architecture, pages 414–423, June
1986.

[41] Transaction Processing Performance Council. TPC
Benchmark C, Draft Specification, Revision 4.0.q, Aug.
1999.

[42] Transaction Processing Performance Council. TPC
Benchmark H (Decision Support), Standard Specification,
Revision 1.1.0, June 1999.

[43] G. White and P. Vogt. Profusion (tm): A Buffered, Cache
Coherent Crossbar Switch. InIEEE Hot Interconnects, pages
87–96, Aug. 1997.

[44] C. Williams, J. Paul F. Reyolds, and B. R. de Supinski. Delta
Coherence Protocols.IEEE Concurrency, 8(3):21–27, July-
September 2000.

[45] S. C. Woo, M. Ohara, E. Torrie, J. P. Shingh, and A. Gupta.
The SPLASH-2 Programs: Characterization and
Methodological Considerations. InProceedings of the 22nd
Annual International Symposium on Computer Architecture,
pages 24–36, June 22–24, 1995.

	University of Pennsylvania
	ScholarlyCommons
	November 2000

	Timestamp Snooping: An Approach for Extending SMPs
	Milo Martin
	Daniel J. Sorin
	Anastassia Ailamaki
	Alaa R. Alameldeen
	Ross M. Dickson
	See next page for additional authors
	Recommended Citation

	Timestamp Snooping: An Approach for Extending SMPs
	Abstract
	Comments
	Author(s)

	Timestamp Snooping: An Approach for Extending SMPs
	Milo M. K. Martin, Daniel J. Sorin, Anastassia Ailamaki, Alaa R. Alameldeen, Ross M. Dickson, Car...
	Abstract
	1 Introduction
	2 Timestamp Snooping Networks
	2.1 Basic Idea
	2.2 One Network Implementation
	Figure 1. Token Passing Example

	3 Timestamp Snooping Protocols
	4 Performance Evaluation Methods
	Table 1. Benchmark Descriptions
	4.1 Benchmarks
	4.2 Target System Assumptions
	Figure 2. 16-Processor System with Four Radix-4 Butterflies (left) and 4 x 4 Bidirectional Torus ...
	Table 2. Unloaded Network Timing Assumptions

	4.3 Simulation Methods
	Table 3. Benchmark Characteristics

	5 Performance Evaluation
	Figure 3. Normalized Runtime with Butterfly (left) and Torus (right)
	Figure 4. Normalized Link Traffic with Butterfly (left) and Torus (right) Miscellaneous directory...

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

